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Abstract: Event detection is a crucial task in information extraction. Existing research primarily
focuses on machine automatic detection tasks, which often perform poorly in certain practical
applications. To address this, an interactive event-detection mode of “machine recommendation-
human review–machine incremental learning” was proposed. In this mode, we study a few-shot
continual class-incremental learning scenario, where the challenge is to learn new-class events with
limited samples while preserving memory of old class events. To tackle these challenges, we propose
a class-incremental learning method for interactive event detection via Interaction, Contrast and
Distillation (ICD). We design a replay strategy based on representative and confusable samples
to retain the most valuable samples under limited conditions; we introduce semantic-boundary-
smoothness contrastive learning for effective learning of new-class events with few samples; and we
employ hierarchical distillation to mitigate catastrophic forgetting. These methods complement each
other and show strong performance. Experimental results demonstrate that, in the 5-shot 5-round
class incremental-learning settings on two Chinese event-detection datasets ACE and DuEE, our
method achieves final recall rates of 71.48% and 90.39%, respectively, improving by 6.86% and 3.90%
over the best baseline methods.

Keywords: event detection; information extraction; human-in-the-loop; incremental learning; few-shot
learning; contrastive learning

1. Introduction

Contemporary research in event detection focuses primarily on machine-based auto-
matic detection. However, in practical applications, many scenarios still require manual
review and correction of machine-detected results to ensure high accuracy. To enhance
the efficiency of manual review, our previous research [1] introduced the event-trigger rec-
ommendation task and developed a recommendation model. This model aims to provide
multiple candidate triggers for potential events, targeting high recall to reduce the time
spent on manual verification and correction. Nevertheless, as the real world evolves and
areas of interest shift, new types of events or more complex situations may emerge, leading
to misidentifications by the model and necessitating additional manual corrections. These
instances highlight the model’s weaknesses, and using them for incremental training can
help improve the model’s performance.

To address this, we propose a human-in-the-loop interactive event-detection mode:
“Machine recommends event triggers→Manual review and correction→Machine incre-
mental learning”. As shown in Figure 1a, the process involves the following steps: first,
the machine processes unlabeled data and recommends candidate triggers and their event
types. Next, human reviewers audit and correct these recommendations to generate labeled
data. Finally, the machine uses these labeled data for incremental learning to improve rec-
ommendation performance, creating a positive feedback loop. During incremental training,
there are two main scenarios: class-incremental learning and sample-incremental learning.
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Class-incremental learning refers to the model learning new event types, as illustrated in
Figure 1b; sample-incremental learning involves the arrival of original class samples in
batches. This paper focuses on the scenario of class-incremental learning.
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In practical applications, new events typically emerge gradually, and initially only
have a few samples. To enable the model to identify new events early on, class-incremental
learning must be performed with limited samples, which presents the challenge of avoiding
overfitting while retaining previously learned classes. Furthermore, in traditional class-
incremental learning [2–5], new training data are not obtained through manual review and
correction, whereas in the interactive event-detection mode, new training data are derived
from the model’s incorrect predictions and corrected by humans, including the model’s
errors and manual correction feedback. Effectively learning from such feedback is a key
issue to be addressed in interactive event-detection modes.

To address these issues, we propose a class-incremental learning method for interac-
tive event-detection mode. To tackle the challenges of few-shot class-incremental learning,
we introduce semantic-boundary smoothing-based contrastive learning, which assigns
soft labels and designs contrastive loss to provide the model with richer gradient infor-
mation, improving its ability to represent new classes. To learn from human feedback,
we treat new-class samples as corrected samples, retaining their outputs from the old
model, and then select representative and confusable samples to construct a replay set.
To mitigate catastrophic forgetting, we employ a hierarchical distillation to preserve the
model’s previous knowledge.

Our contributions can be summarized as follows:

1. We introduce an interactive event-detection mode: “Machine recommends event
triggers→Manual review and correction→Machine incremental learning”. This model
better aligns with the operational mode required for high-precision applications and
provides a reference for subsequent research.

2. We designed the ICD method for class-incremental learning in interactive event-
detection tasks. This method constructs a replay set based on representative and
confusable samples, designs semantic-boundary smoothing-based contrastive learn-
ing to improve performance with few samples, and employs hierarchical distillation
to preserve existing knowledge.

3. Experimental results demonstrate that our method significantly outperforms other
baseline methods in class-incremental learning tasks within interactive detection.
Specifically, under the 2-way 5-shot and 2-way 10-shot conditions of ACE and DuEE,
our method improves upon the best baseline methods by 6.86%, 4.53%, 3.90%, and
3.00%, respectively.
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2. Related Work
2.1. Event Detection

Deep learning-based event detection leverages neural networks to extract semantic
features. The advent of pre-trained models like BERT [6] has introduced the “pre-training +
fine-tuning” paradigm, enhancing model performance. Methods are generally categorized
into span-based classification, sequence labeling, and pointer networks.

2.1.1. Span-Based Classification

This method directly classifies text segments to determine their event types, some-
times restricting the segment length to 1, degenerating into character-level classification.
The DMCNN model proposed by Chen et al. [7] uses convolutional neural networks
and dynamic multi-pooling layers to extract semantic features from characters. Wang
et al. [8,9] enhance word representations by incorporating event type hints, while Guan
et al. [10] improve trigger-word prediction accuracy through trigger-argument interaction
information. Guzman-Nateras et al. [11] and Yue et al. [12] investigated few-shot learning
scenarios, and Liu et al. [13] studied partially annotated sample scenarios. Xu et al. [14]
used trigger-argument interaction attention to obtain enhanced segment representations,
showing excellent performance in event-detection tasks.

2.1.2. Sequence Labeling

This method annotates text sequences through labeling schemes to detect triggers. The
JRNN model proposed by Nguyen et al. [15] uses two recurrent neural networks to learn
sentence representations and decodes them using conditional random fields. Wei et al. [16]
enhance sentence semantic representation through dialogue and adopt the B-I-O sequence
labeling strategy. Zheng et al. [17] extended the B-I-O label scheme to accommodate
complex scenarios, but there are label ambiguity issues. Tian et al. [18] used bidirectional
long short-term memory networks to detect events in the financial domain and proposed a
new sequence labeling scheme to address the multi-event problem. Cao et al. [19] designed
a word-pair labeling scheme in the OneEE model, modeling the event extraction task as a
word-pair relationship identification and jointly decoding event triggers and arguments.
Li et al. [20] combined sequence labeling with text-generation tasks, attempting to inject
external knowledge through prompts.

2.1.3. Pointer Networks

This method uses pointer networks to indicate text segments, addressing overlapping
and nested issues. The PLMEE model proposed by Yang et al. [21] uses multi-layer pointer
networks to determine the start and end positions of event triggers. Du et al. [22], Chen
et al. [23], and Li et al. [24] modeled event detection as a question-answering task, using
head and tail pointers to locate triggers. Machine reading comprehension (MRC) models
also follow this approach.

2.1.4. Others

Some approaches model event detection as a sentence-level classification task. Wan
et al. [25] used a bidirectional attention mechanism to capture the overall semantics of a
sentence, but did not identify the specific location of the trigger. Yan et al. [26] leveraged an
external knowledge graph to create a type hierarchy, enhancing the semantic representation
of event types. They also divided the input text into word-level and context-level features.
However, their method only determines the presence of an event type without identifying
the trigger, which limits its effectiveness for downstream tasks.

2.2. Incremental Learning

To address the problem of catastrophic forgetting in machine learning and enable
incremental learning capabilities in models, researchers have explored various approaches.
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These approaches can be broadly categorized into three main types, based on how historical
information is preserved: regularization, replay, and parameter isolation.

Regularization: Li and Hoiem’s Learning without Forgetting (LwF) [27] (2016) is a
classic method based on regularization. It uses knowledge distillation to ensure that the
outputs of the new model stay as close as possible to those of the old model. Kirkpatrick
et al.’s EWC [28] (2016) algorithm is based on a Bayesian framework and introduces
additional parameter-related regularization loss, constraining parameters according to their
importance.

Replay: Rebuffi and Sylvestre-Alvise et al.’s iCaRL [29] (2016) is a classical incremental-
learning model based on replay methods. They assumed that samples closer to the class-
feature centers are more representative, and selected a subset of these representative old
data to constrain the model updates, thus preserving the features learned from old data.
Lopez-Paz et al.’s Gradient Episodic Memory (GEM) [30] (2017) stores some of the previous
data in an “Episodic Memory” and uses gradient updates to constrain the direction of new
task updates without altering the parameters of old tasks. Replay-based methods have
been shown to be the most promising for NLP tasks [2,3].

Parameter Isolation: Mallya et al.’s PackNet [31] (2018) is a typical parameter-isolation
method. Whenever a new task arrives, it prunes redundant model space to leave room
for new task parameters and allocates space for each task. The parameters of old tasks are
fixed to train new data, and once completed, the model is pruned to remove less important
parameters, followed by incremental training and the allocation of new parameters. Serra
et al.’s HAT [32] (2018) uses attention mechanisms to mask certain parameters in the model,
preserving historical task information without affecting the current task. For each task, a
hard attention mask is learned, allowing for optimal allocation of model space for different
tasks.

The aforementioned research primarily focuses on computer vision tasks, especially
image classification.

2.3. Class-Incremental Learning in Event Detection

Since 2020, class-incremental learning tasks have gradually gained attention in the
field of event detection. The main challenge lies in learning new tasks while avoiding the
forgetting of previously learned tasks. To address this challenge, Cao et al. [33] and col-
leagues proposed an innovative Knowledge-Preserving Incremental Heterogeneous Graph
Neural Network (KPGNN) specifically designed for incremental social-event detection.
The KPGNN facilitates effective data utilization by modeling complex social information
into a unified social graph, and explores the strong expressive capability of Graph Neural
Networks (GNNs) in knowledge extraction. Cao et al. [2] introduced a replay–distillation
method to retain knowledge through memory sets and previous models. In addition to
replay and distillation, Yu et al. [3] used initialization methods to transfer knowledge, while
Liu et al. [4] employed soft-prompt learning techniques to preserve previous knowledge.
Wei et al. [34] incorporated knowledge-transfer modules between each new class to main-
tain the feature space of old class events. Liu et al. [5] independently trained classification
nodes for each new-class event and combined all learned classifiers during inference to
mitigate classifier drift.

While the methods of these works perform well in class-incremental learning, they
perform poorly in few-shot cases, which are more common in interactive event detection.

3. Problem Definition

The task definition for machine recommendation of triggers in interactive event detec-
tion is detailed in prior work [1]. The class-incremental learning task involves incrementally
learning new event types from a small number of labeled data reviewed manually. Given a
set of tasks T = {T1, T2, . . . , Tn}, each task Ti has training, validation, and test sets denoted

as Ti =
{

Dtrain
i , Dvalid

i , Dtest
i

}
, where Di =

{(
X j

i , Ej
i , Y j

i

)}m

j=1
, m represents the number of
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event types in each task. X j
i , Ej

i and Y j
i are the sentence-level text, triggers, and correspond-

ing event types, respectively. The first task is considered the base task, denoted as Tbase, and
contains sufficient training data. The remaining tasks {T2, . . . , Tn} are class-incremental
tasks, denoted as Tincre, and each has only a small number of training samples (set to 5 or 10
in our study). For any two tasks, Ti and Tj, the event types they include should not overlap,
i.e., Ti ∩ Tj = ∅. During task t t, we validate and evaluate the model on all previously
learned event types, i.e., Ctest

t = Dtest
t ∪ Ctest

t−1.

4. Method

Our proposed incremental learning method for interactive event-detection ICD, as
illustrated in Figure 2, includes an event-trigger recommendation backbone model, a
representative- and confusable-sample replay module, a semantic-boundary-smoothing
contrastive learning module, and a hierarchical-distillation module.
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4.1. Event-Trigger Recommendation Backbone

Consider the training data (X, E, Y), where X = {x1, x2, . . . , xl} is the sentence-level
text, E = {e1, e2, . . . , en} is the set of event triggers, and Y = {y1, y2, . . . , yn} is the event
type corresponding to E. Using the pre-trained language model RoBERTa as the encoder,
the text X is input into the pre-trained model to obtain contextual representations W =
{w1, w2, . . . , wl}, where wi ∈ Rd denotes the word vector of the i-th word, and d is the vector
dimension. The model treats spans as the smallest unit and generates a candidate span
set S = {si|i = 1, 2, . . . , N1} through length- and rule-based filtering. For each candidate
span si =

{
xsti , . . . , xedi

}
= (sti, edi), we concatenate the word vectors of its head and tail

and a length, embedding hlength
i ∈ Rdw to obtain its representation hi =

[
wsti ; wedi

; hlength
i

]
.

This representation is then fed into a binary classifier composed of a multi-layer perceptron
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MLP1 and a sigmoid activation function to compute and output the confidence score ptrigger
i

for si, which is a potential trigger.

ptrigger
i = Sigmoid

(
MLP1(hi)

)
, (1)

The multi-class classifier, composed of a multi-layer perceptron MLP2 and a softmax
activation function, calculates and outputs the confidence vector pevent_type

i ∈ Rn+1 for span
si, indicating the probability of belonging to each of the predefined event types, where n
represents the total number of event types.

pevent_type
i = softmax

(
MLP2(hi)

)
, (2)

Building on our previous work [1], a semantic-boundary-smoothing approach is em-
ployed, which assigns soft labels ỹi ∈ [0, 1] to si based on the following three aspects:
overlap with the corresponding gold trigger ei, semantic integrity, and part-of-speech infor-
mation. Specifically, for the overlap score f1, as shown in Formula (3), we use Intersection
over Union(IoU) to measure it, where |si ∩ ei| represents the length of characters in the
intersection of the two spans, and |si ∪ ei| represents the length of characters in their union.
In addition, we use pkuseg [35] to provide segmentation and part-of-speech information
for the text. For semantic integrity score f2, as shown in Formula (4), if the span si is in the
segmentation results, it is considered to have complete semantics, scoring 1; otherwise, it
scores 0.5. For part-of-speech information f3, as shown inf Formula (5), if the part-of-speech
combination of si has appeared in the training set, it is deemed reasonable, scoring 1;
otherwise, it scores 0.5.

Combining these three aspects, the soft label ỹi of si is calculated as Formula (6):

f1(si, ei) = IoU(si, ei) =
|si ∩ ei|
|si ∪ ei|

(3)

f2(si) =

{
1, si is in segmentation results

0.5, otherwise
(4)

f3(si) =

{
1, the part of speech of si is reasonable

0.5, otherwise
(5)

ỹi = f1(si, ti)· f2(si)· f3(si), (6)

The trigger-identification loss is calculated using a weighted adaptive-focal loss, while
the trigger classification loss is computed using multi-class cross-entropy, as follows:

LTI = −
N1
∑
i

1[ỹi≥α]wi

(
1− ptrigger

i

)γ
log ptrigger

i

+1[ỹi<α]wi p
triggerγ

i log
(

1− ptrigger
i

)
,

(7)

LTC = −
N2

∑
i

yevent_type
i log pevent_type

i , (8)

where α is the threshold for trigger identification, γ is the focusing parameter of focal loss,
and yevent_type

i ∈ Rn+1 is the one-hot label for the event type of si. If ỹi ≥ α, si is considered
to have the same event type as ei; otherwise, it is treated as the “other” category.

In terms of model inference, we obtain the candidate trigger set S′ =
{

s′1, . . . , s′i, . . . , s′N2

}
⊆ S based on the trigger-identification threshold α and compute the joint confidence
pjoint

i ∈ Rn+1:

pjoint
i = 2

(
ptrigger

i ◦ pevent_type
i

)
/
(

ptrigger
i + pevent_type

i

)
, (9)
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Based on the trigger confidence ptrigger
i and spatial distribution, potential events in the

input text are identified. Then, candidate triggers and their event types for the event are
recommended according to the joint confidence, as shown in Algorithm 1.

Algorithm 1 Candidate recommendation algorithm considering multiple events

Input: candidate trigger set S′ =
{

s′1, . . . , s′i , . . . , s′N2

}
,

candidate trigger confidence tuple set P =
{

p1, . . . , pi, . . . , pN2

}
,

where pi =
(

ptrigger
i , pevent_type

i , pjoint
i

)
Output: candidate triggers and event type for all potential events O

1. O← {} # Initialize the model output
2. Arrange the S′ in descending order according to trigger confidence ptrigger

i
3. Q← {} # The set of candidate triggers representing potential events
4. for s′i in S′ do
5. if s′i does not overlap with any qj ∈ Q do
6. Q← Q ∪

{
s′i
}

7. end if
8. end for
9. for qj in Q do
10. I ← {} # Candidate triggers and their confidence tuple for one potential event
11. for s′i in S′ do
12. if s′i overlaps with qj do
13. I ← I ∪

{(
s′i , pi

)}
14. end if
15. end for
16. O← O ∪

{
TopK

(
I, pjoint

i,j

)}
# For each potential event, the maximum K joint confidences

fidences are found, and their corresponding tuples, like (candidate trigger, event type, joint
confidence), are output as recommendations

17. end for

4.2. Experience Replay

Experience replay is an effective approach to mitigate catastrophic forgetting in class-
incremental learning [2,3]. In the class-incremental learning process for interactive event
detection, due to the limited number of new-class-event samples, replay can only select from
these limited samples. To address more extreme cases, this study restricts the storage of old
class events to a maximum of 2 samples per class. To extract the most useful information
from these limited samples, we employ a selection strategy based on representative and
confusable samples. The selection process for event type j is as follows.

4.2.1. Representative Sample

Each event is treated as a sample, and the average representation of triggers for each
event type is used as the prototype. The sample closest to this prototype is selected as the
representative sample. For the event type j, the event prototype is calculated as follows:

µj =
1∣∣∣Ej
∣∣∣ ∑

ej
i∈Ej

hj
i , (10)

where Ej represents the set of triggers for event type j in the training set, and hj
i denotes

the representation of the trigger ej
i that belongs to event type j. The event prototype µj is

considered a point in the feature space, and the Euclidean distances between each event
trigger and the prototype in the feature space are computed. The event trigger closest to the
prototype is selected as the representative trigger for event type j, and the data associated
with this trigger are added to the replay set.
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4.2.2. Confusable Sample

To enhance the model’s weaknesses in specific categories and features, we consider
replaying samples that are easily confused, thereby improving the model’s classification
ability and generalization performance. Specifically, let pj

i be the probability distribution

of the event trigger ej
i . The degree of confusion of a trigger is measured by the difference

∆j
i = pmax − psecond, where the maximum probability is pmax = max

(
pj

i

)
and the second-

largest probability is psecond = max
(

pj
i/{pmax}

)
. The trigger with the largest difference is

selected, and the data associated with it are added to the replay set.

4.3. Semantic-Boundary-Smoothing Contrastive Learning

In few-shot class-incremental learning, the scarcity of new-class samples often leads to
overfitting on the new classes. To address this issue, we use soft labels constructed through
semantic-boundary smoothing in Section 4.1 to create positive and negative example sets
for triggers. By designing a contrastive loss, we provide the model with richer gradient
information, thereby enhancing its ability to represent new classes.

For the boundary-smoothing area surrounding the gold trigger ei, we categorize it into
positive- and negative-example sets based on the soft labels ỹi and the trigger identification
threshold α. A contrastive learning loss is designed for the span around the gold trigger,
which aids in improving the model’s ability to recommend the correct answers from the
surrounding span. The contrastive loss for the semantic-boundary-smoothing area is
computed as follows:

Lcon = ∑
(X,E,Y)∈Tt

∑
ei∈E

1∣∣e+i |+|e−i ∣∣ ∑
sj∈e+i

∑
sk∈e+i

− log
exp

(
hj, hk

)
∑sp∈e−i

exp
(
hj, hp

) (11)

4.4. Hierarchical Distillation

In class-incremental learning, knowledge distillation has proven to be an effective
method for preventing the model from excessively favoring new-class knowledge, helping
to avoid catastrophic forgetting [2]. Specifically, we employ a hierarchical-distillation
method. For task Tt, we use the model from task Tt−1 as the teacher model to perform both
feature-level and prediction-level distillation.

4.4.1. Feature-Level Distillation

Let the features of the triggers output by the new-task and old-task models be h̃′i and
h′i, respectively. After normalizing these features, the similarity between them is measured
using cosine similarity. The feature-level distillation loss is calculated as follows:

L f d = ∑
(X,E,Y)∈Tt

1− S(
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, h′i) (12)

If the features extracted by the current model are similar to those of the previous
model, then the encoder can effectively preserve previous knowledge.

4.4.2. Predict-Level Distillation

Let the new task Tt include c new event types, while the previously learned tasks
include m event types. The probability distributions of the trigger ei belonging to different
event types are obtained from the multi-class classifier of the previous and current model,
resulting in p̃event_type = [ p̃1, p̃2, . . . , p̃m] and pevent_type = [p1, p2, . . . , pm, pm+1, . . . , pm+c],
respectively. The feature-level distillation loss is computed as follows:

Lpd = ∑
(X,E,Y)∈Tt

m

∑
i=1

υ̃i log(υi) (13)
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υ̃i =
exp( p̃i/τ)

∑m
j=1 exp

(
p̃j/τ

) , υi =
exp(pi/τ)

∑m
j=1 exp

(
pj/τ

) (14)

4.5. Model Training

At the Tbase task, the base model is trained using sufficient data, with LTI and LTC as
the training objectives. During the Tinc phase, the training data consist of the new-class
training set and an old-class replay set. In addition to the fundamental LTI and LTC, we
also employ contrastive loss Lcon to enhance learning of new-class events, and hierarchical-
distillation losses L f d and Lpd to prevent forgetting of old-class events. Each loss function
is assigned a weight λi, where iϵ{TI, TC, con, f d, pd}.

5. Experiments
5.1. Benchmarks and Evaluation Metrics

ACE2005-Chinese, which is a widely used benchmark for event-detection tasks, en-
compassing a collection of documents from various domains, such as news texts, broadcast
dialogues, and blogs. We specifically selected the Chinese portion of this dataset. It defines
9 major event categories and 33 subcategories.

DuEE [36], which is currently the largest Chinese event-detection dataset, was de-
veloped jointly by Baidu, the Chinese Computer Federation, the Chinese Information
Processing Society, and data resource developers from universities and enterprises. The
dataset includes a substantial amount of text from Baidu News, with a relatively consistent
annotation style. It defines 9 major event categories and 65 subcategories.

The distribution of event quantities in these two datasets is illustrated in Figure 3.
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We selected the top-10 event types with the highest frequency from both the ACE
and DuEE datasets to construct a class-incremental learning setup with 5 sub-tasks. Each
sub-task includes 2 event types, and experiments were conducted with 2-way 5-shot and
2-way 10-shot settings. The data partitioning for these two datasets is detailed in Table 1.

Table 1. Class-incremental learning-task data partitioning.

Datasets Task Training Set Validation Set Test Set

ACE2005
Tbase 100 30 30
Tincre 5/10 30 30

DuEE2005
Tbase 70 20 20
Tincre 5/10 20 20
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The strict matching standard was adopted; that is, a result is considered correct only if
both the boundary of the trigger and the event type are all correct. Recall@K on the test set
was used to evaluate the model, where K denotes the number of candidates.

Recall@K =
Nrecall@K

Ngold
, (15)

where Ngold denotes the total number of gold triggers and Nrecall@K denotes the number of
recalled gold triggers when K candidates are recommended.

It is important to note that our previous research [1] indicated that the overall efficiency
of the recommendation model is highest when recommending three candidate items.
Therefore, the subsequent experiments will use Recall@3 as the evaluation metric. To
ensure that the overall efficiency is not adversely affected by excessively low precision, we
require that the model’s precision for potential event detection must exceed 33% at the time
of model saving.

5.2. Implementation Details

Both the ICD method and the baseline methods use the RoBERTa pre-trained model
as an encoder to obtain word embeddings for the text sequences. During training, the
AdamW optimizer is employed, and to ensure stable model training, learning rate warm-up
and decay strategies are also implemented. The experimental environment configuration
is detailed in Table 2, while the parameters and their meanings for the ICD method are
provided in Table 3.

Table 2. Experimental environment.

Item Configuration

Operating system Ubuntu 20.04.3 LTS x86_64
CPU 40 vCPU Intel(R) Xeon(R) Platinum 8457C
GPU L20(48 GB) × 2

Memory 200 GB
Python 3.8.10

Framework Pytorch(1.10.0) +Transformers(4.38.2) + Cuda(12.4)

Table 3. Parameter setting.

Parameter Description Value
ACE2005 DuEE

Main parameters
α trigger-identification threshold 0.2 0.2
β positive/negative threshold for contrast 0.2 0.2
γ focusing parameter of modified focal loss 2 2
L limitation of span length 5 5

Optimizer parameters
Learning_rate initial learning rate 1 × 10−5 1 × 10−5

warm_up_steps warm-up steps 500 500
lr_decay_steps decay steps 3000 3000

min_lr_rate minimum learning rate 1 × 10−6 1 × 10−6

5.3. Baseline Methods

Joint: This method involves training the model directly with joint data at once, instead
of in increments.

Replay all: This method entails training the model using the previous training datasets
combined.

Fine-tune: The crux of this method lies in directly fine-tuning the model on the new
task.
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LwF [27]: This method centers around incorporating a distillation module to match
the probabilities of the previous model, preserving prior knowledge.

KCN [2]: This method is a popular continuous event-detection method following the
memory replay–knowledge distillation paradigm.

KT [3]: This method generally follows a memory-based paradigm and uses novel
initialization methods to transfer knowledge.

EMP [4]: In addition to memory replay, this method introduces prompt learning for
each event type to integrate previous knowledge.

ICE-PL&O [5]: This method freeze the encoder and previous classifier, set fixed logits
for the “other” class, and trains a new classifier for new task to avoid forgetting.

5.4. Main Results

We conducted five experiments for each incremental learning task using different
random seeds, and reported the average performance of our method on the ACE2005-
Chinese and DuEE datasets, comparing it with the aforementioned baseline methods. The
results are shown in Tables 4 and 5. To visualize the trends more clearly, we also plotted
the corresponding line chart, as shown in Figure 4.

Table 4. Recall@3 performance of every sub-task on ACE2005-Chinses for comparative experiment.

ACE2005-Chinses

Methods 2-Way 5-Shot 2-Way 10-Shot

1 2 3 4 5 1 2 3 4 5

Joint / / / / 64.62 / / / / 67.43
Replay all 93.22 68.87 58.21 62.92 61.73 93.22 72.64 65.17 66.25 64.26
Fine-tune 93.22 64.15 58.21 54.17 48.38 93.22 76.42 70.15 59.17 51.79

LwF 93.22 65.09 59.20 65.42 61.73 93.22 80.19 71.64 70.83 61.01
KCN 93.22 65.09 58.71 67.08 58.12 93.22 80.19 71.14 72.50 64.26
KT 93.22 65.09 64.18 65.42 59.57 93.22 80.19 68.66 75.00 68.59

EMP 90.08 68.12 62.34 68.27 64.62 90.08 82.01 72.75 73.94 68.08
ICE-PL&O 93.22 64.38 59.41 62.76 57.83 93.22 66.23 61.54 63.9 60.56

ICD(Ours) 93.22 80.19 73.13 74.28 71.48 93.22 83.96 78.12 75.97 73.12

The best performances are highlighted in bold and the second-best are underlined. The same applies below.

Table 5. Recall@3 performance of every sub-task on DuEE for comparative experiment.

DuEE

Methods 2-Way 5-Shot 2-Way 10-Shot

1 2 3 4 5 1 2 3 4 5

Joint / / / / 84.08 / / / / 87.99
Replay all 98.55 82.61 89.39 89.58 81.68 98.55 84.78 83.84 88.80 84.38
Fine-tune 98.55 86.96 86.87 83.40 75.38 98.55 91.30 86.87 81.08 76.28

LwF 98.55 87.68 89.90 90.73 86.49 98.55 88.04 89.39 91.51 87.09
KCN 98.55 86.96 87.88 90.73 84.38 98.55 89.13 88.38 92.66 86.67
KT 98.55 86.23 88.89 90.73 84.38 98.55 87.68 88.89 91.12 86.49

EMP 97.10 87.68 89.13 91.22 86.49 97.10 89.13 89.39 92.00 89.49
ICE-PL&O 98.55 84.22 86.34 85.19 79.28 98.55 84.26 86.66 85.90 79.37

ICD(Ours) 98.55 92.03 92.93 93.82 90.39 98.55 94.93 93.43 94.60 92.49
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From the results, we can observe the following:

• Compared to previous incremental-learning baseline methods, our approach signifi-
cantly outperforms these methods across all sub-tasks. Specifically, in the ACE 5-shot
and 10-shot, and DuEE 5-shot and 10-shot settings, our method improves the final
recall rate by 6.86%, 4.53%, 7.69%, and 4.53%, respectively, compared to the best
baseline model. This demonstrates the clear effectiveness of our method in handling
continuously arriving data.

• Although the Joint method retrains using all available data, it is not always the optimal
baseline method. In our setup, the initial task has a sufficient number of samples,
while the training samples for subsequent new tasks are limited. This imbalance in
sample sizes affects the performance of the Joint method. In contrast, our approach
improves upon Joint by 6.86%, 5.69%, 3.90%, and 3.00% in the ACE 5-shot and 10-shot,
and DuEE 5-shot and 10-shot settings, respectively. This indicates that our method
effectively mitigates the negative impact of sample imbalance in few-shot incremental
learning conditions.

• The recall rates in the 10-shot setting are generally higher than in the 5-shot setting,
which suggests that increasing the number of samples is an effective way to enhance
model performance. This implies that generating more samples can address the
challenges posed by few-shot learning. Additionally, our performance on ACE is
noticeably better than on DuEE. We believe this is because ACE involves greater vari-
ability in the expression patterns of the same event type, making it more challenging,
whereas DuEE’s triggers have a more consistent style, which is relatively simpler.

5.5. Ablation Study

We conduct ablation experiments on the DuEE dataset under the 5-shot and 10-shot
scenarios to investigate the effectiveness of various components of the ICD method. The
experimental settings are as follows: “-replay” indicates the absence of old-class data
replay, “-replay(representative)” indicates that old-class data is replayed randomly, rather
than with representative samples, “-replay(confusable)” indicates that old-class data is
replayed randomly instead of with confusable samples, “-replay(repr&conf)” means neither
representative nor confusable samples are used, resulting in random replay, “-contrast”
refers to the exclusion of semantic-boundary-smoothing contrastive learning, and “-distill”
indicates the absence of hierarchical-distillation loss. The results are shown in Table 6.

• Effectiveness of Replay: The inclusion of old-class data in replay increases the final re-
call rate by 8.41% and 5.70%, respectively, demonstrating a significant effect of storing
old data on incremental learning. Furthermore, compared to random replay, selecting
representative and confusable samples improves the recall rate of the final sub-task by
4.18% and 2.55%, respectively. In addition, the ablation of either component leads to a
decrease in the final recall rate, while the simultaneous ablation of both components
results in an even further decline. This indicates that each component plays a positive
role, and, when used together, they produce additional benefits, highlighting the fact
that constructing replay samples from these two perspectives adds more value.
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• Effectiveness of Contrastive Learning: Our method improves the final recall rate by
5.68% and 4.10%, compared to the removal of contrastive learning. This suggests that,
in the context of few-shot incremental learning, using contrastive learning with spans
around gold triggers provides additional information to the model, thereby improving
performance.

• Effectiveness of Hierarchical Distillation: Compared to the exclusion of hierarchical
distillation, our method achieves an increase in final recall rate by 1.71% and 2.06%,
respectively. This relatively modest improvement indicates that while distillation loss
helps retain original knowledge, its impact is somewhat limited.

Table 6. Recall@3 performance of every sub-task on ACE2005-Chinses for ablation study.

DuEE

Methods 2-Way 5-Shot 2-Way 10-Shot

1 2 3 4 5 1 2 3 4 5

ICD (Ours) 98.55 92.03 92.93 93.82 90.39 98.55 94.93 93.43 94.60 92.49
-replay 98.55 90.66 88.89 84.17 81.98 98.55 89.20 89.93 91.66 86.79
-replay
(representative) 98.55 92.03 92.07 92.81 87.24 98.55 94.39 91.16 92.99 91.13

-replay
(confusable) 98.55 91.78 90.53 93.54 88.26 98.55 94.93 93.94 93.82 91.59

-replay
(repr&conf) 98.55 92.16 89.53 92.54 86.21 98.55 94.93 90.47 91.74 89.94

-contrast 95.65 90.66 91.79 92.17 84.71 95.65 92.95 92.33 92.08 88.39
-distill 98.55 91.20 92.76 93.12 88.68 98.55 94.93 92.42 93.05 90.43

5.6. In-Depth Analysis
5.6.1. Analysis of Old- and New-Class Performance

Figure 5 illustrates the recall rates of our method compared to the knowledge distillation-
based KT [3] method under the 5-shot settings on the ACE and DuEE datasets for both new
and old event types. As shown in the figure, our method significantly outperforms KT in
learning new event types, indicating that our approach is more effective in identifying new
classes of events under few-shot conditions. Additionally, our method also shows a slight
improvement over KT in handling old tasks, suggesting that the integration of components
in our method enhances not only the detection of new events, but also the performance on
existing tasks.
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5.6.2. Analysis of Positive/Negative Threshold for Contrast

In the semantic-boundary-smoothing contrastive learning, the setting of threshold β
determines the division between positive and negative examples, representing the model’s
strictness in distinguishing between them and influencing the gradient updates. Previous
research [37] indicates that the robustness of the model to sample perturbations is an
important aspect of model performance. The threshold for positive and negative samples
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determines the distinction between them, representing the model’s strictness in differenti-
ating these samples, which can be seen as a form of perturbation in the training samples.
Given that this hyper-parameter is closely related to event patterns and dataset annotation
styles, selecting an appropriate threshold is crucial.

We tested five different threshold values and reported their recall rates on the final
task. The results are shown in Table 7. and it indicate that a threshold of 0.2 yields the best
overall performance. A threshold that is too high may result in too few positive examples,
leading to limited effectiveness with a small sample size, whereas a threshold that is too
low might lead to an excessive number of positive examples, affecting the differentiation
between positive and negative cases. Therefore, we selected 0.2 as the final threshold
setting.

Table 7. Recall@3 performance on the final sub-task with different value of threshold β.

Threshold
ACE DuEE

5-Shot 10-Shot 5-Shot 10-Shot

0.1 89.69 91.89 68.59 71.11
0.2 90.39 92.49 71.48 73.12
0.3 89.69 91.29 66.07 71.11
0.4 87.69 86.49 63.90 71.11
0.5 85.59 87.69 62.46 67.37

5.6.3. Evaluation in Extreme Scenarios

To further investigate the performance of the ICD method under extreme conditions,
where each new class has only 1 or 2 samples, we conducted experiments with 2-way 1-shot
and 2-way 2-shot settings. The results of these experiments are illustrated in Figure 6.
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Figure 6. Recall@3 performance of every sub-task on ACE2005-Chinses and DuEE for extreme
scenarios.

Under extreme conditions with very few samples, we observe a significant decline in
the performance of all methods, indicating the substantial challenge posed by such scenar-
ios. However, the ICD method still outperforms other methods under these conditions. We
attribute this advantage primarily to the contrastive learning objective constructed based
on the semantic-boundary-smoothing method. This approach provides richer and more
effective gradient information for model training under limited sample conditions, thereby
enhancing the model’s performance and stability with sparse data resources.

5.6.4. Analysis of Computational Complexity

The PyTorch framework performs parallel computations using tensors, and discussing
time complexity or space complexity in isolation is not practically meaningful. Therefore,
we discuss the overall computational complexity from the perspectives of both the back-
bone model and the incremental learning methods to assess the required computational
resources.

In terms of the backbone model, traditional span-based models have a high computa-
tional cost, as for a text containing n characters, it is theoretically possible to partition it into
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n × (n + 1)/2 spans, leading to a computational complexity of O
(
n2). In contrast, models

based on character classification and sequence labeling process each character individually,
resulting in a complexity of only O(n). Our proposed span-based backbone model reduces
the computational complexity to O(nL) by limiting the span length L and punctuation fil-
tering, significantly saving computational resources. Although its complexity is still higher
than that of character classification and sequence labeling models, the time difference is
acceptable, considering the parallel computing features of PyTorch(1.10.0). It is important
to note that this paper focuses on incremental learning methods, and all baseline methods
use the same span-based backbone model, so this part of the computational complexity is
analyzed only theoretically.

In terms of incremental learning methods, we set the batch size to 4 and epoch to 30,
with other parameters consistent with those in Section 5.2. We report the average time per
epoch for different baseline methods trained on the ACE2005-Chinese and DuEE datasets,
as shown in Figure 7.
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From the results, we can see that the Joint method, which trains on all data at once,
consumes the most time. Our method, ICD, consumes less time compared to the Replay
all method, averaging a reduction of 2.24 s, while slightly increasing time compared to
other baseline methods, particularly the baseline method EMP, which shows the best
overall performance, with an average increase of 2.1 s. This is analyzed to be due to the
additional loss introduced by the semantic-boundary smoothing in the contrastive learning
module, which brings extra gradient information but also increases the computational load,
resulting in a slight increase in model training time. We believe that achieving a significant
improvement in recall with such a small time cost is meaningful.

6. Conclusions

We have introduced an interactive event-detection mode that operates through a
cycle of “machine-recommended event triggers→human review and correction→machine
incremental learning” to facilitate event detection. To address the challenges of class-
incremental learning, we introduced the ICD method. To mitigate forgetting of old-class
events, we designed a replay strategy based on representative and confusable samples.
Additionally, we applied semantic boundary smoothing techniques to construct positive
and negative samples around gold triggers for contrastive learning, thereby addressing
the overfitting problem in new-class event learning. Finally, we incorporated hierarchical
distillation techniques to alleviate the model’s forgetting issues.

Our experimental results demonstrate that our approach excels in class-incremental
learning tasks related to interactive event detection. However, when tested in more com-
plex environments, such as the ACE dataset, we observe that the recall rate drops below
90% after several rounds of class-incremental learning. This indicates a significant gap
between our model’s performance and the high precision requirements needed for effective
application.
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Future work will focus on addressing these challenges by enhancing the model’s
ability to handle diverse and complex scenarios, such as the subjunctive mood, multiple
negation, and so on. This will involve refining our approach to better manage continuous
class-incremental learning, exploring advanced strategies to further reduce forgetting, and
optimizing performance in more challenging environments. In addition, we will also
focus on another common scenario in incremental learning: sample increment, aiming to
investigate how to address issues related to sample distribution shift and missing data. By
advancing these, our goal is to enhance the efficiency of the interactive event-detection
mode in real-world applications, thereby establishing a positive feedback loop.

Author Contributions: Conceptualization, X.Z. and J.D.; methodology, J.D. and X.Z.; validation, J.D.;
investigation, J.D. and X.Z.; resources, X.Z.; data curation, J.D.; writing—original draft preparation,
J.D.; writing—review and editing, X.Z.; visualization, J.D.; supervision, X.Z.; funding acquisition, X.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under the
grants of NO. 62102431, the National University of Defense Technology under the grant of NO.
ZK21-32, and Science and Technology on Information Systems Engineering Laboratory under the
grant of NO. 6142101220209.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study have been cited and referenced [36]. They
are available at https://ai.baidu.com/broad/introduction (accessed on 18 August 2024). Other data
are available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Duan, J.; Zhang, X. Chinese Event Trigger Recommendation Model for High-Accuracy Applications. Preprints 2024, 2024091129.

[CrossRef]
2. Cao, P.; Chen, Y.; Zhao, J.; Wang, T. Incremental Event Detection via Knowledge Consolidation Networks. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing 2020, Online, 16–20 November 2020; pp. 707–717. [CrossRef]
3. Yu, P.; Ji, H.; Natarajan, P. Lifelong Event Detection with Knowledge Transfer. In Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, Online, 7–11 November 2021.
4. Liu, M.; Chang, S.; Huang, L. Incremental Prompting: Episodic Memory Prompt for Lifelong Event Detection. In Proceedings of

the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October 2022; pp. 2157–2165.
[CrossRef]

5. Liu, M.; Huang, L. Teamwork Is Not Always Good: An Empirical Study of Classifier Drift in Class-incremental Information
Extraction. arXiv 2023, arXiv:2305.16559.

6. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv 2018, arXiv:1810.04805.

7. Chen, Y.; Xu, L.; Liu, K.; Zeng, D.; Zhao, J. Event Extraction Via Dynamic Multi-Pooling Convolutional Neural Networks.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China, 26–31 July 2015; Volume P15-1, pp. 167–176.

8. Wang, S.; Yu, M.; Chang, S.; Sun, L.; Huang, L. Query and Extract: Refining Event Extraction as Type-oriented Binary Decoding.
In Findings of the Association for Computational Linguistics: ACL 2022; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2022; pp. 169–182. [CrossRef]

9. Wang, S.; Yu, M.; Huang, L. The Art of Prompting: Event Detection based on Type Specific Prompts. arXiv 2022, arXiv:2204.07241.
10. Guan, Y.; Chen, J.; Lecue, F.; Pan, J.; Li, J.; Li, R. Trigger-Argument based Explanation for Event Detection. In Findings of the

Association for Computational Linguistics: ACL; Association for Computational Linguistics: Stroudsburg, PA, USA, 2023.
11. Nateras, L.G.; Dernoncourt, F.; Nguyen, T. Hybrid Knowledge Transfer for Improved Cross-Lingual Event Detection via

Hierarchical Sample Selection. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Toronto, ON, USA, 9–14 July 2023.

12. Yue, Z.; Zeng, H.; Lan, M.; Ji, H.; Wang, D. Zero- and Few-Shot Event Detection via Prompt-Based Meta Learning. arXiv 2023,
arXiv:2305.17373.

13. Liu, J.; Sui, D.; Liu, K.; Liu, H.; Zhao, Z. Learning with Partial Annotations for Event Detection. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, ON, USA, 9–14 July 2023.

https://ai.baidu.com/broad/introduction
https://doi.org/10.20944/preprints202409.1129.v1
https://doi.org/10.18653/v1/2020.emnlp-main.52
https://doi.org/10.48550/arXiv.2204.07275
https://doi.org/10.18653/v1/2022.findings-acl.16


Appl. Sci. 2024, 14, 8788 17 of 17

14. Xu, C.; Zeng, Z.; Duan, J.; Qi, Q.; Zhang, X. Extracting Events Using Spans Enhanced with Trigger-Argument Interaction. In
Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering, Fuzhou, China, 17–19 November
2023. [CrossRef]

15. Nguyen, T.H.; Cho, K.; Grishman, R. Joint Event Extraction via Recurrent Neural Networks; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2016.

16. Wei, Y.; Liu, S.; Lv, J.; Xi, X.; Yan, H.; Ye, W.; Mo, T.; Yang, F.; Wan, G. DESED: Dialogue-based Explanation for Sentence-level
Event Detection. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea,
12–17 October 2022; pp. 2483–2493.

17. Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; Xu, B. Joint Extraction Of Entities And Relations Based on a Novel Tagging Scheme.
arXiv 2017, arXiv:1706.05075.

18. Tian, C.; Zhao, Y.; Ren, L. A Chinese Event Relation Extraction Model Based on BERT. In Proceedings of the 2019 2nd International
Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 25–28 May 2019.

19. Cao, H.; Li, J.; Su, F.; Li, F.; Fei, H.; Wu, S.; Li, B.; Zhao, L.; Ji, D. OneEE: A One-Stage Framework for Fast Overlapping and Nested
Event Extraction. arXiv 2022, arXiv:2209.02693.

20. Li, H.; Mo, T.; Fan, H.; Wang, J.; Wang, J.; Zhang, F.; Li, W. KiPT: Knowledge-injected Prompt Tuning for Event Detection. In
Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October
2022; pp. 1943–1952.

21. Yang, S.; Feng, D.; Qiao, L.; Kan, Z.; Li, D. Exploring Pre-Trained Language Models for Event Extraction and Generation; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume P19-1, pp. 5284–5294.

22. Xinya, D.; Claire, C. Event Extraction by Answering (Almost) Natural Questions; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2020; pp. 671–683.

23. Yunmo, C.; Tongfei, C.; Seth, E.; Benjamin, V.D. Reading the Manual: Event Extraction as Definition Comprehension. arXiv 2020,
arXiv:1912.01586.

24. Li, F.; Peng, W.; Chen, Y.; Wang, Q.; Pan, L.; Lyu, Y.; Zhu, Y. Event Extraction as Multi-Turn Question Answering; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 829–838.

25. Wan, X.; Mao, Y.; Qi, R. Chinese Event Detection without Triggers Based on Dual Attention. Appl. Sci. 2023, 13, 4523. [CrossRef]
26. Yan, Y.; Liu, Z.; Gao, F.; Gu, J. Type Hierarchy Enhanced Event Detection without Triggers. Appl. Sci. 2023, 13, 2296. [CrossRef]
27. Li, Z.; Hoiem, D. Learning Without Forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2935–2947. [CrossRef] [PubMed]
28. D’Autume, C.D.M.; Ruder, S.; Kong, L.; Yogatama, D. Episodic Memory In Lifelong Language Learning. In Proceedings of the

Advances in Neural Information Processing Systems 32 (NIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32,
pp. 13122–13131.

29. Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; Lampert, C.H. Icarl: Incremental Classifier and Representation Learning. In Proceedings
of the Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 5533–5542. [CrossRef]

30. Lopez-Paz, D.; Ranzato, M.A. Gradient Episodic Memory For Continual Learning. In Proceedings of the Advances in Neural
Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 30.

31. Mallya, A.; Lazebnik, S. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7765–7773.

32. Serrà, J.; Surís, D.; Miron, M.; Karatzoglou, A. Overcoming catastrophic forgetting with hard attention to the task. In Proceedings
of the International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018; Volume 80.

33. Cao, Y.; Peng, H.; Wu, J.; Dou, Y.; Li, J.; Yu, P.S. Knowledge-Preserving Incremental Social Event Detection via Heterogeneous
GNNs. In Proceedings of the WWW ’21: The Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 3383–3395.

34. Wei, K.; Zhang, Z.; Jin, L.; Guo, Z.; Li, S.; Wang, W.; Lv, J. HEFT: A History-Enhanced Feature Transfer framework for incremental
event detection. Knowl.-Based Syst. 2022, 254, 109601. [CrossRef]

35. Luo, R.; Xu, J.; Zhang, Y.; Ren, X.; Sun, X. PKUSEG: A Toolkit for Multi-Domain Chinese Word Segmentation. arXiv 2019,
arXiv:1906.11455.

36. Li, X.; Li, F.; Pan, L.; Chen, Y.; Peng, W.; Wang, Q.; Lyu, Y.; Zhu, Y. DuEE: A Large-Scale Dataset for Chinese Event Extraction in
Real-World Scenarios. In Natural Language Processing and Chinese Computing; Springer: Cham, Switzerland, 2020.

37. Kwon, H. Adversarial Image Perturbations with Distortions Weighted by Color on Deep Neural Networks. Multimed. Tools Appl.
2022, 82, 13779–13795. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/iske60036.2023.10480953
https://doi.org/10.3390/app13074523
https://doi.org/10.3390/app13042296
https://doi.org/10.1109/TPAMI.2017.2773081
https://www.ncbi.nlm.nih.gov/pubmed/29990101
https://doi.org/10.1109/cvpr.2017.587
https://doi.org/10.1016/j.knosys.2022.109601
https://doi.org/10.1007/s11042-022-12941-w

	Introduction 
	Related Work 
	Event Detection 
	Span-Based Classification 
	Sequence Labeling 
	Pointer Networks 
	Others 

	Incremental Learning 
	Class-Incremental Learning in Event Detection 

	Problem Definition 
	Method 
	Event-Trigger Recommendation Backbone 
	Experience Replay 
	Representative Sample 
	Confusable Sample 

	Semantic-Boundary-Smoothing Contrastive Learning 
	Hierarchical Distillation 
	Feature-Level Distillation 
	Predict-Level Distillation 

	Model Training 

	Experiments 
	Benchmarks and Evaluation Metrics 
	Implementation Details 
	Baseline Methods 
	Main Results 
	Ablation Study 
	In-Depth Analysis 
	Analysis of Old- and New-Class Performance 
	Analysis of Positive/Negative Threshold for Contrast 
	Evaluation in Extreme Scenarios 
	Analysis of Computational Complexity 


	Conclusions 
	References

