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Abstract: Installing multi-camera systems and inertial measurement units (IMUs) in self-driving cars,
micro aerial vehicles, and robots is becoming increasingly common. An IMU provides the vertical
direction, allowing coordinate frames to be aligned in a common direction. The degrees of freedom
(DOFs) of the rotation matrix are reduced from 3 to 1. In this paper, we propose a globally optimal
solver to calculate the relative poses and scale of generalized cameras with a known vertical direction.
First, the cost function is established to minimize algebraic error in the least-squares sense. Then, the
cost function is transformed into two polynomials with only two unknowns. Finally, the eigenvalue
method is used to solve the relative rotation angle. The performance of the proposed method is
verified on both simulated and KITTI datasets. Experiments show that our method is more accurate
than the existing state-of-the-art solver in estimating the relative pose and scale. Compared to the
best method among the comparison methods, the method proposed in this paper reduces the rotation
matrix error, translation vector error, and scale error by 53%, 67%, and 90%, respectively.

Keywords: globally optimal solver; relative pose estimation; scale; known vertical direction;
minimizing algebraic error

1. Introduction

Estimating the relative pose from two views is a cornerstone in multi-view geometry
problems which has been applied in many fields, such as visual odometry (VO) [1,2], struc-
ture from motion (SfM) [3,4], and simultaneous localization and mapping (SLAM) [5–7].
In addition, the camera sensor for indoor positioning is also an application [8–10]. The
multi-camera system consists of multiple individual cameras fixed on a system. It has the
advantages of a large field of view and high precision in relative pose estimation. Therefore,
a large number of scholars have studied how to improve the accuracy, robustness, and
efficiency of the relative pose estimation algorithm.

Compared with the standard pinhole camera, the multi-camera system lacks a single
projection center. To solve this problem, Plücker lines are proposed to represent the light
rays that pass through the multi-camera system [8]. This model is called the generalized
camera model (GCM) [11], which describes the relationship between the Plücker lines
and the generalized essential matrix. Generalized cameras are widely used in fields such
as autonomous driving, robotics, and micro aerial vehicles. Pless proposed calculating
the relative poses of multiple cameras using 17-point correspondences. Some methods
have been developed on multi-camera relative pose estimation using the generic camera
model [12–17]. However, these algorithms can estimate multi-camera poses only if the
distances between all camera centers are known. This assumption limits the use of the

ISPRS Int. J. Geo-Inf. 2024, 13, 246. https://doi.org/10.3390/ijgi13070246 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13070246
https://doi.org/10.3390/ijgi13070246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-0274-2684
https://orcid.org/0000-0002-1019-0384
https://doi.org/10.3390/ijgi13070246
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13070246?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2024, 13, 246 2 of 21

generic camera model. In this paper, we focus on estimating the relative poses and scales
of the generic camera model.

The relative pose and scale of the multi-camera system consist of a total of 7 degrees of
freedom (DOFs), including 3 DOFs of the rotation matrix, 3 DOFs of translation vectors, and
1 DOF for scale, as shown in Figure 1. To improve the relative pose estimation of the camera
and reduce the minimum number of required feature point pairs, an auxiliary sensor, such
as an IMU, is often added [13–15,18–20]. An IMU can provide the yaw, pitch, and roll
angles. The pitch and roll angles are more accurate than the yaw angle [21]. Therefore, we
can use the pitch and roll angle provided by the IMU to reduce the degrees of freedom of
the rotation matrix from 3 to 1. In this case, the relative pose and scale of the multi-camera
system consist of a total of 5 degrees of freedom (DOFs). Thus, only five feature point pairs
are needed to estimate the relative poses and scales of the camera [22].
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Depending on the number of points required to solve the relative poses of a multi-
camera system, solvers can be divided into minimum sample solvers and non-minimum
sample solvers. When the distance between camera centers is known, a large number of
scholars have used both minimum and non-minimum samples to solve for the relative
poses of cameras. A constraint equation for the rotation matrix, translation vector, scale,
and Plücker lines in the generic camera model is proposed in [22]. The minimum solution
for a known vertical direction is also known. This method avoids 3D point noise in the
calculation of relative poses and scale using the method with 2D-3D point correspondences.
A simple heuristic global energy minimization scheme based on local minimum suppression
is proposed in [23]. However, this method is not a closed-form solver.

This paper mainly focuses on globally optimal relative pose and scale estimation from
2D-2D point correspondences. Cameras and IMUs, such as mobile phones, unmanned
aerial vehicles, and autonomous vehicles, are usually fixed together, so we assume the
vertical direction is known. The main contributions of this paper are summarized below:

• A novel globally optimal solver to estimate relative pose and scale is proposed from N
2D-2D point correspondences (N > 5). This problem is transformed into a cost function
based on the least-squares sense to minimize algebraic error.

• We transform the cost function to solve two unknowns in two equations, which are
composed of the parameter of the relative rotation angle. The highest degree of
rotation angle parameter is 16.

• We derive and provide a solver based on polynomial eigenvalues to calculate the
relative rotation angle parameter. The translation vector and scale information are
obtained from the corresponding eigenvectors.

The rest of this paper is organized as follows. We review the related work in Section 2.
In Section 3, we introduce methodology, including the generalized epipolar constraint,
problem description, and globally optional solver. We test the performance of the proposed
method on synthetic and real-world data and discuss this in Section 4. The conclusions are
presented in Section 5.
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2. Related Work

Multi-camera relative pose estimation has received significant attention in academia
and industry. The multi-camera model differs from the standard pinhole model due to the
absence of a single center of projection in the multi-camera system.

Grossberg and Nayar introduced the generalized camera model [24]. To describe
the lines sampled in space for each pixel in a multi-camera system, Pless proposed using
Plücker lines to express light rays and provide the relationship between the Plücker vector,
the rotation matrix, and the translation vector [11]. The generalized camera model proposed
by Pless has been widely used in multi-cameras. Stewenius et al. proposed an estimation of
the relative pose using six-point correspondences in a multi-camera system [12]. This solver
generates 64 solutions using the Gröbner basis technique. However, this method runs slow
when solving for relative pose. Li et al. proposed a linear solver using 17-point correspon-
dences [16]. Based on this, Li et al. analyzed the degeneracy of the 17-point method and
proposed a new solver [25]. Some solvers were proposed where the IMU provides the pitch
angle and roll angle. Lee et al. proposed a solver to estimate the yaw angle by computing an
eight-degree univariate polynomial using four-point correspondences [13]. Sweeney et al.
transformed the relative pose estimation problem into a quadratic eigenvalue problem [15].
Liu also proposed the use of four-point correspondences to calculate the relative pose of
the camera [14]. Guan et al. proposed four solutions using affine correspondences in a
multi-camera system [26]. Kneip utilized the minimization of the algebraic error to build
the objective function to solve the rotation matrix and then calculated the translation vector
based on the eigenvalues and eigenvectors [17]. Zhao proposed a globally optimal solver
by transforming the minimization of the sum of squares of residuals constructed from
generalized epipolar constraints into quadratically constrained quadratic programming
(QCQP) [27]. Ding proposed a novel globally optimal solver using polynomial eigenvalue
when the vertical direction is known [18].

All of the above methods are based on the case where the internal scale between two
multi-camera systems is known. However, the internal scale of each view is difficult to
obtain or is ambiguous. So, it is necessary to estimate the scale information of the camera.
Ventura et al. provided a minimal solver to estimate the absolute pose and scale of the
generalized camera using four 2D-3D correspondences [24]. This solver produces eight
solutions. Sweeney et al. proposed a globally optimal solver from four or more 2D-3D
correspondences [28]. This method does not need iterations or initialization in the process
of solving. The accuracy of pose and scale estimation using 2D-3D correspondence is
greatly affected by the depth because this method relies on the accuracy of 3D. To reduce
the influence of depth, some scholars propose using 2D-2D correspondence to calculate
relative pose and scale.

Sweeney first proposed using 2D-2D correspondence to calculate the relative poses
and scale between two generalized cameras. A constraint on the rotation matrix, transla-
tion vector, scale, and Plücker vector was presented. The authors provided two solvers
(a quadratic eigenvalue solver and a closed-form solver) when the vertical direction
is known based on five-point correspondences. Experiments showed that they are ill-
conditioned and very unstable in quadratic eigenvalue solutions [22]. Kneip dropped the
assumption of known vertical direction. Kneip transformed the relative pose and scale
problem into a symmetric eigenvalue problem. The method computes the rotation matrix
by direct search using a minimally suppressed heuristic global optimization method [23].
However, the method is not a closed-form solution. Recently, the solver of polynomial
eigenvalue has been widely applied in the field of camera pose estimation [29–32].

3. Methodology
3.1. Epipolar Constraint

In a multi-camera system, we define a corresponding point pair (xki, xk′ j, Rki, Rk′ j, tki, tk′ j),
where xki is the normalized homogeneous coordinate of the i-th camera capture image in
the k frame and xk′ j is the normalized homogeneous coordinate of the j-th camera capture
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image in the k + 1 frames. The rotation matrix and translation vector of the i-th camera in
the k frame are Rki and tki. The rotation matrix and translation vector of the j-th camera
in the k + 1 frame are Rk′ j and tk′ j in Figure 2. Iki and Ik′ j denote a pair of corresponding
Plücker line vectors pointing at k and k + 1 frames. The Plücker line vector is written
as follows:

Iki =

(
fki

tki × fki

)
, Ik′ j =

(
fk′ j

tk′ j × fk′ j

)
, (1)

where fki and fk′ j denote the direction vectors of the corresponding rays between the two
generalized cameras. fki and fk′ j are written as follows:

fki =
(Rkixki)

∥Rkixki∥
, fk′ j =

(Rk′ jxk′ j)∥∥∥Rk′ jxk′ j

∥∥∥ . (2)
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~
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The generalized epipolar constraint is written as follows:

IT
k′i

[
E R
R 0

]
Iki = 0, (3)

where R and t represent the original rotation matrix and original translation vector, re-
spectively. The essential matrix E = [t]×R and [t]× represents the antisymmetric matrix
of t.

fT
k′ jEfki + fT

k′ j(R[tk′ j]× − [tki]×R)fki = 0. (4)

A large number of solvers have been proposed for this problem. The premise of
applying these methods is then based on the assumption that scale information has been
reconciled. In the application, the scale information is fuzzy, so the above methods are not
available. Therefore, we mainly focus on the relative pose estimation when the scale is
unknown. Equation (5) can be easily obtained according to Equation (4).

fT
k′ jEfki + fT

k′ j(Rs[tk′ j]× − [tki]×R)fki = 0, (5)

where s represents the scale. Similar to Equation (3), Equation (5) can be expressed
as follows:

IT
k′ j

[
E R

sR 0

]
Iki = 0. (6)

A multi-camera system is usually coupled with the IMU, which can provide the roll
(θx) and pitch (θz) angles. We define the Y-axis of the camera coordinate system to be
parallel to the vertical direction, and the X-Z plane is orthogonal to the Y-axis. Rimu and
R′

imu are provided by the IMU at k and k + 1 frame, respectively.

Rimu = RxRz, (7)
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where Rx and Rz can be written as follows:

Rx =

1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

, Rz =

cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

. (8)

The rotation matrix and translation vector between the aligned frames k and k + 1 are

Ry and
~
t. The relationship between the original relative pose (R and t) and the aligned

relative pose (Ry and
~
t) can be expressed as follows:

R = (R′
imu)

TRyRimu, t = (R′
imu)

T~
t, (9)

where

Ry =

 cos
(
θy
)

0 sin
(
θy
)

0 1 0
− sin

(
θy
)

0 cos
(
θy
)
, (10)

where θy represents the rotation angle of the Y-axis. The rotation matrix Ry can be rewritten
with the Cayley parameterization as follows:

Ry =
1

1 + y2

1 − y2 0 2y
0 1 0

−2y 0 1 − y2

, (11)

where y = tan θy
2 . In practical applications, θy = 180◦ is very rare [33].

By substituting Equation (9) into Equation (6), we can obtain

([
R′

imu 0
0 R′

imu

]
Ik′ j

)T

·
[[~

t
]
×

Ry Ry

sRy 0

]
·
([

Rimu 0
0 Rimu

]
Iki

)
= 0. (12)

By substituting Equation (1) into Equation (12), we can obtain

(
R′

imufk′ j
R′

imu(tk′ j × fk′ j)

)T

·
[[~

t
]
×

Ry Ry

sRy 0

]
·
(

Rimufki
Rimu(tki × fki)

)
= 0. (13)

3.2. Problem Description

Based on the constraint equation of Equation (13) in the previous section, Equation (13)
can be rewritten as follows:

fk′ j × (R′
imu)

TRyRimufki

fT
k′ j

[
tk′ j

]
×
(R′

imu)
TRyRimufki

−fT
k′ j(R

′
imu)

TRyRimu[tki]fki


︸ ︷︷ ︸

M

T
~
t
s
1

 = 0, (14)

where the size of M is 5 × 1. Suppose there are N point correspondences. If N = 5, Sweeney
proposes the solver using 5-point correspondences in [22]. In this paper, we focus on
non-minimal sample point correspondences (N > 5). We can stack the constraints in each
correspondence

MT


~
t
s
1

 = (m1 . . . mn)
T


~
t
s
1

 = 0, (15)

We minimize the algebraic error based on the least-squares sense and establish the
cost function
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arg
Ry ,

~
t
min

^
t

T
C

^
t, (16)

where
^
t =

[~
t s 1

]T
and C = M × MT . Matrix C can be expressed as follows:

C =


C11 C12 C13 C14 C15
C12 C22 C23 C24 C25
C13 C23 C33 C34 C35
C14 C24 C34 C44 C45
C15 C25 C35 C45 C55

. (17)

The only unknown in matrix C is y. Supposing λC,min is the smallest eigenvalue of
matrix C, the optimization problem is expressed by

Ry = argminRy λC,min. (18)

Based on the form of the eigenvalues, we can write

det(C − λI) = −λ5 + f1λ4 + f2λ3 + f3λ2 + f4λ + f5, (19)

where λ is the eigenvalue of matrix C, and I is a 5 × 5 unit matrix. Specific expressions for
f0, f1, f2, f3, and f4 contain only the unknown y.

For convenience of narration, we use λ instead of λG,min. Based on the properties of
eigenvalues, Equation (19) can be rewritten as follows:

−λ5 + f1λ4 + f2λ3 + f3λ2 + f4λ + f5 = 0. (20)

dλ
ds = 0 is the necessary condition for λ to be the smallest eigenvalue of C. We

can obtain
d f1

dλ
λ4 +

d f2

dλ
λ3 +

d f3

dλ
λ2 +

d f4

dλ
λ +

d f5

dλ
= 0. (21)

Define α = 1 + y2. Then, we can obtain

f1 =
g1

δ2 , f2 =
g2

δ4 , f3 =
g3

δ6 , f4 =
g4

δ7 , f5 =
g5

δ8 , (22)

d f1

dy
=

h1

δ3 ,
d f2

dy
=

h2

δ5 ,
d f3

dy
=

h3

δ7 ,
d f4

dy
=

h4

δ8 ,
d f5

dy
=

h5

δ9 , (23)

where g1, g2, g3, g4, g5, h1, h2, h3, h4, and h5 are only polynomials of y. The highest degree
of y is shown in Table 1.

Table 1. Highest degree of variable y.

g1 g2 g3 g4 g5 h1 h2 h3 h4 h5

Degree of y 4 8 12 14 16 4 8 12 14 16

Define β = δλ. Equations (20) and (21) can be rewritten as follows:{
−δ3β5 + δ2β4g1 + δβ3g2 + β2g3 + βg4 + g5 = 0
δ2β4h1 + δβ3h2 + β2h3 + βh4 + h5 = 0

. (24)

We can rewrite Equation (24) as follows:
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[
−δ3 δ2g1 δg2 g3 g4 g5
0 δ2h1 δh2 h3 h4 h5

]


β5

β4

β3

β2

β
1

 = 0. (25)

3.3. Globally Optimal Solver

We can easily find two equations with 6 monomials in Equation (24). To equalize the
number of equations and the number of monomials, the first equation of Equation (24) is
equalized by β3, β2, and β, and the second equation is equalized by β4, β3, β2, and β. We
can obtain seven equations.

−δ3β6 + δ2β5g1 + δβ4g2 + β3g3 + β2g4 + βg5 = 0
−δ3β7 + δ2β6g1 + δβ5g2 + β4g3 + β3g4 + β2g5 = 0
−δ3β8 + δ2β7g1 + δβ6g2 + β5g3 + β4g4 + β3g5 = 0
δ2β5h1 + δβ4h2 + β3h3 + β2h4 + βh5 = 0
δ2β6h1 + δβ5h2 + β4h3 + β3h4 + β2h5 = 0
δ2β7h1 + δβ6h2 + β5h3 + β4h4 + β3h5 = 0
δ2β8h1 + δβ7h2 + β6h3 + β5h4 + β4h5 = 0

. (26)

Based on Equations (24) and (26), we can easily obtain nine equations with nine
monomials.

V9×9X9×1 = 0, (27)

where V is 9 × 9 and X is 9 × 1.

V =



0 0 0 −δ3 δ2g4 δg3 g2 g1 g0
0 0 −δ3 δ2g4 δg3 g2 g1 g0 0
0 −δ3 δ2g4 δg3 g2 g1 g0 0 0

−δ3 δ2g4 δg3 g2 g1 g0 0 0 0
0 0 0 0 δ2h4 δh3 h2 h1 h0
0 0 0 δ2h4 δh3 h2 h1 h0 0
0 0 δ2h4 δh3 h2 h1 h0 0 0
0 δ2h4 δh3 h2 h1 h0 0 0 0

δ2h4 δh3 h2 h1 h0 0 0 0 0


, (28)

X =
[

β8 β7 β6 β5 β4 β3 β2 β 1
]T . (29)

The elements of V are univariate polynomials in y, and the highest degree of y is 16.
Equation (27) can be rewritten as follows:

(V0 + yV1 + . . . + y16V16)X = 0. (30)

We define the matrix B, J, L.

B =


0 I . . . 0
0 0 . . . 0

. . . . . . . . . I
−V0 −V1 . . . −V15

, J =


I 0 . . . 0
0 I . . . 0

. . . . . . . . . 0
0 0 . . . V16

, L =


X
yX
. . .
y15X

. (31)

Equation (30) can be rewritten as BL = yJL. The eigenvalue of J−1B is y. J−1B can be
written as follows:
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J−1B =


0 I . . . 0
0 0 . . . 0

. . . . . . . . . I
−V−1

16 V0 −V−1
16 V1 . . . −V−1

16 V15

. (32)

where V0, V1, . . ., V15 and V16 are 9 × 9 matrices.
It is found that the matrix V−1

16 is inaccurate because there are zero columns, resulting
in V16 being a singular matrix. Since V0 is full rank, we define z = 1

y , and Equation (30)
can be rewritten as follows:

(z16V0 + z15V1 + z14V2 + . . . + V16)X = 0 (33)

where z is the eigenvalue of matrix G.

G =


0 I . . . 0
0 0 . . . 0

. . . . . . . . . I
−V−1

0 V16 −V−1
0 V15 . . . −V−1

0 V1

 (34)

A method for reducing the size of the polynomial eigenvalue problem is proposed
in [32]. Zero columns and corresponding zero rows of matrix G are removed. The eigen-
values of matrix G are calculated using Schur decomposition. The translation vector and
scale can be obtained through Equation (15) when y is known. The algorithm flow chart is
shown in Figure 3.
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The method proposed in this paper is suitable for cameras and IMUs that are fixedly
connected together. The specific steps of the algorithm are as follows: (1) The data input
to the algorithm include feature point pairs, pitch and roll angles provided by the IMU,
and calibration parameters. (2) Based on the input data, calculate the coefficients of each
element of matrix C in Equation (17) with respect to the variable y. (3) Calculate g1, g2,
g3, g4, g5, h1, h2, h3, h4, and h5 according to Equations (20)–(23). (4) Calculate matrix G
according to Equation (34). (5) The eigenvalue of matrix G is the rotation parameter y, thus
obtaining the rotation matrix. (6) The translation vector and scale are obtained by bringing
the rotation matrix into Equation (15).

4. Experiments

In this section, we test the accuracy of the rotation matrix, translation vector, and
scale on synthetic and real-world data. Since the solver proposed in this paper is a global
optimization solver with a known vertical direction, we chose Sw [22] for comparison. The
method proposed in this paper is called OURs.

εR = arccos(
trace(RgtRT)− 1

2
) (35)

εt = 2

∥∥tgt − t
∥∥

(
∥∥tgt

∥∥+ ∥t∥)
(36)
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εt,dir = arccos
tT
gtt

(
∥∥tgt

∥∥+ ∥t∥)
(37)

εs =

∣∣s − sgt
∣∣

sgt
(38)

where Rgt, tgt, and sgt are the truth of rotation, translation, and scale, respectively. R, t, and
s are the evaluated values of rotation, translation, and scale, respectively.

4.1. Experiments on Synthetic Data

To demonstrate the performance of the method proposed in this paper, we first perform
experiments on a synthetic dataset. We randomly generate five cameras in space. Three
hundred random 3D points are generated within a range of −5 to 5 m (X-axis), −5 to 5 m
(Y-axis), and 5–20 m (Z-axis). The resolution of the image is 640 × 480 pixels, and the focal
length of the camera is 400 pixels. We assume that the principal point is located at the center
of the image at (320, 240) pixels. The scale s is randomly generated in the range [0.5, 2].
Rotation matrices and translation vectors for the five cameras to the reference frame are
randomly generated. We establish the frame of reference in the middle of the five cameras.
The rotation angle between two adjacent reference frames ranges from −10◦ to 10◦. The
direction of the translation vector between two adjacent frames is also randomly generated,
and the norm of the translation vector is between 1 and 2 m.

Parameter sensitivity analysis: Due to the fact that the solver proposed in this paper
uses a non-minimum sample to estimate the relative pose of the camera and scale, we
analyze the accuracy of the calculation by varying the number of points. We set the noise
in the image to 1 pixel. The noise of the pitch angle and the noise of the roll angle are both
zero degrees. Figure 4 shows the accuracy of rotation, translation, and scale estimation
by OURs with different numbers of feature points. It is evident that as the number of
points increases, the rotation error, translation error, and scale error estimated by the OURs
method all decrease in Figure 4.

Noise resilience: The solvers of Sw and OURs are tested with added image noise
under four motions: random motion (t =

[
tx ty tz

]T), planar motion (t =
[
tx 0 tz

]T),

forward motion (t =
[
0 0 tz

]T), and sideways motion (t =
[
tx 0 0

]T). We add image
noise ranging from 0 to 1 pixel. We added noise to the pitch angle and roll angle when
adding noise to the IMU in the synthetic data. The noise of the image is fixed to 1 pixel
when noise is added to the roll angle and pitch angle. The maximum noise of the roll
angle and pitch angle is 0.5 degrees. Figure 5 shows the error values of the rotation matrix,
translation vector, and scale calculated by OURs and Wu when the image noise, pitch angle
noise, and roll angle are added under random motion. Figure 6 shows the error values
of the rotation matrix, translation vector, and scale calculated by OURs and Wu when the
image noise, pitch angle noise, and roll angle are added under planar motion. Figure 7
shows the error values of the rotation matrix, translation vector, and scale calculated by
OURs and Wu when the image noise, pitch angle noise, and roll angle are added under
sideways motion. Figure 8 shows the error values of the rotation matrix, translation vector,
and scale calculated by OURs and Sw when the image noise, pitch angle noise, and roll
angle are added under forward motion. The second column shows the calculation results
of adding pitch angle noise. The third column shows the calculation results of adding roll
angle noise. The first row represents the rotation matrix error. The second and third rows
represent translation vector errors. The fourth row represents scale error. From Figures 5–8,
it can be observed that the method proposed in this paper yields rotation matrix errors,
translation vector errors, and scale errors smaller than those estimated by the Sw method.
The effectiveness of the proposed method is demonstrated through simulated data.
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Figure 4. Effect of the number of feature points on the accuracy of rotation, translation, and scale
estimation by the method proposed in this paper with different feature points. (a) Rotation error
(degree); (b) translation error (degree); (c) translation error; (d) scale error.

Random motion: When the image noise is 1 pixel, the average rotation matrix error
calculated by the OURs method is 0.011◦, with a median of 0.008◦ and a standard deviation
of 0.010. The average rotation matrix error calculated by the Sw method is 0.197◦, with a
median of 0.06◦ and a standard deviation of 0.559. The average translation vector error
calculated by the OURs method is 0.249◦, with a median of 0.156◦ and a standard deviation
of 0.374. The average translation vector error calculated by the Sw method is 6.927◦, with a
median of 1.323◦ and a standard deviation of 14.908. The average scale error calculated
by the OURs method is 0.005, with a median of 0.004 and a standard deviation of 0.005.
The average scale error calculated by the Sw method is 0.031, with a median of 0.015 and a
standard deviation of 0.050. When the pitch noise is 0.5◦, the average rotation matrix error
calculated by the OURs method is 0.164◦, with a median of 0.089◦ and a standard deviation
of 0.224. The average rotation matrix error calculated by the Sw method is 0.624◦, with a
median of 0.245◦ and a standard deviation of 1.321. The average translation vector error
calculated by the OURs method is 1.397◦, with a median of 0.196◦ and a standard deviation
of 4.239. The average translation vector error calculated by the Sw method is 5.562◦, with a
median of 1.099◦ and a standard deviation of 12.152. The average scale error calculated
by the OURs method is 0.010, with a median of 0.006 and a standard deviation of 0.014.
The average scale error calculated by the Sw method is 0.045, with a median of 0.025 and a
standard deviation of 0.068. When the roll noise is 0.5◦, the average rotation matrix error
calculated by the OURs method is 0.183◦, with a median of 0.103◦ and a standard deviation
of 0.230. The average rotation matrix error calculated by the Sw method is 0.591◦, with a
median of 0.253◦ and a standard deviation of 1.136. The average translation vector error
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calculated by the OURs method is 2.051◦, with a median of 0.221◦ and a standard deviation
of 8.799. The average translation vector error calculated by the Sw method is 5.595◦, with a
median of 1.021◦ and a standard deviation of 12.733. The average scale error calculated
by the OURs method is 0.010, with a median of 0.006 and a standard deviation of 0.012.
The average scale error calculated by the Sw method is 0.037, with a median of 0.019 and a
standard deviation of 0.052.
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Figure 5. Estimating errors in the rotation matrix, translation vector, and scale information under
random motion. The first column shows the calculation results of adding image noise. The second
column shows the calculation results of adding pitch angle noise. The third column shows the
calculation results of adding roll angle noise. The first, second, third and fourth rows represent the
values of εR, εt, εt,dir and εs respectively.
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Figure 6. Estimating errors in the rotation matrix, translation vector, and scale information under
planar motion. The first column shows the calculation results of adding image noise. The second
column shows the calculation results of adding pitch angle noise. The third column shows the
calculation results of adding roll angle noise. The first, second, third and fourth rows represent the
values of εR, εt, εt,dir and εs respectively.
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Figure 7. Estimating errors in the rotation matrix, translation vector, and scale information under
sideways motion. The first column shows the calculation results of adding image noise. The second
column shows the calculation results of adding pitch angle noise. The third column shows the
calculation results of adding roll angle noise. The first, second, third and fourth rows represent the
values of εR, εt, εt,dir and εs respectively.
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Figure 8. Estimating errors in the rotation matrix, translation vector, and scale information under
forward motion. The first column shows the calculation results of adding image noise. The second
column shows the calculation results of adding pitch angle noise. The third column shows the
calculation results of adding roll angle noise. The first, second, third and fourth rows represent the
values of εR, εt, εt,dir and εs respectively.

Planar motion: When the image noise is 1 pixel, the average rotation matrix error
calculated by the OURs method is 0.015◦, with a median of 0.012◦ and a standard deviation
of 0.013. The average rotation matrix error calculated by the Sw method is 0.368◦, with a
median of 0.097◦ and a standard deviation of 1.134. The average translation vector error
calculated by the OURs method is 0.194◦, with a median of 0.093◦ and a standard deviation
of 0.722. The average translation vector error calculated by the Sw method is 4.864◦, with a
median of 0.802◦ and a standard deviation of 12.211. The average scale error calculated by
the OURs method is 0.005, with a median of 0.004 and a standard deviation of 0.005. The
average scale error calculated by the Sw method is 0.0374, with a median of 0.016 and a
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standard deviation of 0.069. When the pitch noise is 0.5◦, the average rotation matrix error
calculated by the OURs method is 0.127◦, with a median of 0.071◦ and a standard deviation
of 0.156. The average rotation matrix error calculated by the Sw method is 0.883◦, with a
median of 0.357◦ and a standard deviation of 1.644. The average translation vector error
calculated by the OURs method is 4.802◦, with a median of 0.838◦ and a standard deviation
of 11.473. The average translation vector error calculated by the Sw method is 7.813◦, with
a median of 1.847◦ and a standard deviation of 14.928. The average scale error calculated
by the OURs method is 0.015, with a median of 0.008 and a standard deviation of 0.019.
The average scale error calculated by the Sw method is 0.049, with a median of 0.030 and a
standard deviation of 0.059. When the roll noise is 0.5◦, the average rotation matrix error
calculated by the OURs method is 0.156◦, with a median of 0.090◦ and a standard deviation
of 0.182. The average rotation matrix error calculated by the Sw method is 0.931◦, with a
median of 0.353◦ and a standard deviation of 1.897. The average translation vector error
calculated by the OURs method is 5.271◦, with a median of 1.006◦ and a standard deviation
of 12.505. The average translation vector error calculated by the Sw method is 6.234◦, with
a median of 1.762◦ and a standard deviation of 12.573. The average scale error calculated
by the OURs method is 0.019, with a median of 0.008 and a standard deviation of 0.020.
The average scale error calculated by the Sw method is 0.046, with a median of 0.026 and a
standard deviation of 0.065.

Sideways motion: When the image noise is 1 pixel, the average rotation matrix error
calculated by the OURs method is 0.015◦, with a median of 0.011◦ and a standard deviation
of 0.012. The average rotation matrix error calculated by the Sw method is 0.295◦, with a
median of 0.093◦ and a standard deviation of 0.797. The average translation vector error
calculated by the OURs method is 0.250◦, with a median of 0.151◦ and a standard deviation
of 0.373. The average translation vector error calculated by the Sw method is 6.638◦, with a
median of 1.231◦ and a standard deviation of 13.752. The average scale error calculated by
the OURs method is 0.005, with a median of 0.004 and a standard deviation of 0.005. The
average scale error calculated by the Sw method is 0.0374, with a median of 0.016 and a
standard deviation of 0.076. When the pitch noise is 0.5◦, the average rotation matrix error
calculated by the OURs method is 0.160◦, with a median of 0.094◦ and a standard deviation
of 0.185. The average rotation matrix error calculated by the Sw method is 1.019◦, with a
median of 0.441◦ and a standard deviation of 1.708. The average translation vector error
calculated by the OURs method is 9.559◦, with a median of 2.765◦ and a standard deviation
of 17.419. The average translation vector error calculated by the Sw method is 9.693◦, with
a median of 3.385◦ and a standard deviation of 15.701. The average scale error calculated
by the OURs method is 0.020, with a median of 0.012 and a standard deviation of 0.024.
The average scale error calculated by the Sw method is 0.044, with a median of 0.026 and a
standard deviation of 0.058. When the roll noise is 0.5◦, the average rotation matrix error
calculated by the OURs method is 0.169◦, with a median of 0.099◦ and a standard deviation
of 0.198. The average rotation matrix error calculated by the Sw method is 0.732◦, with a
median of 0.274◦ and a standard deviation of 1.365. The average translation vector error
calculated by the OURs method is 8.354◦, with a median of 2.348◦ and a standard deviation
of 12.123. The average translation vector error calculated by the Sw method is 10.764◦, with
a median of 3.230◦ and a standard deviation of 19.194. The average scale error calculated
by the OURs method is 0.020, with a median of 0.010 and a standard deviation of 0.026.
The average scale error calculated by the Sw method is 0.045, with a median of 0.026 and a
standard deviation of 0.062.

Forward motion: When the image noise is 1 pixel, the average rotation matrix error
calculated by the OURs method is 0.016◦, with a median of 0.013◦ and a standard deviation
of 0.015. The average rotation matrix error calculated by the Sw method is 0.421◦, with a
median of 0.135◦ and a standard deviation of 1.215. The average translation vector error
calculated by the OURs method is 0.321◦, with a median of 0.149◦ and a standard deviation
of 1.325. The average translation vector error calculated by the Sw method is 7.156◦, with
a median of 1.27◦ and a standard deviation of 15.035. The average scale error calculated
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by the OURs method is 0.005, with a median of 0.004 and a standard deviation of 0.005.
The average scale error calculated by the Sw method is 0.036, with a median of 0.016 and
a standard deviation of 0.068. When the pitch noise is 0.5◦, the average rotation matrix
error calculated by the OURs method is 0.082◦, with a median of 0.048◦ and a standard
deviation of 0.104. The average rotation matrix error calculated by the Sw method is 0.965◦,
with a median of 0.411◦ and a standard deviation of 1.614. The average translation vector
error calculated by the OURs method is 2.195◦, with a median of 0.589◦ and a standard
deviation of 5.921. The average translation vector error calculated by the Sw method is
9.442◦, with a median of 2.364◦ and a standard deviation of 17.648. The average scale error
calculated by the OURs method is 0.012, with a median of 0.007 and a standard deviation of
0.015. The average scale error calculated by the Sw method is 0.049, with a median of 0.029
and a standard deviation of 0.060. When the roll noise is 0.5◦, the average rotation matrix
error calculated by the OURs method is 0.229◦, with a median of 0.141◦ and a standard
deviation of 0.260. The average rotation matrix error calculated by the Sw method is 1.068◦,
with a median of 0.537◦ and a standard deviation of 1.639. The average translation vector
error calculated by the OURs method is 11.024◦, with a median of 2.628◦ and a standard
deviation of 22.204. The average translation vector error calculated by the Sw method is
9.431◦, with a median of 3.476◦ and a standard deviation of 14.699. The average scale error
calculated by the OURs method is 0.020, with a median of 0.012 and a standard deviation
of 0.024. The average scale error calculated by the Sw method is 0.046, with a median of
0.026 and a standard deviation of 0.068.

4.2. Experiments on Real-World Data

To further validate the effectiveness of the proposed method, the KITTI dataset was
chosen for real data evaluation [31]. The KITTI dataset was jointly founded by the Karlsruhe
Institute of Technology in Germany and the Toyota American Institute of Technology. It
is currently the largest computer vision algorithm evaluation dataset in the world for
autonomous driving scenarios. The raw dataset is divided into the categories ‘Road’, ‘City’,
‘Residential’, ‘Person’, and ‘Campus’. The car is equipped with GPS, an IMU, one 64-line
3D LiDAR, and two grayscale cameras. The KITTI dataset provides ground truth for
11 sequences (00–10). The pitch angle and roll angle can be extracted from the IMU sensor
data. The intrinsic parameters of the camera and the rotation and translation between two
cameras from the reference frame are given in the data document [34]. We utilized the SIFT
algorithm to obtain corresponding feature point pairs. Figure 8 shows the results of feature
extraction and matching using SIFT in the KITTI dataset. We selected one out of every five
pairs of points for display in Figure 9.
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Table 2 shows the error results of the rotation matrix, translation vector, and scale
estimated by the OURs method and the Sw method on the KITTI dataset. From Table 2,
we can see that the accuracy of the rotation matrix, translation vector, and scale estimated
by the OURs method is significantly better than that of the Sw method. Table 3 shows the
percentage by which the error calculated by the OURs method is reduced compared to the
error calculated by the Sw method. For the rotation matrix, the OURs method computes
the error on average about 53% less than the Sw method. The maximum error of the OURs
method decreased by 71%, and the minimum decreased by 32%. For the translation vector,



ISPRS Int. J. Geo-Inf. 2024, 13, 246 17 of 21

the OURs method computes the error on average about 67% less than the Sw method.
The maximum error of the OURs method decreased by 73%, and the minimum decreased
by 61%. For the scale, the OURs method computes the error on average about 90% less
than the Sw method. The maximum error of the OURs method decreased by 95%, and the
minimum decreased by 80%. The standard deviation of the rotation matrix estimated by
the OURs method is 65% less than that of the Sw method. The standard deviation of the
translation vector estimated by the OURs method is 51% less than that of the Sw method.
The standard deviation of the scale estimated by the OURs method is 94% less than that of
the Sw method.

Table 2. Rotation, translation, and scale error on KITTI sequence by the Sw method and the
OURs method.

Seq
Sw OURs

εR
(Degree)

εt,dir
(Degree) εs

εR
(Degree)

εt,dir
(Degree) εs

00 0.1760 3.4598 0.0086 0.0847 1.3452 0.0012
01 0.2509 4.1682 0.0205 0.1042 1.5081 0.0008
02 0.1985 3.9163 0.0096 0.0965 1.2836 0.0010
03 0.1809 3.8168 0.0134 0.0754 1.0739 0.0009
04 0.1026 3.6274 0.0033 0.0590 1.0030 0.0003
05 0.2723 4.0362 0.0160 0.0801 1.2315 0.0008
06 0.1814 3.0784 0.0063 0.0664 1.0562 0.0003
07 0.0945 3.4602 0.0043 0.0452 1.1856 0.0008
08 0.1219 3.9419 0.0059 0.0833 1.0837 0.0012
09 0.2093 3.7111 0.0128 0.1133 1.2027 0.0011
10 0.1984 3.6022 0.0110 0.0864 1.3294 0.0008

AVG 0.1806 3.7107 0.0101 0.0813 1.2094 0.0008
MAX 0.2723 4.1682 0.0205 0.1133 1.5081 0.0012
MIN 0.0945 3.0784 0.0033 0.0452 1.0030 0.0003
SD 0.0537 0.2964 0.0050 0.0187 0.1443 0.0002

RMSE 0.1884 3.7225 0.0113 0.0835 1.2179 0.0008

Table 3. The percentage by which the error calculated by the OURs method is reduced compared to
the error calculated by the Sw method.

Seq Rotation (%) Translation (%) Scale (%)

00 52% 61% 86%
01 58% 64% 96%
02 51% 67% 90%
03 58% 72% 93%
04 42% 72% 91%
05 71% 69% 95%
06 63% 65% 95%
07 52% 66% 81%
08 32% 73% 80%
09 46% 68% 91%
10 56% 63% 93%

AVG 53% 67% 90%

MIN 32% 61% 80%

MAX 71% 73% 95%

SD 65% 51% 94%

RMSE 56% 67% 92%

To further verify the performance of the proposed method, we add the Kneip method [23],
which is the latest method for estimating relative pose and scale from 2D-2D only without
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the use of an IMU. This method solves the relative pose and scale by using the non-
minimum sample number. This method requires at least eight-point correspondences. The
Kneip method transforms relative pose and scale estimation into a symmetric eigenvalue
problem. A simple heuristic global energy minimization scheme based on local minimum
suppression is used in the Kneip method. We added the Peter method [35], which requires
a minimum of three 3D-3D correspondences to find the similarity. This is the orthogonal
Procrustes approach. The 3D points are obtained by triangulating in each view.

Table 4. Rotation, translation, and scale error on KITTI sequence by the Kneip method and the
Peter method.

Seq
Kneip Peter

εR
(Degree)

εt,dir
(Degree) εs

εR
(Degree)

εt,dir
(Degree) εs

00 0.9147 6.4101 0.0204 1.9805 9.8001 0.0712
01 0.7057 5.0460 0.0913 1.7606 7.0888 0.1064
02 0.6269 4.9256 0.0258 1.8166 5.9685 0.0918
03 0.7856 4.9410 0.0835 1.8242 6.0235 0.1123
04 0.7901 4.7540 0.0298 1.7948 5.4217 0.0852
05 0.9512 6.0975 0.0957 1.9278 7.6275 0.1254
06 0.7506 4.2787 0.0277 1.9023 5.2621 0.0902
07 0.5956 5.0482 0.0157 1.7452 7.6125 0.0725
08 0.7816 5.1886 0.0130 1.8722 7.2626 0.0806
09 0.8919 5.2186 0.0816 1.9985 6.1282 0.1235
10 0.9643 4.9204 0.0758 2.0592 6.2176 0.1002

AVG 0.8052 5.1662 0.0509 1.8892 6.7648 0.0963
MAX 1.0643 6.4101 0.0957 2.0592 9.8001 0.1254
MIN 0.5956 4.2787 0.0131 1.7606 5.2621 0.0712
SD 0.1340 0.5699 0.0322 0.0894 1.2423 0.0180

RMSE 0.8163 5.1975 0.0603 1.8913 6.8779 0.0979

Table 4 shows the rotation matrix errors, translation vector errors, and scale errors
calculated by the Kneip method and the Peter method. As can be seen from Table 4, the
average value, maximum value, minimum value, standard deviation, and root mean
square error of the rotation matrix error estimated by the Kneip method are 0.8052◦, 1.0643◦,
0.5956◦, 0.1340, and 0.8163. The average value, maximum value, minimum value, standard
deviation, and root mean square error of the translation vector error estimated by the Kneip
method are 5.1662◦, 6.4101◦, 4.2787◦, 0.5699, and 5.1975. The average value, maximum
value, minimum value, standard deviation, and root mean square error of the scale error
estimated by the Kneip method are 0.0509, 0.0957, 0.0131, 0.0322, and 0.0603. The average
value, maximum value, minimum value, standard deviation, and root mean square error of
the rotation matrix error estimated by the Peter method are 1.8892◦, 2.0592◦, 1.7606◦, 0.0894,
and 1.8913. The average value, maximum value, minimum value, standard deviation, and
root mean square error of the translation vector error estimated by the Peter method are
6.7648◦, 9.8001◦, 5.2621◦, 1.2423, and 6.8779. The average value, maximum value, minimum
value, standard deviation, and root mean square error of the scale error estimated by the
Peter method are 0.0963, 0.1254, 0.0712, 0.0180, and 0.0979.

4.3. Discussion

The method proposed in this paper estimates the relative pose (4 DOFs) and scale from
image correspondences. Therefore, the Sw method was chosen as the comparison method
for the simulation experiment. From Figures 4–7, it can be observed that the method
proposed in this paper yields rotation matrix errors, translation vector errors, and scale
errors smaller than those estimated by the Sw method. The effectiveness of the proposed
method is demonstrated through simulated data. In the experiment on real data, to further
verify the performance of the proposed method, we added the Kneip method and Peter
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method as comparison methods. The errors of the rotation matrix, translation vector, and
scale calculated by our method are all smaller than those of the comparison method. The
root mean square error of the rotation matrix estimated by the OURs method is 56% less
than that of the Sw method. The root mean square error of the rotation matrix estimated by
the OURs method is 90% less than that of the Kneip method. The root mean square error of
the rotation matrix estimated by the OURs method is 96% less than that of the Peter method.
The root mean square error of the translation vector estimated by the OURs method is
67% less than that of the Sw method. The root mean square error of the translation vector
estimated by the OURs method is 77% less than that of the Kneip method. The root mean
square error of the translation vector estimated by the OURs method is 82% less than that
of the Peter method. The root mean square error of the scale estimated by the OURs method
is 92% less than that of the Sw method. The root mean square error of the scale estimated
by the OURs method is 98% less than that of the Kneip method. The root mean square error
of the scale estimated by the OURs method is 99% less than that of the Peter method.

5. Conclusions

We propose a new globally optimal solver to estimate the relative pose and scale for a
multi-camera system from only image correspondences with a known vertical direction.
Firstly, we transformed the problem into a cost function based on the least-squares sense
to minimize algebraic error. Based on the characteristic equation method and its first
derivative equal to zero, two independent polynomial equations with two unknowns are
provided. These two equations consist of the rotation angle parameter. We utilized the
polynomial eigenvalue method to solve the rotation angle parameter. The translation vector
and scale information were obtained based on the corresponding eigenvectors. We tested
the superiority of the proposed method in relative pose and scale estimation on synthetic
data and the KITTI dataset. Compared to the best method in the comparison methods, the
method proposed in this paper reduced the rotation matrix error, translation vector error,
and scale error by 53%, 67%, and 90%, respectively.

From Equation (14), it can be observed that the error sources of the proposed algorithm
mainly come from the accuracy of feature extraction and matching, as well as the accuracy
of the IMU. The measurement accuracy of the IMU is determined by the gyroscope. Our
next task is to study how to enhance the accuracy of feature extraction and matching.
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