The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance
Abstract
:1. Introduction
2. Adsorption of Heavy Metal Ions on Graphene Oxide
3. Adsorption of Heavy Metal Ions on Modified Graphene Oxide
Heavy Metal Ion | Crosslinker (Classification) | Chemical Formula Crosslinker * | Covalent Linker (Classification) | Chemical Formula Covalent Linker * | qmax (mg g−1) | Operating Condition | Reference |
---|---|---|---|---|---|---|---|
As(V) | Fe-NPs (M) | Fe3O4 | - | - | 73.42 | pH 7.0, T 298 K | [72] |
Au(ΙΙΙ) | CS (N, O) | C6H11NO4 | - | - | 1076.65 | pH 4.0, Τ 323 Κ | [36] |
PAM (N, O) | C3H5NO | - | - | 253.81 | pH 5.0, T 298 K | [73] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 106.00 | pH 5.2–6.8 | [74] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 27.83 | pH 6.0–7.0, T 293 K | [75] | |
PDA (N) | C7H9NO2 | - | - | 210.00 | T 298 K | [76] | |
PDA (N) | C7H9NO2 | - | - | pH 6.0 | [77] | ||
Co(II) | PPhDA (N) | C6H8N2 | - | - | 116.35 | pH 6.0, Τ 298 Κ | [78] |
Cr(VI) | MgAl-LDH (M) | - | - | - | 172.55 | pH 2.0, 293 K | [79] |
Fe-NPs (M) | Fe3O4 | CS (N, O) | C6H11NO4 | 162.00 | pH 4.25, T 293 K | [80] | |
TETA (N) | C6H18N4 | - | - | 219.50 | pH 2.0, Τ 303 Κ | [81] | |
PAAm (N) | C3H7N | - | - | 485.00 | pH 4.0, T 298 K | [82] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 17.29 | pH 1.0–3.0, T 293 K | [75] | |
CDx (O) | C42H70O35 | CS (N) | C6H11NO4 | 67.66 | T 298 K | [83] | |
Fe-NPs (M) | Fe3O4 | CS (N) | C6H11NO4 | 107.99 | pH 2.0, T 303 K | [84] | |
Fe-NPs (M) | Fe3O4 | DACHTA (N) | C14H22N2O8 | 83.66 | pH 3.0, T 303 K | [85] | |
Cu(II) | Fe-NPs (M) | Fe3O4 | SAc (O) | C6H6NO3S | 62.73 | pH 5.0, T 298 K | [86] |
EDTA (N, O) | C10H14N2O8 | - | - | 301.20 | T 318 Κ | [87] | |
Ca2+ (M) | - | SA (O) | C6H9NaO7 | 60.20 | [88] | ||
TETA (N) | C6H18N4 | - | - | 209.10 | pH 6.0, T 293 K | [89] | |
SA (O) | C6H9NaO7 | - | - | 98.00 | pH 5.0, Τ 303 Κ | [90] | |
PAM (N, O) | C3H5NO | - | - | 68.68 | pH 4.5, T 298 K | [73] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 87.00 | pH 5.2–6.8 | [74] | |
PAAm (N) | C3H7N | - | - | 349.04 | pH 6.0, T 293 K | [91] | |
L-Trp (N, O) | C10H12N2O2 | - | - | 588.00 | pH 5.0, T 293 K | [92] | |
ATP (N, O) | C6H7NS | - | - | 99.17 | pH 6.0, T 298 K | [93] | |
APTES (N, M) | C9H23NSiO3 | - | - | 103.28 | pH 6.0, T 298 K | [93] | |
EDTA (N, O) | C10H14N2O8 | - | - | 108.70 | pH 5.0 | [94] | |
Hg(II) | EDTA (N, O) | C10H14N2O8 | - | - | 268.40 | T 318 Κ | [87] |
PPy (N) | C8H6N2 | - | - | 980.00 | pH 3.0, Τ 293 Κ | [95] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 110.00 | pH 3.5–4.0 | [74] | |
Co-NPs (M) | Co3O4 | CS (N, O) | C6H11NO4 | 361.00 | pH 7.0, T 323 K | [96] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 23.03 | pH 6.0–7.0, T 293 K | [94] | |
Mn(II) | PAM (N, O) | C3H5NO | - | - | 18.29 | pH 4.0, T 298 K | [73] |
Ni(II) | Gly (N, O) | C2H5NO2 | - | - | 36.63 | pH 6.0, Τ 293 Κ | [50] |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 22.07 | pH 6.0–7.0, T 293 K | [94] | |
Pb(II) | EDTA (N, O) | C10H14N2O8 | - | - | 508.40 | T 318 Κ | [87] |
EDTA (N, O) | C10H14N2O8 | - | - | 479.00 | pH 6.8, Τ 298 Κ | [97] | |
CS (N, O) | C6H11NO4 | - | - | 120.00 | pH 6.0, T 298 K | [98] | |
PAM (N, O) | C3H5NO | - | - | 1000.00 | pH 6.0, T 298 Κ | [99] | |
CS (N, O) | C6H11NO4 | - | - | 99.00 | Τ Room | [100] | |
PVK (N) | C14H11N | - | - | 887.98 | pH 7.0, T 298 K | [101] | |
APTES (N, O, M) | C9H23NSiO3 | - | - | 312.50 | pH 4–5, T 303 K | [102] | |
PAM (N, O) | C3H5NO | - | - | 819.67 | pH 6.0, T 293 K | [103] | |
SA (O) | C6H9NaO7 | - | - | 267.40 | pH 5.5, T 303 K | [90] | |
CS (N, O) | C6H11NO4 | - | - | 216.92 | pH 3.0, T 323 K | [36] | |
PAAM (N, O) | C3H5NO | - | - | 568.18 | pH 4.5, T 298 K | [73] | |
LS (O) | C20H24Na2O10S2 | PANI (N) | C6H5N | 216.40 | pH 5.0, T 303 K | [104] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 197.00 | pH 4.0–5.4 | [74] | |
OPhDA (N) | C6H8N2 | PDA (N) | C7H9NO2 | 228.0 | [105] | ||
PAM (N, O) | C3H5NO | - | - | 819.67 | pH 6.0, T 293 K | [103] | |
L-Trp (N, O) | C10H12N2O2 | - | - | 222.00 | pH 4.0, T 293 K | [92] | |
Fe-NPs (M) | Fe3O4 | L-Cys | C3H7NO2S | 459.33 | pH 6.0 | [106] | |
HPEI (N) | C2H5N | - | - | 438.6 | pH 5.5, T 298 K | [107] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 27.95 | pH 6.0–7.0, T 293 K | [94] | |
PDA (N) | C7H9NO2 | - | - | 365.00 | T 298 K | [76] | |
HPA (N) | C5H15N3 | - | - | 740.7 | pH 5.9, T 298 K | [108] | |
PDA (N) | C7H9NO2 | - | - | pH 6.0 | [77] | ||
EDTA (N, O) | C10H14N2O8 | - | - | 454.60 | pH 3.0 | [94] | |
Sr(II) | PAM (N, O) | C3H5NO | - | - | 184.88 | pH 8.5, T 303 K | [109] |
U(VI) | Sep (M) | - | - | - | 161.29 | pH 5.0, T 298 K | [110] |
Fe-NPs (M) | Fe3O4 | DETA (N) | C4H13N3 | 141.12 | pH 6.0, T 298 K | [111] |
4. Separation of Heavy Metal Ion Performance by Modified Graphene Oxide Functionalised Membranes
5. Phenomenological Aspects of the Membrane Separation Process
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviation | Name |
APTES | 3-aminopropyltriethoxysilane |
ATP | 4-aminothiophenol |
CDx | Cyclodextrin |
Co-NPs | Co nanoparticles |
CR | Congo Red |
CS | Chitosan |
CuFe2O4 | Copper ferrite |
DACHTA | 1,2-diaminocyclohexanetetraacetic acid |
DETA | Diethylenetriamine |
EDA | Ethylenediamine |
EDTA | Ethylene diamine tetraacetic acid |
Fe-NPs | Fe nanoparticles |
Gly | Glycine |
HPA | Hyperbranched polyamine |
HPEI | Hyperbranched polyethyleneimine |
IPDI | Isophorone diisocyanate |
Lc-Al2O3 | Lignocellulosic-Al2O3 hybrid biosorbent |
L-Cys | L-cysteine |
LL-NaOH | Leucaena leucephala treated with NaOH |
LS | Lignosulfonated |
L-Trp | L-tryptophan |
LVB | Lagenaria vulgaris biosorbent |
MeF | Metformin |
MgAl-LDH | MgAl-layered double hydroxides |
OPhDA | Ortophenylenediamine |
PAAm | Polyallylamine |
PAM | Polyacrylamide |
PANI | Polyaniline |
PDA | Polydopamine |
PEI | Polyethyleneimine |
PERI | Polyetherimide |
PMMA | Hydrolyzed polymethylmethacrylate |
POSS | Octa glycidyloxypropyl-silsesquioxane |
PPhDA | Paraphenylenediamine |
PPy | Polypyrrole |
PVK | Poly(N-vinylcarbazole) |
QT | Quercertin |
SA | Sodium alginate |
SAc | Sulfanilic acid |
Sep | Sepiolite |
TETA | Triethylenetetramine |
TNRs | Titanate nanorings |
UR | Urea |
Ze-nWRT | Zeolite functionalised with nanostructured water treatment residual |
ZIF-8-EDA | Zeolite imidazolate framework-8 functionalised with ethylenediamine |
References
- Nujić, M.; Habuda-Stanić, M. Toxic metal ions in drinking water and effective removal using graphene oxide nanocomposite. In A New Generation Material Graphene: Applications in Water Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 373–395. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Qiu, Y.; Depuydt, S.; Ren, L.F.; Zhong, C.; Wu, C.; Shao, J.; Xia, L.; Zhao, Y.; Van der Bruggen, B. Progress of Ultrafiltration-Based Technology in Ion Removal and Recovery: Enhanced Membranes and Integrated Processes. ACS ES&T Water 2022, 3, 1702–1719. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef]
- Nompumelelo, K.S.M.; Edward, N.N.; Muthumuni, M.; Moloko, M.; Makwena, M.J. Fabrication, Modification, and Mechanism of Nanofiltration Membranes for the Removal of Heavy Metal Ions from Wastewater. ChemistrySelect 2023, 8, e202300741. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Montazeri, P.; Modarress, H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007, 217, 276–281. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Qu, X.; Li, Z.; Ni, J. Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. J. Environ. Sci. 2009, 21, 764–769. [Google Scholar] [CrossRef]
- Chan, B.K.C.; Dudeney, A.W.L. Reverse osmosis removal of arsenic residues from bioleaching of refractory gold concentrates. Miner. Eng. 2008, 21, 272–278. [Google Scholar] [CrossRef]
- Ipek, U. Removal of Ni(II) and Zn(II) from an aqueous solutionby reverse osmosis. Desalination 2005, 174, 161–169. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- El Batouti, M.; Al-Harby, N.F.; Elewa, M.M. A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. Water 2021, 13, 3241. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.; Sun, R.; Zhang, W. Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment. Water 2023, 15, 3344. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F. A review on inorganic membranes for desalination and wastewater treatment. Desalination 2018, 434, 60–80. [Google Scholar] [CrossRef]
- Fard, A.K.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M. Inorganic membranes: Preparation and application for water treatment and desalination. Materials 2018, 11, 74. [Google Scholar] [CrossRef]
- Kotobuki, M.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021, 26, 3331. [Google Scholar] [CrossRef]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, Y.; Zhu, Y. Towards industrialization of graphene oxide. Sci. China Mater. 2020, 63, 1861–1869. [Google Scholar] [CrossRef]
- Pedico, A.; Baudino, L.; Aixalà-Perelló, A.; Lamberti, A. Green Methods for the Fabrication of Graphene Oxide Membranes: From Graphite to Membranes. Membranes 2023, 13, 429. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, P.; Graham, N.; Li, G.; Yu, W. Long-term operation and biofouling of graphene oxide membrane in practical water treatment: Insights from performance and biofilm characteristics. J. Memb. Sci. 2023, 680, 121761. [Google Scholar] [CrossRef]
- Wang, Z.; He, F.; Guo, J.; Peng, S.; Cheng, X.Q.; Zhang, Y.; Drioli, E.; Figoli, A.; Li, Y.; Shao, L. The stability of a graphene oxide (GO) nanofiltration (NF) membrane in an aqueous environment: Progress and challenges. Mater. Adv. 2020, 1, 554–568. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.J.; Sillanpää, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Abadi, P.G.S.; Irani, M.; Rad, L.R. Mechanisms of the removal of the metal ions, dyes, and drugs from wastewaters by the electrospun nanofiber membranes. J. Taiwan. Inst. Chem. Eng. 2023, 143, 104625. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef]
- Li, W.; Mu, B.; Yang, Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour. Technol. 2019, 277, 157–170. [Google Scholar] [CrossRef]
- Šljivić, M.; Smičiklas, I.; Pejanović, S.; Plećaš, I. Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Appl. Clay Sci. 2009, 43, 33–40. [Google Scholar] [CrossRef]
- Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013, 42, 5682–5689. [Google Scholar] [CrossRef]
- Khosravi, A.; Habibpour, R.; Ranjbar, M. Enhanced adsorption and removal of Cd(II) from aqueous solution by amino-functionalized ZIF-8. Sci. Rep. 2024, 14, 10736. [Google Scholar] [CrossRef]
- Manousi, N.; Rosenberg, E.; Deliyanni, E.A.; Zachariadis, G.A. Sample preparation using graphene-oxide-derived nanomaterials for the extraction of metals. Molecules 2020, 25, 2411. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, H.; Liu, Y.; Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Sengupta, S.; Pari, A.; Biswas, L.; Shit, P.; Bhattacharyya, K.; Chattopadhyay, A.P. Adsorption of arsenic on graphene oxide, reduced graphene oxide, and their Fe3O4 doped nanocomposites. Biointerface Res. Appl. Chem. 2022, 12, 6196–6210. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Rada, E.C.; Torretta, V.; Xanthopoulou, M.; Kyzas, G.Z.; Katsoyiannis, I.A. Removal of Arsenic(III) from Water with a Combination of Graphene Oxide (GO) and Granular Ferric Hydroxide (GFH) at the Optimum Molecular Ratio. J. Carbon. Res. 2023, 9, 10. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Bao, C.; Jia, Q.; Xiao, P.; Liu, X.; Zhang, Q. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 2012, 93, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Sun, J.; Hu, Y.; Fang, Z.; Bi, Q.; Chen, Y.; Cheng, J.; Cu, A.O. Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 2015, 297, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Elkhatib, E.A.; Moharem, M.L.; Saad, A.F.; Abdelhamed, S. A novel nanocomposite-based zeolite for efficient remediation of Cd-contaminated industrial wastewater. Appl. Water Sci. 2024, 14, 75. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Roh, H.; Choi, Y.L.; Chang, Y.Y.; Yang, J.K. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 2016, 165, 90–96. [Google Scholar] [CrossRef]
- Abatal, M.; Lima, E.C.; Anastopoulos, I.; Giannakoudakis, D.A.; Vargas, J.; Aguilar, C.; Olguín, M.T.; Anguebes-Fransechi, F. Effect of alkali treatment on the removal of Co(II) ions by Leucaena leucephala biomass. J. Mol. Liq. 2022, 367, 120419. [Google Scholar] [CrossRef]
- Mondal, N.K.; Chakraborty, S. Adsorption of Cr(VI) from aqueous solution on graphene oxide (GO) prepared from graphite: Equilibrium, kinetic and thermodynamic studies. Appl. Water Sci. 2020, 10, 61. [Google Scholar] [CrossRef]
- Yang, S.T.; Chang, Y.; Wang, H.; Liu, G.; Chen, S.; Wang, Y.; Liu, Y.; Cao, A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid. Interface Sci. 2010, 351, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, Y.; Zhou, H.; Ye, T.; Huang, Z.; Liu, R.; Kuang, Y. Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil. Pollut. 2013, 224, 1372. [Google Scholar] [CrossRef]
- Velinov, N.; Mitrović, J.; Kostić, M.; Radović, M.; Petrović, M.; Bojić, D.; Bojić, A. Wood residue reuse for a synthesis of lignocellulosic biosorbent: Characterization and application for simultaneous removal of copper (II), Reactive Blue 19 and cyprodinil from water. Wood Sci. Technol. 2019, 53, 619–647. [Google Scholar] [CrossRef]
- Kostić, M.M.; Radović, M.D.; Mitrović, J.Z.; Bojić, D.V.; Milenković, D.D.; Bojić, A.L. Application of new biosorbent based on chemicaly modified Lagenaria vulgaris shell for the removal of copper(II) from aqueous solutions: Effects of operational parameters. Hem. Ind. 2013, 67, 559–567. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Chen, C.; Tan, X.; Wang, X. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Ji, H.; Duan, J.; Dang, C.; Chen, X.; Liu, W. Efficient adsorption of europium (III) and uranium (VI) by titanate nanorings: Insights into radioactive metal species. Environ. Sci. Ecotechnology 2020, 2, 100031. [Google Scholar] [CrossRef]
- Tene, T.; Bellucci, S.; Guevara, M.; Arias, F.A.; Paguay, M.Á.S.; Moyota, J.M.Q.; Polanco, M.A.; Scarcello, A.; Gomez, C.V.; Straface, S.; et al. Adsorption of Mercury on Oxidized Graphenes. Nanomaterials 2022, 12, 3025. [Google Scholar] [CrossRef]
- Leiva, E.; Tapia, C.; Rodríguez, C. Removal of Mn(II) from Acidic Wastewaters Using Graphene Oxide–ZnO Nanocomposites. Molecules 2021, 26, 2713. [Google Scholar] [CrossRef]
- Najafi, F.; Moradi, O.; Rajabi, M.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide. J. Mol. Liq. 2015, 208, 106–113. [Google Scholar] [CrossRef]
- Yari, M.; Rajabi, M.; Moradi, O.; Yari, A.; Asif, M.; Agarwal, S.; Gupta, V.K. Kinetics of the adsorption of Pb(II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. J. Mol. Liq. 2015, 209, 50–57. [Google Scholar] [CrossRef]
- Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011, 40, 10945–10952. [Google Scholar] [CrossRef]
- Leng, Y.; Guo, W.; Su, S.; Yi, C.; Xing, L. Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 212, 406–411. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, C.; Fang, H.; Jiang, J. Competitive adsorption of Sr(II) and U(VI) on graphene oxide investigated by batch and modeling techniques. J. Mol. Liq. 2016, 222, 263–267. [Google Scholar] [CrossRef]
- Xu, H.; Li, G.; Li, J.; Chen, C.; Ren, X.; Th, I.O. Interaction of Th(IV) with graphene oxides: Batch experiments, XPS investigation, and modeling. J. Mol. Liq. 2016, 213, 58–68. [Google Scholar] [CrossRef]
- Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z.; Shi, W. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem. Eng. J. 2012, 210, 539–546. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440. [Google Scholar] [CrossRef]
- Liu, L.; Luo, X.B.; Ding, L.; Luo, S.L. Application of Nanotechnology in the Removal of Heavy Metal from Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Elsevier: Amsterdam, The Netherlands, 2019; pp. 83–147. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. J. Mater. Chem. A Mater. 2015, 3, 4405–4412. [Google Scholar] [CrossRef]
- Jia, Z.; Shi, W. Tailoring permeation channels of graphene oxide membranes for precise ion separation. Carbon 2016, 101, 290–295. [Google Scholar] [CrossRef]
- Hung, W.S.; Tsou, C.H.; De Guzman, M.; An, Q.F.; Liu, Y.L.; Zhang, Y.M.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 2014, 26, 2983–2990. [Google Scholar] [CrossRef]
- Hua, D.; Rai, R.K.; Zhang, Y.; Chung, T.S. Aldehyde functionalized graphene oxide frameworks as robust membrane materials for pervaporative alcohol dehydration. Chem. Eng. Sci. 2017, 161, 341–349. [Google Scholar] [CrossRef]
- Wei, Y.; Pastuovic, Z.; Shen, C.; Murphy, T.; Gore, D.B. Ion beam engineered graphene oxide membranes for mono-/di-valent metal ions separation. Carbon 2020, 158, 598–606. [Google Scholar] [CrossRef]
- Lv, X.B.; Xie, R.; Ji, J.Y.; Liu, Z.; Wen, X.Y.; Liu, L.Y.; Hu, J.Q.; Ju, X.J.; Wang, W.; Chu, L.Y. A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance. ACS Appl. Mater. Interfaces 2020, 12, 56269–56280. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Wang, H.; Yang, J.; Chen, X.; Chang, X.; Nan, Y.; He, Z.; Hu, P.; Wu, W.; Liu, T. Amino acid cross-linked graphene oxide membranes for metal ions permeation, insertion and antibacterial properties. Membranes 2020, 10, 296. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. Chemosphere 2021, 274, 129853. [Google Scholar] [CrossRef]
- Nan, Q.; Li, P.; Cao, B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination. Appl. Surf. Sci. 2016, 387, 521–528. [Google Scholar] [CrossRef]
- Shao, F.; Xu, C.; Ji, W.; Dong, H.; Sun, Q.; Yu, L.; Dong, L. Layer-by-layer self-assembly TiO2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination 2017, 423, 21–29. [Google Scholar] [CrossRef]
- Liu, H.; Pang, X.; Ding, W.; Guo, S.; Ding, Z. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion. Mater. Today Commun. 2021, 27, 102245. [Google Scholar] [CrossRef]
- Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z.; et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383. [Google Scholar] [CrossRef]
- Kong, Q.; Preis, S.; Li, L.; Luo, P.; Wei, C.; Li, Z.; Hu, Y.; Wei, C. Relations between metal ion characteristics and adsorption performance of graphene oxide: A comprehensive experimental and theoretical study. Sep. Purif. Technol. 2020, 232, 115956. [Google Scholar] [CrossRef]
- Peng, F.; Luo, T.; Qiu, L.; Yuan, Y. An easy method to synthesize graphene oxide–FeOOH composites and their potential application in water purification. Mater. Res. Bull. 2013, 48, 2180–2185. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, B.; He, S.; Man, R. Preparation of Graphene-Oxide/Polyamidoamine Dendrimers and Their Adsorption Properties toward Some Heavy Metal Ions. J. Chem. Eng. Data 2014, 59, 1719–1726. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, F.; Wang, D.; Liu, X.; Jin, J. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J. Solid. State Chem. 2015, 224, 88–93. [Google Scholar] [CrossRef]
- Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, S.; Zhao, J.; Li, X.; Liu, Z.; Ma, L.; Zhang, X.; Sun, S.; Zhao, C. Biomimetic assembly of polydopamine-layer on graphene: Mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem. Eng. J. 2013, 228, 468–481. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl. Mater. Interfaces 2013, 5, 425–432. [Google Scholar] [CrossRef]
- Fang, F.; Kong, L.; Huang, J.; Wu, S.; Zhang, K.; Wang, X.; Sun, B.; Jin, Z.; Wang, J.; Huang, X.J.; et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J. Hazard. Mater. 2014, 270, 1–10. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 2013, 221, 204–213. [Google Scholar] [CrossRef]
- Jabeen, H.; Chandra, V.; Jung, S.; Lee, J.W.; Kim, K.S.; Kim, S.B. Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 2011, 3, 3583–3585. [Google Scholar] [CrossRef]
- Ge, H.; Ma, Z. Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr. Polym. 2015, 131, 280–287. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Siafaka, P.I.; Bikiaris, D.N.; Koukaras, E.N.; Froudakis, G.E. Alternative use of cross-linked polyallylamine (known as Sevelamer pharmaceutical compound) as biosorbent. J. Colloid Interface Sci. 2015, 442, 49–59. [Google Scholar] [CrossRef]
- Li, L.; Fan, L.; Sun, M.; Qiu, H.; Li, X.; Duan, H.; Luo, C. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids Surf. B Biointerfaces 2013, 107, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, F.; Duan, H.; Wang, X.; Li, J.; Wang, Y.; Luo, C. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue. Colloids Surf. B Biointerfaces 2016, 141, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.Y.; Liu, Y.G.; Wang, H.; Zeng, G.M.; Hu, X.J.; Zheng, B.H.; Li, T.T.; Tan, X.F.; Wang, S.F.; Zhang, M.M. Adsorption behavior of Cr(vi) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Adv. 2015, 5, 45384–45392. [Google Scholar] [CrossRef]
- Hu, X.J.; Liu, Y.G.; Wang, H.; Chen, A.W.; Zeng, G.M.; Liu, S.M.; Guo, Y.M.; Hu, X.; Li, T.T.; Wang, Y.Q.; et al. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 2013, 108, 189–195. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb(II). Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. [Google Scholar] [CrossRef]
- Algothmi, W.M.; Bandaru, N.M.; Yu, Y.; Shapter, J.G.; Ellis, A.V. Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material. J. Colloid Interface Sci. 2013, 397, 32–38. [Google Scholar] [CrossRef]
- Chen, J.H.; Xing, H.T.; Sun, X.; Su, Z.B.; Huang, Y.H.; Weng, W.; Hu, S.R.; Guo, H.X.; Wu, W.B.; He, Y.S. Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl. Surf. Sci. 2015, 356, 355–363. [Google Scholar] [CrossRef]
- Jiao, C.; Xiong, J.; Tao, J.; Xu, S.; Zhang, D.; Lin, H.; Chen, Y. Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. Int. J. Biol. Macromol. 2016, 83, 133–141. [Google Scholar] [CrossRef]
- Xing, H.T.; Chen, J.H.; Sun, X.; Huang, Y.H.; Su, Z.B.; Hu, S.R.; Weng, W.; Li, S.X.; Guo, H.X.; Wu, W.B.; et al. NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution. Chem. Eng. J. 2015, 263, 280–289. [Google Scholar] [CrossRef]
- Tan, M.; Liu, X.; Li, W.; Li, H. Enhancing sorption capacities for copper(II) and lead(II) under weakly acidic conditions by l -tryptophan-functionalized graphene oxide. J. Chem. Eng. Data 2015, 60, 1469–1475. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Yang, K.; Wang, H. Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. J. Hazard. Mater. 2016, 310, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Carpio, I.E.M.; Mangadlao, J.D.; Nguyen, H.N.; Advincula, R.C.; Rodrigues, D.F. Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon 2014, 77, 289–301. [Google Scholar] [CrossRef]
- Chandra, V.; Kim, K.S. Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chem. Commun. 2011, 47, 3942–3944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, T.; Yan, L.; Guo, X.; Cui, L.; Wei, Q.; Du, B. Preparation of novel cobalt ferrite/chitosan grafted with graphene composite as effective adsorbents for mercury ions. J. Mol. Liq. 2014, 198, 381–387. [Google Scholar] [CrossRef]
- Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193. [Google Scholar] [CrossRef]
- Zhang, N.; Qiu, H.; Si, Y.; Wang, W.; Gao, J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon 2011, 49, 827–837. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir 2013, 29, 10727–10736. [Google Scholar] [CrossRef]
- He, Y.Q.; Zhang, N.N.; Wang, X.D. Adsorption of graphene oxide/chitosan porous materials for metal ions. Chin. Chem. Lett. 2011, 22, 859–862. [Google Scholar] [CrossRef]
- Musico, Y.L.F.; Santos, C.M.; Dalida, M.L.P.; Rodrigues, D.F. Improved removal of lead(II) from water using a polymer-based graphene oxide nanocomposite. J. Mater. Chem. A 2013, 1, 3789–3796. [Google Scholar] [CrossRef]
- Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. J. Hazard. Mater. 2014, 274, 145–155. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Qian, X.; Shi, J.; Chen, L.; Li, B.; Niu, J.; Liu, L. One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal. Appl. Surf. Sci. 2014, 316, 308–314. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.X.; Lü, Q.F.; Lin, T.T. Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain. Chem. Eng. 2014, 2, 1203–1211. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Nie, G.; Zhang, Z.; Lu, X.; Wang, C. Fabrication of poly(o-phenylenediamine)/reduced graphene oxide composite nanosheets via microwave heating and their effective adsorption of lead ions. Appl. Surf. Sci. 2014, 307, 601–607. [Google Scholar] [CrossRef]
- Zou, X.; Yin, Y.; Zhao, Y.; Chen, D.; Dong, S. Synthesis of ferriferrous oxide/l-cysteine magnetic microspheres and their adsorption capacity for Pb (II) ions. Mater. Lett. 2015, 150, 59–61. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Liu, J.; Liu, X.; Chen, C.; Li, G.; Meng, Y. Graphene oxides cross-linked with hyperbranched polyethylenimines: Preparation. characterization and their potential as recyclable and highly efficient adsorption materials for lead(II) ions. Chem. Eng. J. 2016, 285, 698–708. [Google Scholar] [CrossRef]
- Hu, L.; Yang, Z.; Cui, L.; Li, Y.; Ngo, H.H.; Wang, Y.; Wei, Q.; Ma, H.; Yan, L.; Du, B. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chem. Eng. J. 2016, 287, 545–556. [Google Scholar] [CrossRef]
- Qi, H.; Liu, H.; Gao, Y. Removal of Sr(II) from aqueous solutions using polyacrylamide modified graphene oxide composites. J. Mol. Liq. 2015, 208, 394–401. [Google Scholar] [CrossRef]
- Chen, S.; Hong, J.; Yang, H.; Yang, J. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J. Environ. Radioact. 2013, 126, 253–258. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, D.; Chen, S.; Wang, X.; Chen, C. One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J. Colloid. Interface Sci. 2016, 472, 99–107. [Google Scholar] [CrossRef]
- Yap, P.L.; Nine, M.J.; Hassan, K.; Tung, T.T.; Tran, D.N.H.; Losic, D. Graphene-Based Sorbents for Multipollutants Removal in Water: A Review of Recent Progress. Adv. Funct. Mater. 2021, 31, 2007356. [Google Scholar] [CrossRef]
- Sum, J.Y.; Ahmad, A.L.; Ooi, B.S. Selective separation of heavy metal ions using amine-rich polyamide TFC membrane. J. Ind. Eng. Chem. 2019, 76, 277–287. [Google Scholar] [CrossRef]
- Jin, T.; Easton, C.D.; Yin, H.; de Vries, M.; Hao, X. Triethylenetetramine/hydroxyethyl cellulose-functionalized graphene oxide monoliths for the removal of copper and arsenate ions. Sci. Technol. Adv. Mater. 2018, 19, 381–395. [Google Scholar] [CrossRef]
- Adel, M.; Ahmed, M.A.; Elabiad, M.A.; Mohamed, A.A. Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: A critical review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100719. [Google Scholar] [CrossRef]
- Ahmad, H.; Umar, K.; Ali, S.G.; Singh, P.; Islam, S.S.; Khan, H.M. Preconcentration and speciation of arsenic by using a graphene oxide nanoconstruct functionalized with a hyperbranched polyethyleneimine. Microchim. Acta 2018, 185, 290. [Google Scholar] [CrossRef] [PubMed]
- Kislenko, V.N.; Oliynyk, L.P. Complex formation of polyethyleneimine with copper(II), nickel(II), and cobalt(II) ions. J. Polym. Sci. A Polym. Chem. 2002, 40, 914–922. [Google Scholar] [CrossRef]
- Bafrooee, A.A.T.; Moniri, E.; Panahi, H.A.; Miralinaghi, M.; Hasani, A.H. Ethylenediamine functionalized magnetic graphene oxide (Fe3O4@GO-EDA) as an efficient adsorbent in Arsenic(III) decontamination from aqueous solution. Res. Chem. Intermed. 2021, 47, 1397–1428. [Google Scholar] [CrossRef]
- Gerçel, Ö.; Gerçel, H.F. Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem. Eng. J. 2007, 132, 289–297. [Google Scholar] [CrossRef]
- Mahadevi, A.S.; Sastry, G.N. Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100–2138. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, N.; Feng, J.; Ma, J.; Wen, Q.; Li, N.; Dong, Q. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater. Chem. Phys. 2012, 136, 538–544. [Google Scholar] [CrossRef]
- Choi, J.S.; Lingamdinne, L.P.; Yang, J.K.; Chang, Y.Y.; Koduru, J.R. Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions. J. Mol. Liq. 2020, 320, 114410. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Lee, S.; Choi, J.S.; Lebaka, V.R.; Durbaka, V.R.P.; Koduru, J.R. Potential of the magnetic hollow sphere nanocomposite (graphene oxide-gadolinium oxide) for arsenic removal from real field water and antimicrobial applications. J. Hazard. Mater. 2021, 402, 123882. [Google Scholar] [CrossRef] [PubMed]
- Joya-Cárdenas, D.R.; Rodríguez-Caicedo, J.P.; Gallegos-Muñoz, A.; Zanor, G.A.; Caycedo-García, M.S.; Damian-Ascencio, C.E.; Saldaña-Robles, A. Graphene-Based Adsorbents for Arsenic. Fluoride, and Chromium Adsorption: Synthesis Methods Review. Nanomaterials 2022, 12, 3942. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Huang, S.; Zhu, X.; Chen, J.; Fang, X.; Li, F. Dual-polymers inserted graphene oxide membranes with enhanced anti-wetting and anti-scaling performance for membrane distillation. J. Memb. Sci. 2024, 697, 122494. [Google Scholar] [CrossRef]
- Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater. 2021, 415, 125690. [Google Scholar] [CrossRef]
- Gholami, F.; Ghanizadeh, G.; Zinatizadeh, A.A.; Zinadini, S.; Masoumbeigi, H. Arsenic and total dissolved solids removal using antibacterial/antifouling nanofiltration membranes modified by functionalized graphene oxide and copper ferrodioxide. Water Environ. Res. 2023, 95, e10902. [Google Scholar] [CrossRef]
- Janwery, D.; Memon, F.H.; Memon, A.A.; Iqbal, M.; Memon, F.N.; Ali, W.; Choi, K.H.; Thebo, K.H. Lamellar Graphene Oxide-Based Composite Membranes for Efficient Separation of Heavy Metal Ions and Desalination of Water. ACS Omega 2023, 8, 7648–7656. [Google Scholar] [CrossRef]
- Koli, M.; Ranjan, R.; Singh, S.P. Functionalized graphene-based ultrafiltration and thin-film composite nanofiltration membranes for arsenic, chromium, and fluoride removal from simulated groundwater: Mechanism and effect of pH. Process Saf. Environ. Prot. 2023, 179, 603–617. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, J.L.; Zeng, G.M.; Deng, C.H.; Yang, H.C.; Liu, H.Y.; Huan, S.Y. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 2017, 322, 657–666. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Kochameshki, M.G.; Hosseinzadeh, M. Modification of graphene oxide by ATRP: A pH-responsive additive in membrane for separation of salts, dyes and heavy metals. J. Environ. Chem. Eng. 2018, 6, 3122–3134. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chung, T.S. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 2015, 49, 10235–10242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhu, H.; Wang, H.; Rassu, P.; Wang, Z.; Song, P.; Rao, D. Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. J. Hazard. Mater. 2019, 366, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Bandehali, S.; Moghadassi, A.; Parvizian, F.; Zhang, Y.; Hosseini, S.M.; Shen, J. New mixed matrix PEI nanofiltration membrane decorated by glycidyl-POSS functionalized graphene oxide nanoplates with enhanced separation and antifouling behaviour: Heavy metal ions removal. Sep. Purif. Technol. 2020, 242, 116745. [Google Scholar] [CrossRef]
- Lin, H.; Li, Y.; Zhu, J. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. J. Memb. Sci. 2020, 598, 117789. [Google Scholar] [CrossRef]
- Abdi, G.; Alizadeh, A.; Zinadini, S.; Moradi, G. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J. Memb. Sci. 2018, 552, 326–335. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, K.; Li, Z. Graphene oxide composite membranes cross-linked with urea for enhanced desalting properties. J. Memb. Sci. 2018, 563, 718–725. [Google Scholar] [CrossRef]
- Ghaffar, A.; Zhang, L.; Zhu, X.; Chen, B. Scalable graphene oxide membranes with tunable water channels and stability for ion rejection. Environ. Sci. Nano 2019, 6, 904–915. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, W.; Huang, L.; Jiang, E.; Bao, J.; Zhang, X.; An, B.; He, G. Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation. Chin. J. Chem. Eng. 2019, 27, 1348–1360. [Google Scholar] [CrossRef]
- Sun, J.; Hu, C.; Liu, Z.; Liu, H.; Qu, J. Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon 2019, 145, 140–148. [Google Scholar] [CrossRef]
- An, Y.C.; Gao, X.X.; Jiang, W.L.; Han, J.L.; Ye, Y.; Chen, T.M.; Ren, R.Y.; Zhang, J.H.; Liang, B.; Li, Z.L.; et al. A critical review on graphene oxide membrane for industrial wastewater treatment. Environ. Res. 2023, 223, 115409. [Google Scholar] [CrossRef]
- Cha-Umpong, W.; Hosseini, E.; Razmjou, A.; Zakertabrizi, M.; Korayem, A.H.; Chen, V. New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J. Memb. Sci. 2020, 598, 117687. [Google Scholar] [CrossRef]
- Wang, P.; Jia, Y.X.; Yan, R.; Wang, M. Graphene oxide proton permselective membrane for electrodialysis-based waste acid reclamation: Simulation and validation. J. Memb. Sci. 2021, 640, 119853. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Trushin, M.; Nikitina, A.; Costa, M.C.F.; Cherepanov, P.V.; Holwill, M.; Chen, S.; Yang, K.; Chee, S.W.; Mirsaidov, U.; et al. Two-dimensional adaptive membranes with programmable water and ionic channels. Nat. Nanotechnol. 2021, 16, 174–180. [Google Scholar] [CrossRef]
- Galama, A.H.; Post, J.W.; Stuart, M.A.C.; Biesheuvel, P.M. Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane-solution interface. J. Memb. Sci. 2013, 442, 131–139. [Google Scholar] [CrossRef]
- Verma, B.; Balomajumder, C.; Sabapathy, M.; Gumfekar, S.P. Pressure-driven membrane process: A review of advanced technique for heavy metals remediation. Processes 2021, 9, 752. [Google Scholar] [CrossRef]
- Su, P.; Wang, F.; Li, Z.; Tang, C.Y.; Li, W. Graphene oxide membranes: Controlling their transport pathways. J. Mater. Chem. A Mater. 2020, 8, 15319–15340. [Google Scholar] [CrossRef]
- Yang, T.; Lin, H.; Loh, K.P.; Jia, B. Fundamental Transport Mechanisms and Advancements of Graphene Oxide Membranes for Molecular Separation. Chem. Mater. 2019, 31, 1829–1846. [Google Scholar] [CrossRef]
- Saavedra, A.; Valdés, H.; Velásquez, J.; Hernández, S. Comparative Analysis of Donnan Steric Partitioning Pore Model and Dielectric Exclusion Applied to the Fractionation of Aqueous Saline Solutions through Nanofiltration. ChemEngineering 2024, 8, 39. [Google Scholar] [CrossRef]
- Quintano, V.; Kovtun, A.; Biscarini, F.; Liscio, F.; Liscio, A.; Palermo, V. Long-range selective transport of anions and cations in graphene oxide membranes, causing selective crystallization on the macroscale. Nanoscale Adv. 2021, 3, 353–358. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.S.; Chen, S.X.; Huang, K.; Luo, L.J.; Tong, K.W.; Guo, J.H.; Li, S.C.; Zhang, R.; Dai, Z.J. Effect of layer charge density and cation concentration on sorption behaviors of heavy metal ions in the interlayer and nanopore of montmorillonite: A molecular dynamics simulation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130553. [Google Scholar] [CrossRef]
- Niu, Y.; Yu, W.; Yang, S.; Wan, Q. Understanding the relationship between pore size, surface charge density, and Cu2+ adsorption in mesoporous silica. Sci. Rep. 2024, 14, 13521. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Nikoletopoulos, A.A.; Tsiftsakis, N.; Pinakidou, F.; Mitrakas, M. Adsorption of Se(IV) and Se(VI) species by iron oxy-hydroxides: Effect of positive surface charge density. Sci. Total Environ. 2019, 687, 1197–1206. [Google Scholar] [CrossRef]
- Osorio, S.C.; Biesheuvel, P.M.; Dykstra, J.E.; Virga, E. Nanofiltration of complex mixtures: The effect of the adsorption of divalent ions on membrane retention. Desalination 2022, 527, 115552. [Google Scholar] [CrossRef]
- Li, K.; Tao, Y.; Li, Z.; Sha, J.; Chen, Y. Selective ion-permeation through strained and charged graphene membranes. Nanotechnology 2017, 29, 035402. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Bairoju, S.; De, S. Simplistic determination of the membrane pore charge density in presence of mixture of electrolytes. J. Memb. Sci. 2023, 675, 121577. [Google Scholar] [CrossRef]
- Hagmeyer, G.; Gimbel, R. Modelling the rejection of nanofiltration membranes using zeta potential measurements. Sep. Purif. Technol. 1999, 15, 19–30. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Mallick, T.K. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y.; Kuang, Y. Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites. J. Colloid. Interface Sci. 2015, 448, 389–397. [Google Scholar] [CrossRef]
- Sahraei, R.; Hemmati, K.; Ghaemy, M. Adsorptive removal of toxic metals and cationic dyes by magnetic adsorbent based on functionalized graphene oxide from water. RSC Adv. 2016, 6, 72487–72499. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, T.; Si, S.; Liu, Q.; Wu, Y.; Zhou, G. One-pot preparation of P(TA-TEPA)-PAM-RGO ternary composite for high efficient Cr(VI) removal from aqueous solution. Chem. Eng. J. 2018, 343, 207–216. [Google Scholar] [CrossRef]
- Qalyoubi, L.; Al-Othman, A.; Al-Asheh, S. Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part. I Fundam. Classif. Membr. Case Stud. Chem. Environ. Eng. 2021, 3, 100086. [Google Scholar] [CrossRef]
Adsorbed Heavy Metal Ions | Type of Sorbent | qmax (mg g−1) | Operating Conditions | Adsorption Isotherm Models | Reference |
---|---|---|---|---|---|
As(III) | GO | 1432.80 | pH N.A., T N.A. | Langmuir | [34] |
0.02 | pH 7, T 298 K | Langmuir | [35] | ||
Au(III) | GO | 149.20 | pH N.A., T 298 K | Langmuir | [36] |
Cd(II) | GO | 83.80 | pH 5.7, T 305 K | Langmuir | [37] |
530.00 | pH 5.0, T 298 K | Langmuir | [30] | ||
Ze-nWRT | 270.00 | pH 4.0, T 307 K | Langmuir | [38] | |
ZIF-8-EDA | 294.11 | pH 6.0, T N.A. | Langmuir | [31] | |
Co(II) | GO | 21.28 | pH 5.5, T 298 K | Freundlich | [39] |
LL-NaOH | 25.40 | pH 6.0, T 301 K | Langmuir | [40] | |
Cr(VI) | GO | 1.22 | pH 4.0, T N.A. | Langmuir | [41] |
Cu(II) | GO | 46.60 | pH 5.0, T N.A. | Langmuir | [42] |
72.60 | pH 5.7, T 303 K | Langmuir | [37] | ||
294.00 | pH 5.0, T 298 K | Langmuir | [30] | ||
117.50 | pH 5.3, T N.A. | Freundlich | [43] | ||
LC-Al2O3 | 15.69 | pH 5.0, T 298 K | Langmuir | [44] | |
LVB | 23.18 | pH 5.0, T 298 K | Langmuir | [45] | |
Eu(III) | GO | 175.44 | pH 6.0, T 298 K | Langmuir | [46] |
TNRs | 115.30 | pH 5.0, T N.A. | Langmuir | [47] | |
Hg(II) | GO | 8.65 | pH N.A., T 298 K | Intraparticle diffusion | [48] |
Mn(II) | GO | 32.00 | pH 5.0, T 298 K | Langmuir | [49] |
Ni(II) | GO | 62.30 | pH 5.7, T 304 K | Langmuir | [37] |
38.61 | pH 6.0, T 298 K | Langmuir | [50] | ||
Pb(II) | GO | 250.00 | pH 6.0, T 298 K | N.A. | [51] |
842.00 | pH 6.0, T 293 K | Langmuir | [52] | ||
1119.00 | pH 5.0, T 298 K | Langmuir | [30] | ||
Sb(III) | GO | 8.06 | pH 11.0, T 303 K | Freundlich | [53] |
Sr(II) | GO | 5.93 | pH 3.0, T 293 K | Langmuir | [54] |
Th(IV) | GO | 58.59 | pH 1.4, T 293 K | Langmuir | [55] |
U(VI) | GO | 299.00 | pH 4.0, T 298 K | Langmuir | [56] |
5.12 | pH 3.0, T 293 K | Langmuir | [54] | ||
TNRs | 282.50 | pH 5.0, T N.A. | Langmuir | [47] | |
Zn(II) | GO | 246.00 | pH 7.0, T 293 K | Langmuir | [57] |
345.00 | pH 5.0, T 298 K | Langmuir | [30] |
Heavy Metal Ion | Crosslinker (Classification) | Covalent Linker (Classification) | Rejection (%) | Operating Condition | Reference |
---|---|---|---|---|---|
As(III) | TETA (N) | CuFe2O4 (M) | 81.2% | 4.0 bar | [127] |
QT (O) | - | 67.0% | 1.0 bar | [128] | |
As(V) | TETA (N) | CuFe2O4 (M) | 87.9% | 4.0 bar | [127] |
H2SO4 (O) | - | 79.0% | 2.0 bar | [129] | |
Cd(II) | QT (O) | - | 75.0% | 1.0 bar | [128] |
IPDI (N) | - | 52.8% | 1.0 bar | [130] | |
PMMA (O) | - | 68.0% | 5.0 bar | [131] | |
EDA (N) | PEI (N) | 90.5% | 1.0 bar | [132] | |
CR (N, O) | Ca2+ (M) | 99.5% | 5.0 bar | [133] | |
Cr(II) | POSS (M) | PERI (N) | 80.0% | 4.5 bar | [134] |
IPDI (N) | - | 71.1% | 1.0 bar | [130] | |
Cr(VI) | QT (O) | - | 70.0% | 1.0 bar | [128] |
H2SO4 (O) | - | 37.5% | 2.0 bar | [129] | |
EDA (N) | - | 100.0% | 21.0 bar | [135] | |
Cu(II) | MeF (N) | Fe3O4 (M) | 92.0% | 4.0 bar | [136] |
POSS (M) | PERI (N) | 55.0% | 4.5 bar | [134] | |
IPDI (N) | - | 46.2% | 1.0 bar | [130] | |
UR (N, O) | - | 81.0% | 1.0 bar | [137] | |
EDA (N) | - | 59.0% | 1.0 bar | [137] | |
PMMA (O) | - | 58.0% | 5.0 bar | [131] | |
K+ (M) | - | 97.5% | 1.0 bar | [138] | |
Ba2+ (M) | - | 96.4% | 1.0 bar | ||
Ca2+ (M) | - | 96.2% | 1.0 bar | ||
Mg2+ (M) | - | 95.7% | 1.0 bar | ||
CR (N, O) | Ca2+ (M) | 99.0% | 5.0 bar | [133] | |
Ni(II) | PMMA (O) | - | 73.0% | 5.0 bar | [131] |
EDA (N) | PEI (N) | 96.0% | 1.0 bar | [132] | |
K+ (M) | - | 94.3% | 1.0 bar | [138] | |
Ba2+ (M) | - | 93.4% | 1.0 bar | ||
Ca2+ (M) | - | 93.3% | 1.0 bar | ||
Mg2+ (M) | - | 92.4% | 1.0 bar | ||
CR (N, O) | Ca2+ (M) | 98.0% | 5.0 bar | [133] | |
Pb(II) | QT (O) | - | 74.0% | 1.0 bar | [128] |
POSS (M) | PERI (N) | 78.0% | 4.5 bar | [134] | |
IPDI (N) | - | 66.4% | 1.0 bar | [130] | |
EDA (N) | PEI (N) | 95.7% | 1.0 bar | [132] | |
K+ (M) | - | 92.2% | 1.0 bar | [138] | |
Ba2+ (M) | - | 91.9% | 1.0 bar | ||
Ca2+ (M) | - | 92.5% | 1.0 bar | ||
Mg2+ (M) | - | 91.2% | 1.0 bar | ||
CR (N, O) | Ca2+ (M) | 98.0% | 5.0 bar | [133] | |
Zn(II) | PMMA (O) | - | 79.0% | 5.0 bar | [131] |
EDA (N) | PEI (N) | 97.4% | 1.0 bar | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala-Claveria, M.; Carlesi, C.; Puig, J.; Olguin, G. The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance. Processes 2024, 12, 2320. https://doi.org/10.3390/pr12112320
Ayala-Claveria M, Carlesi C, Puig J, Olguin G. The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance. Processes. 2024; 12(11):2320. https://doi.org/10.3390/pr12112320
Chicago/Turabian StyleAyala-Claveria, Martin, Carlos Carlesi, Julieta Puig, and Gianni Olguin. 2024. "The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance" Processes 12, no. 11: 2320. https://doi.org/10.3390/pr12112320
APA StyleAyala-Claveria, M., Carlesi, C., Puig, J., & Olguin, G. (2024). The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance. Processes, 12(11), 2320. https://doi.org/10.3390/pr12112320