Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,308)

Search Parameters:
Keywords = drug delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6112 KiB  
Article
Self-Exfoliated Guanidinium Covalent Organic Nanosheets as High-Capacity Curcumin Carrier
by Archita Sharma, Dhavan Sharma, Hengyu Lin, Hongcai (Joe) Zhou and Feng Zhao
Biomimetics 2024, 9(11), 709; https://doi.org/10.3390/biomimetics9110709 (registering DOI) - 19 Nov 2024
Viewed by 4
Abstract
Drug administration is commonly used to treat chronic wounds but faces challenges such as poor bioavailability, instability, and uncontrollable release. Existing drug delivery platforms are limited by chemical instability, poor functionality, complex synthesis, and toxic by-products. Presently, research efforts are focused on developing [...] Read more.
Drug administration is commonly used to treat chronic wounds but faces challenges such as poor bioavailability, instability, and uncontrollable release. Existing drug delivery platforms are limited by chemical instability, poor functionality, complex synthesis, and toxic by-products. Presently, research efforts are focused on developing novel drug carriers to enhance drug efficacy. Guanidinium Covalent Organic Nanosheets (gCONs) offer promising alternatives due to their high porosity, surface area, loading capacity, and ability to provide controlled, sustained, and target-specific drug delivery. Herein, we successfully synthesized self-exfoliated gCONs using a Schiff base condensation reaction and embedded curcumin (CUR), a polyphenolic pleiotropic drug with antioxidant and anti-inflammatory properties, via the wet impregnation method. The BET porosimeter exhibited the filling of gCON pores with CUR. Morphological investigations revealed the formation of sheet-like structures in gCON. Culturing human dermal fibroblasts (hDFs) on gCON demonstrated cytocompatibility even at a concentration as high as 1000 µg/mL. Drug release studies demonstrated a controlled and sustained release of CUR over an extended period of 5 days, facilitated by the high loading capacity of gCON. Furthermore, the inherent antioxidant and anti-inflammatory properties of CUR were preserved after loading into the gCON, underscoring the potential of CUR-loaded gCON formulation for effective therapeutic applications. Conclusively, this study provides fundamental information relevant to the performance of gCONs as a drug delivery system and the synergistic effect of CUR and CONs addressing issues like drug bioavailability and instability. Full article
(This article belongs to the Special Issue Biomimetic Drug Delivery Systems 2024)
Show Figures

Graphical abstract

9 pages, 2398 KiB  
Article
Pectin Hydrogels as Structural Platform for Antibacterial Drug Delivery
by Tejas Saravanan, Jennifer M. Pan, Franz G. Zingl, Matthew K. Waldor, Yifan Zheng, Hassan A. Khalil and Steven J. Mentzer
Polymers 2024, 16(22), 3202; https://doi.org/10.3390/polym16223202 (registering DOI) - 19 Nov 2024
Viewed by 150
Abstract
Hydrogels are hydrophilic 3-dimensional networks characterized by the retention of a large amount of water. Because of their water component, hydrogels are a promising method for targeted drug delivery. The water component, or “free volume”, is a potential vehicle for protein drugs. A [...] Read more.
Hydrogels are hydrophilic 3-dimensional networks characterized by the retention of a large amount of water. Because of their water component, hydrogels are a promising method for targeted drug delivery. The water component, or “free volume”, is a potential vehicle for protein drugs. A particularly intriguing hydrogel is pectin. In addition to a generous free volume, pectin has structural characteristics that facilitate hydrogel binding to the glycocalyceal surface of visceral organs. To test drug function and pectin integrity after loading, we compared pectin films from four distinct plant sources: lemon, potato, soybean, and sugar beet. The pectin films were tested for their micromechanical properties and intrinsic antibacterial activity. Lemon pectin films demonstrated the greatest cohesion at 30% water content. Moreover, modest growth inhibition was observed with lemon pectin (p < 0.05). No effective inhibition was observed with soybean, potato, or sugar beet films (p > 0.05). In contrast, lemon pectin films embedded with carbenicillin, chloramphenicol, or kanamycin demonstrated significant bacterial growth inhibition (p < 0.05). The antibacterial activity was similar when the antibiotics were embedded in inert filter disks or pectin disks (p > 0.05). We conclude that lemon pectin films represent a promising structural platform for antibacterial drug delivery. Full article
(This article belongs to the Special Issue Biomedical Applications of Intelligent Hydrogel 2nd Edition)
Show Figures

Figure 1

13 pages, 2810 KiB  
Article
Requirements of Constrictive Binding and Dynamic Systems on Molecular Cages for Drug Delivery
by Giovanni Montà-González, Ramón Martínez-Máñez and Vicente Martí-Centelles
Targets 2024, 2(4), 372-384; https://doi.org/10.3390/targets2040021 (registering DOI) - 19 Nov 2024
Viewed by 126
Abstract
Molecular cages have promising host–guest properties for drug delivery applications. Specifically, guest⊂cage complexes can be used for the on-command release of encapsulated guest molecules in response to specific stimuli. This research explores both the dynamic and constrictive binding guest⊂cage systems for drug encapsulation [...] Read more.
Molecular cages have promising host–guest properties for drug delivery applications. Specifically, guest⊂cage complexes can be used for the on-command release of encapsulated guest molecules in response to specific stimuli. This research explores both the dynamic and constrictive binding guest⊂cage systems for drug encapsulation and release in biological environments. In dynamic systems, the guest rapidly passes in-and-out through the portals of the cage, enabling drug delivery in vitro but facing limitations in vivo due to dilution effects that result in guest release. These challenges are addressed by constrictive binding systems, where the guest is trapped in a “gate-closed” state within the cage. In these systems, the on-command release is triggered by a “gate opening” event, which lowers the guest–out energy barrier. A full guest release is achieved when the gate opening reduces the cage–guest affinity, making constrictive binding systems more effective for controlled drug delivery. As a result, this study shows that guest⊂cage complexes have suitable properties for drug delivery in biological contexts. Full article
Show Figures

Graphical abstract

16 pages, 4552 KiB  
Article
Synthesis of Self-Assembled Nanostructured Cisplatin Using the RESS Process
by Sudhir Kumar Sharma, Loganathan Palanikumar, Renu Pasricha, Thirumurugan Prakasam, Mazin Magzoub and Ramesh Jagannathan
Pharmaceutics 2024, 16(11), 1471; https://doi.org/10.3390/pharmaceutics16111471 (registering DOI) - 18 Nov 2024
Viewed by 286
Abstract
Background/Objectives: The primary goal of our research is to develop a process to prepare an aqueous dispersion of Cisplatin, an important anticancer drug, with increased solubility and storage stability. Method: In this context, we report the use of a customized RESS process for [...] Read more.
Background/Objectives: The primary goal of our research is to develop a process to prepare an aqueous dispersion of Cisplatin, an important anticancer drug, with increased solubility and storage stability. Method: In this context, we report the use of a customized RESS process for the synthesis of a novel, amber-colored and viscous aqueous cisplatin solution, an important anticancer drug, which we have denoted as “liquid” cisplatin. Results: Using specialized liquid cell in situ transmission electron microscopy (Liquid in situ TEM) and Raman spectroscopy, we demonstrated that “liquid” cisplatin comprises a bi-modal distribution of a highly solvated network of stable cisplatin nanoclusters in water and exhibited 27 times greater water solubility than standard cisplatin. More importantly, “liquid” cisplatin was stable at ambient conditions for over two years. Extensive analytical characterization of “liquid” cisplatin confirmed that it retained the original chemical identity of cisplatin. Cell viability and apoptosis studies on human lung adenocarcinoma A549 cells provided compelling evidence that “liquid” cisplatin demonstrated a more sustained anticancer effect compared to standard cisplatin. Conclusions: Aqueous cisplatin solubility was increased by 27X in the “liquid” cisplatin medium which retained its bio efficacy over a 2-year period. Our experimental results suggest the possibility of developing non-invasive and highly effective novel cisplatin drug-delivery platforms. Full article
(This article belongs to the Special Issue Supercritical Techniques for Pharmaceutical Applications)
Show Figures

Figure 1

24 pages, 1938 KiB  
Article
Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity
by Elisa Corazza, Asia Pizzi, Carola Parolin, Barbara Giordani, Angela Abruzzo, Federica Bigucci, Teresa Cerchiara, Barbara Luppi and Beatrice Vitali
Pharmaceutics 2024, 16(11), 1470; https://doi.org/10.3390/pharmaceutics16111470 (registering DOI) - 18 Nov 2024
Viewed by 275
Abstract
Background/Objectives: Due to the high frequency and severity of upper respiratory bacterial infections, probiotics could offer a new medical approach. We explored the antibacterial and anti-inflammatory properties of the new strain Lactiplantibacillus plantarum BIA and formulated a nasal spray. Methods: L. plantarum [...] Read more.
Background/Objectives: Due to the high frequency and severity of upper respiratory bacterial infections, probiotics could offer a new medical approach. We explored the antibacterial and anti-inflammatory properties of the new strain Lactiplantibacillus plantarum BIA and formulated a nasal spray. Methods: L. plantarum BIA was isolated from orange peel and taxonomically identified through 16S rRNA gene sequencing. Its antibacterial activity was tested against Pseudomonas aeruginosa, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, while anti-inflammatory potential was evaluated by Griess assay. BIA genome was fully sequenced and analyzed to assess its safety. BIA was formulated in a freeze-dried matrix, containing prebiotics and cryoprotectants, to be reconstituted with a polymer solution. Solutions containing two types of hydroxypropyl methylcellulose (HPMC) and hyaluronic acid were evaluated as resuspending media and compared in terms of pH, viscosity, and mucoadhesion ability. The biological activity of BIA formulated as nasal spray was verified together with the stability of the selected formulations. Results: L. plantarum BIA inhibited human pathogens’ growth and showed anti-inflammatory activity and a safe profile. In the best-performing formulation, the probiotic is lyophilized in 10% fructooligosaccharides, 0.1% ascorbic acid, and 0.5% lactose and reconstituted with HPMC high viscosity 1% w/v. This composition ensured the probiotic’s viability for up to six months in its dried form and one week after reconstitution. It also allowed interaction with the nasal mucosa, preserving its antimicrobial and anti-inflammatory activities. Conclusion: The developed nasal spray could become a promising formulation in the field of nasal infectious and inflammatory diseases. Full article
Show Figures

Figure 1

39 pages, 13731 KiB  
Review
The Influence of Roughness on the Properties of Electroactive Polypyrrole
by Sylwia Golba and Julian Kubisztal
Molecules 2024, 29(22), 5436; https://doi.org/10.3390/molecules29225436 (registering DOI) - 18 Nov 2024
Viewed by 181
Abstract
This study describes the properties of electroactive polypyrrole and its applications, with a focus on the roughness of the material. This parameter is crucial as it influences the applicability of coated layers, leading to highly adherent coatings or programmed wettability. The first raised [...] Read more.
This study describes the properties of electroactive polypyrrole and its applications, with a focus on the roughness of the material. This parameter is crucial as it influences the applicability of coated layers, leading to highly adherent coatings or programmed wettability. The first raised aspect covers the electrodeposition procedure, which can help tailor the desired smoothness determined by roughness parameters. Features such as the deposition method, synthetic solution components, potential boundaries, substrate type, and utilized additives are evaluated. In the following section, the application aspects are discussed with a focus on modern, currently developed subjects such as medical applications, including cell-adherent coatings, antibacterial coatings, and drug delivery modules, as well as more technological fields like improved adhesion to the substrate and the improved mechanical properties of the deposited coating. Full article
Show Figures

Figure 1

28 pages, 2973 KiB  
Review
Peptide-Based Biomaterials for Combatting Infections and Improving Drug Delivery
by Lucia Lombardi, Jiaxu Li and Daryl R. Williams
Pharmaceutics 2024, 16(11), 1468; https://doi.org/10.3390/pharmaceutics16111468 - 18 Nov 2024
Viewed by 307
Abstract
This review explores the potential of peptide-based biomaterials to enhance biomedical applications through self-assembly, biological responsiveness, and selective targeting. Peptides are presented as versatile agents for antimicrobial activity and drug delivery, with recent approaches incorporating antimicrobial peptides into self-assembling systems to improve effectiveness [...] Read more.
This review explores the potential of peptide-based biomaterials to enhance biomedical applications through self-assembly, biological responsiveness, and selective targeting. Peptides are presented as versatile agents for antimicrobial activity and drug delivery, with recent approaches incorporating antimicrobial peptides into self-assembling systems to improve effectiveness and reduce resistance. The review also covers peptide-based nanocarriers for cancer drug delivery, highlighting their improved stability, targeted delivery, and reduced side effects. The focus of this work is on the bioactive properties of peptides, particularly in infection control and drug delivery, rather than on their structural design or material characteristics. Additionally, it examines the role of peptidomimetics in broadening biomaterial applications and enhancing resistance to enzymatic degradation. Finally, the review discusses the commercial prospects and challenges of translating peptide biomaterials into clinical applications. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

20 pages, 3601 KiB  
Article
Formulation, Characterisation, and Biocompatibility Assessment of Rifampicin-Loaded Poly(d,l-lactide-co-glycolide) Composites for Local Treatment of Orthopaedic and Wound Infections
by Mitali Singhal, Colin C. Seaton, Alexander Surtees and Maria G. Katsikogianni
Pharmaceutics 2024, 16(11), 1467; https://doi.org/10.3390/pharmaceutics16111467 - 18 Nov 2024
Viewed by 433
Abstract
Background/Objectives: The escalating challenge of antimicrobial resistance (AMR) necessitates the development of targeted antibiotic delivery platforms, minimising systemic administration. Polymer-based drug delivery emerges as a promising solution, ensuring sustained release and prolonged efficacy of bioactive compounds, ensuring long-term efficacy. Methods: This study focuses [...] Read more.
Background/Objectives: The escalating challenge of antimicrobial resistance (AMR) necessitates the development of targeted antibiotic delivery platforms, minimising systemic administration. Polymer-based drug delivery emerges as a promising solution, ensuring sustained release and prolonged efficacy of bioactive compounds, ensuring long-term efficacy. Methods: This study focuses on encapsulating rifampicin (RIF), a key antibiotic for orthopaedic and wound-related infections, within Poly(d,l-lactide-co-glycolide) (PLGA), a biodegradable polymer, through solvent casting, to formulate a PLGA-RIF composite membrane. Comprehensive characterisation, employing Fourier-transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis and X-ray Diffraction (XRD), confirmed the integrity of both the starting and produced materials. UV-Vis spectroscopy revealed a controlled drug release profile over 21 days in various media, with the chosen media influencing the drug release, notably the tryptic soya broth (TSB) caused the highest release. The quantitative assessment of the antimicrobial efficacy of the developed PLGA-RIF composite was conducted by measuring the size of the inhibition zones against both Gram-negative and Gram-positive bacteria. Results: The results confirmed the composite’s potential as a robust antibacterial biomaterial, demonstrating a rapid and effective antibacterial response. Cytocompatibility tests incorporated human fibroblast and osteoblast-like cell lines and demonstrated that the RIF:PLGA (1:8) formulation maintained eukaryotic cell viability, indicating the composite’s potential for targeted medical applications in combating bacterial infections with minimal systemic impact. Conclusions: This study presents the significance of investigating drug release within appropriate and relevant physiological media. A key novelty of this work therefore lies in the exploration of drug release dynamics across different media, allowing for a comprehensive understanding of how varying physiological conditions may influence drug release and its effect on biological responses. Full article
(This article belongs to the Special Issue New Technology for Prolonged Drug Release, 2nd Edition)
Show Figures

Figure 1

29 pages, 7806 KiB  
Article
Formulation and Ex Vivo Evaluation of Ivermectin Within Different Nano-Drug Delivery Vehicles for Transdermal Drug Delivery
by Eunice Maureen Steenekamp, Wilna Liebenberg, Hendrik J. R. Lemmer and Minja Gerber
Pharmaceutics 2024, 16(11), 1466; https://doi.org/10.3390/pharmaceutics16111466 - 18 Nov 2024
Viewed by 478
Abstract
Background/Objectives: Ivermectin gained widespread attention as the “miracle drug” during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. [...] Read more.
Background/Objectives: Ivermectin gained widespread attention as the “miracle drug” during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. Since the late 2000s, this bio-inspired active pharmaceutical ingredient (API) gained renewed interest for its diverse therapeutic capabilities. However, producing ivermectin formulations does remain challenging due to its poor water solubility, resulting in low bioavailability after oral administration. Therefore, the transdermal drug delivery of ivermectin was considered to overcome these challenges, which are observed after oral administration. Methods: Ivermectin was incorporated in a nano-emulsion, nano-emulgel and a colloidal suspension as ivermectin-loaded nanoparticles. The nano-drug delivery vehicles were optimized, characterized and evaluated through in vitro membrane release studies, ex vivo skin diffusion studies and tape-stripping to determine whether ivermectin was successfully released from its vehicle and delivered transdermally and/or topically throughout the skin. This study concluded with cytotoxicity tests using the methyl thiazolyl tetrazolium (MTT) and neutral red (NR) assays on both human immortalized epidermal keratinocytes (HaCaT) and human immortalized dermal fibroblasts (BJ-5ta). Results: Ivermectin was successfully released from each vehicle, delivered transdermally and topically throughout the skin and demonstrated little to no cytotoxicity at concentrations that diffused through the skin. Conclusions: The type of nano-drug delivery vehicle used to incorporate ivermectin influences its delivery both topically and transdermally, highlighting the dynamic equilibrium between the vehicle, the API and the skin. Full article
(This article belongs to the Special Issue Transdermal Delivery: Challenges and Opportunities)
Show Figures

Figure 1

2 pages, 351 KiB  
Correction
Correction: Jin et al. A pH-Responsive DNA Tetrahedron/Methotrexate Drug Delivery System Used for Rheumatoid Arthritis Treatment. J. Funct. Biomater. 2023, 14, 541
by Yi Jin, Xingyu Ge, Yinjin Xu, Siyi Wang, Qian Lu, Aidong Deng, Jingjing Li and Zhifeng Gu
J. Funct. Biomater. 2024, 15(11), 349; https://doi.org/10.3390/jfb15110349 - 18 Nov 2024
Viewed by 114
Abstract
In the original publication [...] Full article
Show Figures

Figure 4

15 pages, 4350 KiB  
Article
The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism
by Yuanzheng Wei, Zongyu Miao, Huixin Ye, Meihui Wu, Xinru Wei, Yu Zhang and Lei Cai
Clocks & Sleep 2024, 6(4), 749-763; https://doi.org/10.3390/clockssleep6040048 (registering DOI) - 18 Nov 2024
Viewed by 325
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression [...] Read more.
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep. Full article
(This article belongs to the Section Animal Basic Research)
Show Figures

Figure 1

15 pages, 3020 KiB  
Article
Tumor-Colonizing E. coli Expressing Both Collagenase and Hyaluronidase Enhances Therapeutic Efficacy of Gemcitabine in Pancreatic Cancer Models
by Lara C. Avsharian, Suvithanandhini Loganathan, Nancy D. Ebelt, Azadeh F. Shalamzari, Itzel Rodarte Muñoz and Edwin R. Manuel
Biomolecules 2024, 14(11), 1458; https://doi.org/10.3390/biom14111458 - 17 Nov 2024
Viewed by 528
Abstract
Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing E. coli-based [...] Read more.
Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing E. coli-based agent that expresses both collagenase and hyaluronidase as a strategy to reduce desmoplasia and enhance the intratumoral perfusion of anticancer agents. Overall, we observed that the tandem expression of both these enzymes by tumor-colonizing E. coli resulted in the reduced presence of intratumoral collagen and hyaluronan, which likely contributed to the enhanced chemotherapeutic efficacy observed when used in combination. These results highlight the importance of combination treatments involving the depletion of desmoplastic components in PDAC before or during treatment. Full article
(This article belongs to the Special Issue Immune-Related Biomarkers: 2nd Edition)
Show Figures

Figure 1

15 pages, 3359 KiB  
Article
Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes
by Hua-Wei Chen, Su-Der Chen, Hung-Ta Wu, Chun-Hung Cheng, Chyow-San Chiou and Wei-Ting Chen
Nanomaterials 2024, 14(22), 1836; https://doi.org/10.3390/nano14221836 - 17 Nov 2024
Viewed by 300
Abstract
Curcumin is utilized extensively as Chinese medicine in Asia due to its antioxidant, antimicrobial, and inflammatory activities. However, its use has the challenges of low oral bioavailability and high heat sensitivity. The aim of this research was to produce flexible nano-liposomes containing curcumin [...] Read more.
Curcumin is utilized extensively as Chinese medicine in Asia due to its antioxidant, antimicrobial, and inflammatory activities. However, its use has the challenges of low oral bioavailability and high heat sensitivity. The aim of this research was to produce flexible nano-liposomes containing curcumin using an innovative approach of ethanol injection and Tween 80 to enhance the stability and preservation of curcumin. The mean particle size, encapsulation efficiency, thermal degradation, storage stability, and curcumin release in flexible nano-liposomes were also investigated. We found that the mean particle size of curcumin-loaded flexible nano-liposome decreased from 278 nm to 27.6 nm. At the same time, the Tween 80 concentration increased from 0 to 0.15 wt%, which corresponded with the results of transmission electron microscopy (TEM) morphology analyses, and particle size decreased with an enhancement in Tween 80 concentration. Further, pure curcumin was quickly released within one hour at 37 °C, and first-order kinetics matched with its release curve. However, curcumin encapsulated in flexible nano-liposomes showed a slow release of 71.24% within 12 h, and a slower release pattern matched with the Higuchi model over 24 h, ultimately reaching 84.63% release. Hence, flexible nano-liposomes of curcumin made by a combination of ethanol injection and Tween 80 addition prevented the thermal degradation of curcumin, and enhanced its storage stability and preservation for future drug delivery applications. Full article
(This article belongs to the Special Issue Green Nanoparticles for Topical Administration of Drugs)
Show Figures

Figure 1

11 pages, 397 KiB  
Article
A Qualitative Study of Pharmacists’ Perceptions of the Advantages and Disadvantages of Telepharmacy
by Masaki Shoji and Mitsuko Onda
Pharmacy 2024, 12(6), 169; https://doi.org/10.3390/pharmacy12060169 - 16 Nov 2024
Viewed by 307
Abstract
In Japan, telepharmacy is becoming increasingly popular due to deregulation triggered by the outbreak of COVID-19. The purpose of this study was to gain an understanding of the actual state of telepharmacy in Japan by interviewing pharmacists who have experience with telepharmacy and [...] Read more.
In Japan, telepharmacy is becoming increasingly popular due to deregulation triggered by the outbreak of COVID-19. The purpose of this study was to gain an understanding of the actual state of telepharmacy in Japan by interviewing pharmacists who have experience with telepharmacy and describing its advantages and disadvantages, as well as their outlook for its use going forward. The interviews were conducted online using Zoom. Each interview lasted approximately 30 min. Eleven people were interviewed. The advantages mentioned by the pharmacists were classified into three main categories: “Better communication”, “Time savings”, and “Improved safety”. The disadvantages were classified into the following nine categories: “Drug delivery problems”, “Communication failures”, “Ease of use for patients”, “Emotional reactions”, “Pharmacy system”, “Communication issues”, “Healthcare system issues”, “App system issues”, and “Cost”. Many of these factors correspond to the Unified Theory of Acceptance and Use of Technology (UTAUT) constructs presented by Venkatesh, et al. Many of the pharmacists mentioned that the use of telepharmacy is likely to expand further in the future, but that this will require further development of communication technology and the widespread use of systems such as electronic prescriptions. Full article
(This article belongs to the Section Pharmacy Practice and Practice-Based Research)
Show Figures

Figure 1

11 pages, 261 KiB  
Review
Noble Gases in Medicine: Current Status and Future Prospects
by David A. Winkler
Oxygen 2024, 4(4), 421-431; https://doi.org/10.3390/oxygen4040026 (registering DOI) - 16 Nov 2024
Viewed by 234
Abstract
Noble gases are a valuable but overlooked source of effective and safe therapeutics. Being monoatomic and chemically inert, they nonetheless have a surprisingly wide range of biochemical and medically valuable properties. This mini review briefly summarizes these properties for the most widely used [...] Read more.
Noble gases are a valuable but overlooked source of effective and safe therapeutics. Being monoatomic and chemically inert, they nonetheless have a surprisingly wide range of biochemical and medically valuable properties. This mini review briefly summarizes these properties for the most widely used noble gases and focuses and research gaps and missed opportunities for wider use of these intriguing ‘atomic’ drugs. The main research gaps and opportunities lie firstly in the application of advanced computational modelling methods for noble gases and recent developments in accurate predictions of protein structures from sequence (AlphaFold), and secondly in the use of very efficient and selective drug delivery technologies to improve the solubility, efficacy, and delivery of noble gases to key targets, especially for the lighter, poorly soluble gases. Full article
(This article belongs to the Special Issue Interaction of Oxygen and Other Gases with Haem Containing Proteins)
Back to TopTop