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Abstract: Named entity recognition (NER) is a fundamental task in Natural Language Processing
(NLP). During the training process, NER models suffer from over‑confidence, and especially for
the Chinese NER task, it involves word segmentation and introduces erroneous entity boundary
segmentation, exacerbating over‑confidence and reducing the model’s overall performance. These
issues limit further enhancement of NER models. To tackle these problems, we proposes a new
model named KCB‑FLAT, designed to enhance Chinese NER performance by integrating enriched
semantic information with the word‑Boundary Smoothing technique. Particularly, we first extract
various types of syntactic data and utilize a network named Key‑Value Memory Network, based on
syntactic information to functionalize this, integrating it through an attention mechanism to gener‑
ate syntactic feature embeddings for Chinese characters. Subsequently, we employed an encoder
named Cross‑Transformer to thoroughly combine syntactic and lexical information to address the
entity boundary segmentation errors caused by lexical information. Finally, we introduce a Bound‑
ary Smoothing module, combined with a regularity‑conscious function, to capture the internal reg‑
ularity of per entity, reducing the model’s overconfidence in entity probabilities through smoothing.
Experimental results demonstrate that the proposedmodel achieves exceptional performance on the
MSRA, Resume, Weibo, and self‑built ZJ datasets, as verified by the F1 score.

Keywords: named entity recognition; Chinese NER; syntactic information; word‑boundary smoothing

MSC: 68T99

1. Introduction
Recently, the study of named entity recognition (NER) in Chinese has become a sig‑

nificant area of interest in natural language processing research. Due to the swift advance‑
ment of big data analytics and artificial intelligence technology, the precise recognition
and categorization of named entities from vast amounts of textual information has gained
significant importance. As smart mobile devices gain popularity, the Internet user base in
developing nations is experiencing a surge. Recently, on 28August 2023, theChina Internet
Network Information Centre unveiled its 52nd Statistical Report on China’s Internet Devel‑
opment Status in Beijing. The report reveals that by June 2023, China boasted 1.079 billion
Internet users, marking an escalation of 11.09 million since December 2022. Notably, the
Internet penetration stood at 76.4%. The growing access to information, content searches,
and online interactions has resulted in a massive accumulation of Chinese text data. In
the realm of Chinese NLP, NER is a foundational and vital task, playing a pivotal role in
diverse downstream applications including one‑question‑one‑answer dialogue system [1],
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intelligent personalized recommendation [2], text generation [3], and content understand‑
ing [4,5]. An important task of Chinese NER is to identify all possible entities from a text
and classify them based on their attributes, such as names, places, institutions, and other
similar groups [6]. However, Chinese NER presents unique challenges compared with
its English counterpart. First of all, Chinese NER has been developed relatively late, and
there are fewer available corpora, which limits its development [7,8]. Secondly, Chinese
does not have a corpus like English [9]. Furthermore, Chinese does not have obvious word
spacing like English [10]. The fact that Chinese has no obvious word spacing like English
makesword segmentation a necessary preprocessing step. Moreover, the flexible nature of
Chinese word formation allows the same character sequences to be segmented differently
depending on the context, adding to the complexity of NER.

To accomplish the objective of ChineseNER, themodel undergoes learning by analyz‑
ing a substantial volume of annotated training data and fine‑tunes its parameters through
a likelihood function aimed at optimizing the fit to the training dataset. However, over‑
confidence is a potential problem in Chinese NER research. If there are specific patterns
in the training data, the model may over‑learn these patterns, resulting in over‑confidence
in these patterns when making predictions [11]. This situation may degrade the perfor‑
mance and calibration of the model, as the model may be too biased towards predicting
specific entity classes while ignoring other situations. In other words, it is possible that the
model does not really understand the concepts or syntax behind these patterns, which is
akin to memorizing the answers rather than really understanding the meaning of the ques‑
tion. In addition, some studies have identified incorrect entity boundaries as one of the
main reasons for incorrect entity identification [12]. Therefore, addressing the problem of
over‑confidence in NER models is crucial to improving their performance and usefulness.

Empirical evidence shows that positive samples (i.e., real entities) are sparsely dis‑
tributed across the candidate ranges in a dataset. For example, in the Resume dataset,
entities make up only 11% of the candidate ranges. To address this, assigning explicit
probabilities to the adjacent ranges helps reduce overconfidence by blurring the bound‑
aries, preventing the model from concentrating all its probability mass on areas with few
or no positive samples. For example, in the Chinese context, “莲花清瘟胶囊” (“Lotus Clear
Fever capsule”) and “莲花清瘟” (“Lotus Clear Fever”) are not fully distinguishable and re‑
fer to the samemedicine. In previous NERwork, themodel may not recognize an example
like “莲花清瘟”as an entity. With the introduction of the Boundary Smoothing (BS) mod‑
ule, the model will assign the probability of belonging to the “Lotus Clear Fever capsule”
to the entity boundary, thus alleviating the problem of over‑dependence on the probabil‑
ity of some entities in the model, allowing the model to recognize “Lotus Clear Fever “as
an entity in the learning process. In response to this issue, inspired by Zhu et al. [13],
this project proposes the KCB‑FLAT model based on the complex semantic structure of
the Chinese language and our previous work [14]. This model is built on the Flat‑Lattice
Transformer (FLAT) [15] architecture, chosen for its lightweight design and parallel com‑
puting capabilities. The KCB‑FLAT model enhances this foundation by extracting three
distinct types of syntactic data along with their contextual features. These features are en‑
coded using a Key‑Value Memory Network (KVMN) and are subsequently fused through
an attention mechanism. The model then integrates lexical and syntactic information via a
Cross‑Transformer (CT). Additionally, the Boundary Smoothingmodule, operating in syn‑
ergy with an internal regularity perception function, further boosts the model’s capability
to precisely detect named entities. This combination explores the internal consistency of
each entity and applies smoothing to refine the entity boundaries.

In summary, incorporating Boundary Smoothing (BS) can assist NER models in tack‑
ling the issue of overconfidence. Through the redistribution of probabilities in the vicinity
of labeled entities, BS enhances the model’s prediction caution and diminishes excessive
confidence on specific boundaries. This adjustment facilitates the model’s adaptability to
novel domains and evolving data distributions, ultimately elevating the precision and re‑
liability of named entity recognition. Our specific contributions are outlined below:
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1. This article proposes a method KCB‑FLAT that achieves good results on four Chinese
datasets: Weibo, MSRA, Resume, and a self‑built dataset ZJ.

2. We combine the smoothing process with syntactic information extraction, which dis‑
cretizes the entity probabilities to the entity boundaries, effectively alleviating the
problem of over‑confidence of the model in entity labelling.

3. We control the smoothing factor on the Boundary Smoothing method to control the
degree to which the model differentiates the probability of entities and analyze how
these adjustments impact overall model performance.

4. We conducted experiments on our self‑built dataset, ZJ, by integrating it, and the
results show that ourmodel is well‑suited for Chinese named entity recognition tasks
within the judicial domain.
Through experiments with the KCB‑FLAT model, it was observed that the model

significantly boosts performance in complex and fuzzy boundary cases. This integration
method not only improves the model’s ability to process Chinese text, but also enhances
its ability to respond to specific problems.

2. Related Work
2.1. Current Status of Named Entity Identification

Named entity recognition (NER) has been a long‑standing and elemental research
topic within the realm of natural language processing. Traditional methods can generally
be divided into two main categories: token‑based and span‑based approaches. Token‑
based methods (e.g., Tourani et al., 2024 [16]; Wang et al., 2020 [17]) typically perform
sequence labelling at the token level, which is then converted into span‑level predictions.
Meanwhile, span‑based methods (e.g., Sohrab and Miwa 2018, [18]; Eberts and Ulges,
2020 [19]; Shen et al., 2021 [20]; Li et al., 2022 [21]) directly perform entity classification of
potential spans for prediction. In addition to this, some approaches attempt to formalize
NER as a sequence to set (Tan et al., 2021 [22]; Ma et al., 2016 [23]), and evenmore methods
attempt reading comprehension (Li et al., 2019 [24]; Yu et al., 2020 [25]; Yu et al., 2019 [26])
tasks for prediction. In addition, some have used autoregressive generative NER meth‑
ods (e.g., Yang et al., 2019 [27]; Athiwaratkun et al., 2020 [28]), i.e., relying on sequence‑to‑
sequence languagemodels (e.g., BART [29], Sentence‑T5 [30] etc.) that linearize structured
named entities into sequences to decode entities. Recent breakthroughs in the realm of text
classification, exemplified by the refinement of feature selection via an improved Discrete
Egg Laying Chicken Algorithm (DELCA) [31] have yielded substantial improvements not
only in classification efficacy but also in the domain of named entity recognition (NER).
Enhanced precision in feature extraction has been instrumental in bolstering the accuracy
of NER systems’ recognition and categorization capabilities. These works have designed
various translation models to unify NER to text generation tasks and have achieved good
performance and generalization.

2.2. Current Status of Syntactic Information Extraction in NLP
Syntactic information extraction work usually includes several categories such as de‑

pendent syntactic analysis, phrase structure syntactic analysis, and syntactic information
extraction and semantic annotation. The focus of dependency syntactic analysis lies in
determining the dependency relationships among words within a sentence, and resolv‑
ing these relationships aids in comprehending the sentence’s structure and meaning, as
exemplified in Liang et al., 2020. [32], which utilizes the idea of graph‑based dependency
syntactic analysis by introducing a bi‑affine model that provides the model with a global
view of the inputs, thus enabling accurate prediction of named entities. Phrase structure
syntactic analysis strives to ascertain the structure and arrangement of phrases within a
sentence, enabling a deeper comprehension of the sentence’s syntactic makeup and se‑
mantic significance. Lou et al.’s study, 2022 [33], explored the problem of nested named
entity recognition and proposed a span‑based syntactic analyzer to deal with nestedNERs,
while exploiting the lexicalized organizational tree structure of headword annotation and
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a new training strategy. Syntactic information extraction and semantic annotation entail
assigning labels to each predicate in a sentence, indicating its corresponding semantic role,
thereby facilitating a more precise comprehension of the sentence meaning and enabling
inference of semantic information (e.g., Ma et al., 2022 [34]; Nie et al., 2020 [35]). By uti‑
lizing these syntactic information extraction methods, the performance and efficacy of the
NLP models in different tasks can be enhanced, making them more suitable for practical
application in real‑world scenarios.

2.3. Application of Smoothing Techniques in Model Performance Enhancement
Boundary smoothing technology plays an important role inNLP tasks, machine learn‑

ing, and deep learning. It helps to handle zero probability problems, improve model gen‑
eralization ability, optimize the training process, enhance model robustness, and promote
model interpretability. In sequence annotation tasks such as NER, the use of smooth‑
ing techniques has significantly improved model performance. These techniques typi‑
cally reduce over‑confidence in individual labels by adjusting the probability distribution
of the model’s output, thereby bolstering the capacity to manage boundary ambiguity
and uncertainty.

Label smoothing [36], for instance, is a widely used technique in deep learning that
modifies the probability distribution by assigningweights to both the true labels and a uni‑
formdistribution. It has been demonstrated that this approach enhances the generalization
performance of models in tasks like image recognition and text classification [37–41]. In
the context of the NER task, label smoothing proves effective inmitigating the issue of cate‑
gory imbalance, particularly in datasets where coronal andmodifier descriptors of entities
are highly frequent.

Additionally, the probabilistic output of the model can be refined through the intro‑
duction of a context‑driven smoothing approach. As an illustration, the Conditional Ran‑
dom Field (CRF) layer [42], often employed in NER tasks, considers inter‑label dependen‑
cies. By establishing a globally normalized probability distribution, the CRF layer aids
the model in making more precise predictions across the entire sequence. Nevertheless,
it is important to note that the CRF does not directly address the smoothing of the initial
probability distribution, a distinctive feature offered by the Boundary Smoothing module.

Hence, we propose the Boundary Smoothing module to assess its efficacy and practi‑
cality. This module enhances the model’s resilience and precision when handling bound‑
ary vagueness and contextual intricacies by refining the model’s output probabilities. We
anticipate that incorporating the smoothed boundary module into the Baseline model will
lead to substantial performance improvements in NER tasks, particularly in pinpointing
and categorizing entity boundaries.

3. Methodology
3.1. The Overview of the KCB‑FLAT

The KCB‑FLAT consists of three modules: (1) Key‑Value Memory Network (KVMN),
which is used to encode syntactic information and contextual features; (2) Cross‑Transformer
module encoding two different types of information, including lexical information and syn‑
tactic information; (3) Boundary smoothing module to study internal regularities. The follow‑
ing chart provides a visual illustration of this structure (Figure 1).
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3.2. KVMN for Syntactic Embedding
In the Chinese NER task, accurately identifying entity boundaries is challenging due

to the varied meanings Chinese characters can have in different contexts and the lack of
clear separation between them. To overcome this challenge, we utilize a character‑level
NER approach and integrate lexical information as supplementary data, aiming to enrich
the input and improve the accuracy of entity boundary recognition. For instance, in the
sentence “长江流经中国多个城市” (The Changjiang River flows through multiple cities in
China), the ambiguity associated with the character “江” can be resolved through syntac‑
tic analysis. By distinguishing between “江流” (flow) and “长江” (The Changjiang River),
we can more accurately identify entities such as “长江” (The Changjiang River) and “城市”
(city). In this paper, we introduce syntactic information to clarify ambiguities by encod‑
ing diverse contextual features along with their corresponding syntactic data, such as POS
tags, syntactic constituents, and dependencies. To enhance the model’s accuracy in recog‑
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nizing named entities within various contexts, we incorporated KVMN. Figure 2 depicts
the process of extracting syntactic information.
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In this study, we used Key‑Value Pair Storage Network (KVMN) to encode different
syntactic information and introduced attention mechanisms into the sentence level vector
expression of Chinese characters. By encoding syntactic information with the KVMN and
extracting useful features, we then applied an attention mechanism to obtain syntactic‑
level feature embeddings for Chinese characters. We integrated an attention mechanism
to automatically assign weights to different syntactic information. This allowed ourmodel
to dynamically adjust and focus on various syntactic data during both the encoding and
decoding stages, effectively highlighting essential informationwhile downplaying less crit‑
ical details. This approach does not necessitate pre‑determined weights, as it allows the
model to autonomously learn weight allocation strategies during the training process.

Figure 3 illustrates this process, using the example sentence “桂林电子科技大学坐落
于桂林”, whichmeans the GUET (Guilin University of Electronic Technology) is in Guilin.
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While parsing the input sequence X, every character xi within X belongs to a word
that serves as the focal point for mapping contextual features and relevant information
with syntax into the collection of keys and values. These are denoted as Kc

i = [k
c
i,1,…, kc

i,j …,
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kc
i,mi

] andVc
i = [ vc

i,1,…, vc
i,j…, vc

i,mi
], where c ∈ C = {P, S, D}. Here, P, S, D represent three

different syntactic types, respectively, and mi denotes the count of text context features
of information with syntax type c for xi. The kc

i,j represents the jth contextual feature of
syntactic type c, while vc

i,j is the syntactic information corresponding to kc
i,j. These keys

and values, kc
i and vc

i , are mapped into matrix forms, denoted as ekc
i,j and vkc

i,j. The syntactic
information is computed by the following formula:

pc
i,j =

exp
(

hi · ekc
i,j

)
∑mi

j=1 exp
(

hi · ekc
i,j

) (1)

weuse pc
i,j to express theweighting of syntactic information. Chinese, a pictographic script,

differs from English in that the meaning of its grammatical words relies on individual
characters. Moreover, within a given word, every character carries an equal weight of
syntactic information. For instance, in the word “大学” (The University), both “大” and
“学” are encoded by the same vector representing their shared syntactic information. To
differentiate between the representations of various characters within the same word hi is
introduced, which is obtained by the following equation:

hi = E(xi) (2)

The weights pc
i,j are applied to the corresponding syntactic data vkc

i,j, as calculated by
the formula:

sc
i =

mi

∑
j=1

pc
i,je

vc
i,j (3)

The output of the KVMN, denoted as sc
i , encapsulates the weighted syntactic infor‑

mation of type c. This approach ensures that syntactic data are weighted and encoded in
alignment with its contextual features, thereby optimizing the use of the most pertinent
information.

Firstly, we perform syntactic analysis on the input to obtain a syntactic information
vector sc

i . Then, the three types of syntactic data are processed uniformly to give each
syntactic information a unique weight. Attention mechanism helps with this integration.
The weights of the qc

i are calculated as follows:

qc
i = σ

(
Wc

q · (hi ⊕ sc
i ) + bc

q

)
(4)

In this equation, W represents the trainable weight vector, bc
q represents the bias for

implementing residual linking, ⊕ represents the concatenation, and σ is the sigmoid func‑
tion. Next, we use the so f tmax function to calculate the attention of the input syntactic
information ac

i . The attention score is calculated according to the following formula:

ac
i =

exp
(
qc

i
)

∑
c∈C

exp
(
qc

i
) (5)

Here, ac
i represents the attention for syntactic information of type c . Finally, the atten‑

tionmechanismutilizes different features through calculatedweights, effectively resolving
the inherent contradictions between syntax and syntax. Different types of syntactic data
are combined to form si:

si = ∑
c∈C

ac
i sc

i (6)

Rather than simply concatenating three types of syntactic information, then the at‑
tention mechanism selectively emphasizes the most relevant features, resolving conflicts
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among the different syntactic data types. As a result, the various syntactic data are selec‑
tively encoded and combined.

3.3. Cross Transformer for Semantic Fusion
Vocabulary information can more readily identify local details like word positions

and boundaries because it concentrates on the vocabulary and the relationships among its
constituent characters. This focus enhances the sensitivity of vocabulary information to the
internal structures and characteristics ofwords, allowing formore precise determination of
word boundaries and positions. In contrast, syntactic information emphasizes the overall
structure of sentences, considering the combinations and relationships among words and
their functions and roles within sentences. Consequently, syntactic information is more
concerned with sentence‑level features and constraints than with the internal characteris‑
tics of individual words. This gives syntactic information a distinct advantage in delin‑
eating sentence structures and relationships, rectifying segmentation errors introduced by
vocabulary‑based information, and offering a more comprehensive sentence comprehen‑
sion. To fully capitalize on the benefits of syntactic information, the model employs syn‑
tactic constraints to rectify segmentation errors arising fromvocabulary‑based information.
After acquiring the embedded representations of syntactic information, in this studyweuti‑
lize a Cross‑Transformer to synthesize lexical and syntactic data. The Cross‑Transformer
network effectively fuses syntactic and lexical information through a self‑attention mech‑
anism and feed‑forward network, augmented by residual connections and normalization,
as illustrated in Figure 4 for the specific structure of the Cross‑Transformer.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 19 
 

 

Rather than simply concatenating three types of syntactic information, then the at-

tention mechanism selectively emphasizes the most relevant features, resolving conflicts 

among the different syntactic data types. As a result, the various syntactic data are selec-

tively encoded and combined. 

3.3. Cross Transformer for Semantic Fusion 

Vocabulary information can more readily identify local details like word positions 

and boundaries because it concentrates on the vocabulary and the relationships among its 

constituent characters. This focus enhances the sensitivity of vocabulary information to 

the internal structures and characteristics of words, allowing for more precise determina-

tion of word boundaries and positions. In contrast, syntactic information emphasizes the 

overall structure of sentences, considering the combinations and relationships among 

words and their functions and roles within sentences. Consequently, syntactic infor-

mation is more concerned with sentence-level features and constraints than with the in-

ternal characteristics of individual words. This gives syntactic information a distinct ad-

vantage in delineating sentence structures and relationships, rectifying segmentation er-

rors introduced by vocabulary-based information, and offering a more comprehensive 

sentence comprehension. To fully capitalize on the benefits of syntactic information, the 

model employs syntactic constraints to rectify segmentation errors arising from vocabu-

lary-based information. After acquiring the embedded representations of syntactic infor-

mation, in this study we utilize a Cross-Transformer to synthesize lexical and syntactic 

data. The Cross-Transformer network effectively fuses syntactic and lexical information 

through a self-attention mechanism and feed-forward network, augmented by residual 

connections and normalization, as illustrated in Figure 4 for the specific structure of the 

Cross-Transformer. 

Add &Norm

Feed-Forward
Network

Add &Norm

Multi-Head Attention

Lattice Embedding

Add &Norm

Feed-Forward
Network

Add &Norm

Multi-Head Attention

Syntactic Embedding

concatenate

 

Figure 4. The Cross-Transformer module. 

The left Transformer encoder receives an input denoted as (𝑄𝑥
𝐿, 𝐾𝑥

𝐿, 𝑉𝑥
𝐿), which is de-

rived from the lattice embedding containing lexical information via a linear transformation. 

The query (𝑄), key (𝐾), and value (𝑉) matrices are specifically computed as follows: 

[𝑄𝑥
𝐿, 𝐾𝑥

𝐿, 𝑉𝑥
𝐿] = 𝐸𝑥

𝐿[𝑊𝑄
𝐿, 𝑊𝐾

𝐿, 𝑊𝑉
𝐿] (7) 

Here, 𝐸𝑥
𝐿  signifies the lattice embedding of input, where 𝐸𝑥

𝐿  ∈   𝑥1 ,…..𝑥𝑖 ,….., 𝑥𝑁  }, 

each 𝑥𝑖 represents the lexical representation of input, to ensure that the length of input 

sequence 𝑋 in the cross converter are consistent, we set the length of the sequence as 𝑁, 

Figure 4. The Cross‑Transformer module.

The left Transformer encoder receives an input denoted as (QL
x , KL

x , VL
x ), which is de‑

rived from the lattice embedding containing lexical information via a linear transformation.
The query (Q), key (K), and value (V) matrices are specifically computed as follows:[

QL
x , KL

x , VL
x

]
= EL

x

[
WL

Q, WL
K , WL

V

]
(7)

Here, EL
x signifies the lattice embedding of input, where EL

x  ∈ {x1,…..xi,….., xN }, each
xi represents the lexical representation of input, to ensure that the length of input sequence
X in the cross converter are consistent, we set the length of the sequence as N, and each
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WL is a parameter that can be autonomously learned. Similarly, for the right Transformer
encoder, we have [

QR
S , KR

S , VR
S

]
= ER

S

[
WR

Q , WR
K , WR

V

]
(8)

Among them, ER
S represents the syntactic embedding, where ER

S  ∈ {s1, . . . , si , . . . , sN},
each si denotes a syntactic input. During this period, each WR

Q value is a learnable pa‑
rameter. The Cross‑Transformer includes 2 encoders, each encoder includes a front net‑
work called feed‑forward network (FFN), which is a special multi‑level perceptron that
can perform nonlinear transformations in semantic space and can process positional infor‑
mation, followed by two processes: residual connectivity and hierarchical normalization.
The main function of self‑attention is to extract semantic‑level information from text. Cal‑
culate the attention according to following method:

Att(A, V) = so f tmax(A)V (9)

Ai,j =

(
QiKT

j√
dk

)
(10)

where dk denotes the size of the lattice. Based on syntactic and lexical data obtained from
Equations (7) and (8), use relative position encoding in FLAT mode to perform the follow‑
ing operations:

AttL = so f tmax
(

AR
)

VL (11)

AttR = so f tmax
(

AL
)

VR (12)

In these equations, AR represents the score of syntax, while AL denotes the score of
lattice attention. The calculation for AR is according to the following method:

AR
i,j =

(
QR

i + uR)TKR
j +

(
QR

i + vR)T
(

RR
i,jW

R
r

)
(13)

where uR and vR are attention biases, WR
r is the learnable parameter RR

i,j is the relative
position coding, calculated as the following method:

RR
i,j = ReLU

(
Wr

(
phi−hj

⊕ pti−hj
⊕ phi−tj

⊕ pti−tj

))
(14)

Relative Position Coding, RR
i,j, mitigates directional loss caused by the internal dot

product of vectors. Each p represents the relativistic distance. Similarly, the calculation of
AttL and AttR is generally the same, the specific calculation of AttR can also be derived.

3.4. Boundary Smoothing Module
In NER tasks, two classic approaches exist. NER is treated as a sequence annotation

task by one approach, in which each input character is labeled by category. The other
divides the input into multiple spans, each a potential named entity, for recognition and
classification. This chapter adopts the span method for handling named entities and uses
the pattern perception function to capture the intrinsic features of each span.

In Chinese lexical formation and linguistic structure, specific naming patterns are ev‑
ident. For instance, terms like “XX Hotel” and “XX Court” typically denote place names,
while “XX Mountain” indicates a location. For example, “桂林电子科技大学花江校区”
(Huajiang Campus of the University of Electronic Science and Technology of Guilin) refers
to the full name “桂林电子科技大学花江校区” rather than separating “桂林” (Guilin) and
“电子科技大学” (University of Electronic Science and technology) and “花江校区” (Hua‑
jiang Campus). It signifies the Huajiang campus of GUET, not the UESTC’s campus in
Guilin city.
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The inherent complexity of implementing Boundary Smoothing (BS) is primarily due to
its elevated computational demands. Tomitigate this and efficiently identify naming patterns,
we introduce a synergistic application of the Boundary Smoothing function complemented by
the Regularity‑Aware (RA) function, pioneered by Huawei Cloud in 2022 [43]. This RA func‑
tion is adept at uncovering inherent regularities within data, concentrating computational
efforts on the most critical boundary points. This strategic focus significantly reduces unnec‑
essary computations and enhances overall performance. Furthermore, the integration of state‑
of‑the‑art optimization techniques ensures that our model maintains computational tractabil‑
ity, which means that our approach can remain both effective and feasible within the realms
of computational resources available.

To prevent overfitting from the model learning the intrinsic rules of named entities,
we use the Boundary Smoothing function proposed by Zhu et al. [13] This smooths the
entity probability of spans, helping the model maintain calibration during training and
ensuring that generated confidence better represents prediction accuracy.

In Figure 5, the regularity representation of each span is derived by enhancing the in‑
teraction between the head and tail in the Biaffine layer and incorporating a linear attention
mechanism to capture the intrinsic regularity features extracted by the Cross‑Transformer.
The specific calculation method is as follows:

hrec
si,j

=
j

∑
t=i

αt · ht (15)

where ht is the cascaded output from the Cross‑Converter, and t ∈ {i, i + 1, ., j} repre‑
sents index of the span si,j. αt, means the attention score, and is calculated according to the
following method:

αt =
exp(at)

∑
j
k=i exp(ak)

(16)

at = WT
reght + breg (17)
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Here, WT
reg ∈ Rd×1 and breg ∈ R1 represent the learnable weights and biases, respec‑

tively. To capture the interactions between head and tail features, this model utilizes a
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biaffine attention mechanism, thereby integrating regularities between entities into a span
representation:

h(span)
si,j = hT

i u(1)hj +
(
hi ⊕ hj

)
u(2) + b1 (18)

Here, hi represent the head of span si,j, hj represent the tail, while U(1) ∈ R2d×2d×2d

and U(2) ∈ R4d×2d. The integration of regularity and span representations is performed
through gate networks:

gsi,j = σ
(

u(3)
[

h(span)
si,j ; h(reg)

si,j

]
+ b2

)
(19)

hsi,j = gsi,j ⊙ h(span)
si,j +

(
1 − gsi,j

)
⊙ h(reg)

si,j (20)

where b2 is the deviation term, σ represents the sigmoid function, U(3) ∈ R4d×1 represents
learnable weights, and ⊙ refers to the multiplication of corresponding elements.

Next, weuse a so f tmax linear classifier to predict the entity classification for each span:

∼
ysi,j

= So f tmax
(

WT
typehsi,j + b3

)
(21)

where WT
type ∈ R2d×c represents a learnable weight through attention, b3 is a bias. Then,

the loss function we use is calculated by

Laware = − 1
n

N

∑
n=1

l

∑
i=1

l

∑
j=1

y(n)si,j log
(
∼
y
(n)
si,j

)
, i ≤ j (22)

where
∼
y
(n)
si,j

is the predicted value of span, y(n)si,j is the true value of span, and N is the number
of all spans.

To perform smoothing, we use the Manhattan distance d to measure the distance be‑
tween the surrounding span (span) and the specified original span (Ground‑truth span)
and to specify the smoothing range (Smoothing size) D (D ∈ {1, 2}). Where d < D < N, the

distribution probability
∼
y
(n)
si,j

′
is obtained by the following:

∼
y
(n)
si,j

′
= (1 − α ) ∗ ∼

y
(n)
si,j

+ α/D (23)

where α is the smoothing factor. We consider the other spans (spans) that are not assigned
to probabilities as non‑entity, and the final loss is still expressed in terms of cross‑entropy.

TheKCB‑FLATmodel, while enhancing named entity recognition (NER) performance,
introduces additional computational demands primarily due to the integration of Key‑
Value Memory Network (KVMN) and Cross‑Transformer module. The KVMN, which
encodes syntactic information and contextual features, operates with a time complexity
proportional to the number of syntactic features and the dimensionality of the embed‑
ding space, approximately O(m × d), where m is the number of syntactic features and
d is the embedding dimension. The Cross‑Transformer module, responsible for fusing
lexical and syntactic information, involves matrix multiplications that scale with the in‑
put size, contributing a complexity of O

(
n2 × d

)
per layer, where n represents the input

length. Additionally, the Boundary Smoothing module, which refines entity boundaries,
has a complexity tied to the number of entities and the smoothing factor applied. Despite
these factors, the model is designed with parallel computing capabilities, particularly in
the Cross‑Transformer module, which mitigates the overall computational load, making it
feasible for practical applications while balancing performance and efficiency.
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4. Experimental Design
4.1. Datasets and Evaluation Indicators

In this section, we will evaluate KCB‑FLAT using four Chinese corpus datasets. To
comprehensively evaluate the performance of themodel, we use the spanmethod, F1 score
(F1), precision (P), and recall (R) as evaluation criteria. On this basis, we will gain a more
precise understanding of the performance of the KCB‑FLAT on different samples.

To validate ourmodel, weutilized fourChineseNERdatasets: MSRA,Resume,Weibo,
and our custom dataset, named ZJ, which we manually curated and refined. The MSRA
dataset, which was sourced from the 3rd International Chinese Language Processing Con‑
test, primarily consisted of news data and iswidely recognized forNER tasks. The Resume
dataset encompassed a vast array of personal, place, and company names. Meanwhile, the
Weibo dataset covered various Weibo contexts, broadening the application scope of the
NER model. Specifically, the Weibo dataset classified entities into person, organization,
location, and government wide entry point. The Resume dataset identified eight types of
entities: country, education, profession, race, and title, while the MSRA dataset focuses on
three main entity types: organization, person, and location.

Our ZJ dataset comprised criminal verdicts issued by the China Judgement Network
(CJN) spanning from 2013 to 2019. These comprehensive texts include critical case details
in the factual description section, marked by a higher concentration of entities and concise
wording, amounting to over 410,000 words. Table 1 outlines our dataset statistics, with
a 70–10–20 split for training, validation, and testing. The legal documents in this corpus
were manually annotated using the {B, I, O} system. The labeled entities encompassed
crime location, place name, person name, organization name, accusation, verdict, laws,
and regulations, utilizing a total of 15 distinct labels tailored for various tasks.

Table 1. The ZJ dataset composition.

Entity Type Amount of Entity Number of Tags

Crime Location 3356 28,976
Place Name 3360 23,076
Person Name 5047 13,487

Organization Name 1667 6353
Accusation 1846 5837

Laws and regulations 1517 6203
Judgement 2086 7456

Total 19,079 91,348

In this paper, the evaluation index employed is the weighted summed average F1,
which is computed using the formula:

F1 =
2 ∗ P ∗ R

P + R
(24)

Here, P represents the accuracy rate, and R represents the recall rate; P and R are
determined using the following equations:

P =
TP

TP + FP
(25)

R =
TP

TP + FN
(26)

Here, TP represents the number of accurately detected individuals, FP represents the
number of misidentified individuals, and TP+ FP represent the total number of predicted
entities. FN represents the number of lost entities, and TP + FN represents the total num‑
ber of real entities.
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4.2. Parameter Settings
Our experiments were conducted using PyTorch 1.8.2 and Python 3.6, running on a

Windows 10 operating system. The hardware configuration included an Intel (R) Xeon (R)
CPU E5‑2698 v4 @ 2.20 GHz, equipped with 16 GB RAM, and an NVIDIA Tesla K80 GPU
with 16 GB of RAM. The experimental parameters were as follows:

For the Weibo, Resume, ZJ datasets, the Cross‑Transformer’s FFN layer had 384 hid‑
den layer nodes, a dropout parameter of 0.3, 8 heads in the multi‑head attention layer with
a dimensionality of 16 per head, resulting in a total of 128 nodes. Learning rate was fixed
at 0.0018, and the training was run for 50 epochs.

For the MSRA dataset, the Cross‑Transformer’s FFN layer featured 480 hidden layer
nodes, a dropout of 0.3, 8 heads in the multi‑head attention with a dimensionality of 20
per head, totaling 160 nodes. Learning rate was set at 0.0014, and the model was trained
for 100 epochs. Additionally, in our experiments, the smoothing factor α was adjusted to
0.1 and 0.2, respectively.

4.3. Results and Discussion
FromTable 2, eachmethod has a certain improvement on the performance of the FLAT

model. Among them, the performance improvement of the model was the greatest after
adding KVMN,with a 2‑point increase onMSRA, Resume, and ZJ, respectively, and an im‑
provement of about 6% on the Weibo dataset. This improvement can be attributed to the
advanced technologies introduced by KVMN, such as knowledge enhancement and mem‑
ory mechanisms. KVMN enabled the model to better understand contextual information
in text, effectively capturing long‑distance dependencies between entities and adapting to
various types of text and datasets. The MSRA and Weibo datasets contain more diverse
and complex text types, which the Cross‑Transformer module can use to better utilize the
cross‑text information interaction ability in the module, thereby improving the recogni‑
tion performance of our model. The Resume dataset may mainly consist of highly format‑
ted text, such as personal information and work experience in resumes, which have rela‑
tively fixed structures and regular entity distributions. In this case, the Cross‑Transformer
module may not be able to fully leverage its advantages and may even experience a de‑
crease in effectiveness due to the introduction of unnecessary complexity. This can ex‑
plain why by adding the Cross‑Transformer module, the model’s performance on MSRA
andWeibo datasets improved by 0.5% but decreased by 0.25% on the Resume dataset. The
regularity‑aware feature bumps themodel’s efficacy by an average of 2%. After incorporat‑
ing the Boundary Smoothing module into the baseline, the model’s performance demon‑
strated improvement across all four datasets, with an approximate increase of 2.57% on
the MSRA dataset, 1.05% on the ZJ dataset, 0.79% on the Resume dataset, and 3.41% on
the Weibo dataset. The KCB‑FLAT outperforms the baseline FLAT model on the MSRA,
ZJ, Resume, and Weibo datasets by margins of 3.28%, 2.61%, 2.09%, and 7.95%, respec‑
tively, in summary. By tempering the model’s predictions and curbing overconfidence
on specific boundaries, the introduction of the Boundary Smoothing module enhances the
model’s adaptability to new domains and changing data distributions, thereby improving
the precision and stability of named entity recognition.

Table 2. The results of ablation experiments.

Model KVMN CT RA BS MSRA ZJ Resume Weibo

Baseline (FLAT) 93.45 94.27 94.93 63.42
+KVMN

√
95.98 96.04 96.23 69.27

+KVMN&CT
√ √

96.24 95.64 95.98 69.78
+RA

√
96.14 95.66 96.02 66.98

+BS
√

96.02 95.32 95.72 66.83
+BS&RA

√ √
96.30 95.97 96.09 67.15

Ours (KCB− FLAT.α = 0.2)
√ √ √ √

96.59 96.87 97.02 71.37
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The improvements indicated in Table 2 are mathematically correlated with the op‑
timization of boundary conditions, which are critical for reducing boundary recognition
errors. The Boundary Smoothing technique allows for a more accurate determination of
boundary values, which in turn significantly impacts themodel’s performance byminimiz‑
ing boundary residuals. Additionally, the enhanced boundary conditions contribute to a
more robust convergence, reflected in the decreased variance of our error metrics. These
mathematical refinements are essential for enhancing the model’s overall efficacy.

In this experiment, we selected NFLATmodel [44], Li et al.’s model [21], Xiong et al.’s
model [45], DiffusionNER [46], RICON and MECT [47], LSTM + Lexicon augmentation
model [48], AESINER [35], Mao et al. [49], and SLK‑NER [50]. Comparison experiments
were conducted with our KCB‑FLAT, and the experimental results are as follows (Table 3).

Table 3. The comparative test results.

Models MSRA ZJ Resume Weibo

NFLAT [44] 94.55 95.40 95.58 61.94
Li et al. (2022a) [21] 95.97 96.08 96.32 72.18

Xiong et al. (2023) [45] 95.40 95.51 95.97 68.14
DiffusionNER (2023) [46] / 94.88 94.53 /

RICON [47] 96.12 96.01 95.98 66.82
MECT [47] 96.21 96.13 95.91 70.40

LSTM + Lexicon augment [48] 93.47 96.02 95.58 61.22
AESINER [35] 96.53 96.42 96.40 70.54

Mao et al. (2022) [49] / 95.98 96.29 70.81
SLK‑NER [50] / 96.01 95.78 64.00

Ours (KCB‑FLAT) 96.59 96.87 97.02 71.37

4.4. Analysis and Discussion
In comparison with recent Chinese NER models, the model presented in this study

exhibits notable superiority on four datasets: MSRA, Resume, Weibo, and ZJ. When com‑
pared with MECT, our proposed model offers a marginal improvement on the MSRA and
Resume datasets, and a substantial 0.97% enhancement on the Weibo dataset. This ad‑
vancement is credited to the integration of syntactic information encoded within KNMN,
coupled with the inclusion of the Smoothed Boundarymodule, thereby validating the aug‑
mented model’s efficacy. The inclusion of syntactic details elevates the precision of Chi‑
nese named entity recognition within context‑heavy texts. However, our model is slightly
inferior to Li et al.’s model on the Weibo dataset, trailing by 0.81 percentage points. Li
et al. [21] adeptly tackled the primary challenge of unified NER by framing it as a classifi‑
cation task for inter‑word relationships, particularly those between adjacent entity words,
yielding impressive outcomes on the Weibo dataset. Although regularity can sometimes
hinder the recognition precision of named entities within diverse contexts, the introduc‑
tion of Boundary Smoothing allows the generated confidence to more accurately mirror
the predicted entities’ correctness, bolstering generalizability. Specifically, the Boundary
Smoothing module elevates named entity recognition precision in certain scenarios. As an
illustration, on both the MSRA and Resume datasets, our model surpasses MECT, RICON,
and Mao et al. 2022 [49].

4.5. In‑Depth Analyses
To better understand how our ground model leads to improvements, we recorded

the LOSS values when training the model on MSRA and Resume, respectively. Figures 6
and 7 visualize the loss on MSRA and Resume for models with smoothing of 0.1 and 0.2.
We can conclude that when KCB‑FLAT integrates the Boundary Smoothing module, we
get lower LOSS values in the training of the model; at α = 0.2, our model has a lower LOSS
value compared with the case of α = 0.1. CE means that without any Boundary Smoothing,
we get smaller LOSS values overall. The lower LOSS value means that our improvement
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makes the model effective in reducing the bias between predicted and actual results dur‑
ing training, and makes our model better at completing the segmentation task first, thus
obtaining better results in the named entity recognition.
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In this section, we perform a case analysis and use examples from the ZJ and Weibo
datasets for our case analysis. We compare the basic FLAT model with our designed KCB‑
FLAT model, presenting the entity recognition outcomes in a tabular format. In this con‑
text, B, I, and E represent the beginning, interior, and the end of an entity, respectively.
While O signifies a character that means non‑entity. Entity types are represented by ORG,
LOC, NAM (unique noun), and NOM (common noun). For instance, B‑ORG designates
the commencement, category, and position of an organizational entity. The table reveals
that our customized Chinese named entity recognitionmodel, KCB‑FLAT, enhances recog‑
nition precision and boundary detection compared with the baseline FLAT model.
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Referring to Table 4, when identifying “Congtai Branch of Handan Public Security Bu‑
reau”, FLAT only recognizes “Handan Public Security Bureau,” omitting “Congtai Branch”
as it is not perceived as a full entity. However, even though “Handan Public Security Bu‑
reau” is identified, it does not align with the contextual entity type. Syntactically, both
“Handan Public Security Bureau” and “Congtai Branch” belong to the same syntactic cate‑
gory and should carry equal syntactic weight. KCB‑FLAT more precisely identifies “Con‑
gtai Branch of Handan Public Security Bureau” as a unified, independent entity.

Table 4. Case analysis of Weibo dataset.

Weibo 奥林匹克公园 (The Olympic Park)

Entity AO LIN PI KE GONG YUAN
Gold label B‑LOC.NAM I‑LOC.NAM I‑LOC.NAM I‑LOC.NAM I‑LOC.NAM E‑LOC.NAM

Baseline (FLAT) B‑LOC.NAM I‑LOC.NAM I‑LOC.NAM E‑LOC.NAM B‑LOC.NOM E‑LOC.NOM
KCB‑FLAT(Ours) B‑LOC.NAM I‑LOC.NAM I‑LOC.NAM I‑LOC.NAM I‑LOC.NAM E‑LOC.NAM

In Table 5, FLAT’s recognition splits “Olympics” and “park” into separate entities,
failing to recognize them as a cohesive unit. Upon closer inspection, “Olympics” is cate‑
gorized as a unique noun, whereas “park” is deemed a common noun. Conversely, KCB‑
FLAT accurately identifies the phrase as a singular address entity, indicating that our en‑
hancements have bolstered the model’s text recognition.

Table 5. Case Analysis of ZJ Dataset.

ZJ 邯郸市公安局丛台分局 (Congtai Branch of Handan Public Security Bureau)

Entity HAN DAN SHI GONG AN JU CONG TAI FEN JU
Gold label B‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG E‑ORG

Baseline (FLAT) B‑ORG I‑ORG I‑ORG I‑ORG I‑ORG E‑ORG O O O O
KCB‑FLAT(Ours) B‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG I‑ORG E‑ORG

5. Conclusions
In this study, we present KCB‑FLAT, a Chinese NER model incorporating multiple

innovations. It specifically employs a Key‑Value Memory Network to encode syntactic
data, fuses syntactic and lexical data through a Cross‑Transformer module, and refines
boundary recognition with a Boundary Smoothing module during the decoding stage.
Through rigorous experimentation on four datasets, our model effectively mitigates over‑
confidence issues and significantly boosts Chinese NER performance. Detailed examina‑
tions underscore the superiority of our methodology in training efficacy, suggesting that
the Boundary Smoothingmechanism significantly bolstersmodel performance and calibra‑
tion. Our forthcoming research will endeavor to extend the KCB‑FLAT model along sev‑
eral avenues, aiming to augment its generalizability and adaptability, and to integrate the
model into practical scenarios. We envision future studies to probe the applicability of this
model across diverse linguistic frameworks and to scrutinize the scalability of the Bound‑
ary Smoothing technique within expansive datasets. Enhancements in computational effi‑
ciency and the fine‑tuning of boundary conditions could also be considered. Moreover, the
methodologies introduced in this research are poised for adaptation to other languages,
entailing the customization of the Boundary Smoothing algorithm to accommodate the
distinct linguistic traits of each language. This endeavor may confront unique challenges,
such as the adaptation to varied syntactic architectures and the intricacies of diverse phono‑
logical systems.
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