Development of Improved Flexural and Impact Performance of Kevlar/Carbon/Glass Fibers Reinforced Polymer Hybrid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Hardness Testing
2.4. Flexural Strength and Modulus
2.5. Impact Strength
3. Results and Discussion
3.1. Hardness
3.2. Comparison of Flexural Strength and Modulus
3.3. Izod Impact Strength
3.4. Fractographic Analysis
3.5. Cost Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, G.; Tong, S.; Chen, D.; Gong, Z.; Li, Q. Mechanical properties of hybrid composites reinforced by carbon and basalt fibers. Int. J. Mech. Sci. 2018, 148, 636–651. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, D.; Wang, W.; Wang, Q. Mechanical characterization of hybrid lattice-to-steel joint with pyramidal CFRP truss for marine application. Compos. Struct. 2017, 160, 1198–1204. [Google Scholar] [CrossRef]
- Thibault, P.A.; Hernandez, A.R.; Mills, H. Yazdani Nezhad, Shear driven deformation and damage mechanisms in High-performance carbon Fibre-reinforced thermoplastic and toughened thermoset composites subjected to high strain loading. Compos. Struct. 2021, 261, 113289. [Google Scholar] [CrossRef]
- Liu, H.; Du, W.; Nezhad, H.Y.; Starr, A.; Zhao, Y. A dissection and enhancement technique for combined damage characterisation in composite laminates using laser-line scanning thermography. Compos. Struct. 2021, 271, 114168. [Google Scholar] [CrossRef]
- Nezhad, H.Y.; Merwick, F.; Frizzell, R.M.; McCarthy, C.T. Numerical analysis of low-velocity rigid-body impact response of composite panels. Int. J. Crashworthiness 2015, 20, 27–43. [Google Scholar] [CrossRef]
- Nayak, S.; Nayak, R.K.; Panigrahi, I. Effect of nano-fillers on low-velocity impact properties of synthetic and natural fibre reinforced polymer composites—A review. Adv. Mater. Process. Technol. 2021, 2021, 1–24. [Google Scholar] [CrossRef]
- Jesthi, D.; Nayak, R. Influence of glass/carbon fiber stacking sequence on mechanical and three-body abrasive wear resistance of hybrid composites. Mater. Res. Express. 2020, 7, 015106. [Google Scholar] [CrossRef]
- Alagumalai, V.; Shanmugam, V.; Balasubramanian, N.K.; Krishnamoorthy, Y.; Ganesan, V.; Försth, M.; Sas, G.; Berto, F.; Chanda, A.; Das, O. Impact Response and Damage Tolerance of Hybrid Glass/Kevlar-Fibre Epoxy Structural Composites. Polymers 2021, 13, 2591. [Google Scholar] [CrossRef]
- Jesthi, D.K.; Nayak, A.; Mohanty, S.S.; Rout, A.K.; Nayak, R.K. Evaluation of mechanical properties of hybrid composite laminates reinforced with glass/carbon woven fabrics. In Proceedings of the IOP Conference Series, Materials Science and Engineering, Sikkim, India, 8–10 December 2017; p. 377. [Google Scholar]
- Jesthi, D.K.; Mohanty, S.S.; Nayak, A.; Panigrahi, A.; Nayak, R.K. Improvement of mechanical properties of carbon/glass fiber reinforced polymer composites through inter-ply arrangement. In Proceedings of the IOP Conference Series, Materials Science and Engineering, Sikkim, India, 8–10 December 2017; p. 377. [Google Scholar]
- Jesthi, D.K.; Nayak, R.K. Improvement of mechanical properties of hybrid composite through interply rearrangement of glass and carbon woven fabrics for marine applications. Compos. Part B Eng. 2019, 168, 467–475. [Google Scholar] [CrossRef]
- Jesthi, D.K.; Nayak, R.K. Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Compos. Part B Eng. 2019, 174, 106980. [Google Scholar] [CrossRef]
- Asim, M.; Saba, N.; Jawaid, M.; Nasir, M. 12-Potential of Natural Fiber/Biomass Filler-Reinforced Polymer Composites in Aerospace Applications. In Sustainable Composites for Aerospace Applications; Jawaid, M., Thariq, M., Eds.; Woodhead Publishing: London, UK, 2018; pp. 253–268. [Google Scholar] [CrossRef]
- Razali, N.; Sultan, M.T.H.; Jawaid, M. Impact damage analysis of hybrid composite materials. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead Publishing: London, UK, 2019; pp. 121–132. [Google Scholar] [CrossRef]
- El-wazery, M.S. Mechanical characteristics and novel applications of hybrid polymer composites—A review. J. Mater. Environ. Sci. 2017, 8, 666–675. [Google Scholar]
- Karim, A.; Edan, E.; Hamod, A.; Abdulrahman, A. Mechanical properties of a hybrid composite material (epoxy-polysulfide rubber) reinforced by fibers. In Proceedings of the 2nd International Conference on Engineering Sciences, Kerbala, Iraq, 26–27 March 2018; p. 433. [Google Scholar] [CrossRef]
- Structural Composite Materials-ASM International, (n.d.). Available online: https://www.asminternational.org/search/-/journal_content/56/10192/05287G/PUBLICATION (accessed on 17 January 2022).
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Akay, M. An Introduction to Polymer Matrix Composites, (2015). Available online: https://www.kompozit.org.tr/wp-content/uploads/2021/01/An_introduction_to_polymer_matrix_compos.pdf (accessed on 17 January 2022).
- Randjbaran, E.; Zahari, R.; Abdul Jalil, N.A.; Abang Abdul Majid, D.L. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing. Sci. World J. 2014, 2014, e413753. [Google Scholar] [CrossRef] [PubMed]
- Vinay, H.B.; Govindaraju, H.K.; Banakar, P. Experimental Study on Mechanical Properties of Polymer Based Hybrid Composite. Mater. Today Proc. 2017, 4, 10904–10912. [Google Scholar] [CrossRef]
- Khan, T.; Fikri, A.; Irfan, M.S.; Gunister, E.; Umer, R. The effect of hybridization on microstructure and thermo-mechanical properties of composites reinforced with different weaves of glass and carbon fabrics. J. Compos. Mater. 2021, 55, 1635–1651. [Google Scholar] [CrossRef]
- Bunsell, A.R.; Harris, B. Hybrid carbon and glass fibre composites. Composites 1974, 5, 157–164. [Google Scholar] [CrossRef]
- Belingardi, G.; Cavatorta, M.P.; Frasca, C. Bending fatigue behavior of glass–carbon/epoxy hybrid composites. Compos. Sci. Technol. 2006, 66, 222–232. [Google Scholar] [CrossRef]
- Kretsis, G. A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 1987, 18, 13–23. [Google Scholar] [CrossRef]
- Naik, N.K.; Ramasimha, R.; Arya, H.; Prabhu, S.V.; ShamaRao, N. Impact response and damage tolerance characteristics of glass–carbon/epoxy hybrid composite plates. Compos. Part B Eng. 2001, 32, 565–574. [Google Scholar] [CrossRef]
- Cihan, M.; Sobey, A.J.; Blake, J.I.R. Mechanical and dynamic performance of woven flax/E-glass hybrid composites. Compos. Sci. Technol. 2019, 172, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zhou, C. Sandwich diffusion model for moisture absorption of flax/glass fiber reinforced hybrid composite. Compos. Struct. 2018, 188, 1–6. [Google Scholar] [CrossRef]
- Saroj, S.; Nayak, R.K. Improvement of Mechanical and Wear Resistance of Natural Fiber Reinforced Polymer Composites Through Synthetic Fiber (Glass/Carbon) Hybridization. Trans. Indian Inst. Met. 2021, 74, 2651–2658. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, B.M.; Wang, D.F.; Wu, Z.J. Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 2006, 73, 303–309. [Google Scholar] [CrossRef]
- Chowdhury, K.; Talreja, R.; Benzerga, A.A. Effects of manufacturing-induced voids on local failure in polymer-based composites. J. Eng. Mater. Technol. 2008, 130, 021010. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Chen, D.; Sun, G.; Meng, M.; Jin, X.; Li, Q. Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates. Thin Walled Struct. 2019, 142, 516–531. [Google Scholar] [CrossRef]
Composite Type | G2K3G2 | KG2CG2K | CKGCGKC | CGKCKGC | CK2CK2C | K7 | G7 | C7 |
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | |
Theoretical Density | 1.4340 | 1.4460 | 1.3917 | 1.39 | 1.2958 | 1.2584 | 1.5315 | 1.3509 |
Experimental Density | 1.4231 | 1.4214 | 1.3612 | 1.3521 | 1.2622 | 1.2231 | 1.4912 | 1.3221 |
Void Content (%) | 0.7581 | 1.7041 | 2.1903 | 2.8446 | 2.5933 | 2.8025 | 2.6309 | 2.1303 |
Composite Type | Flexural Strength (MPa) | Flexural Modulus | Density of Composites | Specific Strength of Composites (103 m2/s2) | Specific Modulus of Composites (106 m2/s2) | Carbon Fiber |
---|---|---|---|---|---|---|
(GPa) | (g/cm3) | % | ||||
A | 303.45 | 20.16 | 1.40 | 0.22 | 14.40 | 0 |
B | 369.50 | 16.42 | 1.41 | 0.26 | 11.65 | 14 |
C | 373.51 | 31.47 | 1.36 | 0.27 | 23.14 | 43 |
D | 380.96 | 36.52 | 1.35 | 0.28 | 27.05 | 43 |
E | 310.34 | 26.42 | 1.26 | 0.25 | 20.97 | 43 |
F | 278.40 | 13.38 | 1.22 | 0.23 | 10.97 | 0 |
G | 316.13 | 23.22 | 1.49 | 0.21 | 15.58 | 0 |
H | 613.01 | 37.85 | 1.32 | 0.46 | 28.67 | 100 |
Composite Type | Stacking Sequence | CFRP Cost ($) | GFRP Cost ($) | KFRP Cost ($) | Total Cost ($) |
---|---|---|---|---|---|
A | [G2K3G2] | 0.00% | 5.71% | 30.00% | 35.71% |
B | [KG2CG2K] | 14.28% | 5.71% | 20.00% | 39.99% |
C | [CKGCGKC] | 42.85% | 2.84% | 20.00% | 65.69% |
D | [CGKCKGC] | 42.85% | 2.84% | 20.00% | 65.69% |
E | [CK2CK2C] | 42.85% | 0.00% | 40.00% | 82.85% |
F | [K]7 | 0.00% | 0.00% | 70% | 70.00% |
G | [G]7 | 0.00% | 10.00% | 0.00% | 10.00% |
H | [C]7 | 100% | 0.00% | 0.00% | 100.00% |
Composite Type | Stacking Sequence | Flexural Strength | Flexural Strength (MPa)/ Cost Ratio | Flexural Modulus (GPa) | Flexural Modulus (GPa)/ Cost Ratio | Impact Strength (KJ/m2) | Impact Strength (KJ/m2)/Cost Ratio |
---|---|---|---|---|---|---|---|
A | [G2K3G2] | 303 | 849 | 20 | 56 | 126 | 353 |
B | [KG2CG2K] | 369 | 923 | 16 | 40 | 83 | 208 |
C | [CKGCGKC] | 373 | 568 | 31 | 47 | 77 | 117 |
D | [CGKCKGC] | 380 | 578 | 36 | 55 | 80 | 122 |
E | [CK2CK2C] | 310 | 374 | 26 | 31 | 70 | 84 |
F | [K]7 | 278 | 397 | 13 | 19 | 95 | 136 |
G | [G]7 | 316 | 3160 | 23 | 230 | 85 | 850 |
H | [C]7 | 613 | 613 | 37 | 37 | 30 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rout, S.; Nayak, R.K.; Patnaik, S.C.; Yazdani Nezhad, H. Development of Improved Flexural and Impact Performance of Kevlar/Carbon/Glass Fibers Reinforced Polymer Hybrid Composites. J. Compos. Sci. 2022, 6, 245. https://doi.org/10.3390/jcs6090245
Rout S, Nayak RK, Patnaik SC, Yazdani Nezhad H. Development of Improved Flexural and Impact Performance of Kevlar/Carbon/Glass Fibers Reinforced Polymer Hybrid Composites. Journal of Composites Science. 2022; 6(9):245. https://doi.org/10.3390/jcs6090245
Chicago/Turabian StyleRout, Sonali, Ramesh Kumar Nayak, Suresh Chandra Patnaik, and Hamed Yazdani Nezhad. 2022. "Development of Improved Flexural and Impact Performance of Kevlar/Carbon/Glass Fibers Reinforced Polymer Hybrid Composites" Journal of Composites Science 6, no. 9: 245. https://doi.org/10.3390/jcs6090245
APA StyleRout, S., Nayak, R. K., Patnaik, S. C., & Yazdani Nezhad, H. (2022). Development of Improved Flexural and Impact Performance of Kevlar/Carbon/Glass Fibers Reinforced Polymer Hybrid Composites. Journal of Composites Science, 6(9), 245. https://doi.org/10.3390/jcs6090245