Spatial Nonlinear Effects of Street Vitality Constrained by Construction Intensity and Functional Diversity—A Case Study from the Streets of Shenzhen
Abstract
:1. Introduction
2. Literature Review
2.1. Definition and Measurement of Streets and Street Vitality
2.2. The Role of the Street Built Environment in the Mechanism of Street Vitality Formation
2.3. The Impact of Spatial Effects on Street Vitality
3. Scope of Research and Data
3.1. Research Scope
3.2. Data Collection and Cleaning
3.2.1. Road Network Data
3.2.2. Baidu Huiyan LBS Data
3.2.3. Amap POI Data
3.2.4. Baidu Building Data
3.2.5. Street View Images
4. Methodology
4.1. Explanatory Variables
4.2. Threshold Variables and Control Variables
4.2.1. Construction Intensity
4.2.2. Functional Diversity
4.2.3. Accessibility
4.2.4. Public Facilities and Services
4.2.5. Building Coverage Density
4.2.6. Sky View Factor
4.2.7. Green View Index
4.3. Selection of Distance for Spatial Weight Matrices
5. Modeling Methods
6. Results
6.1. Spatial Effects of Street Vitality Using Construction Intensity as a Threshold Variable
6.2. Spatial Effects of Street Vitality Using Functional Diversity as a Threshold Variable
7. Conclusions and Discussion
7.1. Conclusions
7.2. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobs, J. The Death and Life of Great American Cities; Vintage Books, a Division of Random House: New York, NY, USA, 1961; 240p. [Google Scholar]
- Wangbao, L. Spatial impact of the built environment on street vitality: A case study of the Tianhe District, Guangzhou. Front. Environ. Sci. 2022, 10, 966562. [Google Scholar] [CrossRef]
- Hass-Klau, C. The Pedestrian and City Traffic; Belhaven Press: London, UK, 1990; 277p. [Google Scholar]
- Fan, Z.; Su, T.; Sun, M.; Noyman, A.; Zhang, F.; Pentland, A.S.; Moro, E. Diversity beyond density: Experienced social mixing of urban streets. PNAS Nexus 2023, 2, pgad077. [Google Scholar] [CrossRef]
- Wang, S.; Deng, Q.; Jin, S.; Wang, G. Re-Examining Urban Vitality through Jane Jacobs’ Criteria Using GIS-sDNA: The Case of Qingdao, China. Buildings 2022, 12, 1586. [Google Scholar] [CrossRef]
- Li, M.; Pan, J. Assessment of Influence Mechanisms of Built Environment on Street Vitality Using Multisource Spatial Data: A Case Study in Qingdao, China. Sustainability 2023, 15, 1518. [Google Scholar] [CrossRef]
- Wu, W.; Ma, Z.; Guo, J.; Niu, X.; Zhao, K. Evaluating the Effects of Built Environment on Street Vitality at the City Level: An Empirical Research Based on Spatial Panel Durbin Model. Int. J. Environ. Res. Public Health 2022, 19, 1664. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Shen, X.; Shi, Y.; Li, C.; Zhu, W. Multidimensional Spatial Vitality Automated Monitoring Method for Public Open Spaces Based on Computer Vision Technology: Case Study of Nanjing’s Daxing Palace Square. ISPRS Int. J. Geo-Inf. 2024, 13, 48. [Google Scholar] [CrossRef]
- Wang, H.; Tang, J.; Xu, P.; Chen, R.; Yao, H. Research on the Influence Mechanism of Street Vitality in Mountainous Cities Based on a Bayesian Network: A Case Study of the Main Urban Area of Chongqing. Land 2022, 11, 728. [Google Scholar] [CrossRef]
- Li, X.; Qian, Y.; Zeng, J.; Wei, X.; Guang, X. The Influence of Strip-City Street Network Structure on Spatial Vitality: Case Studies in Lanzhou, China. Land 2021, 10, 1107. [Google Scholar] [CrossRef]
- Guimarães, P.; Figueiredo, O.; Woodward, D. Accounting for Neighboring Effects in Measures of Spatial Concentration. J. Reg. Sci. 2011, 51, 678–693. [Google Scholar] [CrossRef]
- Lychagin, S.; Pinkse, J.; Slade, M.E.; Van Reenen, J. Spillovers in Space: Does Geography Matter? J. Ind. Econ. 2016, 64, 295–335. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, Y.; Gao, X. The Spatial Interaction Effect of Environmental Regulation on Urban Innovation Capacity: Empirical Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 4470. [Google Scholar] [CrossRef] [PubMed]
- Petrović, A.; van Ham, M.; Manley, D. Where Do Neighborhood Effects End? Moving to Multiscale Spatial Contextual Effects. Ann. Am. Assoc. Geogr. 2022, 112, 581–601. [Google Scholar] [CrossRef]
- Zhu, J.G.; Li, X.J. The Impact Effects of Industrial Agglomeration on the High-Quality Growth of Regional Economy—A Perspective Based on Spatial Spillover Effects. Econ. Geogr. 2022, 42, 1–9. [Google Scholar]
- Heng, Y.; Zhang, F. The complete path effect model of the three-dimensional street environment on street usage time. J. Urban Des. 2021, 26, 514–529. [Google Scholar] [CrossRef]
- Yue, H.; Zhu, X. Exploring the Relationship between Urban Vitality and Street Centrality Based on Social Network Review Data in Wuhan, China. Sustainability 2019, 11, 4356. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, D.; Yao, X.; Cheng, X.; He, H.; Liu, Y. The Scale Effect on Spatial Interaction Patterns: An Empirical Study Using Taxi O-D data of Beijing and Shanghai. IEEE Access 2018, 6, 51994–52003. [Google Scholar] [CrossRef]
- Liu, C.; Lu, J.; Fu, W.; Zhou, Z. Second-hand housing batch evaluation model of zhengzhou city based on big data and MGWR model. J. Intell. Fuzzy Syst. 2022, 42, 4221–4240. [Google Scholar] [CrossRef]
- Tu, J. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Appl. Geogr. 2011, 31, 376–392. [Google Scholar] [CrossRef]
- Wu, W.; Dang, Y.; Zhao, K.; Chen, Z.; Niu, X. Spatial nonlinear effects of urban vitality under the constraints of development intensity and functional diversity. Alex. Eng. J. 2023, 77, 645–656. [Google Scholar] [CrossRef]
- Vidal Domper, N.; Hoyos-Bucheli, G.; Benages Albert, M. Jane Jacobs’s Criteria for Urban Vitality: A Geospatial Analysis of Morphological Conditions in Quito, Ecuador. Sustainability 2023, 15, 8597. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; He, J. Quantitative Evaluation on Street Vitality: A Case Study of Zhoujiadu Community in Shanghai. Sustainability 2021, 13, 3027. [Google Scholar] [CrossRef]
- Pan, J.; Zhu, X.; Zhang, X. Urban Vitality Measurement and Influence Mechanism Detection in China. Int. J. Environ. Res. Public Health 2023, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ye, Y.; Qin, C. Nonlinear relationship between the urban form and street vitality: A data informed approach involving twelve Chinese cities. In Annual Conference Proceedings of the XXVIII International Seminar on Urban Form; University of Strathclyde Publishing: Glasgow, UK, 2022; pp. 371–380. ISBN 9781914241161. [Google Scholar]
- Xu, J.; Xiong, Q.; Jing, Y.; Xing, L.; An, R.; Tong, Z.; Liu, Y.; Liu, Y. Understanding the nonlinear effects of the street canyon characteristics on human perceptions with street view images. Ecol. Indic. 2023, 154, 110756. [Google Scholar] [CrossRef]
- Li, Y.; Yabuki, N.; Fukuda, T. Exploring the association between street built environment and street vitality using deep learning methods. Sustain. Cities Soc. 2022, 79, 103656. [Google Scholar] [CrossRef]
- Zhao, K.; Guo, J.; Ma, Z.; Wu, W. Exploring the Spatiotemporal Heterogeneity and Stationarity in the Relationship between Street Vitality and Built Environment. Sage Open 2023, 13, 21582440231152226. [Google Scholar] [CrossRef]
- Fan, Z.; Pei, T.; Ma, T.; Du, Y.; Song, C.; Liu, Z.; Zhou, C. Estimation of urban crowd flux based on mobile phone location data: A case study of Beijing, China. Comput. Environ. Urban Syst. 2018, 69, 114–123. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, Z.; Yang, S.; Ma, Q.; Kan, C. Impact of extreme weather events on urban human flow: A perspective from location-based service data. Comput. Environ. Urban Syst. 2020, 83, 101520. [Google Scholar] [CrossRef]
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Social Media data: Challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 2019, 74, 161–174. [Google Scholar] [CrossRef]
- Wu, W.; Niu, X. Influence of Built Environment on Urban Vitality: Case Study of Shanghai Using Mobile Phone Location Data. J. Urban Plan. Dev. 2019, 145, 04019007. [Google Scholar] [CrossRef]
- Yue, Y.; Zhuang, Y.; Yeh, A.G.; Xie, J.Y.; Ma, C.L.; Li, Q.Q. Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy. Int. J. Geogr. Inf. Sci. 2017, 31, 658–675. [Google Scholar] [CrossRef]
- Huang, H.; Gartner, G.; Krisp, J.M.; Raubal, M.; Van De Weghe, N. Location based services: Ongoing evolution and research agenda. J. Locat. Based Serv. 2018, 12, 63–93. [Google Scholar] [CrossRef]
- Yu, S.S. Urban Road Landscape Research Based on a Multivariate Perspective. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2023. [Google Scholar] [CrossRef]
- Gehl, J. Life between Buildings: Using Public Space; Van Nostrand Reinhold: New York, NY, USA, 1987; 202p. [Google Scholar]
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in neighborhood visual walkability:Using Street View imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K. Urban function connectivity: Characterisation of functional urban streets with social media check-in data. Cities 2016, 55, 9–21. [Google Scholar] [CrossRef]
- Sulis, P.; Manley, E.; Zhong, C.; Batty, M. Using mobility data as proxy for measuring urban vitality. J. Spat. Inf. Sci. 2018, 2018, 137–162. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Long, Y.; Long, Y.; Xu, M. A New Urban Vitality Analysis and Evaluation Framework Based on Human Activity Modeling Using Multi-Source Big Data. ISPRS Int. J. Geo-Inf. 2020, 9, 617. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.G.; Zhang, A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Kim, Y. Seoul’s Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality. Comput. Environ. Urban Syst. 2018, 72, 13–24. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Zhang, X.; Wan, Z. Identification of Urban Functional Regions in Chengdu Based on Taxi Trajectory Time Series Data. ISPRS Int. J. Geo-Inf. 2020, 9, 158. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, M.; Liu, X. Investigating the Spatiotemporal Dynamics of Urban Vitality Using Bicycle-Sharing Data. Sustainability 2020, 12, 1714. [Google Scholar] [CrossRef]
- Sun, M.; Fan, H. Detecting and Analyzing Urban Centers Based on the Localized Contour Tree Method Using Taxi Trajectory Data: A Case Study of Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 220. [Google Scholar] [CrossRef]
- Cervero, R.; Bernick, M. Transit Villages in the 21st Century; McGraw-Hill: New York, NY, USA, 1997; 387p. [Google Scholar]
- Chen, L.; Zhao, L.; Xiao, Y.; Lu, Y. Investigating the spatiotemporal pattern between the built environment and urban vibrancy using big data in Shenzhen, China. Comput. Environ. Urban Syst. 2022, 95, 101827. [Google Scholar] [CrossRef]
- Ye, Y.; Li, D.; Liu, X. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geogr. 2017, 39, 631–652. [Google Scholar] [CrossRef]
- Li, Q.; Cui, C.; Liu, F.; Wu, Q.; Run, Y.; Han, Z. Multidimensional Urban Vitality on Streets: Spatial Patterns and Influence Factor Identification Using Multisource Urban Data. ISPRS Int. J. Geo-Inf. 2022, 11, 2. [Google Scholar] [CrossRef]
- Lu, S.; Shi, C.; Yang, X. Impacts of Built Environment on Urban Vitality: Regression Analyses of Beijing and Chengdu, China. Int. J. Environ. Res. Public Health 2019, 16, 4592. [Google Scholar] [CrossRef]
- Baskin, C.W.; Christaller, W. Central Places in Southern Germany; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966; 230p. [Google Scholar]
- Fu, W.; Luo, C.; He, S. Does Urban Agglomeration Promote the Development of Cities? An Empirical Analysis Based on Spatial Econometrics. Sustainability 2022, 14, 14512. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, T.; Ren, Q. The Spatial Spillover Effects of Infrastructure on Economic Growth in Shenyang Economic Zone. Front. Eng. Manag. 2016, 3, 290. [Google Scholar] [CrossRef]
- Hu, C.; Liu, W.; Jia, Y.; Jin, Y. Characterization of Territorial Spatial Agglomeration Based on POI Data: A Case Study of Ningbo City, China. Sustainability 2019, 11, 5083. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; Technology Press: Cambridge, MA, USA, 1960; 194p. [Google Scholar]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.-C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2019, 96, 10–22. [Google Scholar] [CrossRef]
- Kim, L.; Moon, T. The Effect of Compact City’s Spatial Factors on Social Sustianability. Hous. Stud. 2010, 18, 51–72. [Google Scholar]
- Ma, Z. Deep exploration of street view features for identifying urban vitality: A case study of Qingdao city. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103476. [Google Scholar] [CrossRef]
- Wang, M.; Pei, X.; Zhang, M.; Tang, Y. Evaluation and Optimization of Urban Public Space Accessibility for Residents’ Satisfaction: A Case Study of Nanshan District, Shenzhen City. Buildings 2023, 13, 2624. [Google Scholar] [CrossRef]
- Chen, S.; Biljecki, F. Automatic assessment of public open spaces using street view imagery. Cities 2023, 137, 104329. [Google Scholar] [CrossRef]
- Xiao, Z.P.; Chai, Y.W.; Zhang, Y. Review of Progress in Domestic and International Living Circle Planning Research and Planning Practice. Planner 2014, 30, 89–95. [Google Scholar]
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Manifesty, O.R.; Park, J.Y. A Case Study of a 15-Minute City Concept in Singapore’s 2040 Land Transport Master Plan: 20-Minute Towns and a 45-Minute City. Int. J. Sustain. Transp. Technol. 2022, 5, 1–11. [Google Scholar] [CrossRef]
- Guan, Y.B.; Ma, R.; Kong, Y.F. Research on the Location Model of Urban Community Convenience Service Centers. J. Geo-Inf. Sci. 2023, 25, 2164–2177. [Google Scholar]
- Xiao, Z.P.; Han, L.W.; Chai, Y.W. Considerations on Integrating Living Circle Planning into National Spatial Planning. Planner 2022, 38, 145–151. [Google Scholar]
- Ryus, P.; Musunuru, A.; Bonneson, J.; Kothuri, S.; Monsere, C.; McNeil, N.; LaJeunesse, S.; Nordback, K.; Kumfer, W.; Currin, S.; et al. Guide to Pedestrian Analysis; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- Zhang, H.L.; Ge, P. Analysis of the Relationship between the Proportion of Elderly Pedestrians at Signalized Intersections and Pedestrian Walking Speed. Sci. Technol. Eng. 2018, 18, 287–292. [Google Scholar]
- Li, J.; Lin, S.; Kong, N.; Ke, Y.; Zeng, J.; Chen, J. Nonlinear and Synergistic Effects of Built Environment Indicators on Street Vitality: A Case Study of Humid and Hot Urban Cities. Sustainability 2024, 16, 1731. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Yang, Q.; Song, D. How does environmental regulation break the resource curse: Theoretical and empirical study on China. Resour. Policy 2019, 64, 101480. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Feng, Y.; Liu, Y.; Yuan, H. The spatial threshold effect and its regional boundary of new-type urbanization on energy efficiency. Energy Policy 2022, 164, 112866. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, Y.; Liu, M.; Ye, Y. Street vitality and built environment features: A data-informed approach from fourteen Chinese cities. Sustain. Cities Soc. 2022, 79, 103724. [Google Scholar] [CrossRef]
Data Type | Source | Description | Link |
---|---|---|---|
Baidu building data | a | Contains 663,184 records | “https://map.baidu.com/ (accessed on 14 June 2022)” |
Baidu Huiyan data | b | Total of 5290 segments | “https://huiyan.baidu.com/ (accessed on 15 June 2022)” |
Amap POI data | c | Total of 3,506,483 records | “https://ditu.amap.com/ (accessed on 14 July 2023)” |
Road network data | d | Total of 761,414 records | “https://www.openstreetmap.org/ (accessed on 24 October 2023)” |
Street view images | a | A total of 158,612 valid street view images | “https://map.baidu.com/ (accessed on 7 June 2024)” |
Date | Relative Population on Streets | Mean | Maximum | Minimum | Standard Deviation |
---|---|---|---|---|---|
Monday | 7,283,132 | 8.43 | 550.57 | 0 | 12.58 |
Tuesday | 7,209,726 | 8.37 | 500.76 | 0 | 12.15 |
Wednesday | 7,249,843 | 8.41 | 522.80 | 0.014 | 12.36 |
Thursday | 7,190,898 | 8.31 | 459.81 | 0.014 | 11.04 |
Friday | 7,409,353 | 8.58 | 566.89 | 0.011 | 12.93 |
Saturday | 7,322,311 | 8.45 | 485.01 | 0.022 | 12.22 |
Sunday | 6,993,683 | 8.12 | 522.80 | 0.017 | 11.50 |
Type | Variable Name | Description |
---|---|---|
Threshold variable | Construction intensity | Based on street POI data, the linear density of POIs along the streets is used as an indicator of street construction intensity. |
Functional diversity | POIs are categorized into 16 major classes, and the Shannon diversity index is calculated to determine functional diversity. | |
Control variable | Integration | Standardized angular integration measured using Depthmap. |
Public transport facilities and services | Calculated based on the line density of public transport stations, such as bus and subway stations. | |
Public facilities and services | The service level of public facilities is represented by the linear density of three categories of POIs: public amenities, transportation facilities, and government and other social organizations. | |
Building occupation density | The total area occupied by buildings on both sides of a certain street divided by the length of the street (square meters per kilometer). | |
Sky view factor | The ratio of sky pixels to the total pixel count in street view images. | |
Green view index | The ratio of the total pixels of grass and trees to the total pixel count in street view images. |
Distance Weight | Moran’s I | p-Value | Standard Deviation | Number of Isolated Islands | Maximum Number of Connections | Average Number of Connections |
---|---|---|---|---|---|---|
500 m | 0.178 | 0.002 (12.473) | 0.014 | 303 | 21 | 5.029 |
1000 m | 0.160 | 0.001 (31.014) | 0.005 | 33 | 54 | 17.538 |
1500 m | 0.145 | 0.001 (39.055) | 0.004 | 13 | 81 | 35.752 |
Distance Weight Matrix | Model | Threshold | F | p | Bootstrap | Crit1 | Crit5 | Crit10 |
---|---|---|---|---|---|---|---|---|
500 m | Single threshold | 0.1466 *** | 117.50 | 0.0000 | 300 | 6.43 | 3.86 | 2.76 |
Double threshold | (0.0586, 0.1466) | 117.49 | 0.2933 | 300 | 162.46 | 141.53 | 133.97 | |
100 m | Single threshold | 0.1466 *** | 126.85 | 0.0000 | 300 | 6.21 | 3.40 | 2.56 |
Double threshold | (0.0622, 0.1466) | 126.85 | 0.1425 | 300 | 168.32 | 149.42 | 139.86 | |
1500 m | Single threshold | 0.1466 *** | 125.23 | 0.0000 | 300 | 6.66 | 3.97 | 2.78 |
Double threshold | (0.0622, 0.1466) | 125.23 | 0.2867 | 300 | 164.18 | 152.61 | 139.77 |
Spatial Weight Matrix Based on Different Distances | |||
---|---|---|---|
500 m | 1000 m | 1500 m | |
Threshold | 0.1466 | 0.1466 | 0.1466 |
Spatial autoregressive estimation coefficient | |||
Low range | 0.0003 *** | 0.0002 *** | 0.0002 *** |
High range | 0.0006 *** | 0.0003 *** | 0.0003 *** |
Control variables | |||
Functional diversity | 0.0026 ** | 0.0027 *** | 0.0022 ** |
Public transit facilities | 1.9641 *** | 1.9716 *** | 1.9473 *** |
Integration degree | 0.4514 *** | 0.4245 *** | 0.2813 ** |
Building coverage density | 5.26 × 10−7 *** | 5.30 × 10−7 *** | 5.28 × 10−7 *** |
Public facilities and services | 1.2796 *** | 1.2576 *** | 1.2701 *** |
Sky view factor (SVF) | 0.0308 *** | 0.4170 *** | 0.4136 *** |
Green view index (GVI) | −0.0178 ** | −0.0200 *** | −0.0136 |
R2 | 0.7210 | 0.7213 | 0.7209 |
Adjusted R2 | 0.7205 | 0.7208 | 0.7204 |
F-statistic | 1516.03 | 1518.53 | 1515.47 |
ROOT MSE | 0.0636 | 0.0636 | 0.0636 |
Prob | 0.0000 | 0.0000 | 0.0000 |
5290 | 5290 | 5290 |
Distance Weight Matrix | Model | Threshold | F | p | Bootstrap | Crit1 | Crit5 | Crit10 |
---|---|---|---|---|---|---|---|---|
500 m | Single threshold | 0.6832 *** | 18.58 | 0.0000 | 300 | 5.75 | 3.63 | 2.83 |
Double threshold | (0.6832, 2.2065) * | 3.07 | 0.0833 | 300 | 7.47 | 3.93 | 2.89 | |
Triple threshold | Not significant | - | - | - | - | - | - | |
100 m | Single threshold | 0.6832 *** | 31.16 | 0.0000 | 300 | 6.35 | 3.63 | 2.81 |
Double threshold | (0.6832, 1.4325) ** | 4.50 | 0.0400 | 300 | 5.66 | 4.06 | 3.18 | |
Triple threshold | Not significant | - | - | - | - | - | - | |
1500 m | Single threshold | 0.6832 *** | 24.38 | 0.0000 | 300 | 5.79 | 3.52 | 2.94 |
Double threshold | (0.6832, 1.2724) * | 5.83 | 0.090 | 300 | 5.79 | 3.52 | 2.88 | |
Triple threshold | Not significant | - | - | - | - | - | - |
Spatial Weight Matrix Based on Different Distances | |||
500 m | 1000 m | 1500 m | |
Threshold | (0.6832, 1.2681) | (0.6832, 1.4325) | (0.6832, 1.4325) |
Spatial autoregressive estimation Coefficient | |||
Low range | 0.0004 *** | 0.0002 *** | 0.0002 *** |
Moderate range | 0.0004 *** | 0.0002 *** | 0.0002 *** |
High range | 0.0003 *** | 0.0002 *** | 0.0002 *** |
Control variables | |||
Construction intensity | 0.2815 *** | 0.2959 *** | 0.2943 *** |
Public transit facilities | 1.6772 *** | 1.7180 *** | 1.7022 *** |
Integration degree | 0.2997 *** | 0.2921 ** | 0.1711 * |
Building coverage density | 5.06 × 10−7 *** | 4.96 × 10−7 *** | 4.93 × 10−7 *** |
Public facilities and services | 1.0531 *** | 1.0578 *** | 1.0726 *** |
Sky view factor (SVF) | 0.0719 *** | 0.0808 *** | 0.0785 *** |
Green view index (GVI) | 0.0180 ** | 0.0142 | 0.0199 ** |
R2 | 0.7408 | 0.7411 | 0.7404 |
Adjusted R2 | 0.7403 | 0.7406 | 0.7399 |
F-statistic | 1508.66 | 1510.83 | 1505.05 |
ROOT MSE | 0.0613 | 0.0613 | 0.6138 |
Prob | 0.0000 | 0.0000 | 0.0000 |
Sample size | 5290 | 5290 | 5290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Kong, N.; Lin, S.; Zeng, J.; Ke, Y.; Chen, J. Spatial Nonlinear Effects of Street Vitality Constrained by Construction Intensity and Functional Diversity—A Case Study from the Streets of Shenzhen. ISPRS Int. J. Geo-Inf. 2024, 13, 238. https://doi.org/10.3390/ijgi13070238
Li J, Kong N, Lin S, Zeng J, Ke Y, Chen J. Spatial Nonlinear Effects of Street Vitality Constrained by Construction Intensity and Functional Diversity—A Case Study from the Streets of Shenzhen. ISPRS International Journal of Geo-Information. 2024; 13(7):238. https://doi.org/10.3390/ijgi13070238
Chicago/Turabian StyleLi, Jilong, Niuniu Kong, Shiping Lin, Jie Zeng, Yilin Ke, and Jiacheng Chen. 2024. "Spatial Nonlinear Effects of Street Vitality Constrained by Construction Intensity and Functional Diversity—A Case Study from the Streets of Shenzhen" ISPRS International Journal of Geo-Information 13, no. 7: 238. https://doi.org/10.3390/ijgi13070238
APA StyleLi, J., Kong, N., Lin, S., Zeng, J., Ke, Y., & Chen, J. (2024). Spatial Nonlinear Effects of Street Vitality Constrained by Construction Intensity and Functional Diversity—A Case Study from the Streets of Shenzhen. ISPRS International Journal of Geo-Information, 13(7), 238. https://doi.org/10.3390/ijgi13070238