
Synthesis of distributed systems from
synchronous dataflow programs

Jan Romberg

Institut für Informatik
der Technischen Universität München

Synthesis of distributed systems from
synchronous dataflow programs

Jan Romberg

Vollständiger Abdruck der von der Fakultät für Informatik der Tech-
nischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Alois Knoll

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h. c. Manfred Broy

2. Univ.-Prof. Dr. Klaus D. Müller-Glaser
Universität Karlsruhe (TH)

Die Dissertation wurde am 15.03.2006 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 27.06.2006 angenom-
men.

Abstract

Synchronous dataflow languages are a popular tool for systems specifica-
tion in domains such as real-time control and hardware design. The po-
tential benefits are promising: Discrete-time semantics and deterministic
concurrency reduce the state-space of parallel designs, and the engineer’s
intuition of uniformly progressing physical time is clearly reflected. How-
ever, for deriving implementations, use of synchronous programs is cur-
rently limited to hardware synthesis, generation of non-distributed soft-
ware, or deployment on time-triggered architectures. For distributed soft-
ware systems based on event-triggered bus systems and on-line sched-
ulers, it is still an open problem how conformance with an abstract syn-
chronous design is to be defined.

This thesis examines both the problem of synthesis, and the problem of
behavioral preservation, for distributed implementations of synchronous
programs. A simple synchronous language is presented: this class of lan-
guages is shown to meet some essential application requirements, such
as boundedness of computational resources, or compositionality. For pro-
grams with appropriate delays at subsystem boundaries, two complemen-
tary implementation schemes suited for the OSEK operating system and
event-triggered communication media, respectively, are presented. Both
implementation schemes are characterized by the fact that individual steps
of the synchronous program’s semantics are spread out in time, or lin-
earized.

For such linearized implementations, we provide a general formal frame-
work, where the synchronous program and its linearized implementation
are captured both on the level of language (words) and on the level of tran-
sition structures (automata). As an example application of the theory, it is
shown how certain behavioral properties expressed in the temporal logic
LTL can be preserved from the synchronous program to its implementa-
tion. A simple method is provided for checking whether a given property
is preservable.

Kurzfassung

Synchrone Datenflusssprachen sind ein etabliertes Mittel der Systembe-
schreibung in Anwendungsdomänen wie Regelungs- und Steuerungssys-
temen oder Hardwareentwurf. Diese Klasse von Sprachen bietet einige
bekannte Vorteile, wie zum Beispiel einen gegenüber anderen Ansätzen
reduzierten Zustandsraum bei der Beschreibung paralleler Systeme. Für
die Synthese von Implementierungen ist die Verwendung von synchro-
nen Datenflusssprachen momentan vor allem auf den nichtverteilten Fall
oder auf Implementierungsplattformen mit starken Synchronisationsan-
nahmen eingeschränkt. Dagegen existieren für schwächer synchronisierte
Plattformen nur wenige Arbeiten zur semantikerhaltenden Implementie-
rung eines synchronen Programmes.

Die vorliegende Arbeit untersucht das Problem der verteilten Implemen-
tierung synchroner Programme. Zu diesem Zweck wird eine einfache syn-
chrone Datenflusssprache definiert: es wird gezeigt, wie diese Sprachen ei-
nige typischen Anforderungen der Anwendungsdomäne erfüllt. Für syn-
chrone Datenflussprogramme werden zwei komplementäre Implementie-
rungsstrategien aufgezeigt, wobei die eine auf den automobilen Betriebs-
systemstandard OSEK basiert, während die andere für ereignisgesteuerte
Kommunikationsmedien geeignet ist. Beide Mechanismen sind dadurch
gekennzeichnet, dass die einzelnen Berechnungen in kausal geordneten
Einzelschritten, oder linearisiert, erfolgen.

Für solche linearisierten Implementierungen wird in der Arbeit eine all-
gemeine Theorie definiert, die ein synchrones Programm und seine Li-
nearisierung sowohl auf der Ebene von Abläufen (Wörtern) als auch auf
der Ebene konkreter Transitionssysteme (Automaten) abbildet. Als bei-
spielhafte Verwendung der Theorie wird mit Hilfe der Temporallogik LTL
demonstriert, wie bestimmte Verhaltenseigenschaften eines synchronen
Programms für die Linearisierung des Programms erhalten bleiben. Da-
zu wird eine einfache Methode angegeben, mit der die Erhaltbarkeit einer
Eigenschaft überprüft werden kann.

Danksagung

Mein Dank für die Unterstützung im Rahmen dieser Arbeit geht zunächst
an meinen Doktorvater, Prof. Manfred Broy, der hier an der TU München
eine einzigartige und sehr freie Umgebung für wissenschaftliches Arbei-
ten geschaffen hat, und mir mit Rat und Tat zur Seite stand. Prof. Klaus D.
Müller-Glaser gebührt der Dank für die Übernahme des Zweitgutachtens.

Meine Frau Theresia und meine Söhne Jakob, Paul und Benedikt haben
mich in jeder Phase dieser Arbeit sehr liebevoll unterstützt, und mussten
dafür stellenweise meine körperliche An- sowie geistige Abwesenheit da-
heim ertragen. Vielen Dank dafür. Besonderer Dank geht an Benedikt, der
mich in unseren vielen zweisamen Stunden doch meistens gewähren ließ
(mit Ausnahme einer kaputten Taste am Rechner, die durch seine begei-
sterte Mitwirkung daran glauben musste.) Mein Bruder Tim ist für mich
schon immer eine Quelle geistiger Inspiration, und hat den Entstehungs-
prozess dieser Arbeit zumeist telefonisch mitverfolgt.

Mit meinen Kollegen Andreas Bauer, Peter Braun, Martin Leucker und
Bernhard Schätz habe ich einzelne Punkte dieser Arbeit besprochen, und
habe durch ihre Einwirkung immer mal wieder einen neuen Gedanken
aufgegriffen oder verworfen. Als “Startvektor” für meine Zeit am Lehr-
stuhl habe ich durch den Kontakt zu Alexander Pretschner und Chris
Salzmann sehr profitiert. Unseren Projektpartnern im AutoMoDe-Projekt,
Ulrich Freund, Pierre Mai und Dirk Ziegenbein, gilt mein Dank für viele
interessante Diskussionen und Anregungen.

Andreas Bauer, Christian Kühnel und Stefan Wagner haben Teile dieser
Arbeit gelesen und viele gute Anmerkungen gegeben. Danke euch dafür.

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 7
1.3 Thesis Outline . 9

2 Synchronous Dataflow Programs 11
2.1 Rationale . 11

2.1.1 Dataflow: A brief history 11
2.1.2 Why dataflow programs? 14
2.1.3 Why synchronous? . 21
2.1.4 Why discrete? . 25

2.2 The synchronous dataflow language SSDL 27
2.2.1 Mini-SSDL syntax . 28
2.2.2 Mini-SSDL semantics 31
2.2.3 SSDL . 37
2.2.4 Non-reactive programs and causality analysis 45

2.3 Related work . 51

3 Two Implementation Schemes 53
3.1 Platforms . 53
3.2 Singleprocessor implementation 55

3.2.1 Subprograms, task partitions, and clocks 56
3.2.2 Preemptive scheduling and data consistency 57
3.2.3 Sequential code synthesis 62
3.2.4 Three configuration rules for semantics-preserving

inter-task communication 65
3.2.5 Examples . 68
3.2.6 Formal analysis . 71

3.3 Multiprocessor implementation 82
3.3.1 Introduction . 82
3.3.2 Synchronization cascades 83

i

ii CONTENTS

3.3.3 Environment assumptions 88
3.3.4 Analysis of operational modes 92
3.3.5 Properties of synchronization cascades 96

3.4 Related work . 99

4 Linearizations, Property Preservation 103
4.1 Linearizations . 104

4.1.1 Overview . 104
4.1.2 Synchronization and composition 109
4.1.3 Words . 113
4.1.4 Automata . 119
4.1.5 Equivalence . 127

4.2 Property preservation . 131
4.2.1 Overview . 131
4.2.2 LTL for synchronous and linearized words 133
4.2.3 Preservation . 134

4.3 Related Work . 138

5 Conclusion 141
5.1 Summary . 141
5.2 Outlook . 142

A Definitions and proofs for Chapter 2 147

B Definitions and proofs for Chapter 3 149

C Definitions and proofs for Chapter 4 157

D The Brock-Ackerman anomaly 167

Chapter 1

Introduction

Reasoning about the correctness of programs, and exploring adequate ways
to represent them, has been at the heart of activities in computer science
ever since its inception. In the theoretical field, the last decades have seen
a shift of focus from research about sequential programs to formalization
and verification of concurrent, distributed applications. To grasp the be-
havior of a distributed application poses a particular challenge to the hu-
man mind, as these systems are capable of a large variety of possible in-
ternal choices, or non-determinism. The consequence is that distributed
systems are considered hard to develop, verify, and maintain.

At the same time in industry, the embedded control systems sector has
transformed dramatically. Firstly, the overall amount and complexity of
electronics and software is steadily increasing, culminating in a software
size of 10 million lines of code (LOC) in a present-day luxury automobile.
For illustration, this is roughly one third the size of a modern-day PC op-
erating system, with notably higher reliability requirements, and within a
much more heterogeneous technical setting. Secondly, the connectivity of
formerly isolated functions has increased at a similar pace, such as integra-
tion of engine management, chassis control, and interior body electronics
to integrated functionalities in automobiles, or combination of formerly
independent cockpit avionics and flight control units to sophisticated fly-
by-wire controls in aviation.

Obviously, increased complexity and connectivity pose new verifica-
tion and integration challenges. Understanding, debugging, and servicing
complex and connected systems is hard: for instance, an estimated 70% of
all electronic failures occuring in vehicles are of sporadic nature [Ele05],
meaning they cannot be easily reproduced. To illustrate the commercial
magnitude of the problem, the percentage of electronics-related causes in
vehicle breakdowns has continually increased to nearly 60% in the last

1

2 CHAPTER 1. INTRODUCTION

years [Dud04], and 17% of all car owners interviewed in a study had expe-
rienced problems with electronic controls in their vehicles [Kfz04]. Given
the proportion of the current problem in embedded control systems, and
given the ambition of computer science to represent and understand dis-
tributed functionality, it is therefore quite natural to ask how the theoreti-
cal work may influence the developments in practice.

As a contribution, this thesis relates a particular programming model
for distributed systems, synchronous dataflow programs, to the particular ar-
chitectures and constraints of an industrial domain, automotive control sys-
tems, and related domains.

1.1 Problem Statement

The domain: Automotive control systems. Embedded control systems
continuously respond to incoming physical and user input by interfering
with the environment e. g. through actuators. Typical examples for auto-
motive control systems include drivetrain (engine, gearbox) management,
chassis controls, or interior body controls. The following application as-
pects of automotive control systems are centrally considered in this thesis:

Resource-bounded algorithms. Applications in automotive control typi-
cally do not rely on features that cannot be tightly bounded in terms
of timing and memory consumption. Such dynamic features would
include recursive function calls and datatypes, or dynamic memory
and process creation. Control algorithms can typically be written with-
out dynamic features: iteration/recursion is restricted to traversals of
fixed-size data structures, and dynamic memory/process creation is not
needed.

Time is essential and uniform. Time is considered an essential part of
modeling the application. This is true, for instance, if an integration al-
gorithm with reference to physical time is used, or if a watchdog timer is
employed, which may elapse after a given time interval. Control algo-
rithms for physical plants are tightly dependent on the passage of time
in the system’s environment, and are therefore often designed with re-
spect to some uniform notion of time across the system.

Throughout this thesis, the term platform comprises technical infrastruc-
ture like processors, networks, operating systems, sensors, and actuators.
On the level of platforms, the following aspects are seen as central to the
application domain:

1.1. PROBLEM STATEMENT 3

High efficiency demands. Large production volumes and the focus on
per-unit costs necessitate a minimum of computational resources with
maximum utilization. This need for efficiency calls for highly opti-
mized implementation techniques for applications, and is also clearly
reflected in typical automotive platform technologies. As a concrete
technical example, the automotive operating system ERCOSEK[PMSB96]
uses a specific wait-free scheme for inter-process communication, which
sacrifices inter-task synchronization for speed, minimizing inefficien-
cies due to context changes and blocking times. Secondly, the upcom-
ing AUTOSAR [AUT03] communication infrastructure uses statically
generated communication layers, sacrificing some dynamic behavior
features for performance.

Firmly established platforms. In automotive systems, for a number of
reasons, there is a strong tendency to remain committed to existing plat-
form technologies, such as bus systems or operating systems. Platforms
cannot be switched on-the-fly to adapt to new paradigms of compo-
nent definition and composition. This is a noteable difference to do-
mains such as client devices in embedded telecommunications or web
services, where a much higher fluctuation rate in platform technologies
can be afforded. Consequently, our approach needs to be particularly
suited for the established platforms in the automotive domain, such as
OSEK [OSE01] and CAN [Ets01], and related technologies.

Need for simplicity. Virtually no one will deny the virtue of simple and
effective languages and conceptual models in software engineering. For
instance, much of the progress in software development productivity since
the machine language age can be attributed to the availability of high-level
languages and compilers. In this context, one may adopt Brooks’ [Bro87]
qualitative differentiation between “essential complexity” for the difficul-
ties inherent in the nature of a given software, and “accidental complex-
ity” for the noninherent characteristics having more to do with a particu-
lar way of producing the software. Clearly, though formal languages are
not a panacea for the more universal problems of software engineering,
they should on their part minimize the need for expressing accidental in-
formation, and should allow developers to concentrate on the essentials
of an application. A good language can reduce the number of concepts
necessary to express a given operation, data element, or relationship. In
support of this argument, most studies on quantifying development effort
[Alb79][Mac94] have accepted an intuitive association between (measur-
able, language-related) aspects of system size and interconnectivity on the

4 CHAPTER 1. INTRODUCTION

one hand, and effective product complexity and development effort on the
other.

For illustration how accidental information may affect productivity, it
shall be worthwile to look at an example:

Example (Simplicity vs. productivity). Consider firstly, the difference
between an integer modulo operation in a high-level language, and the
corresponding sequence of register load, addition, comparison, sub-
traction, and register store operations in assembly language. The as-
sembly code version is harder to get right on the first try, and may be
written differently by different developers although the same task is
performed, causing difficulties in understandability and maintenance.
As a second example on a higher level, consider the case of control sys-
tems engineering: block diagram languages such as Simulink [MW]
capture domain-specific design paradigms in a simple-to-use, visual
fashion, and provide reusable, pre-validated library blocks for standard
computations that are effectively part of the language itself. A discrete
transfer function, for instance, is one library block with a number of
configurable parameters in Simulink, whereas a C implementation of
the discrete transfer function may involve several tens of lines of code,
again with a large accidental variety in possible solutions.

Need for formal foundation. For a given (suitable) language, the need
for a formal foundation of the language is evident. Formal foundation
means that both allowable language concepts and their interrelations (syn-
tax), as well as their meaning, for instance in terms of behavior or timing
(semantics), are well-defined and clear. Formal need not necessarily mean
mathematical, but it is largely undisputed that the established mathema-
tics-oriented ways of capturing syntax and semantics have contributed
greatly to the understanding and development of languages and their
foundations.

In the field of sequential languages such as C/C++, Ada, or Java, most
syntax and semantics features are intuitively well-understood by trained
developers. Sequential languages rely on the von Neumann machine mo-
del, where a program modifies a shared memory area through successive
statement. The von Neumann model, along with language features such
as static typing (e. g. Java) or procedural and object-oriented program-
ming, is strongly represented in engineering and computer science educa-
tion. In stark contrast to this situation, the field of distributed embedded
systems lacks a commonly agreed “language” for system composition at

1.1. PROBLEM STATEMENT 5

a level higher than individual statements, threads, and low-level synchro-
nization/communication primitives. Therefore, as of today, building dis-
tributed embedded systems is radically different from building sequential
programs: both syntax and semantics are not explicitly defined in many
application contexts, and therefore unclear.

Without a language for system construction, the allowable syntax for
high-level composition are undefined, or only very implicitly captured by
a number of heterogeneous information sources. Similarly, the semantics
of system interfaces and composition is unclear in such a setting. The lack
of a high-level language for system composition forces detailed knowl-
edge of the code, of configuration parameters of the platform such as
thread and message priorities or frequencies, and of causal relationships,
in order to obtain a rudimentary understanding of communication and
activation semantics on a higher level.

Example (Lack of language illustrated). As an illustrating example
for lack of syntax, two engineers designing software componentsA and
B, respectively, may decide to implement a FIFO communication link
between A and B. Without an appropriate language, this chosen high-
level “language construct” will be buried in the code of A and B, along
with possibly some database entries, textual documents, or configura-
tion files. The precise semantics of the above communication link, such
as timing and reliability of message transport, and encoding of message
contents, cannot be easily defined on a higher level if no appropriate
language exists. As a consequence, a thread for component B receiv-
ing a message from a thread for component A, running on some other
processor, may or may not reliably receive the message after emission.

To improve on this situation, standardization efforts such as AADL
[Soc04], AUTOSAR [AUT03], or SysML [Sys05], are underway, giving syn-
tax-oriented definitions of domain-specific languages for high-level com-
position. An appropriate high-level semantics for communication and syn-
chronization in distributed embedded control systems is so far not an in-
tegral part of these efforts: besides the work in the AADL context on hy-
brid automata formalization[Ves00], the standardization efforts do not yet
provide a tightly defined computational model, or ignore semantic issues
completely.

Need for compositionality. In mathematics and semantics, the principle
of compositionality states that the meaning of a complex expression is de-
termined by a combination of (1) the meaning of its constituent expression

6 CHAPTER 1. INTRODUCTION

and (2) some given rules to combine the individual meanings. While there
are well-known examples for non-compositional theories on a purely the-
oretical level, when applying this idea to the incremental construction of
a software system, the theoretical compositionality criterion can often be
fulfilled in some way, but the nature of the rules is important. Composition
rules for a scaleable approach to software construction should correspond
to some intuitive expectation of the developer, and interference between
components should be restricted accordingly. An effective compositional
methodology should yield the ability to build and understand large sys-
tems by repeating the task of building (or plainly using) and understand-
ing smaller ones. We shall illustrate in Chapter 2 how compositionality
can be related to aspects of languages for software composition.

Need for disciplined refinement. In the process of gradually designing
a complex embedded system, it has been recognized that there is a strong
need for varying modeling paradigms and degrees of precision at different
development phases [Bro93][BRS00][AAR05]. The spectrum ranges from
informal, weakly structured, largely textual requirements models to de-
tailed behavioral models of a system. This thesis shall be concerned with
the “lower” end of this spectrum: detailed, behaviorally defined models of
embedded control systems, which may serve as a basis for verification and
validation. Such behaviorally defined models or programs are, in turn, ab-
stractions of their corresponding implementations. The usefulness of such
abstractions in the development process strongly hinges to the ability to
relate models and their refinements in a disciplined fashion [Sel03]. As a
consequence of the growing system complexity, behavioral properties, such
as a verdict on semantic interoperability of two software components, are
especially difficult to relate and verify. By relating abstract and refined
behaviors in a well-defined and scaleable manner, a refinement discipline
is a central enabler for early validation and verification based on system
models.

Structure and behavior of abstract models and their refined implemen-
tations can related in different ways. The methodical background of this
work is mainly correct-by-construction or top-down synthesis of implemen-
tations from abstract programs, or models. In a correct-by-construction
approach, an implementation is obtained from an integrated model of the
system by a synthesis procedure. The procedure is sufficiently automated
and/or formalized so that a high degree of confidence in the preservation
of essential properties along the synthesis process is justified.

The methodical dual of top-down synthesis are various forms of con-

1.2. CONTRIBUTIONS 7

formance checking, or bottom-up verification [BJK+05][RWNH98][dBOP+00]
[RH05]. Bottom-up methods compare an abstract program with an (of-
ten independently constructed) implementation with respect to a given,
normative refinement relation. Comparison may be complete, such as in
formal verification, or incomplete, such as in monitoring or testing. Com-
parison may also be offline, such as in testing or formal verification, or
online, such as in monitoring. Again, the preservation of essential prop-
erties is the core concern, and the choice of both refinement relation and
considered scenarios in incomplete verification depend on the properties
of interest. The top-down and bottom-up approaches can be seen as com-
plementary, each with its specific advantages and disadvantages.

1.2 Contributions

Review of synchronous dataflow for software construction. This the-
sis gives a overview of the synchronous dataflow model, and examines
the dataflow paradigm with respect to some application-related concerns
such as simplicity, suitability for architecting, and suitability for program-
ming. The class of systems considered in this thesis, distributed, software-
intensive systems, is somewhat different from the more traditional, ac-
cepted domains of synchronous programming, such as hardware design,
and (local) control algorithm design [BCE+03].

Correct-by-construction methods. A correct-by-construction method for
synchronous dataflow models yields correctness obligation on different
granularity levels of a distributed software system. In automotive appli-
cations, software is partitioned into tasks, several of which may be run-
ning on a single processor. Several processors, in term, are combined
over a communication medium, such as a bus system. Correctness obli-
gations with respect to communication and synchronization appear on
the intra-task level, inter-task level, and inter-processor level. Ensuring
correct intra-task communication and synchronization as part of sequen-
tial code synthesis for synchronous dataflow models is state of the art
[HRR91][ETA][MW][dSP]. For each of the remaining two levels of inter-
task and inter-processor communication and synchronization, the thesis
provides suitable methods for correct-by-construction implementation of
synchronous dataflow models.

The first method, outlined in Section 3.2, considers the inter-task level
on a single processor. Semantics-preserving inter-task communication ba-
sed on preemptively scheduled tasks with fixed priorities is achieved us-

8 CHAPTER 1. INTRODUCTION

ing wait-free inter-process communication (IPC). In wait-free IPC, the op-
erating system uses a double- or triple-buffering technique to ensure that
a reader task will have consistent input values for the duration of its acti-
vation. While there are a number of inter-task communication primitives
known from the literature which ensure atomic and consistent accesses to
shared data, wait-free IPC has emerged as the mechanism of choice for
control law computations in resource-restricted applications [PMSB96].
The singleprocessor implementation scheme is based on additional as-
sertions with respect to presence/absence patterns of message streams
(clocks). Using our method, one can implement a zero-delay or unit-delay
communication link specified in the synchronous dataflow model. The
kind of implementable delay depends on the relation of the sender and
receiver clock.

As part of the AutoMoDe project [BBR+05], the singleprocessor method
has been implemented in an automatic translator from the synchronous
AutoFOCUS tool [HSE97] to ASCET [ETA] designs.

The second method, described in Section 3.3, is suited for the inter-
processor level. Preservation of communication and synchronization in
networks is facilitated by a common time base, and by using established
bounds on message latencies. Event-triggered bus systems such as Con-
troller Area Network (CAN), are not designed for providing a common,
fault-tolerant time base. Furthermore, message latencies cannot be lo-
cally determined. The multiprocessor method presented therefore relies
on a simple, fault tolerant synchronization layer, which uses application
data traffic to keep nodes loosely synchronized, and a technique for es-
timation of message latencies based on global knowledge about period-
icities and size of application messages [TB94]. Our method then guaran-
tees semantics-preserving implementation under given operational condi-
tions.

One novelty of both methods over other approaches for compositional
real-time systems design, such as time-triggered architectures [Kop97], is
the fact that a possibly wider set of platforms is supported. To achieve
this, a method spanning both application development (with synchronous
dataflow models) and platform is used, instead of a particular platform.

Refinement relations. A suitable definition of a refinement relation is
at the heart of both top-down and bottom-up approaches. Clearly, such
refinement relations are of some theoretical interest by themselves, inde-
pendently of their actual methodical use. This thesis describes a partic-
ular refinement relation in Chapter 4, which reflects implementations of

1.3. THESIS OUTLINE 9

synchronous dataflow models based on subprogram threads communi-
cating through channels of finite size. For this purpose, the notion of lin-
earization is introduced. We then formalize the refinement relation on two
levels: firstly, between runs of synchronous programs and their lineariza-
tions by means of a map between synchronous words and their linearized
counterparts. Secondly, by the definition of synchronous automata and
linearized automata, and a construction rule for the latter, based on their
synchronous equivalent. The two formalizations for languages and au-
tomata are shown to be coincident.

Property preservation. The refinement relation etablished in Chapter 4
is employed in the same chapter to demonstrate how some established
property of a synchronous program in the temporal logic LTL implies
an equivalent property for the linearization. This kind of implication is
generally known as property preservation, and is an essential ingredient
of any disciplined method for refinement. We sketch a simple algorithm
that decides whether a given LTL formula is preservable according to our
framework. The method utilizes knowledge about immediate dependen-
cies between the synchronous program’s variables, which is a byproduct
of the mandatory causality analysis performed on synchronous programs.

1.3 Thesis Outline

Chapter 2 motivates and introduces a simple synchronous dataflow lan-
guage, which is the formal basis for the refinement-related work in Chap-
ters 3 and 4. The concrete choice of computational model is supported
by a review of the particular features of dataflow languages, and by an
evaluation of the synchronous dataflow model with respect to architecting
and programming of software. Subsequently, the syntax and semantics of
SSDL is defined, which is a very simple synchronous dataflow language,
including the particular aspect of causality analysis.

Chapter 3 describes two implementation schemes for synchronous dataflow
programs: firstly, we define a singleprocessor implementation scheme,
where a synchronous dataflow program is partitioned into several threads
running on one processor, and the composite multithreaded program im-
plements the semantics of the synchrous dataflow program using inter-
thread communication primitives. Secondly, an implementation scheme
for the multiprocessor case is described, where a synchronous dataflow

10 CHAPTER 1. INTRODUCTION

program is split across several processors communicating over some event-
triggered, bounded-jitter communication medium. Both implementation
schemes are shown to preserve certain critical aspects of the dataflow pro-
gram’s semantics.

Chapter 4 defines a general formal refinement relation between a syn-
chronous dataflow program and its implementation based on threads and
finite channels. For this purpose, the notion of linearizations both on
the level of languages (words) and operational models (automata) is in-
troduced. Based on the refinement relation between words of the syn-
chronous program and their linearization, it can be shown that a restricted
class of behavioral properties in the temporal logic LTL is preserved from
synchronous dataflow programs to their linearizations.

Chapter 5, finally, gives a conclusion and an outlook of this thesis for pos-
sible future work.

Chapter 2

Synchronous Dataflow Programs

This chapter motivates and introduces a synchronous dataflow language
called SSDL, which will form the formal basis for the work on distribu-
tion in Chapters 3 and 4. In Section 2.1, we justify our choice of compu-
tational model by giving a short historic account of the development of
dataflow languages and their particular features, and by evaluating the
dataflow model, in particular the synchronous dataflow model, with re-
spect to its suitability for various software engineering tasks. Section 2.2
defines the syntax and semantics of SSDL, which is a very simple syn-
chronous dataflow language. The special aspect of causality analysis is
discussed: this analysis is used to identify and reject invalid SSDL pro-
grams. Section 2.3 briefly summarizes some related publications.

2.1 Rationale

Before delving into the definition of a synchronous dataflow language, it
will be fruitful to analyze how the dataflow paradigm came about, and
to shed some light on the reasons why this computational paradigm may
be more useful than others in the targeted domain of automotive control
systems, or software engineering for real-time systems in general.

2.1.1 Dataflow: A brief history

Characteristics. The currently most popular usage of the term dataflow
is in software engineering, where it generally refers to the flow of in-
formation between data processing entities, or components. Earlier uses
of the term dataflow stem from parallel computing. Unlike controlflow-
oriented computing models such as the popular sequential programming

11

12 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

languages, the dataflow paradigm focuses on the directed exchange of
data between units of computation, or processes. A dataflow program can
be visualized as a directed (multi)graph whose nodes denote computing
processes, and whose edges denote data dependencies between processes.
Among most prominent characteristics of dataflow languages are freedom
from side effects, flexibility with respect to scheduling, and various forms of
totality.

Freedom from side effects. The result of a process is solely dependent on
its inputs, and there is no other (more or less implicit) form of com-
munication. In the related area of functional languages, this property
is often referred to as “referential transparency”. In contrast, most se-
quential languages (C, Java) rely on the von Neumann model, where a
global state visible in different regions of the control flow (and visible to
several functions) makes both the dataflow and the order-dependence
between different parts of a program implicit.

Flexibility with respect to scheduling. The possible orderings for execu-
tions of a program are directly defined by the data dependencies. Thanks
to this property, for instance, one does not need explicit synchronization
constructs in the language. Within the allowed orderings, the result of a
computation does not dependent on the particular chosen order of eval-
uation: data values in a dataflow language cannot be updated by side
effects. Dataflow languages admit parallelism: For instance, for evaluat-
ing f(g(x), h(x)) in an eager (data-driven) dataflow language, one can
evaluate g(x) and h(x) simultaneously.

Totality. A dataflow program in (most) dataflow and functional languages
for the embedded sector will provide a response to any input, thus con-
stitutes a total function over its inputs. This corresponds to the intuitive
notion of a reactive program. Totality is compromised if the language
allows unbounded recursion, where termination is undecidable. Thus,
only languages with restricted forms of recursion, such as the SSDL lan-
guage defined in Section 2.2, satisfy the totality criterion.

Development. Historically, there have been several well-known dataflow
languages [AW77, MS83]. Synchronous dataflow languages shortly fol-
lowed, with the definition of LUSTRE and SIGNAL in the 1980s ([BCE+03]
is a recent paper)1. For an up-to-date, somewhat programming-centric
survey of dataflow languages, see [JHM04].

1The term “synchronous dataflow” is also used for the Lee/Messerschmitt model
[LM87], which is well-known in the signal processing community. This model shares

2.1. RATIONALE 13

Dataflow got its theoretical underpinnings when Kahn [Kah74] defi-
ned dataflow programs as sets of recursion equations, and used the least
fixed point to characterize their behavior. Kahn’s work is based on the de-
notational or Scott/Strachey approach [SS72], which generally uses fixed
point theory on various forms of partial orders to characterize computa-
tions, and yields mathematically tractable and compositional semantics
for a number of computational paradigms [Win93].

Many of the features of dataflow languages are actually shared with
functional or applicative languages, which had been developed since the
1950s based on foundational work by Church in the 1930s. The tight
relation between functional or applicative programming with dataflow
programming has been noted by countless authors. It comes as no sur-
prise that there is both a wealth of functional language researchers having
pushed their approaches towards the use as a parallel language, [AW77,
MS83, Nik90, CCL91] as well as dataflow languages being embedded in
functional languages [Ree95] [CP96].

The precise difference between a “functional” and a “dataflow” lan-
guage is somewhat blurry. As a tendency, most classical dataflow lan-
guages tend to be stronger on target-specific considerations, such as op-
timization for specialized target architectures. On a language level, the
atomic unit of computation in dataflow is a process, the primary commu-
nication mechanism is through streams, and recursion may be restricted
to special forms.

Functional languages, on the other hand, typically put more empha-
sis on type systems and advanced language features such as higher order
functions, are less specialized with respect to communication, and allow
more generic forms of recursion. The atomic unit of computation is the
operator.

Programming and specification. Traditionally, in the 1970s and 1980s,
the major goal in conceiving dataflow languages had been to provide a
suitable programming model for programming dataflow hardware [JD75],
a computing architecture that was quite popular in academia at the time.
However, the quest to replace the predominant von Neumann architecture
by dataflow hardware never materialized.

Clearly, the failure to establish dataflow on the hardware level does not
necessarily diminish the conceptual quality of the dataflow programming

some characteristics with [BCE+03], such as static predictability, but is generally less
expressive with respect to multirates, and is typically observed in an untimed fashion,
similar to the linearizations described in Chapter 4.

14 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

model on the application or software level. In fact, as a consequence of
the continuing dominance and superior efficiency of the von Neumann
processor, dataflow researchers have shifted their attention to implemen-
tation of dataflow programs based on multithreaded architectures [PT91].
In a multithreaded implementation of a dataflow program, the parallelism
inherent in the program is exploited on the (macro) process level by clus-
tering programs to medium-grain sequential threads, running on paral-
lel von Neumann nodes. On the (micro) instruction level, on the other
hand, each partition of the dataflow program is translated to a thread in
a sequential programming language. The exploitation of the remaining
parallelism on an instruction level is then left to sequential language com-
pilers, which are assumed to be capable of exploiting advanced processor
features such as pipelining [PT91].

For sequential code generation for threads, the class of synchronous
dataflow languages enjoys particularly efficient properties, yielding much
superior performance characteristics for generated code as opposed to
dataflow hardware [GEB03]. The multithreaded model fits well with cur-
rent implementation techniques in domains such as automotive or avion-
ics control systems, where highly optimized (and often hand-programmed)
code for single threads, and communication buses between different pro-
cessors, are nowadays standard.

For specification as opposed to programming, it has long been recog-
nized that the dataflow approach, once the theoretical shortcomings of the
Kahn model for specifying nondeterminism are overcome, is a powerful
tool for specification as well [Bro86].

2.1.2 Why dataflow programs?

Simplicity of dataflow. Dataflow networks enjoy some typical proper-
ties of well-defined process concepts, such as commutative and associa-
tive composition, and recursiveness of the concept of a process, which
again makes understanding and handling of designs simpler. Dataflow
programs make control decisions locally, and in relation to this aspect, ad-
mit the trace based formalization based on Kahn’s work. This choice has
far-reaching implications both for easy understandability, and for pow-
erful ways for methodical handling of designs, such as abstraction and
refinement steps. We will explain each of these points in more detail.

Simple composition. Parallel composition of dataflow networks is com-
mutative and associative: Composition imposes no particular order

2.1. RATIONALE 15

(A||B = B||A), and networks of a larger number of processes are un-
ambiguously defined (A||(B||C) = (A||B)||C = A||B||C).

“Process” concept is recursive and unique. In dataflow programs, net-
works of processes are again processes, and processes are the sole unit
of program structure. The simplicity is mirrored in the mathematical
model, for instance defined by the semantics of SSDL in Section 2.2.2.
The composition of many elementary functions in the form of an equa-
tion system is again a function from the (composite) inputs to the (com-
posite) outputs.

Local control. A dataflow program has a clear distinction of inputs and
outputs. Processes control only their outputs, and outputs are only con-
trolled by their processes. Inputs are unconditionally accepted; com-
position in Kahn-like dataflow networks does not support the notion
of a process “blocking” on an available input. Dataflow networks are
therefore “input-enabled” [LT87]: they provide a response to any in-
put2. This is a noteable difference to other input-blocking approaches
to concurrency such as process calculi [Mil80][Hoa85], which do not
strongly distinguish inputs and outputs, and thus allow processes to
control a transaction symmetrically.

Simple trace-based formalization. Deterministic dataflow networks are
fully characterized as functions over traces, or streams. As an example,
consider the behavior of a frequency divider, shown in Fig. 2.1(a). The
frequency divider receives a stream of 0s and 1s as inputs, forwards ev-
ery second 1 as output, and outputs a 0 otherwise. As a deterministic
dataflow program, the frequency divider can be fully characterized by
a complete (and typically infinite) set of input/output pairs: Fig. 2.1(b)
shows some example pairs. Trace-based formalization is comparatively
simple and understandable, and admits lightweight definitions of ab-
straction and refinement relations between different stages of a design.
For instance, if behavioral refinement is characterized by the subset
relation on trace sets, then the important and intuitive class of trace-
universal properties is preserved. Examples for such properties are “for
all behaviors, a bad message σ̄ is never produced” or “for all behaviors,
a message σ is eventually followed by a message %”.

As a counterexample to dataflow, input-blocking formalisms do ad-
mit trace-based characterizations, but these characterizations are either

2In principle, this notion of response includes possibilities for under-specification,
such as chaotic behaviors.

16 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

1111... 0101...
frequency-divide

(a) Dataflow process

in out

1 0
11 01

111 010
1111 0101...

...
(b) Input/output pairs

Figure 2.1: A dataflow network example: frequency-divide

complex [Hoa85], or too abstract to fully capture the behavior. Resort-
ing to more fine-grained observations of system runs, such as compu-
tation trees, can be problematic for handling refinement, or for compo-
sitional reasoning [LT87][BKP84].

Suitability of dataflow for software architecting. Languages in software
engineering are used both for architecting software, and for programming
software. Architecting here refers to large-grain design [PA92][SG96] of
software, where the focus is chiefly on software components, their inter-
faces, connectors between components, and overall interconnection struc-
ture. While most dataflow languages are not specifically designed for
coarse-grained definition of software, they share many characteristics with
specific architecture definition languages (ADLs [MT00]), and are in many
ways suitable for high-level design.

Simple concepts. Dataflow languages have only one (recursive) notion of
process or component, and only one notion of communication by (pos-
sibly typed) dataflows. At first glance, this simplified universe of con-
cepts may seem to stand in the way of “real” software design, which
is inherently complex, and involves a plethora of heterogeneous no-
tions of structure and communication. Consequently, other commer-
cially established modeling techniques are typically much less homo-
geneous: In ASCET [ETA], there are at least four different classes of
structural elements, and a multitude of communication mechanisms.
A composition of ASCET processes is not a process, and the compo-
sition of ASCET methods is not a method. In UML [OMG05] designs
targeted for real-time applications, classes and objects need to be classi-
fied as “active” or “passive” in accordance with their mapping to tasks
in the implementation, which significantly determines their behavior.
In UML-RT [IBM03]3, two “capsule” objects may communicate either

3We are using IBM’s Rational RealTime tool here as a reference implementation of

2.1. RATIONALE 17

by synchronous method calls, or by asynchronous messages.

There is, however, evidence that this richness of concepts is inadequate
for describing software in an implementation-independent and coarse-
grained way, such as in architecting. Having many different options for
communication and composition can be problematic: they typically en-
courage developers to encode implementation-specific considerations
in the model. For instance, a developer may choose to model a client/
server-style interaction between two objects as a synchronous method
call. This seemingly minor decision ties the two objects together for
the implemententation; once the decision has been made, replacing the
synchronous call by a communication primitive suitable for distribu-
tion is usually very hard and time-consuming. Similar problems have
been reported by members of the Titus [E+97] project.

Trace-based characterization. There is some indication that for software
engineering, trace- (or stream-) based characterizations are more under-
standable than tree-based characterizations. Vardi [Var01] concludes,
in the context of temporal logics for model checking, that “it is simply
much harder to reason about computation trees than about linear com-
putations.” The popularity of traces as a way to characterize reactive
system is manifested by the widespread use of trace-like formalisms
such as Message Sequence Charts [Int96], which support an example-
oriented (existential) style of specification.

Explicit and complete notion of interface. In dataflow languages, similar
to ADLs, the interface of the composite process is defined on the level
of the composite in its entirety. Consequently, there are no “hidden”
parts of the interface defined on the level of constituents further down
in the containment hierarchy. In standard UML [OMG05], by compari-
son, the externally visible interface of a composite, consisting of a com-
posite class aggregating other classes, may include publically visible
attributes and operations of the aggregated classes, and therefore may
be wider than the composite class’s interface itself.

Explicit assignment of data to processes. The lack of implicit communi-
cation and side effects in dataflow and functional languages is an in-
stance of data encapsulation. Data encapsulation is an important pre-

state machines and communication in the UML standard. This tool is both popular, and
shares many characteristics with other real-time UML tools evaluated in a case study
[SRS+03]. For aspects of the communication semantics, the current UML standard itself
[OMG05] is too vague for an adequate assessment.

18 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

requisite for compositionality, which in turn is a crucial property for
reliably building larger systems from smaller ones.

Order-independence. Because of commutative and associative composi-
tion, programs and specifications do not depend on the ordering or in-
dividual processes, which makes them easier to understand and less
fragile in maintenance. Note that this is not true for the majority of
commercially established modeling approaches: For instance, dataflow
graphs in the popular ASCET-SD dataflow tool [ETA] need additional
sequence numbers to be well-defined, and in implementations, ASCET
processes must be assigned to tasks in a sequence, where A; B; may have
different behavior than B; A;. Similarly, (multitasking) implementations
of UML-RT need to incorporate scheduling choices in addition to the
UML-RT model itself to obtain repeatable behavior, effectively yielding
both non-commutative and non-associative composition.

Easy encoding as visual language. Associativity and commutativity allow
for a straightforward encoding in a graph-like fashion, without addi-
tional annotation. Visual modelling has been a strong trend in software
engineering recently, and the popular dataflow languages come with
a graphical environment for specifying dataflow networks. Academi-
cally, research on the question whether visual languages are superior to
textual languages, for instance with respect to to comprehensibility or
overall productivity, is inconclusive. For instance, [BH95] claim that vi-
sual dataflow formalisms improve communication facilitated by visual
syntax intuitive notation appealing to novices. [GP92], on the other
hand, identify some problems and tradeoffs that occur when using vi-
sual dataflow languages vs. textual languages.

Programming: State of the art. In contrast to architecting, the term “pro-
gramming” is interpreted here as the activity of fine-grained software de-
sign. We shall first take a critical look at the state of the art in the program-
ming field before proceeding with an assessment of the suitability of the
dataflow approach for programming.

From a platform point of view, von Neumann processors are the domi-
nating platform for implementing software. Sequential languages, such as
C/C++, Java, and Ada, are well-fitted to exploit the von Neumann proces-
sor. The languages’ constructs for communication and control flow closely
mirror the typical memory structure and available instruction set of the
processor. As a consequence, in the fine-grained view from thread gran-
ularity down to the instruction level, software can be naturally expressed

2.1. RATIONALE 19

in sequential languages. The close match of language and predominant
architecture, along with the general familiarity of engineers with sequen-
tial languages, is probably the chief reason why sequential languages are
so firmly established for fine-grained software design. The established
concurrency primitives in programming, on the other hand, are strongly
influenced by operating system (OS) concepts rooting back in the 1960s,
such as threads, semaphores, monitors, and message pipes. We will refer
to the combination of sequential threads and OS concurrency primitives
as the classic multithreaded approach.

For programming concurrent systems, the classic multithreading ap-
proach still leaves things to be desired. Lee concludes in [Lee05] that mul-
tithreaded programs can be very difficult to understand, and that the use
of threading primitives introduces a nontrivial amount of unrealiability to
the programming process.

Example (Multithreaded Java application [Lee03]). For illustrating
the weaknesses of the classic multithreading approach, Lee [Lee03]
cites a programming example from a large multithreaded Java applica-
tion, where a single synchronization statement was added to otherwise
highly reliable code. In the example application, the introduction of
synchronization caused a potential deadlock, which went undetected
in component testing, and was only accidentally discovered by users
of the application. Analysis of the cause of the deadlock took weeks,
and correction was difficult. Similar experiences with classic multi-
thread programming has been recorded by multiple members of the
AutoFOCUS project[HSE97].

The perceived incomprehensibility and unreliability in the domain of
concurrent and embedded systems design may be tracked down to at least
two conceptual misfits: lack of compositionality, and a missing specification
for timing.

Lack of compositionality. The example of globally violating a property
(deadlock-freedom) for a combination of locally validated and reliable
subsystems is symptomatic for a more general phenomenon. For a
large class of important properties, existing approaches for classic mul-
tithreading are not compositional. That is, if one obtains assurances in-
dividually about each component in a group, there is no systematic and
transparent way to deduct assurances for the composition of individual
components, except in trivial cases.

A typical manifestation of this problem is priority inversion [GS88]: pri-

20 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

ority inversion occurs when processes interact, for example by entering
a monitor to exclusively access a shared resource. Under certain circum-
stances, the low priority process may block the high-priority process.
The conceptual problem is that the apparent composition mechanism
(priority-driven execution by a scheduler) is intercepted by a “hidden”
and nonobvious form of interaction through the monitor mechanism
provided by the operating system, leading to non-compositionality.

No specification for timing. For the embedded systems sector, time and
the timing of behaviors is an indispensible part of the knowledge about
an application and its interfaces to the exterior. In classic multithread-
ing, knowledge about timing is not handled in a specification fashion,
where times and time bounds are asserted beforehand and explicitly.
Rather, time in classic multithreading is handled in a programming fash-
ion, where timing properties can be inferred primarily on the level of
atomic statements and primitives, thus involving detailed knowledge
of the application software and platform. This is true both for execution
timing, and for activation rates. We shall briefly summarize the problems
with capturing timing through programming, as opposed to having a
timing specification.

For execution timing, the only information inherently captured by a
classic multithreaded design is the code itself, so the actual execution
timing of a thread on a particular platform could be measured in lieu
of a timing specification. However, compile-time worst case execution
time (WCET) determination is notoriously difficult [KP02]. Therefore
this way of capturing timing in the design is highly implicit, and hardly
useful for establishing timing correctness for larger systems.

For activation rates, multithreading applications typically capture the
activation policy of threads in low-level constructs. For instance, an in-
terrupt service routine (ISR) called after the occurence of some external
event may contain a call to the OS scheduler, which in turn releases an
application task handling the event. As another example, timer inter-
rupts may be used to increase internal counters, and timed application
tasks are dispatched based on the value of these increasing counters.
Again, for both examples, it is highly implicit how the different parts
of multithreaded design are activated over time, how activations are
causally related, in which order shared data is being processed by the
different parts, and so on.

2.1. RATIONALE 21

Suitability of dataflow for programming. Dataflow programming nicely
resolves the issue of non-compositionality in programming, and provides
a simple notion of timing specification based on timed interpretations of
traces. However, in the field of programming, the prevailing dominance
of sequential programming and the classic multithreading approach keeps
the acceptance of dataflow models restricted to special domains. The two
domains where dataflow programming is firmly established, though, are
signal processing, and design of digital controllers. We will restrict our treat-
ment to the latter, as the two domains share many characteristics.

In the digital controller field, synchronous dataflow tools such as MAT-
LAB Simulink4 or SCADE are well established. The assumption of a glob-
ally synchronized timebase in synchronous dataflow matches well with
the uniform physical time assumptions inherent in controllers. Block dia-
grams for specifying controllers have been long established in control en-
gineering education. Synchronous languages have successfully adapted
concepts directed towards digital implementation, such as clock calculi
(SIGNAL,LUSTRE) and sampling rates (SIMULINK), and concepts directed
towards more heterogeneous and control-intensive designs, such as au-
tomata extensions.

For other domains, the potential and limits of dataflow programming
(and, related, functional programming) are less clear, and the overall suit-
ability in comparison to sequential, imperative programming is somewhat
inconclusive. There are, however, some reports describing successful ap-
plication of functional languages in other domains, such as reports de-
scribing successful experiences with the Erlang functional language in te-
lecommunications applications [Arm96][Wig01].

2.1.3 Why synchronous?

Synchronous dataflow programs are a special case of timed dataflow pro-
grams. A dataflow program is timed if it admits a natural mapping from
its message streams to a global timebase. Most often, this timebase is taken
to be a discrete set. Two natural encodings for discrete time are explored,
for instance, in [BS01]. The first encoding is to use special time tick sym-
bols in streams to indicate the passage of one time unit. The second encod-
ing is by directly associating the index position of a message in a stream
with the global time.

At face value, timed dataflow allows natural modeling of real time sys-

4The discrete-time subset of Simulink qualifies as a synchronous language, as indi-
cated by the direct translation of Simulink to other synchronous languages [CCM+03a].

22 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

tems, that is, systems sensitive to the passage of time in their environment.
From a theoretical viewpoint, timed dataflow nicely resolves some issues
in dataflow, as discussed below. However, there is no free lunch: the timed
interpretation restricts dataflow processes to be time-preserving, that is, for
each time unit’s worth of messages consumed on the inputs, there must
be one time unit produced as output. In the context of the SSDL language,
a formal definition of a special case of time preservation is given in Sec-
tion 2.2.2. In practice, time preservation forces consideration of time in the
application model, something that comes in quite unnaturally in many
cases, especially in early design.

Example (Natural untimed models). Consider a bank database,
which sequentially processes incoming requests from a number of dis-
tributed ATMs. LetX be the time tick symbol, and let σ be an incoming
message. A timed specification must distinguish cases σXσ and σσ. In
the untimed model, both cases are equivalent. The specification for the
untimed case is easier to obtain, and would typically be perceived as
the more natural model.

As a serious drawback, though, the untimed interpretation of dataflow
models suffers from two problems. The first problem is resource bounded-
ness: The composition of two untimed bounded memory systems may not
be bounded memory. This may be adequate for specification, but is cer-
tainly not acceptable for (embedded systems) programming. The second
problem is that there is no simple and abstract semantics for nondetermin-
ism. In order to be adequately expressive, untimed stream processing net-
works must allow for nondeterministic processes. The seemingly straight-
forward approach of extending the functional semantics of [Kah74] to re-
lations over streams, however, is too abstract, and does not adequately
capture the behavior of such processes. We will discuss each of these two
points in some more detail.

Bounded resources. Information systems, and especially the kind of em-
bedded systems targeted in this thesis, have only bounded resources (time,
memory) to perform computations. From a theoretical viewpoint, un-
timed FIFO composition of individual bounded-memory processes with-
out further constraints does not guarantee bounded resources for infinite
executions. For an automata-theoretic argument, see [Cas92]. We shall
illustrate this peculiarity of untimed FIFO composition with a small ex-
ample:

2.1. RATIONALE 23

Example (Unbounded integrator). Consider the dataflow process
network faulty-integrator for a (Euler backward) integrator with
faulty feedback loop, shown in Fig. 2.2. The designer of the integra-
tor accidentally placed a double process in the loop: double forwards
on its output two symbols for each symbol it receives on its input. We
denote the streams processed by the individual processes as x, y, z, z′,
respectively. Each stream is a finite or infinite word of integer symbols.

Process I/O behavior
plus takes one symbol from each input and computes their sum

as output
Example: plus(123 . . . , 123 . . .) = 246...

double duplicates any incoming symbol on its output
Example: double(123 . . .) = 112233 . . .

fby0 outputs 0 as first symbol, followed by the incoming symbols
Example: fby0(123 . . .) = 0123 . . .

Process faulty-integrator is composed from operators that each
in isolation require only bounded memory. Using the time encoding
based on message indices, though, we can clearly deduce that double is
not time-preserving. Consequently, faulty-integrator is an instance
of the more general case of untimed process networks, where the com-
position may require unbounded memory.

It shows that the example is indeed not bounded-memory. Because
plus processes x and z′ symbols synchronously, and because double

produces two z symbols for each incoming y symbol, there will be un-
processed z or z′ symbols in the feedback loop for any nonempty run.
If we use a length operator # to measure the length of a stream, then it
is easy to show that the memory required for storing these unprocessed
symbols is at least #y symbols. It is also clear that, for any given finite
memory bound k > 0 for the symbol storage, there is always a run of
faulty-integrator where the symbol storage overruns k.

Popular modeling formalisms such as UML-RT [IBM03] also use the
untimed form of composition: messages are not time stamped, and pro-
cesses are not restricted to be time-preserving. Consequently, there are no
static guarantees about resource consumption, and it is easy to construct
state machines that will eventually overrun any memory limit. Clearly,
there is no easy way to provide bounds on timing in UML-RT either: in an
industrial case study Dohmen and Somers [DS02] conclude that “UML-RT
does not support the [...] implementation and verification of hard real-time

24 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

plus

doublefby0

x
y

z

z’

Figure 2.2: An unbounded dataflow network: faulty-integrator

constraints.” There are, of course, a number of academic contributions for
real-time analysis of UML models, such as [SPFR98], which typically rely
on a fixed mapping of capsules/objects to tasks, and a fixed assignment of
task priorities. However, the additional mapping information is typically
not considered part of the UML-RT “model” itself, as it would severely
limit implementation-independence and portability of the design.

No simple and abstract semantics. The deterministic dataflow seman-
tics of Kahn [Kah74] is simple, and admits the well-defined semantic frame-
work of stream-processing functions. However, Kahn networks without
time assumptions are generally not expressive enough. For instance, vari-
ous flavors of “fair merge” operators are characterized by the fact that they
can (operationally) test for absence. Testing for absence is essentially a dis-
tinction in the input/output behavior based on relative timing of message
sequences, and cannot be captured by untimed streams of data. Therefore,
we clearly have nondeterminism on the level of the untimed input/output
semantics.

Though this may sound like a fairly theoretical argument, time-sensitive
operations such as fair merging are very important for practical applica-
tions.

Example (Fair merge). Consider (1) again the bank database fusing
incoming ATM requests, (2) a vehicle dynamics coordinator in automo-
tive applications, which merges driver requests (accelerate, brake) with
stability intervention requests (e.g. car is skidding) in real time. Both
applications require merging of data in a fair, timely, and fault-tolerant
manner.

The straightforward approach to extend the Kahn model towards non-
determinism is to use history relations over streams. Due to the level of
detail of this semantics, however, the composition of some context with
two semantically equivalent non-deterministic dataflow systems, respec-
tively, may not yield two equivalent systems. The relational approach to

2.1. RATIONALE 25

nondeterministic dataflow networks is therefore non-compositional. This
is the Brock-Ackermann anomaly described in [BA81]. Some further dis-
cussion of this phenomenon will be given in the appendix.

2.1.4 Why discrete?

Time domains and computational power. By the way digital computers
are built, they carry with them a notion of discreteness of computations.
This is most clearly visible at the level of processor, or bus, cycles. Above
this level, it is also quite clear that basic instructions and bus cycles are
grouped to form more complex operations, such as the one-time execution
of a task, or a bus transaction. Thus, computational steps at any level of
detail are performed discretely, and the accurate handling of environment
events by a computer system is restricted to environments where some
minimum event separation holds. The straightforward solution to model
discrete computational steps is by choosing a discrete timebase, such as
the natural numbers, to logically model computational progress.

From the application point of view, this simple way of modeling time
may be inadequate. For instance, continuous controllers are frequently
encountered in the embedded systems domain: these systems are most
naturally modeled with respect to a dense timebase. Moreover, modelling
continuous mathematics theoretically requires an infinite number of com-
putations in a given time interval [Sta01]. In practice, symbolic and/or
numerical analysis with a finite number of computations is used, and
continuous-time design environments [MW] essentially “hide” the finite-
ness of the computer by approximating high-level symbolic constructs,
such as a continuous-time integrator, by means of a finite numerical inte-
gration algorithm.

Certain applications in discrete control, such as automata with real-va-
lued delays [AD94], form yet another application category with a dense
timebase, but finitely many computations. The finiteness of computations
is typically captured by some temporal progress criterion. This category is
also often referred to by the term “discrete-event systems”.

Under these circumstances, the choice of an adequate model for time
vs. computations becomes less clear. Let us summarize the two dimen-
sions of computational power and time domain in the context of reactive
systems:

Finite vs. infinite number of iterations. In a given finite time interval, is
the number of possible iterations finite or infinite?

26 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

Real vs. logical time domain. Should the time domain, i. e. the set from
which timestamps are drawn, correspond to real time (usually taken
as a dense set), or should the time domain be discrete, and therefore
purely logical?

The first question is relatively easy to answer in the context of this the-
sis: being oriented toward design and implementation, and having to cope
with finite computational resources, we restrict ourselves to the finite-
computation model, which can be directly realized with finite computa-
tional power without having to resort to numerical techniques, provided
that iterations themselves are bounded.

Though this kind of restriction is frequent in control design tools, and
continuous-time modeling is generally being challenged by implementa-
tion concerns [Eis05], one should by no means deny the importance of
continuous-time modeling. For instance, for closed-loop controller design,
where the controller interacts with continuous-time physics, continuous-
time controllers are easier to describe than discrete-time controllers, and
are much more amenable to stability analysis.

To integrate continuous-time and discrete-time modeling in a develop-
ment process, related work [AGLS01][Sta01] provides precise methods to
refine continuous-time specifications into discrete-time ones.

The second question, whether to use a real or logical time domain, is
more involved, and may be examined with respect to formal analysis, suit-
ability for distributed implementation in networks, and abstraction from non-
deterministic implementation effects.

Formal analysis. For formal analysis, it shows that many of these primary
validation and observation tasks of interest are much more easily per-
formed on discrete-time abstractions than dense-time abstractions. For
instance, most model checking problems are at least PSPACE-hard over
Timed Automata [AD94], which is a popular dense-time formalism in
verification. In comparison, many model checking problems for dis-
crete time are polynomial. For formalizing problems in formal verifi-
cation, discrete-time formalisms are quite expressive: one can capture
a very significant share of dense-time verification problems as discrete-
time problems, for instance by a digitization procedure [HMP92].

Distributed implementation. When distributing applications across net-
works, typical failures and uncertainties such as transfer delays, node
failures, and transmission failures have to be considered. At the same
time, agreement problems occur frequently, such as a common opera-
tional mode shared between different nodes, or a consensus between

2.1. RATIONALE 27

replicated nodes. Agreement problems in the presence of failures and
uncertainties are known to be hard in the asynchronous case, where
no common time grid and discrete step duration is defined. They can
be much more efficiently handled if networks are synchronized, and a
common discrete timebase (corresponding to a discrete timebase in an
application model) is used across the network [Kop92].

Nondeterministic implementation effects. Most real-time HW/SW sys-
tems have more or less nondeterministic timing behavior at a small
time granularity. Reasons range from highly history-dependent proces-
sor performance due to pipelining and caching [KP02] to large jitters
and unpredictable service caused by dynamically arbitrated communi-
cation media (e.g. CAN) [BBRN05]. These effects can, to some extent, be
countered by coarse timing assumptions and dynamic implementation
strategies. Firstly, if the time grid used for observations is coarse, such
as “execute the task every 20ms, with a deadline of 20ms”, the timing
jitters of individual instructions and message transfers may cancel each
other out in the best case. Secondly, dynamic implementation strategies
such as preemptive and priority-driven scheduling, if correctly config-
ured, can ensure high probabilities for timely execution of high-priority
tasks, effectively providing a quasi-deterministic platform for the high-
priority segment of an application. Consequently, the combination of
discrete, coarse-grained time modeling and dynamic scheduling has
been explored recently by numerous researchers [HHK01][SC04][BR04].

To summarize this section, dataflow programming is a well-established
paradigm which invariantly offers a number of benefits with respect to
simplicity, suitability for architecting software, and suitability for program-
ming, over some more established techniques. Although these merits have
been known and advertised for a long time, the current complexity chal-
lenge for distributed embedded software systems may shine a new light
on dataflow programming, particularly for the problem of software archi-
tecting. As a special case of dataflow, the timed and time-synchronous
dataflow approaches address more particular issue such as real-time sys-
tems modeling, simple and adequate semantic models, and resource-boun-
dedness guarantees. In the following section, we shall define a (time-)
synchronous dataflow language illustrating this paradigm.

28 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

2.2 The synchronous dataflow language SSDL

The remaining chapters of this thesis will deal with the illustration of
a synchronous dataflow languages reminiscent of other languages like
LUSTRE, SIGNAL, and AutoFOCUS. For this purpose, we define a very
simple synchronous dataflow language called SSDL (Simple Synchronous
Dataflow Language). SSDL uses an equational form of specifying dataflow
programs, which can be easily derived from a graphical box-and-arrow
formalism, as in AutoFOCUS, discrete-time SIMULINK, or SCADE. SSDL
deliberately avoids some more complex language issues such as data types,
or non-periodic clocks and clock checking. Clocks are generally used to carry
frequency information, and to check well-formedness of programs with
respect to presence/absence of values.

From a practical usability perspective, these features are all very impor-
tant for a synchronous language. However, for the purpose of illustrat-
ing the semantics of synchronous programs, for working with examples,
and for formalizing linearizations of synchronous programs in Chapter 4,
SSDL comprises all necessary features and shall suffice as a simple for-
malization. We will start out with a reduced language, Mini-SSDL, which
lacks primitives for composition of programs, and for easily specifying
multirate programs. The remaining SSDL primitives shall be introduced
in Section 2.2.3.

2.2.1 Mini-SSDL syntax

Programs. A Mini-SSDL program P is a system of equations over vari-
ables xi ∈ X, 1 ≤ i ≤ n. X is the variable set associated with P . Variables
are used for communication between processes.

Definition 2.1 (Mini-SSDL program syntax). A Mini-SSDL program has the
following principal structure (1 ≤ m ≤ n):

program P;
input x1, x2, . . . , xl;
var xl+1, xl+2, . . . , xm;
output xm+1, xm+2, . . . , xn;

xl+1 := el+1(x1, x2, . . . , xn);
xl+2 := el+2(x1, x2, . . . , xn);...

...
...

...
xn := en(x1, x2, . . . , xn);

endprogram;

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 29

Variables x1, x2, . . . , xl are declared as input variables XI ⊆ X of the pro-
gram using the input keyword, and have no defining equations. The
run-time value of an input variable is provided by the environment. All
other variables xl+1, xl+2, . . . , xn have defining equations, and are declared
as either local variables XL ⊆ X , using the var keyword, or as output vari-
ables XO ⊆ X , using the output keyword for declaration. Input and out-
put variables together define the externally visible behaviors of the pro-
gram, while local variables are hidden from the exterior. The difference
between visible and hidden variables will become apparent in the SSDL
program composition described in Section 2.2.3. We will sometimes re-
fer to variable tuples in a compact form instead of individual variables,
written x̄ = (xi, xj, . . .).

No particular order is enforced on the declaring equations. In fact, as-
sociativity and commutativity allow any rearrangement without changing
the program’s behavior.

Expressions e ∈ E in Mini-SSDL are built up from a combination of
Mini-SSDL operators, constants c ∈ C, and variables x ∈ X . In a Mini-
SSDL program, the right-hand side expressions ei are used to define the
computation for variables xi, respectively. Possible Mini-SSDL constants
that may appear in expressions are:

Boolean constants: True, False

Integer constants: . . . ,−1, 0, 1, . . .

Undefined constant: Nil

The operators of Mini-SSDL used for building expressions are:

Arithmetic operators such as addition, subtraction, multiplication, and
division

Comparison operators such as equality, inequality, greater, less,

Logical connectives such as negation, conjunction, and disjunction,

Choice such as the if.then.else.fi statement, and

Delay such as the fby statement. This operator will be briefly motivated
below.

Tupling and brackets for forming the tuple of individual expressions

30 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

More formally, expressions e, eqn, eqns ∈ E are defined as, for c ∈ C,
x ∈ X , e1, e2, e3 ∈ E,

e ::= c | x | (e1
[
, e2

]∗
) | e1 + e2 | e1− e2 | e1 ∗ e2 | e1 / e2 |

e1 = e2 | e1 <> e2 | e1 < e2 | e1 > e2 | not e1 |
e1 and e2 | e1 or e2 | if e1 then e2 else e3 fi | e1 fby e2

eqn ::= x := e

eqns ::=
[
eqn;

]+

The delay operator fby deserves further explanation, as it is typically
not found in non-dataflow languages. In order to be adequately expressive
for stateful designs, dataflow languages need to allow feedback, such as
the feedback loop illustrated for the integrator in Fig. 2.2. But according
to the causality analysis defined in Section 2.2.4, the only acceptable form
of feedback for SSDL programs is delayed feedback: programs like x := x

with immediate feedback are rejected. Instead, one needs an operator that
expresses the fact that the “last” value of x is to be used instead of the
current value.

As illustrated in Chapter 3, the delay operator is required in the lan-
guage for yet another purpose: because the timebase of a synchronous
dataflow program serves as an abstraction of actual delays and computa-
tion times in implementation, synchronous dataflow programs sometimes
need discrete delays at certain partitioning boundaries in order to be im-
plementable with given computational resources.

Note that, SSDL being an untyped language, we are not particular about
the comprehensibility or conceptual soundness of expressions. For in-
stance, if 1 + 1 then True else 1 fi is a valid expression in SSDL.
Expressions in a program P are, however, restricted so that P is a reac-
tive program: a detailed account of the resulting restrictions on the level of
syntax is given in Section 2.2.4.

Example (Frequency divider). The Mini-SSDL program
frequency-divide shown in Fig. 2.3 is a synchronous realization
of the frequency divider previously described in Fig. 2.1: it receives a
tick signal as input, and forwards every second tick as its output. The
variables in, laststate, state, and out are of integer type: a value of 1
denotes a time tick, while 0 denotes the absence of a tick.

An example run of frequency-divide is as follows:

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 31

program frequency-divide;
input in;
var state, laststate;
output out;

state := if in=1 then 1-laststate else laststate fi;
laststate := 1 fby state;
out := if in=1 then state else 0 fi;

endprogram;

Figure 2.3: Program frequency-divide

step 1 2 3 4 5 6 7 . . .

in 0 1 1 0 1 0 1 . . .
laststate 1 1 0 1 1 0 0 . . .
state 1 0 1 1 0 0 1 . . .
out 0 0 1 0 0 0 1 . . .

We observe that, for instance in step 3, in’s value influences the value of
out in the same step, even though the consumption of in causally pre-
cedes the production of out. This kind of instantaneous communication
is a hallmark of synchronous languages (sometimes called “synchrony
hypothesis”), or fixed point semantics for timed systems in general.

2.2.2 Mini-SSDL semantics

Streams. The semantic representation of a variable’s evolution is a stream.
A stream is a finite or infinite sequence of symbols from a symbol set Σ.
For the purpose of defining SSDL, Σ is simply taken to be the set of val-
ues taken by individual variables, V . Values may include Boolean values,
where we shall use tt to indicate a “true” Boolean value, and ff for “false”.
For such a variable set, we use V ω = V ∗ ∪ V ∞ to denote the set of all finite
and infinite streams over V 5. Consequently, we denote the stream for an
SSDL variable x by x ∈ V ω. For a stream w ∈ V ω, the i-th symbol is written
as wi, starting at w1 for the first symbol.

The length operator # yields the length of the stream to which it is ap-
plied. It can be extended to stream tuples, yielding a tuple of lengths.

5We follow the convention in e. g. [BS01] of denoting infinite streams with ∞, and the
union of finite and infinite streams with ω. Most works e. g. from the formal verification
community use the opposite notation: infinite streams are denoted with ω, the union of
finite and infinite streams with ∞.

32 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

Concatenation of streams, written w1�w2, yields a stream that starts with the
messages of w1 followed by the messages of w2. The empty stream is de-
noted as ε: it is the neutral element of concatenation, so for any stream w,
w�ε = ε�w = w. The projection operator |(.) is used to project away messages:
w|V ′ is the substream of w obtained by removing all messages in w that are
not in the set V ′ ⊆ V .

A stream w is a prefix of another stream w′, written w v w′, if there exists
some (possibly empty) stream w′′ such that w′ = w �w′′. The pointwise
extension of constants and functions to streams in the following shall be
necessary to define the semantics of SSDL.

Definition 2.2 (Pointwise extension to streams). The pointwise extension of
a constant c to a stream, written cω is the stream obtained by infinite repetition
of c. Similarly, the pointwise extension of a function f : V → V ′ to a function
fω : V ω → (V ′)ω over streams is given by the following inductive definition:

fω(ε) = ε

fω(w �σ) = fω(w) �f(σ) for all σ ∈ V,w ∈ V ω

Semantics map and metalanguage. We shall use a semantics map to map
SSDL programs and their parts to their mathematical equivalent, or de-
notation. Obviously, the denotation of a constant (which will invariantly
map to the same value) is a somewhat different structure than the deno-
tation of an expression or variable (which is rather a function from some
given environment to a value), or a program (which maps tuples of en-
vironments to tuples of values). In order to simplify notation, we shall
define our semantics based on a “metalanguage” Lρ using:

Constant streams such as ttω.

Variable environments ρ(x), where the environment map ρ maps vari-
ables x, y, z, . . . to their corresponding streams. We denote by Dom(ρ)
the domain of ρ. The environment ρ may be updated for a syntactic
variable x by a semantic equivalent y according to

ρ[x/y](z) =

{
ρ(z) if z 6= x

y if z = x
.

Lambda notation for expressing function abstraction λx.e and function
application e(x).

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 33

Tupling operator for expressing grouping of elements to tuples (e1, e2).
We shall use an alternative compact notation for tuples: for instance, an
n-tuple of stream variables, (xi, xj, . . .) can alternatively be written as x̄.

Least fixed point operator for expressing least fixed points of an expres-
sion with respect to the prefix order v on streams, lfp e. The appendix
describes this operator, and the properties of the prefix order, in more
detail.

We ensure that the metalanguage, again, is based on well-founded math-
ematical constructs [Win93]. Based on the definition of the metalanguage,
we are ready to define a semantics map to map expressions to their denota-
tional counterparts.

Definition 2.3 (Semantics map). Let ρ : X → V ω be a variable environment,
and let Lρ be the metalanguage associated with ρ. The semantics map J.Kρ : E →
Lρ maps expressions e ∈ E to a metalanguage term l ∈ Lρ.

In later parts of this thesis, we may drop the subscript and write J.K in-
stead of J.Kρ if the nature of ρ is not an essential part of the description. We
shall use several notational conventions in order to define the semantics.
For a program

program P; input x̄; var ȳ; output z̄; eqns; endprogram;,

where eqns are the program’s equations, we write P(x̄); eqns; as a short-
hand. Operators in general are referred to as op and op in the syntax and
semantics domain, respectively. The operator if.then.else.fi is abbre-
viated in prefix form as ite(., ., .). The semantics of Mini-SSDL is then
defined in Fig. 2.4. Some additional comments:

• In the definition of fby, (Je1Kρ)1 denotes the first symbol of the stream
for expression e1. The first argument of fby, e1, is typically a constant
value, so taking the first symbol of its stream extension is equivalent
to simply using its constant (element) value.

• The stream-extended functions for arithmetic, comparison, and log-
ical operators are standard, yielding the undefined value Nil as a re-
sult for all undefined cases (e. g. 1 or False, 1 + False). For if.then.
else.fi, we define an element function ite : V × V × V → V as

ite(x, y, z) =

{
y if x = tt
z otherwise for x, y, z ∈ V,

and use the stream-extended function iteω : V ω × V ω × V ω → V ω for
the semantics definition of ite.

34 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

• The semantics of programs, JP(x̄); eqns; Kρ, is associated with a vari-
able substitution [x̄/ȳ], where ȳ is a “fresh” variable tuple not in
Dom(ρ). The rationale behind this substitution will become appar-
ent in Section 2.2.3, where programs P can be instantiated potentially
several times such that each program instantiation operates on a dis-
tinct stream tuple in the semantics.

Constants
JTrueKρ = ttω

JFalseKρ = ff ω

JnKρ = nω for n ∈ Z
JNilKρ = ⊥ω

Variables
JxKρ = ρ(x)

Operators
Jop(e)Kρ = opω(JeKρ) for e ∈ E, op ∈

{+,−, ∗, /,=, <>,<,
>, not, and, or, ite}

Je1 fby e2Kρ = (Je1Kρ)1 � Je2Kρ

Equations
Jx̄ := eKρ = ρ

[
x̄/

(
lfpλȳ.JeKρ[x̄/ȳ]

)]
(x̄) for ȳ ∩ Dom(ρ) = ∅

Tupling
J(e1, e2)Kρ = (Je1Kρ, Je2Kρ)

Jeqn1; eqn2; Kρ = (Jeqn1Kρ, Jeqn2Kρ)

Programs
JP(x̄); eqns; Kρ = λȳ.JeqnsKρ[x̄/ȳ] for ȳ ∩ Dom(ρ) = ∅

Figure 2.4: Semantics of Mini-SSDL

The remainder of this section will be concerned with some of the mathe-
matical theory behind the denotational definition of synchronous dataflow
programs, and will in particular demonstrate the existence of a least fixed
point in the semantics.

Sets of streams as complete partial orders. The prefix relation v over
streams is a partial order: it is antisymmetric (w v w′ ∧w w w′ ⇒ w = w′),

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 35

reflexive (w v w), and transitive (w v w′ ∧ w′ v w′′ ⇒ w v w′′). The
partial order has a unique bottom element, ε. It is also a complete partial
order, and induces a least upper bound operator

⊔
(Defs. A.1–A.3 in the

appendix).
Synchronous input/output functions are required to have a particular

property called length preservation. Length preservation induces that there
is a fixed correspondence between lengths of input streams x1, . . . , xn and
output stream xi. This reflects the uniform, parallel progressing of time
in synchronous system: A process will produce one additional symbol on
its output stream when all input streams are extended by one additional
symbol.

Definition 2.4 (Length preservation). Let x̄ ∈ (V ∗)n be an n-tuple of streams,
and let #x̄ ∈ Nn be the tuple denoting the lengths of its component streams. Let
f be a function mapping x̄ to a stream y ∈ V ∗. Then f is length-preserving iff

∃k̄ ∈ Nn
0 .∀x̄ ∈ (V ∗)n .#f(x̄) = min(#x̄+ k̄),

where #x̄+ k̄ denotes the component-wise addition of #x̄ and k̄, and min identi-
fies the smallest component of the tuple.

Length preservation says something about the relative length of streams,
but does not allow any narrow conclusion about the relation of prefixes of
inputs and outputs. Consider the function yielding stream 1 for all in-
puts of length one, stream 2 � 2 for all inputs of length two, stream 3 � 3 � 3
for all inputs of length three, and so on. This function is certainly length-
preserving, but defies our intuition of a causal and stepwisely operating
computing system.

In dataflow networks, an intuitive property stemming from causality
is that, given a function f over streams, f will at most append additional
symbols to its output given additional input, but never replace or remove
past output symbols. That is, given some history of inputs x1 with output
history f(x1), an extension of x1 to some x2 such that x1 v x2, will result in
an output history f(x2) such that f(x1) v f(x2). On the level of semantics,
this property corresponds to monotony of stream processing functions. It
is also an important prerequisite for the existence of least fixed points for
dataflow networks. The following two definitions are directly related to
the existence of least fixed points for functions.

Definition 2.5 ((Scott) monotony). A function f from an n-tuple of streams
x̄ = (x1, x2, . . . , xn) to a stream y, x̄ ∈ (V ω)n, y ∈ V ω, is (Scott) monotonic iff

∀x̄1∈(V ω)n .∀x̄2∈(V ω)n . x̄1v x̄2 =⇒ f(x̄1)vf(x̄2)

36 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

As a corollary, we note that length preservation and monotony com-
bined yields prefix-closure of the function’s image (Lemma A.5 in the ap-
pendix). A second important property, which encompasses monotony, is
continuity. In a sense, continuity forces that a function is both monotonic,
and that its behavior is fully described by its behavior for finite inputs.

Definition 2.6 ((Scott) continuity). A function f from an n-tuple of streams
x̄ = (x1, x2, . . . , xn) to a stream y, x̄ ∈ (V ω)n, y ∈ V ω, is (Scott) continuous iff

1. f is monotonic.

2. For all chains x̄1 v x̄2 v · · · v x̄i v · · · , it holds that⊔
f(x̄i) = f

(⊔
x̄i

)
Based on the element function and their pointwise extension to streams,

we can easily establish the following properties on the level of elementary
SSDL operators.

Property 2.1. For all elementary Mini-SSDL operators, the corresponding func-
tion on the level of semantics is length-preserving.

Property 2.2. For all elementary Mini-SSDL operators, the corresponding func-
tion on the level of semantics is continuous.

The semantics gives meaning to expressions built from the elemen-
tary operators. Consequently, we have to ensure length-preservation and
continuity for expressions, and therefore programs, as well. Fortunately,
it can be shown that all operators of the metalanguage preserve length-
preservation and continuity [Win93]. So we end up with two further re-
sults:

Property 2.3. For all Mini-SSDL expressions, the corresponding function on the
level of semantics is length-preserving.

Property 2.4. For all Mini-SSDL expressions, the corresponding function on the
level of semantics is continuous.

Based on Property 2.4, it is possible to show that the least fixed point for
any program P is defined and unique. Kleene’s fixed point theorem shows
that, for a continuous function f , the least fixed point is the upper bound
of a the ω-chain obtained by repeated application of f .

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 37

Theorem 2.5 (Fixed-point theorem (Kleene)). Let f : D → D be a con-
tinuous function on a cpo (D,v) with bottom ⊥. Define as f j(x) the j-fold
application of function f to element d ∈ D. Define

lfp(f) =
⊔
{f j(⊥) | j ∈ ω}.

Then lfp(f) is the least fixed point of f on (D,v).

Consequently, the fixed-point theorem gives an effective procedure for
constructing the least fixed point of the equation system for a Mini-SSDL
program P , as we know that both individual functions fi are continuous,
and that the tuple function f̄ is also continuous.

2.2.3 SSDL

In the definition of Mini-SSDL in Section 2.2, we have not included the
possibility of composing programs with each other, only operators and
equations. We shall see that one can easily overcome this limitation: SSDL
extends Mini-SSDL by composition of programs, which shall be helpful
when talking about implementation schemes for larger software structures
(superprograms, subprograms) in Chapters 3 and 4. For multirate compo-
sition, SSDL introduces an additional every primitive, which alters the
behavior of its enclosed operators and subprograms.

Composition of programs. According to the Mini-SSDL semantics, the
behavior of a program is defined as a function mapping (tuples of) input
streams to (tuples of) output streams. We have also seen how functions
(operators) may be mutually composed on the level of equations. Because
programs are simply functions, it is easy to extend SSDL for composing
programs. This simplicity is a direct consequence of the “uniqueness of
process concept” principle introduced in the discussion of dataflow pro-
grams in Section 2.1.2.

Together with tuple constructor primitives, this enables us to include
(sub-) programs in expressions just like regular operators, and to use a su-
perordinate program to express the composition of subprograms. Before
defining subprogram composition formally, we shall illustrate it with a
small example.

Example (Declaring and using the hold operator.). The hold oper-
ator is a common primitive that is used to translate between streams
of different frequencies. Such streams of different frequencies can be

38 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

expressed in SSDL by interleaving regular (Boolean, integer) symbols
with Nil symbols. hold always yields the last non-Nil symbol of its
incoming stream.

We declare and use the hold operator in an example pro-
gram, threeish , shown in Fig. 2.5. threeish uses a sub-program,
every-three , which creates a Nil -interleaved sequence of successive
multiples of 3. every-three is then combined with hold to replace Nil

symbols with the respective last value.
Note that sub-programs are referenced as every-three and

hold(.) on the right-hand side of the defining equation for out of pro-
gram threeish . The call to every-three has no arguments (inputs)
and one output, while the call to hold has one input and one output.
The output is assigned to output out of program threeish . A run of
threeish yields the following sequence:

step 1 2 3 4 5 6 7 . . .

every-three 0 Nil Nil 3 Nil Nil 6 . . .
hold(every-three)0 0 0 3 3 3 6 . . .

program threeish;
output out;

program every-three;
var state;
output out;

state := 0 fby state+1;
out := if (state/3)*3 = state then state else Nil fi;

endprogram;

program hold;
input in;
output out;

out := if in<>Nil then in else Nil fby out fi;
endprogram;

out := hold(every-three);
endprogram;

Figure 2.5: Program threeish

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 39

The every operator. In the above example, it was somewhat clumsy to
specify the sub-program every-three . In fact, every-three seems to be
an instance of the simpler program defined by the equation

out := 0 fby out+3;

The only difference between the program defined by the above equation
and every-three is that every-three is computed at a “slower” rate,
with two Nil symbols interleaved between successive values of out . The
every operator is used in SSDL to compute expressions or subprograms
at such a slower rate: it takes an expression as its first argument, and an
integer value as its second argument. We shall call this second argument
clock in the sequel. For clock n, successive output values of some e every

n will be interleaved by n − 1 occurences of Nil . Clearly, the clock is re-
quired to be greater or equal to 1. It follows that for any expression e ∈ E,
e every 1 is equivalent to e.

Using the every operator, we have a simpler way of writing every-three :
the equation

out := 0 fby out+3 every 3;

yields equivalent behavior. Note that unlike the other SSDL operators,
every is not a first-order operator, as it modifies the expression or pro-
gram it is applied to, rather than simply operating on its outputs. Short of
defining SSDL as a general higher-order synchronous language [CP96], we
shall use a simple set of rewrite rules (Fig. 2.8), which translate any every -
annotated program to an every -free equivalent. The translation is based
on two macro operators, sample and fby-every , which are defined by
the programs in Figs. 2.6 and 2.7, respectively. Furthermore, for defining
program composition in SSDL, the set op of possible operators is extended
by the set of subprogram references defined in the current scope, SP . We
assume absence of recursive subprogram calls, which would manifest as
cycles in the program call graph. Naturally, this extension also applies to
the core semantics in Fig. 2.4.

40 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

program sample;
input in, n;
local count, lastcount;
output out;

out := if count=0 then in else Nil fi;
count := if lastcount=n-1 then 0 else lastcount+1 fi;
lastcount := n-1 fby count;

endprogram;

Figure 2.6: sample definition

program fby-every;
input in1, in2, n;
local count, lastcount;
output out;

out := if count=0 then laststate else Nil fi;
state := if count=0 then in2 else laststate fi;
laststate := in1 fby state;
count := if lastcount=n-1 then 0 else lastcount+1 fi;
lastcount := n-1 fby count;

endprogram;

Figure 2.7: fby-every definition

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 41

Constants
c every n 7→ sample(c, n) for c ∈ C, n ∈ N

Variables
x every n 7→ sample(x, n) for x ∈ X , n ∈ N

Operators
op(e) every n 7→ op(e every n) for e ∈ E, n ∈ N, op ∈

{+,−,∗,/,=,<>,<,>,
not, and, or, ite}∪SP

e1 fby e2 every n 7→ fby- every(e1, e2, n) for n ∈ N

Equations
(x := e) every n 7→ x := e every n for n ∈ N

Tupling
(e1, e2) every n 7→ (e1 every n, e2 every n) for n ∈ N

(eqn1; eqn2;) every n 7→ eqn1 every n; eqn2 every n; for n ∈ N

Programs
(P(x̄); eqns;) every n 7→ P(x̄); eqns every n for n ∈ N

Figure 2.8: Translation rules for every operator

42 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

60º

Pump

1/2 1/2

Figure 2.9: The oil pump illustrated

Example (Oil pump monitor). An oil pump is used to continuously
lubricate a shaft rotating at high speed. The shaft is mounted with two
bearings A and B of different diameter. The amount of oil fed by the
pump must be closely monitored in order to avoid friction and eventual
overheatage on the one hand, and overdosage on the other. A software-
controlled monitor for the oil pump is to be built as follows (Fig. 2.9):

• An angular sensor provides a tick signal every 60◦ of shaft rota-
tion.

• An oil flow sensor provides a sample of the oil flow rate through
either one of the individual oil lines (flow) every 120◦ of shaft
rotation. The unit of measurement is µl

tick
.

• The perimeter of the shaft at the bearing A is 200mm, while the
perimeter at the bearingB is 300mm. Both bearings have the same
width, and the oil flow is split evenly between bearingA and bear-
ing B.

• Experience shows that volume must be monitored every 100mm
of glide travel.

• The amount of oil dispensed should be calculated separately for
the two bearings.

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 43

program oil-pump;
input flow;
output vol_a, vol_b;

program integrator;
input in, dt;
var state;
output out;

out := 0 fby state;
state := in*dt + out;

endprogram;

program gain;
input in;
output out;

out := in*3/2;
endprogram;

vol_a := gain(hold(vol_b)) every 3;
vol_b := integrator(flow, 2) every 2;

endprogram;

Figure 2.10: Program oil-pump

44 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

The implementation of the volume measurement for the two bearings
as a synchronous program is shown in Fig. 2.10 (we omit the declaration
of the hold operator). Note that vol_b denotes the volume of oil dis-
pensed for bearing B, and is calculated by integrating over flow with
time constant 2. vol_a is the oil volume for bearing A, and is computed
by sampling vol_b , and multiplying by 3

2
.

Partitioning normal forms. For the subsequent treatment in Chapters 3
and 4, we shall resort to a canonical structure for SSDL programs. Let P be
an SSDL synchronous program with variable set X , where P’s equations
are of the form (subprogram declarations for P(l+1), . . . , Pi, . . . , Pn are not
shown):

x̄O(l+1) := Pl+1 (x̄I(l+1));
...

...
...

x̄Oi := Pi (x̄Ii);
...

...
...,

x̄On := Pn (x̄In);

where for 1 ≤ i ≤ n, the x̄Oi are nonempty output variable tuples such that
each individual variable x ∈ XL ∪XO is a component of exactly one tuple,
and x̄Ii are possibly empty input variable tuples, such that individual vari-
ables x ∈ X appear in the tuples arbitrarily often. Clearly, any valid SSDL
program can be written in this form. We call it the partitioning normal form
(PNF), as it canonically partitions the SSDL program into subprograms
ready for distributed implementation.

A derived normal form is the multiclock partitioning normal form (MPNF),
where an SSDL program’s equations obey the following structure:

x̄O(l+1) :=
[
el+1 fby

]
Pl+1 (hold(x̄I(l+1))) everynl+1;

...
...

...
...

...
x̄Oi :=

[
ei fby

]
Pi (hold(x̄Ii)) everyni;

...
...

...
...

...
x̄On :=

[
en fby

]
Pn (hold(x̄In)) everynn;

Angled brackets
[]

indicate that the delay operators fby surrounding sub-
program references Pi are optional, the el+1, . . . , ei, . . . , en denote expres-
sions for initial values, and hold(x̄Ii) indicates that at least those individ-
ual variables of x̄Ii which are on a different clock than subprogram Pi are
surrounded by a hold operator.

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 45

In effect, SSDL programs in MPNF combine subprograms in a similar
way as PNF, but in addition, streams for communication between subpro-
grams may be delayed, and subprograms may be computed at a slower
rate through the every operator. We note that, for instance, oil-pump is
in MPNF, with subprograms gain and integrator sampled by every .

2.2.4 Non-reactive programs and causality analysis

Reactive programs run indefinitely, and map infinite input sequences to
infinite outputs. Having guaranteed solely the existence of a least fixed
point, it is not necessarily clear that this fixed point is nonempty, and in-
deed yields infinite streams, therefore capturing the intuitive meaning of
a reactive program. To illustrate this point, it is helpful to look at two ex-
amples (Fig. 2.2.4): Seen as a constraint over the progression of x in time,

program agree;
output x;

x := x;
endprogram;

program contradict;
output x;

x := not x;
endprogram;

Figure 2.11: Two non-reactive programs

program agree is inherently ambiguous: any finite and infinite sequence
for x, including the empty sequence, would satisfy the constraint. In our
operational (Kahn) interpretation, the fed back process for x would have
to wait indefinitely for its own result, resulting in a deadlock, and yield-
ing the empty stream. As another example, contradict seems to have no
valid behaviors under both interpretations, except for the empty sequence.
Least fixed point semantics, as in SSDL, maps x to the empty stream ε
in both programs, therefore providing a unique semantics in both cases.
However, such empty runs do not correspond to the intuitive notion of a
reactive program, which continuously operates for an indefinite amount
of time, and therefore yields infinite streams in the semantics for infinite
inputs.

Consequently, both agree and contradict are rejected as SSDL pro-
grams, as they are not reactive. To be more precise, we will define the
notion of a valid SSDL program in Def. 2.8. As an additional definition,
we introduce variable dependency relations in Def. 2.7.

Definition 2.7 (Variable dependency relation +). For a variable set X , let
 ⊆ X ×X be the reduced variable dependency relation defined as follows:

46 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

x y if x appears on the right-hand side of y’s defining equation, and at least
one of x’s occurences on the right-hand-side is not in a delayed (second
argument of fby) context.

x 6 y otherwise.

Then the variable dependency relation +⊆ X×X is defined as the transitive
closure of .

Definition 2.8 (Valid SSDL program). An SSDL program is valid if its vari-
able dependency relation + is irreflexive, that is, for all x it holds that x 6 + x.

In particular, this analysis ensures that non-reactive programs such as
agree or contradict are rejected as invalid. In some cases, however, the
causality analysis is overly conservative, and rejects reactive programs.
For instance, the program no-causal-cycle in Fig. 2.12 is rejected: ac-
cording to Defs. 2.7 and 2.8, y depends on z and vice versa, leading to rejec-
tion of no-causal-cyle . However, no-causal-cycle could be compiled
into a perfectly operational reactive program, as it will be true that a given
value of x chooses either the first or the second term of if.then.else.fi
in both equations, so no actual cycle will occur at run-time. SSDL shares
this conservative causality analysis with other synchronous dataflow lan-
guages such as AutoFOCUS, or LUSTRE. In practice, as shown by a number
of case studies, this restriction has not been a problematic issue so far. It is
interesting to note, however, that more controlflow-oriented synchronous
languages such as ESTEREL [Ber00] or STATECHARTS [Har87] typically
have more sophisticated causality analysis, and would allow programs
similar to no-causal-cycle .

program no-causal-cycle;
input x;
output y, z;

y := if x then z else 0;
z := if x then 0 else y;

endprogram;

Figure 2.12: Program no-causal-cycle

Synchronous runs as partially ordered sets. The stream-based semantic
characterization of SSDL programs given in Section 2.2.2 is “declarative”
in the sense that it defines what (in terms of its visible I/O behavior) the

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 47

program y-first;
input x;
output y, z;

y := x + 1;
z := y + 1;

endprogram;

program yz-both;
input x;
output y, z;

y := x + 1;
z := x + 2;

endprogram;

Figure 2.13: Two programs with identical stream semantics and different
operationalizations

//y-first
//implementation

int x, y, z;

void loop() {
y = x + 1;
z = y + 1;

}

//yz-both
//1st
//implementation
int x, y, z;

void loop() {
y = x + 1;
z = x + 2;

}

//yz-both
//2nd implementation
int x, y, z;

void loop() {
z = x + 2;
y = x + 1;

}

Figure 2.14: Three C implementations

program computes, but not exactly how (in terms of the causal relationship
between individual variables) the program computes it.

For instance, SSDL programs y-first and yz-both in Fig. 2.13 both are
characterized by the identical denotational semantics, for x ∈ V ω, y ∈ V ω,
z ∈ V ω:

y = x+ω 1ω, z = y +ω 1ω.

This stream-based characterization is sufficiently precise in the sense that
y-first and yz-both cannot be distinguished by any context attached to
the respective program by synchronous composition6.

However, a straightforward sequential implementation, e. g. in terms
of a C program as shown in Fig. 2.14, would yield different operational
characteristics for both programs. Chapters 3 and 4 will be concerned
with such operationalizations of synchronous programs. Consequently,
the stream-based characterization alone will not be sufficient to reason
about operationalizations. We need additional information about causal-
ity to know, for instance, whether z is computed based on x, or y, in pro-
grams y-first and yz-both .

6For a brief discussion of the related concept of full abstraction, see Chapter D in the
appendix.

48 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

1x 2x 3x 4x 5x 6x 7x ...

2y 3y 4y 5y 6y 7y ...8y

3z 4z 5z 6z 7z ...8z 9z

(a) Poset for a run of
y-first

1x 2x 3x 4x 5x 6x 7x ...

2y 3y 4y 5y 6y 7y ...8y

3z 4z 5z 6z 7z ...8z 9z

(b) Poset for a run of
yz-both

The issue of declarative vs. operational semantics becomes clear if we,
for a moment, consider partially ordered sets (posets) of symbol occurences
instead of streams as a semantic characterization of synchronous dataflow
programs. Each such poset characterizes one possible run for a program
P . Two symbol occurences in the poset are ordered iff the occurence of
one symbol causally precedes the occurence of the other. As an example,
consider runs for both y-first and yz-both , where for the example runs,
x is an increasing sequence of integers (Fig. 2.2.4).

We can easily show that this poset characterization indeed contains
the “missing information” about causal orderings and operationalizations,
yet also has all the inherent information from the stream semantics. To
demonstrate this fact, both the stream semantics and operationalizations
can be characterized in terms of the poset semantics as follows:

Streams as variable-wise projections of posets. For pairs of symbol oc-
curences for different variables, remove any dependencies. The remain-
ing poset is the union of totally ordered sets (or streams) of symbol
occurences, one stream for each variable.

Operationalizations as linear extensions of posets. Consider an observer
that observes a (potentially distributed) operationalization of an SSDL
program such that any two symbol occurences are ordered in time,
so observations are totally ordered, and the observation order respects
causality. For a given run, any linear extension of the poset for the run is
a possible operationalization of the run for this observer7.

So a poset characterization of an SSDL program yields all the neces-
sary information for a full semantic and operational characterization. Yet
for reactive programs, such posets are infinite objects, and as a semantic
characterization, they are even less “handy” and intuitive than streams.

7Note that this simple definition does not consider fairness and boundedness con-
cerns. Chapter 4 will treat resource-bounded operationalizations of SSDL programs in
more detail.

2.2. THE SYNCHRONOUS DATAFLOW LANGUAGE SSDL 49

Posets are also not fully abstract for synchronous dataflow programs, as
they capture more information than can be observed under the given com-
positional forms.

Variable dependency order. To capture causality, though, we note that
the structure of inter-variable dependencies in valid SSDL programs is
somewhat canonical: if a symbol occurence for variable y depends on a
symbol occurence of another variable x in at least one step in at least one
run, then there will be no run where x depends on y. We therefore turn to
a finite variable dependency order over the variable set X , which relates vari-
ables directly instead of their symbol occurences. Two variables x, y de-
pend on each other, written x ∗ y, if for a given step, symbol occurences
for y may be computed from x within the same step.

Definition 2.9 (Variable dependency order). For a valid SSDL program with
variable set X , the variable dependency order ∗ ⊆ X × X is defined as the
reflexive closure of +. For a variable x ∈ X , we write ∗−1(x) = {y ∈ X |
y ∗ x} for the inverse image of x through ∗.

The variable dependency order is a partial order, as it is obviously re-
flexive and transitive, and also antisymmetric (see Lemma A.6 in the ap-
pendix). It is also qualitative in nature, as it only distinguishes between
the presence and the absence of an immediate dependency between vari-
ables. For instance, the variable dependency order does not differentiate
between an unrelated variable pair and a variable pair related by a de-
lay (fby). As we will need this information, and also information on the
number of delays between a pair, in Chapters 3 and 4, we define a variable
synchronization relation next, which will carry the required information.

Definition 2.10 ((Reduced) variable synchronization relation
(.)−−→). For

a valid SSDL program with variable set X , we define the reduced variable syn-

chronization relation
(.)−−→⊆ X × N0 × X as follows, for all x, y ∈ X , for all

n ∈ N0:

x
n−→ y if x appears on the right-hand side of y’s defining equation, and for this

equation, n is the least number of delay (fby) operators surrounding
any reference (as second argument of fby) to x.

x
n−9 y otherwise.

For instance, if y := x + 0 fby x , then x
0−→ y. Similar to taking the

reflexive-transitive closure of for ∗, we’d like to construct a variable

50 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

synchronization relation
(.)−−→

∗
⊆ X × N0 × X , where successive weights

for transitive pairs are added up, while for the case of multiple (x, y)-
dependencies, only the minimum weight is retained. We will need some

lightweight definitions for constructing
(.)−−→

∗
as follows.

Definition 2.11 ((Uniquely) weighted ternary relation). Let D be a set. A
relationR is a weighted ternary relation overD if it is of the formR ⊆ D×N0×D.

A weighted ternary relation R is uniquely weighted if for each pair d, d′ ∈ D,
there exists at most one n ∈ N0 such that (d, n, d′) ∈ R.

Definition 2.12 (Unweighting operator). LetD be a set, and letR be a uniquely
weighted ternary relation over D. We define an operator Unweight : ℘(X×N0×
X) → ℘(X×X) as follows: for all d, d′ ∈ D,

(d, d′) ∈ Unweight(R) if (d, 0, d′) ∈ R
(d, d′) 6∈ Unweight(R) otherwise

Definition 2.13 (Functional form of weighted ternary relation). Let R be
a uniquely weighted ternary relation. We can write R in functional form as a
function R : (X×X) → N0∪{∞}, which is defined as follows: for all d, d′ ∈ D,

R(d, d′) =

{
n if ∃n ∈ N0 . (d, n, d

′) ∈ R
∞ otherwise

Definition 2.14 (Minimum-weight reflexive-transitive closure). LetR be a
weighted ternary relation over set D. Based on R, we define an auxiliary relation
R� ⊆ D × N0 ×D as the least relation such that

(d, 0, d) ∈ R� for all d ∈ D
(d, n, d′) ∈ R =⇒ (d, n, d′) ∈ R� for all d, d′ ∈

D,n ∈ N0(
(d,m, d′)∈R� ∧ (d′, n, d′′)∈R�

)
=⇒ (d,m+n, d′′)∈R� for all d, d′, d′′ ∈

D,m, n ∈ N0

Then the minimum-weight reflexive-transitive closure of R, R∗, is defined as
the least relation such that, for all d, d′ ∈ D, for all m ∈ N0,(

(d,m, d′) ∈ R� ∧ m=min
{
n

∣∣ (d, n, d′) ∈ R� })
=⇒ (d,m, d′) ∈ R∗

where min {n | (d, n, d′) ∈ R�} denotes the lower bound of the totally ordered set
{n | (d, n, d′) ∈ R�} ⊆ N0, and min ∅ is assumed to be defined.

2.3. RELATED WORK 51

Clearly, (.)−→ is a weighted ternary relation over X . We denote as the

variable synchronization relation
(.)−−→

∗
⊆ X × N0 × X the minimum-weight

reflexive-transitive closure of (.)−→ . For instance, if z := 0 fby x + y and
y := x , then x

0−→
∗
z. In the sequel, we shall use both the relational and

the functional notation for
(.)−−→

∗
interchangeably.

The dependency order provides additional information to the denota-
tional semantics given by the stream relations above. We will use both

 ∗/
(.)−−→

∗
and the denotational semantics in order to define correct lin-

earizations of a synchronous program. We note that ∗=Unweight(
(.)−−→

∗
).

Summarizing the operational dependencies in trace posets as a simple
dependency order over variables, ∗, is clearly only possible for language
where this synoptic view is sound. For synchronous languages such as
ESTEREL [Ber00] or various STATECHARTS [Har87] dialects, our approach
based on a fixed and antisymmetric order ∗ would not suffice in the
general case, as two variables may be mutually dependent. In a sense,
this is one of the primary reasons why the discussion in this thesis centers
around synchronous dataflow languages, which admit simple dependency
orders over variables, as opposed to synchronous languages in general.

2.3 Related work

As already mentioned, there is a wealth of synchronous dataflow lan-
guages besides SSDL, all of which are much better suited for practical
use. Prominent examples are LUSTRE and SIGNAL [BCE+03], and the
discrete-time subset of Simulink [MW]. The AutoFOCUS tool and notation
[HSE97] incorporates a synchronous notion of time, and its deterministic,
recursion-free subset can be encoded using SSDL.

Related discussions of the synchronous paradigm and its suitability
for engineering and programming have been given in [Kop92][BCGH94]
[Ber00]. Of the cited works, [BCGH94] is most similar to this chapter as
it focuses primarily on practical and theoretical aspects of dataflow syn-
chronous languages, and explores some possibilities for semantic foun-
dations. [THW01] discusses suitability issues and research directions for
functional languages in the embedded and real-time sector.

52 CHAPTER 2. SYNCHRONOUS DATAFLOW PROGRAMS

Chapter 3

Two Implementation Schemes

This chapter describes two implementation schemes for synchronous da-
taflow programs. After a brief introduction to the considered platforms in
Section 3.1, a singleprocessor implementation scheme is outlined in Sec-
tion 3.2, where a synchronous dataflow program is partitioned into several
threads running on one processor, and the composite multithreaded pro-
gram implements the semantics of the synchrous dataflow program using
inter-thread communication primitives. The other implentation scheme in
Section 3.3 describes the multiprocessor case, where a synchronous data-
flow program is split across several processors communicating over some
event-triggered, bounded-jitter communication medium. Both implemen-
tation schemes are shown to preserve certain critical aspects of the dataflow
program’s semantics. In Section 3.4, finally, some related publications are
described.

3.1 Platforms

Distributed embedded systems in the automotive field are typically imple-
mented according to Fig. 3.1: A number of computing nodes or electronic
control units (ECUs) perform computation in real-time, each using a real-
time operating system to dispatch application processes. Communication
between nodes is provided by one or several bus systems.

Operating Systems: OSEK/ERCOSEK. OSEK [OSE01] is the dominat-
ing standard for automotive operating systems. As opposed to other op-
erating systems from the embedded field, the OSEK standard is very re-
strictive with respect to dynamic, run-time features, while favoring static
planning:

53

54 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

ActuatorSensor

RTOS

I/O int bus-
CTRL

timer
timercore

drivers

RTOS-APIs

Anwendung

cache

MEM

RTOS

core

drivers

RTOS-APIs

Anwendung

I/Ointbus-
CTRL

timer
timer

ActuatorActuatorSensorSensor

RTOS

I/O int bus-
CTRL

timer
timercore

drivers

RTOS-APIs

Anwendung

cache

MEM

RTOS

I/O int bus-
CTRL

timer
timercore

drivers

RTOS-APIs

Application

cache

MEM

RTOS

core

drivers

RTOS-APIs

Anwendung

I/Ointbus-
CTRL

timer
timer

RTOS

core

drivers

RTOS-APIs

Application

I/Ointbus-
CTRL

timer
timer

I/Ointbus-
CTRL

timer
timer cache

MEM

cache

MEM

Bus System

RTOS

core

drivers

RTOS- APIs

Anwendung

I/Ointbus-
CTRL

timer
timer

RTOS

core

drivers

RTOS- APIs

Anwendung

I/Ointbus-
CTRL

timer
timer

RTOS

core

drivers

RTOS- APIs

Application

I/Ointbus-
CTRL

timer
timer

I/Ointbus-
CTRL

timer
timer

M
E
M

ECU 1 ECU 2 ECU 3

Figure 3.1: Automotive in-vehicle network (schematic)

Static memory allocation. There is no dynamically allocated memory heap
in OSEK-based systems. Primitives such as malloc in C are not sup-
ported on the operating system level. Therefore, memory usage has to
be planned at compile-time.

Statically assigned tasks. OSEK has no support for dynamically creating
and destroying tasks. All tasks must be statically configured.

Restricted scheduling options. OSEK supports two kinds of task models,
basic tasks and extended tasks. The latter model, in extension to the ba-
sic task model, supports a distinct activation mechanism for message-
based communication. The scheduler in OSEK is a fixed-priority sched-
uler: each task is configured with a statically assigned priority. During
run-time, when several tasks are ready to be released, the scheduler re-
leases the task with the highest such priority. Other scheduling options
are not available. The OSEK standard allows both preemptive and non-
preemptive schedulers.

Limited primitives for inter-task communication. The OSEK standard sug-
gests the usage of global variables for inter-task communication. Such
variables may optionally be protected against data corruption by mutual-
exclusion semaphores with priority ceiling protocol [SRL90] for inter-
process communication (IPC). Our work relies on a different mecha-
nism, which belongs to the class of wait-free IPC primitives, and closely
resembles the state message mechanism provided by the ERCOSEK

[PMSB96] operating system for automotive applications.

Bus Systems: CAN. For automotive in-vehicle networks, we restrict our
treatment to the popular CAN bus [Ets01], which is very widely used in

3.2. SINGLEPROCESSOR IMPLEMENTATION 55

present-day vehicles. The multiprocessor scheme in Section 3.3 is suited
for the event-triggered base protocols where communication may be stat-
ically bounded. CAN is a prominent example of this class of protocols.

CAN is based on the CSMA/CA principle of arbitration: connected
hosts may concurrently try to access the medium after the current trans-
mission has completed (Carrier Sense Multiple Access). After an initial
arbitration phase, the medium is granted to the unique host with the high-
est priority. “Collisions” between different hosts, that is, two hosts send-
ing a message at the same time, are avoided by an arbitration scheme
which causes no temporal overhead for the arbitration itself (Collision
Avoidance).

If application data is cleverly packaged into frames, the CAN bus can be
used with a relatively small overall protocol overhead. This is partly due
to the efficient arbitration mechanism, which uses an electrical resolution
technique (dominant/recessive bits), and needs no additional handshak-
ing for establishing a consensus. On the other hand, this same technique
has the drawback that the maximum transmission rate is physically tied
to wire length (maximum: 1 megabyte per second).

The basic protocol also includes an error correction mechanism, where
corrupted messages are repeated until all receivers have acknowledged
the receipt. This mechanism realizes an atomic broadcast for all but some
subtle cases [RVA+98], making the protocol very well-suited for event-
message delivery, and somewhat less suited for state-message delivery.
We will elaborate on this issue in Section 3.3.

3.2 Singleprocessor implementation

As we have outlined in Chapter 1, the singleprocessor scheme is designed
to realize the communication semantics of a synchronous program based
on inter-task communication on a single processor. While the detailed
schmeme will be given in Section 3.2.4, some preliminary remarks are in
order. The particular problem of preservation via inter-task communica-
tion clearly does not arise if the program is realized as a single task: in fact,
one may ask why multitasking is strictly necessary in the implementation
of a synchronous program. As a motivation, one has to consider that, in
embedded and real-time systems, the need for partitioning a program into
several tasks with possibly multiple frequencies of periodic (or sporadic)
activation may arise from the heterogeneity of a system’s interface with
its environment, and the various patterns of events and state samplings
that the system has to react to. Consider the oil-pump example from Sec-

56 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

tion 2.2.3: Due to the different perimeters of the shaft at bearings A and B,
and the uniform requirement of 100mm part travel between samples, the
sampling frequencies for the two bearings are different. Assigning both
subprograms to a single task would, among other problems, lead to in-
effiencies in processor utilization: The single task may be scheduled only
to find out that, in the current step, there is nothing to do.

3.2.1 Subprograms, task partitions, and clocks

For the rest of this section, we shall assume that an SSDL program is in
multiclock partitioning normal form (MPNF), as defined in Section 2.2.3.
How does the notion of subprogram relate to task partitions? In our ex-
ample, a natural mapping of oil-pump to a multitasking program would
be to allocate one task for each subprogram: subprogram integrator

is mapped to a task triggered every 2 ticks, while subprogram gain is
mapped to a task triggered every 3 ticks.

Task partitions vs. multirate programs. We can generalize the strategy
just applied to oil-pump to a generic singleprocessor implementation sche-
me as follows: Let P be an SSDL program in MPNF, and let P1, P2,. . . ,Pn be
its immediate subprograms, which are composed with each other at po-
tentially different clocks, as defined by the surrounding every statements.
In MPNF, composition occurs in the common superprogram using equa-
tions, tuple constructors, the hold primitive, the every primitive, and pos-
sibly the fby operator. In the implementation scheme, the following rules
apply:

• Each subprogram Pi is translated to one thread of sequential code.

• The code of each subprogram Pi is executed in a separate OS task Ti.

Note that, at first glance, this one-to-one mapping seems like a fairly re-
strictive, and possibly harmful, implementation pattern: a suitable sub-
program (or component) partition on an abstract, conceptually oriented
level may be very different from a suitable task partition on the implemen-
tation level. Subprograms, or architectural components, are frequently
partitioned according to reuse concerns, coherency of interfaces, or orga-
nizational responsibility, to name a few criteria. A task partition, on the
other hand, will typically be optimized with respect to performance, ef-
ficiency, and fault tolerance requirements, which often stand in conflict
to the abovementioned aspects. For instance, in the AutoMoDe method

3.2. SINGLEPROCESSOR IMPLEMENTATION 57

[BBR+05], the subprogram partition is incorporated in an architecture level
called FDA (Functional Design Architecture), whereas a structure similar
to the task partition is described by an architecture level called LA (Logical
Architecture). To relate between FDA and LA, a number of restructuring
steps are proposed for transitioning between the architecture levels. For-
tunately, associativity and commutativity of composition in synchronous
dataflow renders these restructuring steps comparatively easy. Using re-
structuring, a given program or group of subprograms can be regrouped
to match a given task partition, so our simple one-to-one implementation
pattern is applicable to much more general situations.

Clocks. Composition of subprograms with the every primitive assigns
every subprogram a frequency of execution through the second parameter
of every (clock). In SSDL, the notion of clock is restricted to periodic pat-
terns in terms of the base tick, and the clock is simply an integer. The con-
cept of a clock may also be applied more generically [BCE+03][BBR+05],
but for the purpose of this thesis, the simple periodic every mechanism of
SSDL shall suffice.

We can easily define a partial order over clocks as follows:

Definition 3.1 (Clock order.). The clock order � is defined as a relation over
N× N such that, for all clocks n1, n2 ∈ N,

n1 � n2 ⇔ ∃k ∈ N.k · n1 = n2,

that is, n1 � n2 iff n1 is an integer divisor of n2.

Based on � and equality = over naturals N, a strict order ≺ = (�\=) is
defined.

3.2.2 Preemptive scheduling and data consistency

We have seen in the introduction to this chapter that multitasking with
fixed-priority schedulers is widely used in the automotive domain [OSE01].
In this section, our treatment will be furthermore restricted to preemptive
schedulers. With the help of a preemptive scheduler, scheduling short-
deadline and long-deadline tasks on the same processor is easier to solve,
and under some more simplifying assumptions (which will be made ex-
plicit in the next paragraphs), one can apply the comparatively simple rate
monotonic schedulability criterion [LL73].

58 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

extern int x;

int abs() {

if (x < 0)

return -x;

return x;

}

(a) C implementation
for abs

t

if (x<0) return -xactivations TA

activations TB

-1 2memory x

x=2

return -x

1 -2

(b) Example timeline

Figure 3.2: Data inconsistency example

Data consistency. To illustrate the problem of safe data exchange, con-
sider the example C implementation for an absolute value routine, abs , in
Fig. 3.2(a). It returns the absolute variable of a global variable defined else-
where, x . The routine abs first compares x to the value 0, and then returns
a value to the caller based on x . The strategy to use statically allocated
global variables, instead of passing the argument as a function parameter,
is very frequent in the embedded systems sector.

Now imagine abs being executed in a low priority task TA, as illus-
trated in Fig. 3.2(b). Preemptive scheduling may lead to cases where the
execution of the low priority task TA is preempted by a higher priority task
TB. Under the assumption that the preempted task TA reads value x and
that the preempting task TB writes the same memory location, inconsis-
tencies may arise if the preemption occurs between two consecutive read
operations at TA, as shown in Fig. 3.2(b). The diagram shows what may
happen if TA gets interrupted during processing and no resource protec-
tion is implemented. Due to possible interference of TB, the outcome of
abs is “nondeterministic” in the sense that it depends on the precise run-
time schedule. Furthermore, the illustrated behavior, where a negative
value is returned to the caller, is generally not intended by the developer
of abs and surrounding algorithms, so we allow ourselves to classify the
data exchange as “unsafe” (may deviate from expected behavior).

To achieve safe exchange of data in a real-time system with preemptive
scheduling, such as the system in Fig. 3.2, it has to be guaranteed that dif-
ferent tasks either do not directly access the same shared memory area, or

3.2. SINGLEPROCESSOR IMPLEMENTATION 59

t

if (x<0) return -xactivations TA

activations TB

-1 2

buffer x’

buffer x

x=2

-1 2

Figure 3.3: abs example with wait-free IPC

do so in a controlled way. In the latter case, safe data exchange may either
be ensured by some suitable inter-process communication (IPC) mecha-
nism, or it may be concluded that shared-memory exchange of data is
safe, based on a static assertion that the possible run-time schedulings
will never yield a hazardous situation. Generally speaking, a suitable IPC
mechanism for real-time systems separates the memory space of tasks if
required, performs the necessary run-time copy operations between mem-
ory areas if required, and incorporates suitable control and synchroniza-
tion mechanisms.

To avoid unsafe data exchange, we end up with a desirable property
called data consistency: For the duration between start and termination of a
task TA it should be guaranteed that all data locations which are accessed
by TA may change their value if and only if they are changed by TA.

Wait-free IPC, and its realization by a double or triple buffer, is a suit-
able mechanism to achieve data consistency [Cla89][PMSB96][HPS02].
Fig. 3.3 illustrates the abs example with double buffering. The communi-
cation between tasks TA (reader) and TB (writer) now uses a double buffer,
where TB writes to one location, x , and TA reads from another, x’ . The un-
derlying operating system or middleware is responsible for copying the
contents from one location to the other prior to TA being run. So possibly
before the next invocation of TA, x would be copied to x’ by the operating
system, indicated by the black double arrows in Fig. 3.3.

Note that the precise timing of this copy operation may be significant
for a semantics-preserving translation of synchronous dataflow programs.
We shall later see that our implementation scheme relies on a time- or
release-triggered wait-free IPC mechanism. For the abs example, in the
release-triggered variant, the copy operation is performed when the task
is released, that is, as soon as the task is put in the scheduler’s ready

60 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

queue. This mechanism may currently not be available in commercial op-
erating systems or middlewares: To our knowledge, the closest to such a
mechanism in a commercially available OS for the automotive market is
the run-triggered wait-free IPC implemented in ERCOSEK[PMSB96], where
the copy operation is performed as soon as the task is actually run by the
scheduler.

Scheduling and timing constraints. We now make explicit the assump-
tions about scheduling and timing constraints that will eventually trans-
late, on the abstract level, to delay constraints imposed on the synchronous
program. It is shown how clock information in the clocked subprograms
correspond to actual real-time constraints for the implementation.

Fixed-priority, preemptive scheduling. We assume that the operating sys-
tems provides a fixed-priority preemptive scheduler, where task prior-
ities are statically assigned. This corresponds to the OSEK standard
[OSE01] for automotive operating systems.

Write suppression. The necessity for write suppression may arise in cases
where “faster” tasks write to “slower” reader tasks, and the reader task
needs consistent data over the period of its activation. The writer task
is said to be write-suppressing with respect to the reader task if it will
perform at most one write operation throughout any activation of the
reader task. A formal definition of this criterion shall follow as part
of the formal analysis in Section 3.2.6. We note that write suppression
on the level of tasks corresponds to the inherent length-preservation
on the level of SSDL programs: in the multiclock partitioning normal
form of an SSDL program, a writer subprogram is always wrapped
with every and hold primitives such that the input stream as seen by
the reader subprogram is at the reader’s clock. This is a natural conse-
quence of the length-preservation criterion applied to the reader sub-
program. So a semantics-preserving translation including the every

and hold -induced sampling in the code of the writer will ensure write
suppression. To this end, Section 3.2.3 will give a brief overview of code
synthesis aspects.

Rate monotonicity. Within the fixed-priority scheduling framework, rate
monotonicity (RMS) simply asserts that tasks with smaller periods are
assigned higher priorities than tasks with greater periods [LL73].

Periodicity. Subprogram composition with every yields periodic subpro-
grams: any subprogram is executed in a integer-valued, constant clock

3.2. SINGLEPROCESSOR IMPLEMENTATION 61

with respect to the base tick.

A frequent additional assumption, which is not strictly necessary in our
implementation scheme, is time-periodicity: Any subprogram is executed in
a integer-valued, constant clock with respect to the base tick, and the base
tick corresponds to some constant physical time period in the implemen-
tation. For instance, the oil-pump example from Section 2.2.3 is certainly
periodic. Forcing time-periodicity in addition would correspond to the
case of a shaft rotating at a constant rate. The time-periodicity constraint
allows some further analysis from existing schedulability theory, where all
times and periods are typically taken with respect to physical time.

Analysis for time-periodic systems. For any SSDL program in MPNF
with subprograms P1, P2, . . . , Pm and subprogram clocks n1, n2, . . . , nm, each
SSDL subprogram Pi is associated with a task Ti. Each task T , in turn, is
associated with a tuple (Per ,WC ,Rel , D) for period Per , worst case execu-
tion time WC 1, release times Rel , where Rel : N → T maps an activation
index to the time domain T , and deadline D. The processor utilization
may be calculated as

U =
n∑
i=1

WC i

Per i

Then each valid schedule must meet the following constraints:

1. Per i = Per 0 · ci, where ci is clock of subprogram Pi, that is, the num-
ber of logical ticks that elapse between subsequent activations of Pi.
Task periods are multiples of the base period Per 0 of the system. Per 0

must be specified by the developer. Each period corresponds to a
base tick in the synchronous program.

2. Rel i(j) = j ·Per i. Tasks are released at the beginning of their period.

3. Di = Per i. The deadline of each task is equal to its period.

4. U ≤ m·(2 1
m−1). Form tasks mapped to a processor, keeping the pro-

cessor utilization equal to or below the given (statically computable)
upper bound ensures RMS schedulability [LL73]. Note that for task
sets with harmonic frequencies (all subprogram clocks are related),
higher upper bounds for utilization may be derived.

1Compile-time determination of this quantity leads to the problem of worst case exe-
cution time (WCET) analysis [KP02], which is not covered here.

62 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

5. WC i ≤ Di. The worst case execution time is less than or equal to the
deadline. This constraint follows indirectly from 3. and 4.

3.2.3 Sequential code synthesis

This section shall briefly summarize the synthesis of sequential code from
synchronous dataflow programs. This topic has been extensively resear-
ched in the literature [HRR91][ABG95], and efficient code generators are
firmly established in the commercial market [dSP][MW].

We have seen in Chapter 2 that variables in synchronous dataflow lan-
guages are partially ordered by a variable dependency order ∗, as defi-
ned in Def. 2.9. The partial order reflects possible schedulings of variable
assignments within one step of execution. Clearly, the straightforward
approach is to translate the equations of the synchronous program to an
equivalent sequence of assignment operations in a sequential language.
However, the total order of such sequential assignments will matter, as
a:=b; b:=c; is generally not equivalent to b:=c; a:=b; in sequential
languages. We end up with a total order of assignments generated from
the partial variable order in the synchronous program.

It is easy to show that such an order of assignments in the code is cor-
rect if it corresponds to a linear extension of the variable dependency order
 ∗. Optimizations may prefer a certain total order: certain schedulings
may use less assignment statements and potentially less additional mem-
ory locations than others. We shall illustrate the sequential code synthesis
process with a small example.

Example (Differentiator). Consider the example of the SSDL pro-
gram diff for a discrete differentiator, and a more modular variant,
modular-diff , both shown in Fig. 3.4. In the case of modular-diff ,
we shall concentrate on subprogram dt-delay .

For diff and dt-delay , respectively, the variable dependency or-
der, ∗, is shown in Fig. 3.5.

The solid edges correspond to pairs in the reflexive-transitive re-
duction of ∗. Dashed edges indicate additional desirable scheduling
dependencies, which are introduced from variable y ∈ X to variable
x ∈ X exactly if the variable synchronization relation yields x

1−→
∗
y.

We assume that for any pair x, y ∈ X , if x ≥2−−→
∗
y, then there exists

z ∈ X such that x 1−→
∗
z and z

≥1−−→
∗
y. If this is not the case, it is

always possible to obtain a program conforming with the constraint by
introducing additional variables.

3.2. SINGLEPROCESSOR IMPLEMENTATION 63

program diff;
input in, dt;
var local;
output out;

local := in/dt;
out := local

- (0 fby local);
endprogram;

program modular-diff;
input in, dt;
output out;

program dt-delay;
input in, dt;
output imm, del;

imm := in/dt;
del := 0 fby imm;

endprogram;

(imm, del) := delay(in, dt);
out := imm - del;

endprogram;

Figure 3.4: Programs diff , modular-diff

dt
out

in
local

dt
imm

in
del

Figure 3.5: Variable dependency order ∗ for differentiator , dt-delay

//information passing
int del, imm;
//state
int imm_1 = 0;

void dt_delay(
int in, int dt) {

imm = in/dt;
del = imm_1;
imm_1 = imm;

}

//information passing
int del;
//information passing + state
int imm = 0;

void dt_delay(
int in, int dt) {

del = imm;
imm = in/dt;

}

Figure 3.6: Two C implementations of dt-delay

64 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

//information passing
int out, local;
//state
int local_1 = 0;

void diff(int in, int dt) {
local = in/dt;
out = local - local_1;
local_1 = local; //copy

endprogram;

Figure 3.7: C implementation of diff

If the additional desirable scheduling dependency can be obeyed,
less assignment statements have to be executed, and possibly less mem-
ory usage occurs. In the diff example, because variable imm appears in
a fby context as second parameter in the definition of del , it holds that
imm

1−→
∗
del according to Def. 2.10. Consequently, there is a dashed

edge from del to imm, and so computing del before imm in a given step
is desirable because it saves an assignment statement, and possibly an
additional memory location. For dt-delay , the two possible assign-
ment orders are

(in, dt) → imm→ del and (in, dt) → del→ imm,

respectively.
The two corresponding C implementations are shown in Fig. 3.6.

Note that the left-hand side implementation needs an additional vari-
able declaration, imm_1, and an additional assignment statement. For
diff , the only possible assignment order is

(in, dt) → local→ out,

and the dashed edge from del to imm cannot be obeyed. The chosen as-
signment order corresponds to the C implementation shown in Fig. 3.7.

3.2. SINGLEPROCESSOR IMPLEMENTATION 65

TB

TA

t

write(xk)

read(x'k)

xk

x'k

TA

write(xk+1)

k k+1
period,

deadline TB

activations TB

x' read-stable

x write-stable

activations TA

period,
deadline TA

read(x'k)

(a) “A” alignment

TA

TB

TA

t

write(xk)

TB TB

TA

read(x'k-1)

TB

read(x'k)

xk-1

x'k-1 x'k

xk

k k+1

TA

read(x'k-1)read(x'k-1)

(b) “N” alignment

Figure 3.8: “A” and “N” alignments for two tasks

3.2.4 Three configuration rules for semantics-preserving inter-
task communication

In this section, we finally state the implementation scheme for semantics-
preserving inter-task communication. The scheme is based on an explicit
case distinction with three different cases for relations of sender and re-
ceiver task clocks. In combination with a rate-monotonic task priority as-
signment, we shall find out that the use of double buffers is only necessary
in two of three cases, while the remaining case can be covered by regular
shared-variable interaction.

To get an intuitive understanding of the possible run-time activations,
read instants, and write instants of writer and reader tasks, we shall first
look at different classes of such scenarios, and obtain an intuitive grasp on
the consequences for data consistency. According to the characterization
of data consistency in Section 3.2.2, the use of double or triple buffers is
generally dictated if no static assertion about the safety of simple shared-
memory exchange of data can be obtained under the given scheduling
assumptions. We shall therefore differentiate between a general situation
where the safety assertion holds without additional buffering, henceforth
called “A” alignment, and a situation where shared-memory exchange alone
is not sufficient for safe data exchange, called “N” alignment.

“A” and “N” alignments. Consider a task TA writing a variable x , and a
task TB reading the same variable under the local name of x’ . Both tasks
are assumed to have the same period. Figs. 3.8(a) and 3.8(b) are schematic
depictions of the inter-task communication timing:

“A” alignment. In Fig. 3.8(a), the value written by TA, x , is not changed

66 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

(stable) between write events: these events are indicated by grey “write”
arrows. We indicate these intervals by the “x write-stable” bar. Simi-
larly, for data consistency, TB will require a stable value of x’ as indi-
cated by the “x’ read-stable” bar. According to our definition of data
consistency in Section 3.2.2, “x’ read-stable” must be aligned with TB’s
period: the dashed part of the bar indicates intervals where it can be
statically asserted that TB will never be activated, hence read-stability
of x’ is not actually needed.

We call this first kind of alignment between write-stable and read-stable
intervals “A” because of the A-like shape of the light grey polygon re-
lating the intervals. Essentially, the “x’ read-stable” intervals are sub-
sumed in their corresponding “x write-stable” intervals, so “A”-aligned
communication can be performed with a single shared variable, and
does not require extra memory for communication. In the example,
TA may write to the shared variable that is read by TB. Formally, “A”
alignment corresponds to the constraint that, for all possible instants,
the current read event for TB is after the current write event for TA, and
the read event for TB precedes the next write event for TA.

“N” alignment. In Fig. 3.8(b), the subscript k indicates equal values: xk
and x’ k reference the same value. This time, the light grey polygon re-
lating the write-stable and read-stable intervals has a slanted shape: the
interval for “x write-stablek” and “x’ read-stablek−1” overlap, therefore
a double buffer is required. Because the polygon shape resembles a
slanted N, we call it the “N” alignment. Formally, “N” alignment corre-
sponds to the constraint that, for all possible instants, the current read
event for TB is after the current write event for TA, and the read event
for TB precedes the write event after the next write event for TA. So it is
both graphically and formally clear that “N” is a generalization of “A”.

We can also easily relate the “A” and “N” alignments to the communi-
cation of a task with itself for implementing delays, as outlined in Section
3.2.3. Fig. 3.9 depicts timelines showing the write-stable intervals for vari-
able imm and the read-stable intervals for variable del for the two imple-
mentation variants for dt-delay according to Fig. 3.6. While assignment
order (in, dt) → del→ imm yields the “A” alignment shown in Fig. 3.9(a),
assignment order (in, dt) → imm→ del corresponds to the “N” alignment
depicted in Fig. 3.9(b). In the second case, the “N” alignment mandates
additional copying and buffering. If a task is exclusively communicating
with itself, the copying and buffering can be achieved by the introduction

3.2. SINGLEPROCESSOR IMPLEMENTATION 67

t

write(immk)

read(delk)

write(immk+1)

activations Tdt-delay

period, deadline
Tdt-delay

immk immk+1

write(immk+2)

delk

read(delk-1)

delk-1

read(delk+1)

imm write-stable

delkdelk-1

Tdt-delay Tdt-delay Tdt-delay

del read-stable

del read-stable

(a) “A” alignment, no extra state variable
for imm

t

write(immk)

read(delk)

write(immk+1)

immk immk+1

write(immk+2)

read(delk-1) read(delk+1)

delkdelk-1

delkdelk-1

Tdt-delay Tdt-delay Tdt-delay

(b) “N” alignment, extra state
variable for imm

Figure 3.9: “A” and “N” alignments for one task

of the additional variable imm’ , and by an additional assignment state-
ment, as described in Section 3.2.3.

Having explored different alignments of run-time activations, read in-
stants, and write instants of sender and receiver tasks, we are now ready
to define three configuration rules listed in Fig. 3.10, each one suited for a
different relation of sender and receiver task clocks. The three rules refer
to pair-wise configurations of tasks, where Ti is the writer task and Tj is
the reader task of the pair. ci are cj the respective clocks, which are deter-
mined by the every statements surrounding the subprogram references
corresponding to Ti and Tj .

The first rule concerns the case ci ≺ cj : We observe that, under the rate-
monotonic priority assignment, the higher activation rate of Ti incurs that
Ti has a higher priority than Tj . Consequently, the writer task Ti will never
be preempted by the reader task Tj . Combined with the write-suppression
criterion for communication from Ti to Tj , this ensures data consistency
for the receiver task Tj according to “A” alignment by default, so a single
shared variable is sufficient for safe communication. For a second rule, we
consider the case ci � cj : In this case, the writer task Ti may have lower
priority than reader Tj and thus may be preempted by Tj , but because
clocks ci and cj are harmonic, any instant of termination for Ti’s period
coincides with some instant of termination of one of Tj’s periods. Com-
munication can thus be understood as a single “N” alignment in reader-
writer communication, and usage of a double buffer is sufficient for safe
communication. The remaining case, where ci and cj are not related via�,
warrants the use of a triple buffer. The triple buffer effectively realizes a
sequential arrangement of two “N”-aligned copies. Each of the three cases
will be illustrated with an example in the following section.

68 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

The following rules yield the minimum necessary number of communica-
tion buffers for semantics-preserving inter-task communication, depend-
ing on the clock relationship between any two communicating tasks Ti
(writer), Tj (reader):

ci ≺ cj . Undelayed communication. Shared-variable communication (“A”
alignment). See Section 3.2.5 for an example, see Theorems 3.6 and 3.7
for a formal treatment.

ci � cj . Delayed communication. Double-buffer communication (“N”
alignment), see Section 3.2.5 for an example, see Theorems 3.8 and 3.9
for a formal treatment.

ci �� cj . Triple-buffer communication (double “N” alignment), see Sec-
tion 3.2.5 for an example, see Theorems 3.10 and 3.11 for a formal treat-
ment.

Figure 3.10: Three configuration rules for semantics-preserving inter-task
communication

3.2.5 Examples

Example sequence for ci ≺ cj Fig. 3.11(a) shows an example of the oil-pump

program introduced in Section 2.2, but with modified clocks for subpro-
grams integrator and gain , respectively, to match the ci ≺ cj assump-
tion. In the example, the clock of integrator is 2, and the clock of gain is
4, so clearly cint ≺ cgain. Communication between subprograms integrator

and gain through variable vol_b is immediate, so the result of integrator

is processed by gain without an intermediary fby operator.
Naturally, integrator corresponds to a task Tint, gain corresponds

to a task Tgain, and Tint’s period is half of Tgain’s period, consistent with
the clocks in logical time. Tint and Tgain are released periodically at the
beginning of their respective cycles. Both tasks run on the same proces-
sor, and are scheduled according to the rate monotonic policy, so Tint has
higher priority than Tgain. For instance, in the example timeline shown in
Fig. 3.11(b), Tgain is preempted by Tint at the latter’s second release. Note
that periods and deadlines of Tint and Tgain are indicated by the black bars
in Fig. 3.11(b).

Now because of Tint’s higher priority, vol_b will never actually be read
before Tint has finished its computation, and vol_b has been written. We

3.2. SINGLEPROCESSOR IMPLEMENTATION 69

vol_a:=gain(hold(vol_b)) every 4;

vol_b:=integrator(flow, 2) every 2;

(a) oil-pump composition

Tint

Tgain

Tint

Tgain

t

write(vol_bk)

read(vol_b’k)

vol_bk

vol_b’k

Tint

write(vol_bk+1)

k k+1

(b) Timeline

Figure 3.11: Example sequence for ci ≺ cj

vol_a:=gain(hold(vol_b)) every 1;

vol_b:=0 fby integrator(flow, 3) every 3;

(a) oil-pump composition

Tint Tint

t

write(vol_bk)vol_bk-1

vol_b’k-1

vol_bk

k k+1

Tgain Tgain Tgain Tgain

Tint

read(vol_b’k-1) read(vol_b’k)
read(vol_b’k-1) read(vol_b’k-1)

(b) Timeline

Figure 3.12: Example sequence for ci � cj

indicate this by a dashed bar for “vol_b read-stable” during Tint’s activa-
tion. Therefore, we can safely use one shared variable for both vol_b and
vol_b’ . Because the written variable and the read variable correspond
to the same memory location, no double buffering is needed, and the op-
erating system does not have to perform an explicit copy operation. The
example therefore illustrates that communication from fast to slow pro-
cesses does not require introduction of a delay in the model, and that the
case of related clocks with ci ≺ cj can be realized with shared-variable
communication.

Example sequence for ci � cj . Fig. 3.12(a) depicts the same oil-pump

program from Section 2.2, again with modified clocks in order to match the
ci � cj assumption. integrator ’s clock is 3, and gain ’s clock is 1. In the
composition of A and B, a delay is imposed, corresponding to the delay
operator in SSDL used for obtaining vol_b from the result of integrator .

Fig. 3.12(b) shows how the delay relates to the timeline of two associ-
ated tasks Tint and Tgain. Because Tint is slower than Tgain, and the clocks

70 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

vol_a:=gain(hold(vol_b)) every 3;

vol_b:=0 fby integrator(flow, 2) every 2;

(a) Composition in SSDL

Tgain TgainTgain

Tint

t

Tgain

Tint

write(vol_bk-1)

read(vol_b’’j+1) read(vol_b’’j+2)

j-1 j j+1

read(vol_b’’j)read(vol_b’’j-1)

vol_bk-2 vol_bk-1 vol_bk

k-1 k

vol_b’’j-1 vol_b’’j vol_b’’j+1

vol_b’k-2 vol_b’k-1 vol_b’k)

write(vol_bk)

(b) Timeline

Figure 3.13: Example sequence for ci �� cj

are harmonic, the “vol_b’ read-stable” period can be safely extended to
Tint’s period.

If all tasks meet their deadlines, for the k-th activation of Tgain, Tgain will
never read vol_b’ k before the corresponding value vol_b has been writ-
ten for index k. We can therefore safely associate each read value vol_b’ k

with a corresponding written value vol_b k−1 for valid index k. The dif-
ference in indices corresponds to a delay (fby) in the oil-pump program.
The black double-headed arrows indicate buffer copy operations or buffer
switches which have to be performed by the operating system.

Example sequence for ci �� cj . Fig. 3.13(a) shows our third example,
the original oil-pump from Section 2.2, where the two subprograms have
unrelated clocks, ci �� cj . Tint and Tgain are the two corresponding tasks.
Rate monotonicity implies that Tint’s priority is higher than Tgain’s.

Note that the “vol_b read-stable” intervals are now completely un-
aligned with the “vol_b write-stable” intervals. This warrants the use of
a triple buffer, involving three copies vol_b , vol_b’ , and vol_b” . vol_b

is the buffer written by integrator , vol_b’ is a delayed, “safe” copy of
vol_b which is aligned with Tint’s period, and vol_b” is sampled from
vol_b’ aligned with Tgain’s period.

Again, the black double-headed arrows indicate buffer copy operations
or buffer switches performed by the operating system. Note that copy
operations are assumed to take very little time, and are regarded as atomic.
If two dependent copy operations are scheduled for the same instant, the
causal order must match the data flow. In the example, this is the case for
the j− 1-th and j+ 2-th activation of Tint, where the vol_b →vol_b’ copy
must be performed before the vol_b’ →vol_b” copy.

3.2. SINGLEPROCESSOR IMPLEMENTATION 71

Beyond the exemplary treatment of the current section, we can formally
demonstrate that for each of the three cases, the real-time semantics of
communication and synchronization coincides with the ideal semantics
inherent in the implemented SSDL program. The formal analysis illustrat-
ing this coincidence shall be the subject of the next section.

3.2.6 Formal analysis

This section summarizes the formalization and proofs for semantics-pre-
serving communication with wait-free IPC. The formalization will focus
on the establishment of the following two types of properties:

Preservation: Does the communication in the implementation reflect the
communication in the synchronous program? For instance, the logical-
time indices of messages read by a reader must coincide in the ideal
semantics and in the implementation semantics.

Timing consistency: Does the possible temporal interleaving of read s and
write s actually agree with the assumptions made for the preservation
proof?

We shall further motivate the need for showing timing consistency in ad-
dition to preservation after introducing the notion of time domains, local
indices, and clock functions in the next paragraphs, and after extending our
simple formalization of tasks from Section 3.2.2 to a richer set of time func-
tions.

Time domains, local indices, clock functions. As defined in Section 2.2.2,
an SSDL subprogram can essentially be understood as a function mapping
inputs to outputs. Equivalent to using a global index, and using every and
hold for composition based on Nil -interleaved streams, we can map from
a time domain common to all subprograms, T , to local indices, N, using
monotonic clock functions C. In this alternative framework, streams are
non-Nil -interleaved sequences which are interpreted with respect to their
local indices. The common time domain must be chosen so that it tem-
porally resolves all possible events, and possibly more. Monotonic time
functions are the dual of clock functions in this framework, mapping from
local indices to an instant in the global time domain.

We demonstrate the use of time domains, local logical clocks, and clock
functions with an example. For the example configuration of oil-pump

shown in Fig. 3.13, let us assume a time-periodic implementation with

72 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

time domain T = R+ = {t ∈ R | t ≥ 0} and base period Per 0. For demon-
stration, let Per 0 be 10.0, where the physical time unit associated with T is
milliseconds. Individual periods Per int,Per gain are defined according to
the time-periodicity definition in Section 3.2.2: Per int = cint · Per 0 = 20.0
and Per gain = cgain · Per 0 = 30.0. Then clock functions C : T → N, where
C denotes one of {Cint, Cgain}, and release time functions Rel : N → T ,
where Rel denotes one of {Relint,Relgain}, can be defined as follows:

C(t) =

⌊
t

Per

⌋
+ 1

Rel(n) = (n− 1) · Per

For composition, hold is naturally emulated by the fact that local log-
ical clocks are used instead of Nil -interleaved sequences, and C always
maps to last local index where the held value is available. For the example
configuration of oil-pump in Fig. 3.13, we define the ideal semantics based
on clock functions C and release time functions Rel as follows: For V the
value set of an SSDL program, let flow , vola, vol b : N → V be the corre-
sponding non-Nil -interleaved sequences on the semantics level, each de-
fined for its local logical index set n ∈ N. Let JgainK : (N → V) → (N → V)
and JintK : (N → V) → (N → V) denote the semantics of gain and
integrator over finite streams V ∗ = N → V , as defined in Section 2.2.2.
Let

(
Id +(.)

)
: Z → N → N, denote the function defined by, for all k ∈ Z,

n ∈ N,

(Id+k)(n) =

{
n+ k if n+ k > 0
0 otherwise .

(Id+(.)) can be overloaded in an equivalent way to the time domain T in
place of naturals N. We write Id for (Id +0), the identity function. Fur-
thermore, we denote function composition with the ◦ operator, where for
functions F,G over elements d, F ◦ G(d) = F (G(d)). For instance, for a
finite stream x : N → V , x ◦ (Id−1) mirrors the expression c fby x in
the semantics2. oil-pump ’s semantics would then be expressed as, for all
n ∈ N,

vola(n) =
(
JgainK(vol b ◦ Cint ◦ Relgain)

)
(n)

vol b(n) =
(
JintK(flow ◦ (Id−1))

)
(n)

2To simplify the formalization, we assume that x1 is equal to the initial value of the
first parameter of the fby statement. We ensure that this simplification does not incur a
loss of generality for the correctness proof.

3.2. SINGLEPROCESSOR IMPLEMENTATION 73

In the definition of vol b, chaining with (Id−1) realizes the unit delay in-
troduced by the fby operator. An example sequence for flow and vol b is
shown in Fig. 3.14.

nint 1 2 3 4 5 . . .

flow(nint) 0 1 2 1 1 . . .
(flow ◦(Id−1))(nint) 0 0 1 2 1 . . .(

JintK(flow ◦(Id−1))
)
(nint) 0 0 0 1 3 . . .

vol b(nint) 0 0 0 1 3 . . .

ngain 1 2 3 4 . . .

Relgain(ngain) 0.0 30.0 60.0 90.0 . . .
(Cint◦Relgain)(ngain) 1 2 4 5 . . .

(vol b◦Cint◦Relgain)(ngain) 0 0 1 3 . . .

Figure 3.14: Example sequence for oil-pump based on composition with
clock functions and local indices

Time functions and clock functions for tasks. In addition to the release
time function Rel : N → T defined in Section 3.2.2, which denotes the
release time of a task for the given activation index n ∈ N, we define the
following additional time functions for tasks:

• R : N → T is the read time function, yielding the instant the task reads
its values during the current interval. Note that the possibility of
R to range over a given time interval incorporates the possibility of
multiple reads per activation.

• W : N → T is the write time function, yielding the instant the task has
last written its values, as seen from the current interval.

• S : N → T is the start time function, yielding the instant the task starts
running for the current interval.

• E : N → T is the termination time function, yielding the instant the
task resumes processing and returns control to the scheduler during
the current interval.

Clock functions are required to have a discontinuity at each Rel(n): for
all n ∈ N,

C(Rel(n)) = n

limt→Rel(n)− C(t) = n− 1 for t ∈ T .

74 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

This property will be equivalently stated for functions in Prop. 3.1. The
property will make use of a limit operator extended to functions: for a
function F : N → T , the limit operator limF ′→F applied to some expression
G(F) is defined as as lim

F ′→F
G(F ′) = λd . lim

d′→F (d)
G(d′). We are then ready to

define necessary properties for time and clock functions.

Property 3.1 (Time and clock functions, properties). We write Rel	 for the
left limit of Rel , limF→Rel− F . For each individual task, we restrict clock and time
functions such that the following properties hold:

1. C ◦X = Id for X ∈ {Rel , R, S, E}
2. C ◦ Rel	 = Id−1

3. Rel ◦ C ≤ Id

4. Rel	 ◦ C ≥ Id−1

5. Rel ≤ X ≤ Rel	 ◦ (Id+1) for X ∈ {Rel , R, S,E}
6. W ◦ C ◦W = W

7. Rel ≤ W

With the formal framework in place, it can now be demonstrated why
preservation alone is not a sufficient criterion for correctness of an imple-
mentation in our framework. For instance, a preservation proof alone may
assert that for two tasks Ti (writer), Tj (reader), with the same period and
offset (Ci = Cj), a message read by Tj at index nj ∈ N always corresponds
to the message written at Ti at index Ci ◦Wi ◦ Ci ◦Rj(nj). The underlying
assumption would be that Wi ◦ Ci ◦ Rj(nj) indeed refers to “the last Ti-
write instant before the last Tj-read instant, as seen from index nj”. How-
ever, this claim rests on the assumption that the “before” assertion indeed
holds, and thus Wi ◦ Ci ◦ Rj(nj) < Rj(nj) for all nj ∈ N. So in addition
to the preservation proof, a proof is needed which demonstrates that read
instants Rj always follow corresponding write instants Wi for all possible
nj ∈ N. In other words, read s and write s must be consistent with the
timing assumptions inherent in the preservation proof.

Definitions and Properties. We shall establish a number of preliminary
definitions and properties which will be needed in turn to establish preser-
vation and timing consistency for the three configurations in Theorems
3.6–3.11.

Definition 3.2 (Fixed-priority scheduling, start/finish times). Let Ti, Tj be
two tasks controlled by a fixed-priority, preemptive scheduler. Furthermore, let

3.2. SINGLEPROCESSOR IMPLEMENTATION 75

Prioi > Prioj . If task Ti is released simulatenously to or after task Tj , then Ti
finishes before Tj starts.

Rel i ◦ Ci ≤ Rel j ◦ Cj =⇒ Ei ◦ Ci ≤ Sj ◦ Cj

Property 3.2 (Harmonic clocks, release times). Let Ti and Tj be two tasks
with harmonic clocks ci � cj . Then

1. Rel i ◦ Ci ≥ Rel j ◦ Cj
2. Rel i ◦ (Id+1) ◦ Ci ≤ Rel j ◦ (Id+1) ◦ Cj

Lemma 3.3 (Harmonic clocks, properties). Let Ti and Tj be two tasks with
harmonic clocks ci � cj . Then

1. Cj ◦ Rel i ◦ Ci = Cj

2. Cj ◦ Rel	i ◦ (Id+1) ◦ Ci = Cj

3. Rel i ◦ Ci ◦ Rel j = Rel j

The proof can be found in the appendix, and makes extensive use of
Prop. 3.2.

Definition 3.3 (Write sampling). Task Ti is write sampling with respect to task
Tj if, for a given j-period, the write instant of Ti occurs exclusively in the first
i-period within the j-period:

Rel i ◦ Ci ◦ Rel j ◦ Cj < Wi ◦ Ci < Rel i ◦ (Id+1) ◦ Ci ◦Relj ◦ Cj.

Lemma 3.4 (Harmonic clocks, write sampling). Let Ti and Tj be two tasks
with harmonic clocks ci � cj , and let task Ti be write sampling with respect to
task Tj . Then the following holds:

1. Rel j ◦ Cj < Wi ◦ Ci
2. Ci ◦ Rel j ◦ Cj = Ci ◦Wi ◦ Ci.

And if ci � cj , the following holds:

3. Ci ◦Wi = Id .

Again, the proof of Lemma 3.4 is found in the appendix, combining
properties from Def. 3.3 and Lemma 3.3.

76 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

Double and triple buffers. Special care must be taken so that the behav-
ior of double and triple buffers is correctly mirrored by our framework.
We therefore extend our set of time and clock functions by a number of
functions relating to the use of double and triple buffers.

• Buf : N → {−1,+1} is the buffer index function yielding the currently
readable buffer, and is defined as

Buf (n) = (−1)n

• R′
i.j : N → (T ×{−1,+1}) is the buffer-extended read time function for a

buffer written by Ti and read by Tj . R′
i.j together withC ′ formalizes a

double buffer, where the buffer is switched at Ti’s period. R′
i.j maps

a j-step index to a pair of j-read time and buffer index, where the
index indicates the buffer which was readable when the message was
read. R′

i.j is defined as

R′
i.j =

[
Rj

Buf i ◦ Ci ◦Rj

]
.

• Rel ′i.j : N → (T × {−1,+1}) is the buffer-extended release time function
for a buffer written by Ti and read by Tj . Rel ′i.j together with C ′

formally captures a triple buffer, where the first stage of the buffer is
switched at Ti’s period, and the second stage of the buffer is switched
at Tj’s period. Rel ′i.j maps a j-step index to a pair of j-read time
and buffer index, where the index indicates the buffer which was
readable when Tj was last released. Rel ′i.j is defined as

Rel ′i.j =

[
Rel j

Buf i ◦ Ci ◦ Rel j

]
.

• C ′ : (T × {−1,+1}) → N is the buffer-extended clock function, yield-
ing the step index when the respective buffer was last writable, and
defined as

C ′(t, k) =

{
C(t) if k = −Buf ◦ C(t)

(Id−1) ◦ C(t) if k = Buf ◦ C(t)
.

Fortunately, Lemma 3.5 will demonstrate that the combination of buffer-
extended read and release functions with buffer-extended clock functions
is easily simulated by the (simpler) time and clock functions originally
defined.

3.2. SINGLEPROCESSOR IMPLEMENTATION 77

Lemma 3.5 (Double and triple buffers, properties). Let Ti be a writer task
and Tj be a reader task such that ci � cj . Then the following applies:

1. ci � cj =⇒ C ′
i ◦R′

i.j = (Id−1) ◦ Ci ◦ Rel j

2. C ′
i ◦ Rel ′i.j = (Id−1) ◦ Ci ◦ Rel j

Proof. For 1., we note that R′
i.j is written out as

[
Rj

Buf i◦Ci◦Rj

]
. We argue that

the condition k = Buf i(t) for C ′
i in the expression C ′

i ◦ R′
i.j always holds:

both k and Buf i(t) evaluate to Buf i ◦ Ci ◦ Rj(n), where n is the current
j-index. Consequently, C ′

i(t, k) is always equal to (Id−1) ◦ Ci(t), and

C ′
i ◦R′

i.j = (Id− 1) ◦ Ci ◦Rj.

We now need to show that the Ci ◦Rj is indeed equal to Ci ◦Rel j . We note
that, due to Rel j < Rj < Rel	j ◦ (Id+1),

Ci ◦ Rel j ◦ Cj ≤ Ci ◦Rj ◦ Cj ≤ Ci ◦ Rel	j ◦ (Id+1) ◦ Cj,

But bothCi◦Rel j◦Cj andCi◦Rel	j ◦(Id+1)◦Cj are equal for ci � cj according
to Lemma 3.3, so Ci ◦Rel j ◦Cj = Ci ◦Rj ◦Cj , and hence Ci ◦Rel j = Ci ◦Rj .

For 2., again, the condition k = Buf i(t) for C ′
i holds invariantly, so

C ′
i(t, k) = (Id−1) ◦ Ci(t), and thus

C ′
i ◦ Rel ′i.j = (Id−1) ◦ Ci ◦ Rel j

Preservation and timing consistency. Based on the above lemmas and
definitions, the main results of this section are two theorems for each of the
three cases outlined in Section 3.2.4, where both the equivalence of ideal
and implementation semantics, and timing consistency is shown for each
case. We start out with the ci ≺ cj case formalized by Theorems 3.6 and
3.7, followed by Theorems 3.8–3.9 and 3.10–3.11 for the other two cases,
respectively.

Theorem 3.6 (Preservation for ci ≺ cj and single shared variable com-
munication). Let Ti and Tj be two tasks such that ci ≺ cj . Then communication
through a single shared variable realizes undelayed communication from Ti to Tj ,
corresponding to the undelayed “A” case.

78 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

Proof. Undelayed “A” case yields the following proof obligation for the
preservation proof:

Ci ◦ Rel j = Ci ◦Wi ◦ Ci ◦Rj.

Chaining with Cj , we can rewrite the proof obligation to

Ci ◦ Rel j ◦ Cj = Ci ◦Wi ◦ Ci ◦Rj ◦ Cj.

Using Ci ◦Wi ◦ Ci = Ci ◦ Rel j ◦ Cj from Lemma 3.4, we obtain

Ci ◦ Rel j ◦ Cj = Ci ◦ Rel j ◦ Cj ◦Rj ◦ Cj.

But this is clear since Cj ◦Rj = Id .

Theorem 3.7 (Timing consistency for ci ≺ cj and single shared variable
communication). Let Ti and Tj be two tasks such that ci ≺ cj . Then com-
munication from Ti to Tj through a single shared variable is timing consistent,
corresponding to the properties

1. Wi ◦ Ci < Rj ◦ Cj (read follows write)
2. Rj ◦ (Id − 1) ◦ Cj < Wi ◦ Ci (read precedes next write).

Proof. For showing 1., by assumption, priority assignment is rate mono-
tonic, so Prioi > Prioj . Chaining Def. 3.2 with Rel j ◦ Cj on both sides and
simplifying terms for Tj , we obtain

Rel i ◦ Ci ◦ Rel j ◦ Cj ≤ Rel j ◦ Cj =⇒ Ei ◦ Ci ◦ Rel j ◦ Cj ≤ Sj ◦ Cj

It is clear from Rel i ◦Ci ≤ Id that the implication assumption holds. Com-
bining the conclusion with Sj ◦ Cj < Rj ◦ Cj ,

Ei ◦ Ci ◦ Rel j ◦ Cj ≤ Sj ◦ Cj < Rj ◦ Cj.

From Lemma 3.4, it follows that Wi ◦Ci ◦Rel j ◦Cj = Wi ◦Ci ◦Wi ◦Ci, and
thus, using Wi ◦ Ci ◦Wi = Wi, Wi ◦ Ci ◦ Rel j ◦ Cj = Wi ◦ Ci. Combining
with Wi < Ei, we obtain

Wi ◦ Ci = Wi ◦ Ci ◦ Rel j ◦ Cj < Ei ◦ Ci ◦ Rel j ◦ Cj.

Combining the latter two inequations yields

Wi ◦ Ci < Rj ◦ Cj

which proves case 1.

3.2. SINGLEPROCESSOR IMPLEMENTATION 79

For case 2., Lemma 3.4 yields

Rel j ◦ Cj < Wi ◦ Ci.

But also, because of Rj < Ej and Ej < Rel j ◦ (Id + 1),

Rj ◦ (Id − 1) ◦ Cj < Ej ◦ (Id − 1) ◦ Cj < Rel j ◦ Cj.

Combining both inequations yields

Rj ◦ (Id − 1) ◦ Cj < Wi ◦ Ci.

Theorem 3.8 (Preservation for ci � cj and double buffer communica-
tion). Let Ti and Tj be two tasks such that ci � cj . Then communication from
Ti to Tj through a double buffer, where the copy is performed at Ti’s release times,
realizes delayed communication from Ti to Tj ,

(Id−1) ◦ Ci ◦ Rel j = Ci ◦Wi ◦ C ′
i ◦R′

i.j,

corresponding to the delayed single “N” case.

Proof. According to Lemma 3.5,

C ′
i ◦R′

i.j = (Id−1) ◦ Ci ◦ Rel j,

so the obligation becomes

(Id−1) ◦ Ci ◦ Rel j = Ci ◦Wi ◦ (Id−1) ◦ Ci ◦ Rel j.

But Ci ◦Wi = Id according to Lemma 3.4, so the equality follows.

Theorem 3.9 (Timing consistency for ci � cj and double buffer commu-
nication). Let Ti and Tj be two tasks such that ci � cj . Then communication
from Ti to Tj through a double buffer, where the copy is performed at Ti’s release
times, is timing consistent, corresponding to the properties

1. Wi ◦ C ′
i ◦R′

i.j < Rj (read follows write)
2. Rj < Wi ◦ (Id+2) ◦ C ′

i ◦R′
i.j (read precedes write after

next)

80 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

Proof. For showing 1., we expand C ′
i ◦R′

i.j according to Lemma 3.5, yield-
ing

Wi ◦ (Id−1) ◦ Ci ◦ Rel j < Rj.

Clearly Wi ◦ (Id−1) ◦ Ci < Rel i ◦ Ci, so it suffices to show

Rel i ◦ Ci ◦ Rel j < Rj,

which is clear because Rel i ◦ Ci ≤ Id , and Rel j < Rj .
For showing 2., again using Lemma 3.5,

Rj < Wi ◦ (Id+2) ◦ (Id−1) ◦ Ci ◦ Rel j

Rj < Wi ◦ (Id+1) ◦ Ci ◦ Rel j

We note that Rel i ◦ (Id +1) ◦ Ci < Wi ◦ (Id +1) ◦ Ci, so we can show 2. by
demonstrating

Rj < Rel i ◦ (Id+1) ◦ Ci ◦ Rel j.

According to Prop. 3.2, Rel j ◦ (Id+1) ◦ Cj ≤ Rel i ◦ (Id+1) ◦ Ci, so again it
suffices to show

Rj < Rel j ◦ (Id+1) ◦ Cj ◦ Rel j,

which is clear from Cj ◦ Rel j = Id and Rj ≤ Rel j ◦ (Id+1).

Theorem 3.10 (Preservation for possibly unrelated ci, cj and triple buffer
communication). Let Ti and Tj be two tasks such that ci and cj may be unrelated
according to �. Then communication from Ti to Tj through a triple buffer, where
the first copy is performed at Ti’s release times, and the second copy is performed
at Tj’s release times, realizes delayed communication from Ti to Tj ,

Ci ◦W ′
i ◦ C ′

i ◦ Rel ′i.j ◦ Cj ◦Rj = (Id−1) ◦ Ci ◦ Rel j,

corresponding to the delayed double “N” case.

Proof. Lemma 3.5 yields

C ′
i ◦ Rel ′i.j = (Id−1) ◦ Ci ◦ Rel j.

Our obligation can be rewritten to

(Id−1) ◦ Ci ◦ Rel j = (Id−1) ◦ Ci ◦ Rel j ◦ Cj ◦Rj,

which is clear because of Cj ◦Rj = Id .

3.2. SINGLEPROCESSOR IMPLEMENTATION 81

Theorem 3.11 (Timing consistency for possibly unrelated ci, cj and triple
buffer communication). Let Ti and Tj be two tasks such that ci and cj may be
unrelated according to �. Then communication from Ti to Tj through a triple
buffer, where the first copy is performed at Ti’s release times, and the second copy
is performed at Tj’s release times, is timing consistent, corresponding to the prop-
erties

1. Wi◦C ′
i◦Rel ′i.j◦Cj◦Rj < Rj (read follows write)

2. Rj < Wi◦(Id+2)◦C ′
i◦Rel ′i.j◦Cj◦Rj (read precedes

write after next)

The proof is analogous to the one for Theorem 3.9.
We have thus demonstrated that each of the three configuration rules

ci ≺ cj , ci � cj , ci �� cj from Section 3.2.4 is semantics-preserving, so
that the message indices as seen by the reader coincide in the ideal and the
implementation semantics, and timing-consistent, meaning that the tim-
ing assumptions for the preservation proof are justified. This concludes
our implementation scheme for the singleprocessor case, where commu-
nication is between tasks of potentially different rates hosted on the same
processor. The next section will deal with a strategy for distributing a syn-
chronous dataflow program onto a network of processors.

82 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

3.3 Multiprocessor implementation

3.3.1 Introduction

Looking at real-time control application in the automotive sector, time-
triggered protocols [Kop97], which have been designed for high levels
of fault tolerance and determinism, are an attractive target platform for
highly critical applications such as X-By-Wire. Because this kind of ar-
chitecture fits the time-synchronous abstraction well, distribution of syn-
chronous programs is feasible and has been demonstrated for the syn-
chronous programming language LUSTRE in [CCM+03b]. However, for
applications where cost concerns and legacy integration issues are more
dominant compared to criticality requirements, existing event-triggered bus
architectures such as Controller Area Network (CAN) may play an im-
portant role for some time to come. Applications characterized by this
requirement will be called medium-criticality applications in the sequel.

Synchronous approach vs. firm real time. In the context of medium-
criticality applications, let us discuss the synchronous distribution issue
in more depth: Certainly, semantically correct implementation of the dis-
tributed program is vital. But when looking at the state of the art in dis-
tributed real-time control applications, many of these applications meet
their timing and criticality requirements even though they are based on
communication media that provide no absolute guarantees about response
times. As a possible explanation, some control applications are known to
tolerate the loss of a bounded number of messages, e. g. state values. In
real-time systems, this corresponds to the notion of firm real-time: trans-
actions are discarded when they miss their deadlines, as there is no value
to completing them afterwards. In contrast to hard real-time systems, a
bounded number of deadline misses is not considered fatal. How can the
notion of firm real-time be married with the distribution of synchronous
programs?

It can also be questioned whether synchronous implementations re-
quire the existence of a precise global timebase. Existing works on asyn-
chronous distribution of synchronous programs [CGP99] have shown that
this is not necessarily the case. On the other hand, it is quite clear that
asynchronous distribution does not satisfy some requirements of real-time
control applications when communication media are involved that allow
message losses or unbounded latencies. Can we use a loose timebase,
which may be cheaper to implement, and still obtain implementations
suited for real-time control applications?

3.3. MULTIPROCESSOR IMPLEMENTATION 83

Based on this discussion, our approach to multiprocessor implementa-
tion is twofold:

1. Provide a distribution method for synchronous programs based on
a synchronization / communication layer with a loose timebase. The
method should ensure semantically correct execution of the synchro-
nous program under normal operation conditions.

2. Make sure the synchronization / communication layer provides a re-
duced service, including synchronization, in case of certain faults. By
adjusting some well-defined parameters, it is then up to the devel-
oper to ensure that the system remains in normal operation for the
most part of its lifecycle, and meets the correctness and timeliness
requirements imposed by the application.

In the following, we will describe the procedure to deploy synchronous
programs onto event-triggered networks based on loose synchronization,
and evaluate our method with respect to the requirements of medium-
criticality applications. The following paragraphs will introduce in detail
the concept of a synchronization cascade, which provides a layer for syn-
chronization and communication for distributed implementation of syn-
chronous programs.

3.3.2 Synchronization cascades

Terminology. A synchronization cascade provides a layer for synchro-
nization and communication, and implements a logical network topology
on top of some suitable physical topology where each link in the logical
topology can be mapped to a physical counterpart. We call the underlying
protocol(s) the base protocol(s) of the cascade.

A synchronization cascade is a rooted tree with nodes N = {N0, N1,
. . .}, and edges S ⊆ N ×N . Each node corresponds to a processor or con-
trol unit in the distributed implementation. Edges s ∈ S are called (direct)
synchronizing links: Each such link communicates a periodic message that
is used by its child node to synchronize itself with the parent node.

The root of the tree is called master node N0. For a non-master node N ,
we denote as Li(N) the set of those synchronizing links that form a path
from N0 to node N . If (N,N0) /∈ S, the links in Li(N) form an indirect link
from N to N0. Par(N) is the set of parent nodes along the path such that
N0 ∈ Par(N) and N /∈ Par(N).

The rooted tree is extended to a (directed) multigraph by adding edges
U = {u1, u2, . . .}, depicted as dashed edges, between nodes. The edges

84 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

s
1

s
2

s3u1

u
2

N
0

N
1

N
2

N
3

Figure 3.15: Example for a synchronization cascade

u ∈ U are called nonsynchronizing links: while their value is usually im-
portant to the receiver, the timing of their reception does not influence the
receiver’s activation times.

An example for a synchronization cascade is shown in Fig. 3.15: Node
N0 is the master node. Links s1, s2, s3 are synchronizing links, while u1 and
u2 are nonsynchronizing. The master node emits a periodic synchronizing
message with a predefined base period T .

Processing phases. Fig. 3.16 shows, schematically, the timing of com-
putations performed by a single node. During each cycle, the node per-
forms two subsequent computations: a send/receive phase, and a computa-
tion phase. For given Ni ∈ N , j ∈ N0, instant ti,j denotes the activation
instant of node Ni at step j.

Send/receive phase. The send/receive phase is triggered by a periodi-
cally elapsing timer for the master, and by the respective synchronizing
message for a non-master node. During this phase, the nonsynchroniz-
ing messages received since the last send/receive phase and the incoming
synchronizing message are read, and all outgoing messages computed in
the last computation phase are emitted. Because the send/receive phase
requires nonzero time for execution, and the receiver node could poten-
tially lose synchronizing messages if their inter-arrival time is too short,
we define a quiet interval that overlaps the send/receive phase, and during
which the node is not required to process incoming synchronizing mes-
sages. The remaining part of the cycle is called the receptive interval. For
nonsynchronizing messages arriving in the quiet interval, the node may
either read the message immediately, or leave it in the message buffer so it
can be processed by the next send/receive phase. The quiet interval (0, Q]
starts at the beginning of each period. The analysis below will ensure that
a node does not receive synchronizing messages in (0, Q] under given op-
erating conditions. Q is typically a worst-case estimate of the send/receive
period’s combined task response and execution times. In the following,

3.3. MULTIPROCESSOR IMPLEMENTATION 85

write
messages

send/
receive
phase

computation
phase

receive
nonsynchronizing

messages in buffer

time

incoming
messages

node
activation

outgoing
messages

triggered by
synchronizing

message

read buffered
 nonsynchronizing

messages

ti,k ti,k+1

send/
receive
phase

t
i,k

+Q

Figure 3.16: Processing phases for step k of a node Ni. Filled arrowheads
denote synchronizing messages, empty arrowheads correspond to non-
synchronizing messages

we formally require 0 ≤ Q < T · (1− 2ε), where ε is a clock drift constant
introduced in Section 3.3.3. Because communication overhead is usually
small compared to computation time, we expect typical assignments for Q
to be less than T/4.

Computation phase. During the computation phase, the local part of the
distributed program is executed, the received messages are processed, and
the next values of the outgoing messages are computed. Outgoing mes-
sages are buffered till the next send/receive phase.

Note that the computation phase may be interrupted by the next send
/receive phase under certain circumstances. It is assumed that the send/
receive handler uses default values for all of those outgoing synchroniz-
ing messages where no value has been computed in the last step. Con-
sequently, the availability of a synchronization message for the next cycle
does not depend on the completion of the computation phase.

Activation of the send/receive phase. Each node Ni defines the follow-
ing functions and variables:

• getSynchronizingMessage: takes no arguments, and yields the value
of the current synchronizing message.

• sendReceive: takes a synchronizing message as a parameter, and
executes the send/receive phase based on the value of the synchro-
nizing message.

• getDefaultMessage: takes no arguments, and yields a default mes-
sage for the synchronizing message, for instance based on the last

86 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

available values of the message.

• state ∈ {EXTERNALLY_TRIGGERED, MESSAGE_ABSENT, SELF_TRIG-
GERED} is a state variable.

• timeri ∈ R is the physical timer of node Ni.

• count ∈ N is a counter.

The send/receive phase of each node is initiated by two tasks, message_avail-
able_task and timer_task. timer_task is activated T time units and, if neces-
sary, Tma time units after the last activation. timer_task has an idealized
release time of zero. The two tasks and the states and transitions of the
activation algorithm are shown in Fig. 3.17.

States and transitions. After initialization of the cascade, the master node
is in state SELF_TRIGGERED, all other nodes are in state EXTERNALLY-
_TRIGGERED. In state EXTERNALLY_TRIGGERED, the respective node is
synchronized with its parent node, and the send/receive phase is periodi-
cally activated by the synchronizing message. In state MESSAGE_ABSENT,
the node has detected a (possibly transient) absence of the synchronizing
message. The send/receive phase is activated by the node’s own peri-
odic timer in this state. We will show in Section 3.3.4 that, while in state
MESSAGE_ABSENT, the node is able to re-synchronize itself with its par-
ent node. In state SELF_TRIGGERED, the node is periodically activated by
its own timer, and there are no guarantees about the node’s ability to re-
synchronize itself with its parent node, if existent. The parameter Tma is
called the message absence detection margin. It denotes the time interval after
which, if no synchronizing message has been detected, a node in state EX-
TERNALLY_TRIGGERED changes to MESSAGE_ABSENT. Parameter npf is
the parent fault detection count. It denotes the maximum number of periods
the node will remain in state MESSAGE_ABSENT if no synchronizing mes-
sage is detected. If this number exceeds npf , the node will change to state
SELF_TRIGGERED. Sender fault detection therefore initiates a fallback be-
havior in case either the parent node or the communication medium fails
for a longer period of time. Note that re-synchronization with the parent
after the node has entered state SELF_TRIGGERED is not in the scope of
this thesis.

3.3. MULTIPROCESSOR IMPLEMENTATION 87

message_available_task:
if state ∈ {EXTERNALLY_TRIGGERED,

MESSAGE_ABSENT} then
timeri := 0
state := EXTERNALLY_TRIGGERED
sendReceive(getSynchronizingMessage()) endif

timer_task:
if state = SELF_TRIGGERED then

if timeri = T then
timeri := 0
sendReceive(getDefaultMessage()) endif

else if state = MESSAGE_ABSENT then
if timeri = T then

timeri := 0, count := count + 1
if count≥ npf then

state := SELF_TRIGGERED endif
sendReceive(getDefaultMessage()) endif

else
if timeri = Tma then

timeri := 0, count := 0
state := MESSAGE_ABSENT endif endif

(a) Send/receive phase activation and transitions

EXTERNALLY
_TRIGGERED

SELF
_TRIGGERED

MESSAGE
_ABSENT

count > n
pf

timer = T
mamsg. available

and count < npf

(b) States and transitions

Figure 3.17: Activation, states, and transitions of a node Ni

88 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

3.3.3 Environment assumptions

We will now state some assumptions about the physical environment of
the cascade. The assumptions will be necessary in order to show that the
cascade meets its operational requirements. Some of the assumptions will
be required independent of the network state, while others are prerequi-
sites for normal operation of the network, and may be violated under fault
conditions.

Physical clocks. Each nodeNi has its own physical clock timeri. A physi-
cal clock is typically subject to drifts and jitter w.r.t. the ideal physical time
t. Operation of a synchronization cascade requires that deviations of all
the nodes’ clocks from ideal time are bounded by a constant.

Definition 3.4 (ε-Bounded Clock Drift). For a given cascade, let each node
Ni be associated with a physical clock timeri. The cascade is said to have an ε-
bounded clock drift iff, for all intervals where timeri is not reset,

∀Ni ∈ N .

∣∣∣∣dtimeri
dt

− 1

∣∣∣∣ ≤ ε

In combination with our definition of timer_task, the bounded clock
drift assumption guarantees that the physical base period of each node
is bounded by [T/(1 + ε), T/(1 − ε)], and the message absence detection
period is bounded by [Tma/(1 + ε), Tma/(1− ε)].

Message jitter. We define for each link sj, uj in the cascade a map ∆li

mapping direct links, i. e. links between adjacent nodes, to their corre-
sponding worst case message jitters, assuming that some adequate method
for analysis is available3. The minimum and maximum message latencies
for direct or indirect links (Ni, Ni′) will be denoted as dmin(i, i′), dmax (i, i

′),
respectively, such that

dmax (i, i
′)− dmin(i, i′) =

∑
sj∈Li(N) ∆li(sj) (3.1)

holds for all (N,N ′).
The message jitter summarizes the end-to-end jitter from the instant

the send/receive phase at the parent is activated until the child node’s
activation time. The worst-case jitter will typically include

3For the CAN protocol, the analysis described in [TB94] yields both bounds for worst-
case response times and message jitters on the bus.

3.3. MULTIPROCESSOR IMPLEMENTATION 89

1. execution time jitter of the sender’s send/receive code,

2. queuing jitter at the sender,

3. communication jitter of the medium, and

4. response time jitter of the receiver’s task.

Because the message jitter includes the queuing jitter at the sender,
the bound may be invalid if the communication medium is not accepting
messages (e. g. due to unforeseen overload conditions or external distur-
bances). We therefore assume the existence of a simple communication layer
that enforces the predetermined queuing interval by retracting the mes-
sage when the precomputed worst-case queuing time is overrun. Note
that this typically requires the layer to have some access to lower-layer
operations of the controller.4

For correct operation of the cascade, the end-to-end jitter from the mas-
ter to any node must be bounded:

Definition 3.5 (Bounded sync. message jitter). Let Li(N) denote the set
of all synchronizing links that form a path from the master to the node N . The
network is said to have a bounded synchronizing message jitter iff

∀N ∈ N .
∑

sj∈Li(N) ∆li(sj) < min

(
T −Q

2
,
T (1− 5ε)

2

)

This bound should be satisfiable for a large number of practical appli-
cations. For instance, in an automotive case study described in [TB94], for
the case of a 1MBit/s CAN bus, most high-priority messages have a jitter
of around 10−3s, so for ε = 10−6, T = 10−2s, and Q = T/20, cascades up
to depth 4 (four synchronizing links between master and the “farthest”
node) are possible.

Logical channels. In order to define properties of the communication
medium with respect to message loss in the next paragraphs, and to reason
about the correctness of the cascade with respect to communication and
synchronization in Section 3.3.5.

A stream processing function f , as introduced in Section 2.2.2, is as-
sociated with a set of input variables XI = {x1, x2, . . . , xl} with symbol

4In the case of the CAN protocol, the two most popular controller ICs (Intel 82527 and
Philips 82C200) allow to retract messages after they have been put in the send buffer

90 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

domain VI , to a set of output signals O = {xl+1, xl+2, . . . , xn} with symbol
domain VO. I = XI → V ω

I and O = XO → V ω
O are the input and output

domains of the function, respectively. f is assumed to be a total function
f : I → O. We also employ a special treatment of the message ⊥, the
absent message defined in Section 2.2.1: for a given symbol domain V , we
write V ⊥ = V ∪ {⊥} for the set obtained by adding the absent message.

Stream processing functions may be used for defining different classes
of logical channels, which may be understood as a discrete-time abstraction
of some physical reality, e. g. a communication medium, or a combination
of communication medium and synchronization cascade.

Definition 3.6 (Channel). A function f denotes a channel iff |XI | = |XO| = 1
and VI = VO.

Definition 3.7 (m-Length-Preserving Channel). Given some m ≥ 0, a chan-
nel is an m-length-preserving channel iff ∀σI ∈ I.#(f(σI)) = #(σI) +m.

Definition 3.8 (Unit Delay Channel). A channel is a unit delay channel
with initial message m iff ∀σI ∈ I.f(σI) = m&σI .

Note that this definition of unit delay channel coincides with the se-
mantics of the fby operator defined in Section 2.2.2. As a corollary, unit
delay channels are 1-length-preserving.

Definition 3.9 (n-Bounded Lossy Channel). Given some n > 0 and some m-
length-preserving channel ch with symbol domains VI = VO = V ⊥, ⊥ ∈ V ⊥, ch
is an n-bounded lossy channel iff, for all input/output streams (σI , σO) ∈ f ,
for all of σI ’s substreams σiI of length n at position i, for all of σO’s substreams
σi+mO of length n at position i+m, the following condition holds:

#(σiI |V) = n =⇒ #(σi+mO |V) ≥ 1

Intuitively, if fed with messages from the set V = V ⊥\{⊥}, an n-bounded
lossy channel will lose at most n − 1 subsequent messages. As a direct
consequence of the above definition, any n-bounded lossy channel is also
n+ 1-bounded lossy.

Message loss. The synchronization mechanism has to meet certain fault
tolerance requirements. A typical fault in event-triggered real-time sys-
tems is the loss of a message: the loss can be caused by the sender when
aborting a send operation (e. g. if the queuing delay is longer than ex-
pected, and a newer value is available), or by the communication medium
itself. Seen more abstractly, we can associate message loss with the in-
put/output behavior of a link in the cascade. The following definition will
capture this:

3.3. MULTIPROCESSOR IMPLEMENTATION 91

Definition 3.10 (I/O function of a (direct) link). For a given execution of
a cascade, the I/O function of a link l ∈ S ∪ U , written fl, is defined as the
function mapping the sequence of messages written by the sender’s program to
the sequence of messages arriving at the receiver node, where the special output
symbol ⊥ indicates a lost message.

Definition 3.11 (I/O function of an indirect link). For a given execution of
the cascade, the I/O function of an indirect link l = l1→ l2→· · ·→ lm, where
li ∈ S∪U and l1 and lm are the first and last links in the direction of message flow,
respectively, is defined as the composition of the individual links’ I/O functions:

fl = flm ◦ · · · ◦ fl2 ◦ fl1

Using these definition, a lossy link models both message loss due to the
sender’s communication layer aborting the send, and due to the medium
losing messages. In order to define bounded message losses, we will use
Def. 3.9 of an n-bounded lossy channel to capture the condition that a cas-
cade may suffer from a bounded number of message losses on each of its
direct and indirect synchronizing links.

Definition 3.12 (n-Bounded Lossy Cascade). A cascade with masterN0 is an
n-bounded lossy cascade iff, for all executions of the cascade, for all direct and
indirect synchronizing links from N0 to nodes N ∈ N , the link’s input/output
function is an n-bounded lossy channel.

Choice of Parameters. We now give some predefined values for the pa-
rameters Tma and npf that can be used by the send/receive phase activa-
tion algorithm, and will be incorporated in the analysis of the next section.
Tma is chosen such that loss of the synchronizing messages cause the re-
ceiver’s activations to be delayed by T/2 w.r.t. the master’s activation in-
stants, while npf results from an analysis of the maximum number of lost
messages that can be tolerated by the synchronization algorithm:

Tma =
3

2
T, (3.2)

npf = max
N∈N

(⌊
1

4Tε

(
T−

(
2
∑

sj∈Li(N) ∆li(sj)+max(2Q, Tε)
))⌋)

, (3.3)

where the computed value for npf is required to be positive. For ε << 1,
Q << T , the choice for Tma can be shown to be very close to an optimally
robust assignment, so that a maximal number of lost synchronizing mes-
sages can be tolerated in the presence of clock drifts. We will demonstrate

92 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

in the next section that, for our assignment for Tma , the cascade indeed
satisfies this robustness requirement for an npf -bounded number of lost
messages.

3.3.4 Analysis of operational modes

This section will provide an analysis of the different operational modes of
the cascade: operation under normal conditions, operation under transient
fault conditions, and operation under permanent fault conditions. For normal
operation, we will show that all non-masters remain in state EXTERNAL-
LY_TRIGGERED, while under transient fault conditions, it will be shown
that non-masters never enter state SELF_TRIGGERED.

The following two definitions deal with the property of synchronization,
which asserts that the offset of the node’s activation instant with respect to
the master’s activation instant is bounded, and receptiveness, which guar-
antees that a node is able to receive the synchronizing message for the
current step during its receptive interval. Note that for forwarding a syn-
chronizing message over the entire length of an indirect link, all nodes
along the link have to be receptive.

Definition 3.13 (j-synchronization). For a node Ni and a step j ∈ N0, the
statement “Ni is j-synchronized” corresponds to the property

dmin(0, i) ≤ ti,j − t0,j ≤ dmax(0, i) (3.4)

Nodes in N are assumed to be 0-synchronized (proper initialization of the cas-
cade). Furthermore, we define that the master node N0 is j-synchronized for all
j ∈ N0. Again, j-synchronization is extended to sets of nodes and indices.

Definition 3.14 (j-receptiveness). For a node Ni and a step j ∈ N, the state-
ment “Ni is j-receptive” corresponds to the three properties

t0,j + dmin(0, i) > ti,j−1 +Q, (3.5)

(j − 1)−synchronized(Ni) =⇒
t0,j + dmax (0, i) < ti,j−1 +

Tma
1 + ε

, (3.6)

¬(j − 1)−synchronized(Ni) =⇒
t0,j + dmax (0, i) < ti,j−1 +

T

1 + ε
, (3.7)

where Tma/(1 + ε) is the minimum message absence detection period defined in
Section 3.3.3. The master node N0 is defined to be j-receptive for all j ∈ N. j-
receptiveness is extended to sets of nodes N ′ ⊆ N and to sets of indices J ⊆ N

3.3. MULTIPROCESSOR IMPLEMENTATION 93

such that N ′ is j-receptive iff all of its members are, and Ni is J-receptive iff Ni

is j′-receptive for all members j′′ ∈ J .

Definition 3.15 (Normal operating conditions). A cascade is said to be under
normal operating conditions iff it is 1-bounded lossy, and the ε-bounded clock
drift assumption holds.

Lemma 3.12. Let Ni be a non-master node in a cascade. Then j-receptiveness of
Ni and arrival of a synchronizing message in step j atNi imply j-synchronization
of Ni.

Proof. By Definition 3.14, it follows from j-receptiveness of Ni that, if a
synchronization message originating from N0 arrives at Ni for step j, it is
received during the receptive interval of Ni, leading to an activation of Ni

at ti,j . According to our assumption about the communication medium,
the difference ti,j − t0,j is then bounded by [dmin(0, i), dmax(0, i)], so j-syn-
chronization holds for Ni.

Lemma 3.13. Let N be a non-master node in a cascade under normal operating
conditions. Then j-receptiveness ofN and Par(N) imply j-synchronization ofN .

Proof. Straightforward adaptation of Lemma 3.12: Normal operating con-
ditions ensure that the direct or indirect synchronizing link to N is 1-
bounded lossy, so synchronizing messages from N0 are never lost. Be-
cause N0 will send a message in every step j, and both N and N ’s parent
nodes are j-receptive, a synchronizing message will be received by N in
its receptive interval for all j.

Lemma 3.14. Let N be some non-master node in a cascade under normal oper-
ating conditions. Then (j − 1)-synchronization of N implies j-receptiveness of
N .

A detailed proof is given in the appendix. Intuitively, it suffices to show
that, given j-receptiveness of Par(N) and j−1-synchronization ofN , mes-
sages will always arrive after the quiet interval has elapsed at N , and be-
fore timer of N reaches Tma. It is sufficient to examine two corner cases,
where (1) N0’s clock is “fast”, N ’s clock is “slow”, the synchronizing mes-
sage at j−1 has maximum latency, and the synchronizing message at j has
minimum latency, and (2) N0’s clock is “slow”, N ’s clock is “fast”, the syn-
chronizing message at j − 1 has minimum latency, and the synchronizing
message at j has maximum latency.

Lemma 3.15. Under normal operating conditions, all nodes inN are j-receptive
and j-synchronized for all j.

94 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

Proof. Double induction over the index set for j, and over the nodes on the
path from N0 to given node N ∈ N , using Lemmas 3.13 and 3.14.

Theorem 3.16. Under normal operating conditions, a non-master node N will
always remain in state EXTERNALLY_TRIGGERED.

Proof. We observe that N is initialized to state EXTERNALLY_TRIGGERED.
Because of Lemma 3.15,N is j-receptive for all j, we conclude from Defini-
tion 3.14 that the precondition for leaving state EXTERNALLY_TRIGGERED,
timeri = Tma , will never hold. Therefore, the only reachable state for N is
EXTERNALLY_TRIGGERED.

In case of temporary message losses, the network is operating under
transient fault conditions: nodes affected by loss of their synchronizing mes-
sage may transition temporarily to state MESSAGE_ABSENT. We can show,
however, that a given node will always re-synchronize itself with the mas-
ter, and count never reaches npf . As a consequence, the node will never
enter state SELF_TRIGGERED.

Definition 3.16 (Transient fault conditions). A cascade is said to operate un-
der transient fault conditions iff it is npf -bounded lossy, and the ε-bounded
clock drift assumption holds.

Lemma 3.17. Let N be some non-master node in a cascade under transient fault
conditions. Then if there exists an n, 1 ≤ n ≤ npf , such that N is (j − n)-
synchronized, then N is j-receptive.

Again, the details of the proof can be found in the appendix. It demon-
strates that, for any n′ such that 1 ≤ n′ ≤ npf , if a node N has performed
n′−1 unsynchronized cycles, synchronizing messages will arrive after the
quiet interval has elapsed, and before timer of N reaches T . Similarly to
Lemma 3.14, the two corner cases are: (1) N0’s clock “fast”, N ’s clock
“slow”, synchronizing message at j − n with maximum latency, synchro-
nizing message at j with minimum latency, and (2) N0’s clock “slow”, N ’s
clock “fast”, synchronizing message at j − 1 with minimum latency, syn-
chronizing message at j with maximum latency.

Lemma 3.18. Let N be some non-master node in a cascade under transient fault
conditions. Then for a given step j > npf , let J = {j − npf , . . . , j − 1} be a set
of successive step indices. If N and Par(N) are J-receptive, then there is at least
one j′′ ∈ J such that N is j′′-synchronized.

3.3. MULTIPROCESSOR IMPLEMENTATION 95

Proof. Transient fault conditions imply that the synchronizing link from
N0 parent to N is npf -bounded lossy. According to our definition for the
node’s behavior, N0 will send a synchronization message in every step.
Then from Definition 3.12, it is clear that N receives a synchronizing mes-
sage for at least one j′′ ∈ J , and so Lemma 3.18 is a direct adaptation of
Lemma 3.12.

Lemma 3.19. Under transient fault conditions, all nodes inN are j-receptive for
all j.

Proof. The proof is again by double induction over js in the index set, and
over the nodes on the paths from N0 to nodes N ∈ N .

(1 – base case) ∀j.j-receptive(N0):
By Definition 3.14.

(2 – induction step) (∀j.j-receptive(Par(N))) =⇒ (∀j.j-receptive(N))):
Split into cases (2a) and (2b) for the inner induction.

(2a – base case)
∀j ≤ npf .j-receptive(N):
By Definition 3.13, N is 0-synchronized. So there exists an n ≤ npf such
that N is (j − n)-synchronized and, By Lemma 3.17, N is j-receptive.

(2b – induction step)
∀j > npf . ({j − npf , . . . , j − 1}-receptive(Par(N))

∧ {j − npf , . . . , j − 1}-receptive(N))
=⇒ j-receptive(N) :

Because N and Par(N) are j′-receptive for all j′ ∈ {j − npf , . . . , j − 1},
we know by Lemma 3.18 that there exists an n ≤ npf such that N is (j−n)-
synchronized. But this is just the precondition for Lemma 3.17, so N is
j-receptive.

Theorem 3.20. Under transient fault conditions, a non-master node will never
enter state SELF_TRIGGERED.

Proof. By Lemma 3.19, the non-master node will be always receptive when
receiving a synchronizing message. Therefore, each arriving synchroniz-
ing message is received. Transient fault conditions guarantee that the
medium loses at most npf − 1 subsequent messages. Consequently, count
never reaches npf , so the precondition count≥ npf for transitioning to state
SELF_TRIGGERED will never hold.

We denote as permanent fault conditions all other operating conditions,
such as non-npf -bounded lossy cascades, violation of the ε-bounded clock

96 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

drift assumption, or complete failure of nodes. Behavior of the cascade
under such conditions will not be discussed in the scope of this thesis.

3.3.5 Properties of synchronization cascades

This section defines some essential requirements that a synchronization
cascade has to satisfy for distribution of synchronous programs in medium-
criticality applications, and demonstrates the corresponding formal prop-
erties.

Requirements. Intuitively, the cascade should fulfill two classes of re-
quirements: reactivity, that is, there should be a least frequency at which
local processing is performed independent of communication failures, and
channel preservation, which is related to preservation of communication
and synchronization inherent in the original synchronous dataflow pro-
gram.

P -reactivity Distributed real-time control applications typically contain
periodic, reactive parts which continually compute output values from
a given input. Because inputs may originate from other nodes, it is
highly desirable to provide an architecture that allows reactive pro-
grams to safely synchronize their local processing with communication
on the medium, eliminating the needs for special “watchdogs” or sim-
ilar mechanisms. We will define a property called P -reactivity which
captures the fact that a node performs communication actions with a
certain minimal frequency. Local processing can therefore be triggered
by the communication handler

Definition 3.17 (P -Reactivity). A nodeNi is called P -reactive for some P ∈
R+ iff, for all possible executions of Ni and for all instants t, there is at least
one activation instant for a send/receive phase in the time interval [t, t+ P).

Unit delay and length preserving channels Semantically correct deploy-
ment of a synchronous specification warrants that the communication
channels provided by the communication layer are valid implementa-
tions of the corresponding abstract channels in the specification. As
will be justified by Property 3.22, we will use unit delay channels as
our model for an abstract channel. Breaking down the original require-
ments for the cascade to the implemenation of channels, the cascade
should (1) provide a valid implementation of unit delay channels un-
der normal operating conditions, and (2) provide some limited service,

3.3. MULTIPROCESSOR IMPLEMENTATION 97

including synchronization, under transient fault conditions. The syn-
chronization service can be abstracted as a lossy channel with the 1-
length-preserving property. Length-preservation then captures the fact
that sender and receiver never get “out of sync”.

Properties. In the following, we will show that the cascade indeed satis-
fies the stated requirements.

Property 3.21. Under normal operating conditions or transient fault conditions,
all nodes are (Tma/(1− ε))-reactive.

By definition of timer_task in Fig. 3.17, Ni is activated at least every
Tma time units (measured by its physical clock) in all of the three possible
states EXTERNALLY_TRIGGERED, MESSAGE_ABSENT, SELF_TRIGGERED.
Because the bounded clock drift assumption holds under normal and tran-
sient fault conditions, the worst case of a “slow” physical clock is
dtimeri/dt = 1 − ε. In physical time, the greatest interval in between acti-
vations is therefore Tma/(1− ε).

Property 3.22. Under normal operating conditions, the input/output behavior of
a synchronizing link is a unit delay channel.

For an intuitive treatment, there are four parts constituting the unit de-
lay channel property: (1) every message sent by the sender must be ac-
cepted by the communication medium, (2) once accepted, the message
must reach the receiver, (3) the cascade receiver must be receptive, (4) a
message computed at step j at the sender is processed at step j + 1 at
the receiver. (1) and (2) are guaranteed by the 1-bounded message loss
assumption. (3) and (4) are direct consequences of Lemma 3.15.

Property 3.23. Under normal operating conditions or transient fault conditions,
the input/output behavior of a synchronizing link is a 1-length-preserving chan-
nel.

In the case of normal operating conditions, the 1-length-preserving prop-
erty results from Property 3.22. For transient fault conditions, the fact that
the synchronizing link itself is 1-length-preserving follows from Lemma
3.18: let N,N ′ be the sender and receiver of the synchronizing message,
respectively. For a given step j, there are two possibilities: (1) if the syn-
chronizing message is not lost in step j, then N and N ′ will both be j-
synchronized. They will therefore agree on the step number, and N ′ will
process in step j the result ofN ’s computation at step j−1, so the channel’s

98 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

behavior may be characterized as a unit delay for step j. (2) if the synchro-
nizing message is lost in step j, thenN ′ will detect a⊥ symbol each timeN
emits a synchronizing message. In both cases, the input/output behavior
of the link constitutes a 1-length-preserving channel.

Nonsynchronizing messages In the discrete-time abstraction of the syn-
chronous programs, synchronizing messages correspond to messages with
deterministic timing: if the sender component has computed the synchro-
nizing message at step j, the synchronizing message will always be pro-
cessed by the receiver component at step j + 1 in normal operation. This
is why abstracting the link as a (deterministic) unit delay channel in the
synchronous program, as shown in the Section 3.3.5, is justified for syn-
chronizing links.

For nonsynchronizing links, the deterministic delay channel abstraction
may not always be valid. A nonsynchronizing message computed in step j
by a sender node may reach a receiver node at steps j, j+1, . . ., depending
on the timing of activations of the two nodes, and the timing of messages
on the synchronizing link. Fortunately, best/worst-case analysis, such as
in [TB94], can be used in theory to ensure that some nonsynchronizing mes-
sages have deterministic timing. For other messages, it may be necessary
to either add some flow control mechanism to the communication layer,
or to account for the nondeterminism in the discrete-time abstraction.

Mapping Synchronous Programs to Cascades Consider the simple net-
work in Fig. 3.18(a): The network includes components {A,B,C,D}, and
unit delay channels pre in between components. A sends messages through
signal b to component B, and through signal c to component C. B sends
messages to D (signal d1), C sends messages through signal d1 to com-
ponent D, and to A through signal a. The dataflow network is mapped
to the cascade of Fig. 3.15 with the mapping {(A,N0), (B,N1), (C,N2),
(D,N3)} Fig. 3.18(b) shows a depiction of the resulting cascade. The re-
sulting distribution is correct for normal operation if the two nonsynchro-
nizing channels u1, u2 have deterministic unit-delay behavior. Note that
the synchronization messages carry values that the distributed program
needs to communicate. If, for a given system step, no such value needs to
be communicated, an empty message with no relevant data must be used
as a synchronizing message.

Methodical handling of delays. Our method of distribution relies on the
existence of delays at the partitioning boundaries in the specification, sim-

3.4. RELATED WORK 99

A

B C
a

b

D

d'1

d2

pre

b'

c
pre

c' pre

pre

a'

pre
d

1

d'
2

(a) Dataflow
network

(c,s
2
)N0

N1 N2

N
3

A

B C

D

(b,s
2
)

(d
2
,s

3
)(d

1
,u

1
)

(a,u
2
)

N
0

N
1

N
2

N
3

(b) Deployed
dataflow net-
work

Figure 3.18: Mapping a dataflow network to a cascade

ilar to the Giotto language [HHK01]. Clearly, introduction of such delays
is somewhat implementation-driven: an “ideal” platform with infinite re-
sources would not require delays in the model, except for breaking causal
loops. Top-down, implementation-independent development will typi-
cally not result in an appropriate placement of delays at partition bound-
aries. On the other hand, bottom-up introduction of delays will in most
cases necessitate a re-validation of the entire design, and is thus in conflict
with the idea of having implementation-independent synchronous speci-
fications. We have, however, proposed in [BBR+05] a methodology which
enforces introduction of delays at the boundaries of (abstract) software
components at early design stages, thus ensuring both implementation-
independence and partitionability of the specification.

3.4 Related work

Singleprocessor implementation The work on singleprocessor imple-
mentation has originally been done for an internal project report spon-
sored by ETAS. The results further elaborated in Section 3.2 have orig-
inally been published in [BR04]. The implementation scheme has been
implemented as part of a translator from AutoFOCUS [HSE97] to ASCET
[ETA] as a result of the AutoMoDe project [BBR+05]. Similar work has
been published in [HHK01], [SC04], and [TSSC05].

• [HHK01] uses “logical execution times” universally on the level of
language, which can be regarded as isomorphic to delayed-only com-
munication in SSDL. Their solution allows communication between
arbitrary (non-harmonic) periodic multirate tasks, and is suited for

100 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

different schedulers, such as fixed-priority and EDF. As a drawback
of the technique, a triple buffer for each communication link is re-
quired, equivalent to the ni �� nj case in our framework. Optimiza-
tions based on case distinctions comparable to our technique are not
considered. Furthermore, all communication is delayed-only.

• In comparison to [SC04], our framework ties the high-to-low priority
case to clocks related by�. For this case, our method then allows the
optimization of using a single shared variable instead of the double
buffer used for generic high-to-low communication as in [SC04]. The
remaining high-to-low scenarios would be subsumed in our method
in case 3, and would incur a unit delay. In contrast to the additional
flag-triggered buffer switch algorithm used in [SC04], our method
assumes that the appropriate write sampling primitives, which exist
on the SSDL program level in the form of hold and every primitives,
are synthesized into the code.

• For the high-to-low case, our single-buffer optimization has subse-
quently be described in [TSSC05] as part of a more general algorithm.

Multiprocessor implementation Our work on multiprocessor implemen-
tation has been previously published in [RB04]. Related works include
the LTTA approach of Benveniste et. al. [BCG+02], Time-Triggered CAN
(TTCAN) [FMHH01] of Robert Bosch GmbH, and clock synchronization
algorithms, as exemplified by Welch’s and Lynch’s algorithm [WL88].

• In comparison to LTTA [BCG+02], synchronization cascades are de-
signed for protocols with restricted availability, while in LTTA, the
bus is assumed to be ideally available. LTTA links may be abstracted
as deterministic channels, while in cascades, even under normal con-
ditions, some unsynchronized links may exhibit nondeterministic
behavior. In cascades, the activation timing of non-master nodes al-
ways depends on the master node, and is roughly periodic. This is
also true if synchronous programs with (delayed) feedback loops are
deployed onto a cascade. For LTTA networks, convergence of the ac-
tivation frequencies for length-preserving programs with feedback
is not obvious from [BCG+02] 5.

5Consider a synchronous program with delayed feedback loop deployed onto an
LTTA with nodes N1, N2: If the sequence sent by N1 has periodic timing, the timing
of the received, decoded sequence at N2 is usually aperiodic because N2’s alternating bit
decoder will occasionally drop duplicate messages. For providing a periodic feedback

3.4. RELATED WORK 101

• For the special case of the CAN protocol, TTCAN [FMHH01] is a
CAN-based synchronization layer which, in its Level 1 stage, does
not rely on additional hardware for synchronization, similar to cas-
cades. Arbitration in TTCAN is primarily based on static assignment
of message slots. An interesting question is whether existing unsyn-
chronized nodes can be integrated with the synchronized network:
In TTCAN, unsynchronized nodes may only have read access to the
bus, while in a CAN-based cascade, full read/write interoperation is
possible if the messages sent by unsynchronized nodes are included
in the message jitter analysis in Section 3.3.3.

• High-precision clock synchronization algorithms such as [WL88] are
well-studied. This kind of algorithm provides a high-precision syn-
chronization, where clocks are synchronized within an interval in
the range of ∆(1− 1/|N |), with |N | the number of nodes, while cas-
cades are merely synchronized in the range of T/2, with T as the base
period. However, we claim that our design of a synchronization cas-
cade is more specifically suited to the requirements outlined in Sec-
tion 3.3.1. For instance, Welch and Lynch’s algorithm requires |N |2
synchronization messages for each round vs. |N | − 1 messages for
a cascade. Welch and Lynch’s algorithm uses explicit synchroniza-
tion rounds, where the synchronization messages could potentially
block other real-time traffic on the medium. Cascades, on the other
hand, provide synchronization using the regular real-time traffic of
the distributed program. We also claim that the T/2 precision may
be sufficient in cases where synchronization is important for correct,
timely implementation of the distributed program’s semantics, but a
precise absolute global time base is not necessary.

sequence to N1, N2 must adjust its send rate to the average frequency of the decoded
sequence, and vice versa for N1. It is unclear how the frequencies of N1 and N2 converge
in such cases.

102 CHAPTER 3. TWO IMPLEMENTATION SCHEMES

Chapter 4

Linearizations and Property
Preservation

This chapter will frame the concrete, application-oriented implementation
strategies of Chapter 3 with a more general theory for implementation
refinement and property preservation for the synchronous dataflow pro-
grams introduced in Chapter 2. The theory is based on the assumption that
a synchronous dataflow program is partitioned into a number of subpro-
gram instances, each subprogram instance corresponding to an indepen-
dent thread in the implementation, where threads communicate through
bounded channels. The theory is intended both for broadening the un-
derstanding of correct-by-construction implementation schemes, and for
possible use in a bottom-up fashion, such as monitoring, testing, or ver-
ification. A possible application of the theory in the context of temporal
logics for behavioral specification will be highlighted.

It is clear that a physical implementation of a synchronous dataflow
program operates in dense, physical time. Imagine that a trace of all com-
munication events is observed for such a running system, where events
are ordered according to their relative timestamps. We assume that the
distributed timebase for recording event traces is faithful in the sense that,
if two events can only appear in a certain order, then this is always re-
flected in our observation. We also adopt the (frequent) assumption that
in physical time, no two events are exactly simultaneous, so the trace is
indeed a totally ordered sequence of atomic events.

Based on our knowledge about the original synchronous program, we
may want to evaluate such traces with respect to some aspect of interest,
e. g. an invariant property that the system has to satisfy. This chapter deals
with such properties, how they can be verified on a synchronous abstrac-
tion of the system, and how a verification result on the abstract level can

103

104 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

be used for reasoning about the implementation.

• On the abstract level, our formal vehicle will be SSDL programs,
their corresponding synchronous automata, and synchronous words, whe-
rein the word-based semantics trivially corresponds to the stream-
based semantics introduced in Section 2.2.2.

• On the implementation level, we shall adopt the notion of linearized
automata, and their corresponding runs, linearized words. Linearized
words are sequences of atomic symbols spread out in time, and there-
fore reflect the assumption that in a physical implementation, no two
events happen exactly at the same time.

The rest of this chapter is structured as follows: The notion of lineariza-
tion, which is used to formalize real-time implementations of synchronous
programs, is introduced in Section 4.1. It is shown how the implemen-
tation of a synchronous program can be understood as the composition
of linearized automata, and how the language of its implementation can
be formalized as linearized words. Both formalizations are shown to be
equivalent. Section 4.2 puts the linearization theory to work in the frame-
work of Linear Temporal Logic (LTL) property specification. It is shown
how LTL properties may be formulated on the level of synchronous pro-
grams, how a property can be re-interpreted on the level of linearized im-
plementations, and how the preservation of an LTL property between a
synchronous program and its linearization can be asserted using a sim-
ple check. Section 4.3, finally, relates this work to other existing work on
property preservation, and linearization of synchronous programs.

4.1 Linearizations

4.1.1 Overview

Our linearization theory describes, in a general way, the principal imple-
mentation concepts behind the two concrete implementation schemes de-
scribed in Chapter 3. We shall see that, for the software-based systems
which are the subject of this thesis, an implementation of a synchronous
program can be described as a combination of threads and bounded chan-
nels.

Threads and channels. For illustration, let us go back to Section 3.2:
Each SSDL subprogram instance is implemented as sequential thread, com-

4.1. LINEARIZATIONS 105

municating with its surrounding threads through single-variable or dou-
ble/triple buffers, which can be understood as bounded FIFO channels.
Flip to Section 3.3: here, an SSDL program again is split into sequential
threads running on individual nodes, where each thread computes its re-
sults during the computation phase. Communication in synchronization
cascades is through logical FIFO channels, which are in effect realized by
the physical base protocol, and whose size is bounded by aligning the
sender and receiver thread executions through a synchronization mech-
anism (the cascade). It shows that threads and bounded FIFO channels
are indeed the essential ingredients of our theory:

Threads. During an execution, a thread consumes and produces a totally
ordered sequence of symbols consistent with the variable dependency
relation ∗, as outlined in Section 3.2.3. For each variable mapped
to the thread, exactly one symbol is consumed or produced. These
assumptions correspond to the sequential code synthesis scheme out-
lined in Section 3.2.3. Furthermore, thread executions are assumed to
be strictly consecutive: one execution is never interrupted by or inter-
leaved with another execution of the same thread. It is important to
keep in mind that, even though threads are parallel units of computa-
tion like dataflow processes, thread operational semantics is not always
coincident with pure dataflow operational semantics [Kah74]. For in-
stance, in its dataflow interpretation, the SSDL program

y := 0 fby 0 fby x

may initially produce two symbols for y, 0y0y, before requiring an x

symbol to proceed. When mapping the above program to one thread,
however, the thread operational semantics warrants that two consecu-
tive emissions of y symbols be always interleaved with the consump-
tion of an x symbol. Consequently, the word 0y0y is not accepted by the
thread.

Channels. Channels relate two variables x, y, and are taken to be strictly
FIFO, without loss or manipulation of messages. Channels are also as-
sumed to be bounded with a known bound k ∈ N, as they would not be
implementable otherwise. We shall denote a channel of capacity k as a
k-channel. Note that there are various implementation mechanisms to
achieve boundedness of a communication channel, such as, for exam-
ple:

• Channels may write block when full, forcing the writer thread to
block until the reader thread has consumed at least one symbol.

106 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

• For each bounded channel, an acknowledgment channel in the oppo-
site direction may be introduced, effectively forcing synchroniza-
tion of writer and reader in a way equivalent to write blocking
[Par95].

• The boundedness assertion may be based on an overall synchroniza-
tion mechanism, such as singleprocessor threads synchronized and
controlled by a local scheduler as in Section 3.2, the synchroniza-
tion cascade from Section 3.3, or time-triggered networks [Kop97].

• Even in the absence of strict synchronization, the boundedness as-
sertion may be based on a stochastic analysis, taking into account
stochastic patterns of writer activations vs. reader availability. This
kind of strategy is sometimes encountered in telecommunications
or Internet-based systems [Tan96].

As our theory captures the general idea of boundedness rather than a spe-
cific means to achieve it, all of the above are covered by the notion of a
bounded channel. For further illustration, we will examine a typical map-
ping of an SSDL program to threads and bounded channels in a first ex-
ample.

Example (A really simple program and its linearization). Consider
the simple SSDL program twice-identity shown in Fig. 4.1. Program
twice-identity has variables w, x, y, z, where w and y are inputs, and
dependencies w ∗ x, y ∗ z. When run, the program will produce
individual streams for each variable: an example synchronous run for
twice-identity is shown in Fig. 4.3. In the figure, we use a specific no-
tation for denoting variable/value pairs, or symbols: for the case of inte-
ger values, symbols are written as 1x, 2x, . . . , 1y, 2y, A synchronous
run of twice-identity can be thought of as producing subsequent
symbol sets, or macrosymbols, such as {1w, 1x, 1y, 1z}{2w, 2x, 2y, 2z}. . ..
The grouping to macrosymbols in the synchronous run of Fig. 4.3
expresses the fact that the relative position of a symbol within the
macrosymbol does not say anything about causal order, while the rela-
tive position of the macrosymbol within the word does.

A distribution scheme will implement individual subprogram in-
stances idx for computing x and idz for computing z. For instance, this
can be done either by assigning one thread to each identity function, or
by using one thread for the entire program twice-identity , as shown
in Fig. 4.2. In each respective implementation, the threads communicate
with their environment through bounded channels. We choose chan-
nels of capacity one, such that a symbol has to be read from the channel

4.1. LINEARIZATIONS 107
program twice-identity;

input w,y;
output x,z;

program id;
input in;
output out;

out := in;
endprogram;

x := id(w);
z := id(y);

endprogram;

Figure 4.1: Program
twice-identity

idx

idz

w x

y z

(a) Two-threaded
implementation

idx,
idz

w x

y z

(b) One-threaded
implementation

Figure 4.2: Two implementations of
twice-identity

before the next one can be written. For this case, Fig. 4.2(a) illustrates
the two-threaded implementation of twice-identity , while Fig. 4.2(b)
illustrates a one-threaded implementation.

We assume that the implementation is observed in a faithful man-
ner, so the order of observed events coincides with the relative timing of
their occurence. Fig. 4.4 shows two example runs for implementations
of twice-identity , where dashed vertical lines indicate subsequent
observations in physical time, and solid lines connect the symbols cor-
responding to a common index in the synchronous run. The linearized
word is shown at the bottom of the respective figure. The one-threaded
implementation synchronizes idx and idz, and therefore will not accept
the run shown in Fig. 4.4(a). The run in Fig. 4.4(b) reflects a more tightly
synchronized program and is accepted by both implementations.

Note that the bounded input channels for w and y ensure some syn-
chronization between symbols for mutually dependent variables: for
instance, there cannot be arbitrarily many w symbols before an x sym-
bol is produced. However, for mutually independent variables, such as
w and y for the two-threaded implementation, there will not necessar-
ily be any synchronization. Two variables are mutually independent if
neither the program itself (through the variable synchronization rela-

tion
(.)−−→

∗
, Def. 2.10) nor the chosen implementation structure provide

any synchronization between the variable pair.

108 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

w

x

y

z

{1w1x1y1z} {2w2x2y2z} {3w3x3y3z} {4w4x4y4z}

1 2 3 4

O

Figure 4.3: Example synchronous run for program twice-identity

w

x

y

z

1w 1x 1y 1z 2w 2x 3w 3x 2y 2z 4w 4x 5w 5x 3y 3z

1 2 3 4 5

O

(a) Two-threaded implementa-
tion

w

x

y

z

1w 1x 1y 1z 2w 2x 2y 2z 3w 3x 3y 3z

1 2 3

O

(b) One- and two-threaded im-
plementation

Figure 4.4: Example linearized runs for program twice-identity

4.1. LINEARIZATIONS 109

4.1.2 Synchronization and composition

The example of twice-identity has shown that the synchronous pro-
gram’s data dependencies, the chosen mapping to threads, and the chosen
channel capacity all have an influence on the allowable linearized behav-
iors of an implementation. We shall capture these different influences on
synchronization more formally in this section.

Variable synchronization vs. queuing capacity. It is an important in-
sight that synchronization constraints may stem both from the properties
of the program, and from the properties of the chosen implementation.

Program-induced synchronization. As an example for a program-induced
constraint, the immediate dependency between variables w and x in
program twice-identity results in the fact that, for any run of twice-

identity , the number of x symbols is always less or equal to the num-
ber of w symbols, while the number of w symbols is not constrained by
the program. Such a synchronization property of the program is for-

mally captured in the variable synchronization relation
(.)−−→

∗
, as defi-

ned in Def. 2.10. Intuitively,
(.)−−→

∗
(x, y) = n incurs that, in a linearized

run, y’s symbol count may lead x’s symbol count by at most n if purely
program-induced constraints are considered. For our example of w and

x,
(.)−−→

∗
(w, x)=0 and

(.)−−→
∗
(x, w)=∞.

Implementation-induced synchronization. As an example for an imple-
mentation-induced constraint, we note that for a pair of variables (such
as w and x in program twice-identity) that is processed by the same
thread, the number of symbols of either variable may lead the sym-
bol count for the other variable by at most one. For instance, by this
constraint, 2w2y is a accepted by the one-threaded implementation of
twice-identity , but 1w2w1y is not. To capture the properties of a given
implementation mapping, we define a queuing capacity relation ∆ ⊆ (X×
N0×X) which relates pairs of variables, formally captured in Def. 4.1 be-
low. For the w and x in twice-identity , (x, 1, y) ∈ ∆ and (y, 1, x) ∈ ∆
expresses the desired constraint.

The definition of the queuing capacity relation is based on a partition of
an SSDL program to a composition of threads and atomic 1-channels. The
nature of this partition will be discussed before giving the actual definition
of queuing capacity.

110 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

|||| || ||

||||... ||

1-ch 1-ch thread

|| ...

Figure 4.5: Composition of threads and 1-channels (schematic)

Linearizations as compositions of threads and channels. We summa-
rize the mapping to threads and channels for synchronous programs, which
will be laid out more completely in Section 4.1.4. Threads and channels
can be mutually composed using a composition operator ‖. A channel
with capacity k can be understood as the composition of k−1 sequentially
combined 1-channels, composed with the receiver thread, which provides
one buffering location by default. For instance, a one-threaded imple-
mentation of twice-identity with 3-channels for w and y, respectively,
is schematically illustrated in Fig. 4.5. Communication between threads
and channels is achieved by mutually shared input/output variables. We
note that some of the variables used for inter-channel communication may
not exist in the original program, so some additional variables need to be
introduced.

We assume that an SSDL program is in partitioning normal form (PNF),
as described in Section 2.2.3. The PNF structure of an SSDL program
does not always match the implementation structure with threads and
channels: for a variable x ∈ X , 1-channels may require additional vari-
ables x′, x′′, . . . as their respective inputs and outputs. On the level of syn-
chronous programs, this corresponds to introduction of additional vari-
ables into the program: if a 1-channel is used in the implementation for
communicating from x to x′, where x′ is an additional variable, additional
identity equations x′ := x; need to be added to the program, and refer-
ences to x in the subprogram corresponding to the receiver thread of the
channel need to be replaced by references to x′.

We can trivially introduce an arbitrary number of additional variables
and identity equations to a given SSDL program in PNF as follows: For a
program P, we denote its variable set as XP. According to the definition in
Section 2.2.3, PNF-form SSDL programs consist of equations, for l + 1 ≤
i ≤ n,

x̄Oi := Pi(x̄Ii).

Now let x̄Ii = (xIi,1, . . . , xIi,j, . . .) be the input variable tuple for subpro-

4.1. LINEARIZATIONS 111

gram Pi. For any such xIi,j , P can be modified to a program P[xIi,j/x
′] ∪

{x′ := x′Ii,j}, where the variable reference xIi,j as a right-hand side param-
eter of subprogram Pi (and not any other refences to the same variable) is
substituted by a reference to a new variable x′, where x′ 6∈ XP, and the ad-
ditional identity equation x′ := xIi,j is introduced to the program. Clearly,
XP[xIi,j/x′] = XP ∪ {x′}. This identity rewriting can be performed itera-
tively until the structure of the program matches the desired partition to
1-channels and threads. The program obtained will still be in PNF, where
some subprograms Pi are the identity function, and will be referred to as a
linearization-matching program. In a linearization-matching program, each
thread in the linearization corresponds to a nonempty subset of variables
in the program, and each 1-channel in the linearization corresponds to a
pair of variables in the program.

Based on a linearization-matching SSDL program and its mapping to
threads and 1-channels, we are ready to define the queuing capacity rela-
tion as follows.

Definition 4.1 ((Reduced) queuing capacity relation). The reduced queuing
capacity relation ∆ ⊆ X×N0×X is defined as the least relation such that, for all
x, y ∈ X ,

(x, 1, y) ∈ ∆ if x and y are mapped to the same thread, or the same 1-channel.

Clearly, ∆ is a weighted ternary relation according to Def. 2.11. In the
following, we shall make use of the minimum-weight reflexive-transitive
closure of ∆, ∆∗, as defined in Def. 2.14. ∆∗ then relates all directly or indi-
rectly dependent pairs of variables, and yields the strongest synchroniza-
tion constraint of all individual constraints combined. Being a uniquely
weighted ternary relation, according to Def. 2.13, ∆∗ can be written in
functional notation as ∆∗ : (X×X) → N0 ∪ {∞}. Again, by intuition,
∆∗(x, y) = n incurs that, if purely implementation constraints are consid-
ered, y’s symbol count may lead x’s symbol count by at most n.

A given linearization has to satisfy both program and implementation
constraints, and so either kind of constraint may dominate the other: For
instance, in twice-identity , the general nature of a thread as an imple-
mentation mechanism does not impose a particular order between w and
x emissions within one activation of the thread. The word 1x1w is there-
fore allowed by the structure of the implementation as a thread, x’s symbol
count may generally lead w’s symbol count by one, and ∆∗(w, x) = 1. How-
ever, the word 1x1w does not reflect the causality inherent in the program,

and therefore violates the constraints given by
(.)−−→

∗
, as the computation

of x’s value causally depends on the availability of w’s value for a given

112 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

step. Thus, for the case of x and w, the program-induced constraint dom-
inates over the implementation-induced constraint, so the word 1x1w will
neither be accepted by this particular linearization of twice-identity ,
nor by any other linearization. We can capture this combination of vari-
able synchronization relation and queuing capacity formally as the joint
synchronization map./ . We shall start out with a generic form of the joint
synchronization map, which is parametrizable with a variable synchro-

nization relation
(.)−−→

∗

X′ over variable subsets X ′ ⊆ X .

Definition 4.2 (Local joint synchronization map ./ (. , . , .)). For a variable

subsetX ′ ⊆ X , let
(.)−−→

∗

X′ ⊆ X ′×N0×X ′ be a (local) variable synchronization re-
lation over X ′. The local joint synchronization map ./(. , .) maps a local variable

synchronization relation
(.)−−→

∗

X′ and a variable pair x, y ∈ X ′ to a synchroniza-
tion count as follows: for all x, y ∈ X ′, for all variable synchronization relations
(.)−−→

∗

X′ ,

./(
(.)−−→

∗

X′ , x, y) = min
((.)−−→

∗

X′ (x, y) , ∆∗(x, y)
)
,

where for n ∈ N0, min(n,∞) = min(∞, n) = n and min(∞,∞) = ∞.

The local joint synchronization map hence models the combination of

program constraints captured by
(.)−−→

∗

X′ for a possibly local variable sub-
set X ′ ⊆ X , and implementation constraints in ∆∗. For most of the work
on linearizations and property preservation in this chapter, we shall ac-
tually resort to a simplified version of ./ , which uses the global variable

synchronization relation
(.)−−→

∗
over the entire variable set X of a given

SSDL program:

Definition 4.3 ((Global) joint synchronization map ./ (. , .)). For a given

SSDL program, let
(.)−−→

∗
be the global variable synchronization relation over the

variable set X as defined in Def. 2.10. The (global) joint synchronization map
./(.) : (X×X) → N0 ∪ {∞} is then defined as, for all x, y ∈ X ,

./(x, y) =./(
(.)−−→

∗
, x, y).

Having defined the relationship between program-induced and imple-
mentation-induced synchronization on the level of variables, it is now
time to take a closer look at the notion of words used in our framework,
namely, synchronous words for describing the language of synchronous
dataflow program, and linearized words for describing their linearized
counterparts.

4.1. LINEARIZATIONS 113

4.1.3 Words

In accordance with the more automata-theoretic setting of this chapter,
we refer to sequences of symbols as words instead of streams. The core
notation is essentially the same as introduced for streams in Section 2.2.2,
and shall be briefly reviewed.

We write σ ∈ Σ or γ ∈ Γ for symbols, where Σ and Γ are used inter-
changeably to denote symbol sets. We typically use Σ to indicate symbols
of synchronous words or symbols in general, and Γ for symbols of lin-
earized words. Σω = Σ∗ ∪Σ∞ is the set of all finite and infinite words over
Σ. We typically use the letter w for synchronous words or words in the
general case, and W for linearized words. Symmetric to the definitions
for streams, we use the length operator #, concatenation of words w1 �w2,
empty word ε, and projection operator |(.). Note that because of the prop-
erties of infinite words, the concatenation operator � is partial on Σω×Σω:
the concatenation of two words from Σω is defined whenever the resulting
word is in Σω [DR95]. For a word w ∈ Σω, its i-th symbol is written as wi,
where i>#w ⇒ wi = ε. Similarly, the suffix of a word w starting at posi-
tion i is written w(i) = wi �wi+1 � A word w′ is a prefix of another word
w, written w′ v w, if there exists some (possibly empty) word w′′ such that
w = w′ �w′′. For a word w, we write v−1 (w) to denote the set of all prefixes
of w.

On the level of linearized words, we shall use symbol sets Γ = (X×V),
where single symbols are written ax, by, The variable synchronization

relation
(.)−−→

∗
, the queuing capacity relation ∆∗, and the joint synchroniza-

tion map ./ overX×N0×X can be naturally extended to (X×V)×N0×(X×V):
for all x, y ∈ X , it then holds that xR y ⇔ ∀a, b∈V . axR by, whereR is one

of
{ (.)−−→

∗
, ∆∗}, and ./ is extended accordingly. For synchronous words,

we introduce the notions of variable partitions and macrosymbols next.

Variable partitions and macrosymbols. A variable partition over a sym-
bol set Γ with respect to a variable set X = {x1, x2, . . . , xn} partitions the
symbol set into nonempty disjoint sets, Γ = Γx1∪Γx2∪· · ·∪Γxn , where each
symbol subset Γxi is associated with variable xi, and xi6=xj ⇔ Γxi∩Γxj=∅.
For a word w with a variable partition for variable setX on Γ, we write w|x
as a shorthand for the projection w|Γx

. Likewise, for some subset X ′ ∈ X ,
X ′ = {xi, xj, . . .}, we write w|X′ for w|(Γxi∪Γxj∪···).

For synchronous words w, individual macrosymbols σ are taken from
the set Σ = (X→V), as each macrosymbol constitutes a map from variables
X to values V . For instance, program twice-identity from Fig. 4.2 is, on

114 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

the level of synchronous words, capable of producing macrosymbols of
the form σ = {awaxbybz}, for some values a, b ∈ V , where clearly σ ∈
(X→V). Such macrosymbols σ ∈ (X→V) can again be projected to single
variables x: for σ = {. . . ax . . .}, it simply holds that σ|x = {(x, σ(x))} =
{ax}. Projection can be naturally extended to variable sets X ′ ⊆ X , X ′ =
{xi, xj, . . .} as σ|X′ = σ|xi∪σ|xj∪· · · , and to (X→V)∗-words as ε|X′ = ε and
(w �σ)|X′ = w|X′ �σ|X′ .

Macrosymbols can be partial, assigning values to subsets of variables
X ′ ⊆ X . For two variable subsets X ′ ⊆ X , X ′′ ⊆ X , two macrosymbols
σ′ ∈ (X ′→V) and σ′′ ∈ (X ′′→V) are joinable, written σ′ ∼ σ′′, if for all
x ∈ X ′∩X ′′, it holds that σ′(x) = σ′′(x). If two macrosymbols σ′, σ′′ are
joinable, then their join is written σ′‖|σ′′, and defined as σ′‖|σ′′ = σ′ ∪ σ′′.
The join is in turn a macrosymbol in ((X ′∪X ′′)→V). Joinability and joining
can be naturally extended to pairs of words of the same length.

Synchronous words for synchronous stream tuples. As defined in Sec-
tion 2.2.2, an SSDL program maps a tuple of (input) streams to a tuple of
(output) streams. In the time-synchronous interpretation, the index posi-
tion of a symbol in a stream corresponds to a global time index. Under this
particular interpretation, it is quite natural to interpret a tuple of sequences,
the input/output stream tuples given by the semantics, as a sequence of
tuples, corresponding to a synchronous word (X→V)ω.

Formally, for an SSDL program P, we write a (partial) stream tuple as a
(partial) function X→(V ω), where X = XI∪XL∪XO is the variable set of P.
The externally visible behavior of P is defined in Section 2.2.2 by a function
JPK : (XI→(V ω)) → (XO→(V ω)), mapping input stream tuples to output
stream tuples. For an input stream tuple x̄I ∈ XI→(V ω), we write min#x̄I
for the length of x̄I ’s shortest component stream, where the length may be
infinity. For a stream tuple x̄, we write (x̄)min#x̄I

v x̄ for the prefix tuple
of x̄ such that each component of (x̄)min#x̄I

is a prefix of the corresponding
component stream of x̄, and so that the length of each component prefix is
min#x̄I .

Based on these preliminaries, the corresponding synchronous word lan-
guage L(P) ⊆ (X→V)ω for P is defined as the least set such that, for all
x̄I ∈ XI→(V ω), for all x̄O ∈ XO→(V ω),

JPK(x̄I)= x̄O =⇒
(
(x̄I)min#x̄I

‖|(x̄O)min#x̄I

)
∈ L(P)1.

1We are a bit sloppy with notation, using stream tuples x̄ to denote either a (partial)
function to sequences X→(V ω), or the equivalent sequence of (partial) functions (X→
V)ω.

4.1. LINEARIZATIONS 115

In the sequel, for the derivation of synchronous word languages and au-
tomata, we shall assume that in the PNF form of the SSDL program, the
top-level program P’s has no local variables in XL, and hence all of its
computations are visible in its synchronous word language. We can eas-
ily transform any PNF-form SSDL program into this form by changing all
top-level var declarations to output declarations.

Linearizations of synchronous words. Based on the weighted variable

dependency relation
(.)−−→ defined in Def. 2.10, we can define a map lin

from synchronous words w ∈ (X→V)ω to linearized words W ∈ (X×V)ω.
lin is parametrized with the joint variable synchronization relation ./ , as
this relation has a constitutive influence on the possible interleavings in
linearized words. We shall indicate this with a subscript as lin./. Similar to
the definition of ./ in Defs. 4.2 and 4.3, we shall start out with a generic
form of lin./, which is parametrizable with a variable synchronization re-

lation
(.)−−→

∗

X′ over variable subsets X ′ ⊆ X .

Definition 4.4 (Local linearization map lin./(. , .)). For a variable subsetX ′ ⊆
X , let

(.)−−→
∗

X′ ⊆ X ′ × N0 ×X ′ be a (local) variable synchronization relation over
X ′. Let ./ (. , . , .) be the local joint synchronization map defined in Def. 4.2. We

define a function lin./ mapping
(.)−−→

∗

X′ and a synchronous word w ∈ (X→V)ω

to sets of linearized words ℘((X×V)ω) as follows:

For all variable synchronization relations
(.)−−→

∗

X′ , for all w ∈ (X ′→V)ω, for

all W ∈ (X ′×V)ω, it holds that W ∈ lin./(
(.)−−→

∗

X′ , w) if and only if

∀x,y∈X.

 W |x = w|x

∧ ∀W ′∈v−1(W) .

(
#W ′|x ≤ #W ′|y+./(

(.)−−→
∗

X′ , x, y)

) .

Our definition of lin./ in Def. 4.4 is based on the local joint synchro-
nization relation ./ (. , . , .) according to Def. 4.2, where a variable syn-
chronization relation is passed as a first parameter. For most of the work
on linearizations and property preservation in this chapter, we shall again
use a simplified version of lin./, which relies on the global variable syn-

chronization relation
(.)−−→

∗
over the entire variable set X of a given SSDL

program:

Definition 4.5 ((Global) linearization map lin./(.)). For a given SSDL pro-

gram, let
(.)−−→

∗
be the global variable synchronization relation over the variable

116 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

set X as defined in Def. 2.10. The (global) joint synchronization map ./ (.) :
(X×X) → N0 ∪ {∞} is then defined as, for all w ∈ (X ′→V)ω,

lin./(w) = lin./(
(.)−−→

∗
, w).

For the linearization map, we show some properties. Lemma 4.1 shows,
in a sense, that linearization has a different inherent flavor than “clas-
sical” behavioral refinement [Bro93][CGL94][DGG97][LGS+95]: each ab-
stract behavior corresponds to a set of “refined” (linearized) behaviors,
but the linearizations of different abstract behaviors never overlap. The
relation between linearization and refinement-based design will be fur-
ther discussed in Section 4.3. Property 4.2 is a derived statement about
(X×V)ω-equivalence classes. Lemmas 4.3 and 4.4 state that the concate-
nation of linearized words is a linearized word, and vice versa under cer-
tain conditions. Lemma C.1 in the appendix demonstrates that using the
minimum-weight reflexive-transitive closure for the relations constituting
lin./ is not strictly necessary, and the usage of the reflexively-transitively
reduced relations actually suffices from a formal standpoint.

Lemma 4.1 (lin−1
./ is functional). The following equivalent statements hold:

1. The inverse of lin./ , lin−1
./ , is a (partial) function from (X×V)ω to (X→V)ω.

2. The respective (X×V)ω-languages in lin./’s image are disjoint.

3. ∀w,w′ ∈ (X→V)ω .
(
w 6= w′ ⇐⇒ lin./(w) ∩ lin./(w

′) = ∅
)
.

Proof. Clear from the constraint that, for all x ∈ X , W |x = w|x: If two
words w,w′ ∈ (X→V) differ by at least one microsymbol ax, any pair of
words from lin./(w) and lin./(w

′) will also differ by that one microsymbol,
and vice versa.

Property 4.2 (Equivalence relation ≡lin induced by lin./). Let Img lin be the
image of (X→V)ω through lin./. Let ≡lin⊆ Img lin × Img lin be the relation such
that, for all W,W ′ ∈ Img lin ,

W ≡lin W
′ ⇐⇒ ∃σ ∈ (X→V).W ∈ lin./(σ) ∧W ′ ∈ lin./(σ).

Then ≡lin is an equivalence relation over Img lin × Img lin .

Definition 4.6 (n-synchronized variable set). Let X ′ ⊆ X be a variable
set, and let n ∈ N0 be an integer. Then X ′ is n-synchronized in ./ , written
Syncn./(X), if for all variable pairs x, y ∈ X ′, ./(x, y) ≤ n.

4.1. LINEARIZATIONS 117

Lemma 4.3 (Concatenation of linearized words is linearized word). Let
w,w′ ∈ (X→V)ω be synchronous words such that w �w′ is defined. Then for all
W,W ′∈(X×V)ω,

W ∈ lin./(w) ∧ W ′∈ lin./(w
′) =⇒ (W �W ′)∈ lin./(w �w

′)

Lemma 4.4 (Linearized word with 1-synchronized variables is concate-
nation of linearized words). Let X ′ be a variable set such that Sync1

./(X
′). Let

w,w′ ∈ (X ′→V)ω be synchronous words such that w �w′ is defined. Then for all
W ′′ ∈ (X ′ × V)ω,

W ′′∈ lin./(w �w
′) =⇒ ∃W∈lin./(w) .∃W ′∈lin./(w

′) . W �W ′=W ′′

Again, the proofs for both Lemmas 4.3 and 4.4 are found in the ap-
pendix.

Commutative diagram. Having defined the notion of linearized words,
and having captured the relation between synchronous and linearized
words in the linearization map lin./, it should be interesting to compare
our formalization with a different formal approach that has a more opera-
tional flavor, and bears a direct resemblance to the actual implementation
structure in question. We shall introduce such a second approach: it will
be based on synchronous automata representing SSDL programs, and lin-
earized automata representing threads and 1-channels of the correspond-
ing linearizations. The principal interrelation between the word-based
and the automata-based formalization in our theory is illustrated by the
commutative diagram in Fig. 4.6: Synchronous automata on the upper left,
directly corresponding to SSDL programs, can be mapped to a combina-
tion of linearized automata, lower left, through the automata linearization
map Lin , which shall be defined in the next section. The respective word
languages are indicated on the right hand side. Clearly, the language of the
linearized automata, L(Lin(A1)‖Lin(A2)‖ · · · ‖Lin(An)), should coincide
with the linearized language of the synchronous automata, lin./(L(A1‖|A2‖|
· · · ‖|An)). The formal definition of synchronous and linearized automata
is the subject of the next section. The equivalence of the language of lin-
earized automata and the linearized language of synchronous automata
will be the subject of Section 4.1.5.

118 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

|| ||... ||

|||| ||

|||

|||| || ...

|||| || ...

A1 ||| A2 ||| ...

Lin(A1) || Lin(A2) || ...

||||||

L(A1 ||| A2 ||| ...)

lin��(L(A1 ||| A2 ||| ...))

L(Lin(A1) || Lin(A2) || ...)

L

L

|| oLin o |||-1 lin��

1 2 3

1 2 3 4

(X→V)ω

(X× V)ω
...

Figure 4.6: Commutative diagram for linearization maps Lin , lin./

4.1. LINEARIZATIONS 119

4.1.4 Automata

Synchronous automata. In the same way that synchronous words are an
alternative model for stream tuples, synchronous automata A are an alter-
native model for the semantics of SSDL (sub)programs. For a partition
of SSDL program P into subprograms P1, P2, . . . , Pn, the semantics of P can
consequently be understood as the composition of synchronous automata
A1‖|A2‖| . . . ‖|An. For each subprogram Pi, the word language of the sub-
programL(Pi) is precisely the languageL(Ai). The direct synthesis of such
automata from SSDL (sub)programs is standard [BFH+92]. For the reader
unfamiliar with automaton synthesis from synchronous programs, the ex-
ample at the end of this section will provide an intuitive understanding.
We assume that automata A are finite, which typically corresponds to a
finite value domain V for the SSDL program. Synchronous automata are
also deterministic, corresponding to functionality of the SSDL semantics.

For a linearization-matching SSDL program P with subprograms P1, P2,
. . . , Pn, variable set X , and value set V , a synchronous automaton Ai for
subprogram Pi accepts macrosymbols over a subset of variables X , which
corresponds to the inputs, local variables, and outputs of corresponding
subprogram Pi. We denote this subset asXAi

⊆ X . Ai accepts the language
L(Ai) = L(Pi), where L(Ai) ⊆ (XAi

→V)ω.
A synchronous automaton A consists of an alphabet Σ = (XA→ V),

states S, transition relation 7
(.)
−−_
A
⊆ S×(XA→V)×S, initial state s0 ∈ S, and a

weighted ternary relation
(.)−−→

∗

A ⊆ XA×N0×XA. An element (s, σ, s′) ∈ 7
(.)
−−_
A

is written s 7 σ−_
A

s′. When constructing an elementary synchronous au-

tomaton A from an SSDL subprogram,
(.)−−→

∗

A is initialized to the projec-

tion of the global variable synchronization relation
(.)−−→

∗
(Def. 2.10) to

XA×N0×XA.
Synchronous composition ‖| yields the product automaton, where tran-

sitions with joinable symbols are joined. More precisely, for two syn-

chronous automataA1 = ((XA1→V), S1, 7
(.)
−−_
A1

, s01,
(.)−−→

∗

A1
) andA2 = ((XA2→

V), S2, 7
(.)
−−_
A2

, s02,
(.)−−→

∗

A2
), the composed automaton is defined as

A1‖|A2 =
(
((XA1∪XA2)→V), S1×S2, 7

(.)
−−−−_
A1‖|A2

, (s01, s02), (
(.)−−→

∗

A1
∪ (.)−−→

∗

A2
)∗

)
,

where
((.)−−→

∗

A1
∪ (.)−−→

∗

A2

)∗ denotes the minimum-weight reflexive-transitive

120 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

closure of the joined synchronization relations, as defined in Def. 2.14.

The composed transition relation 7
(.)

−−−−_
A1‖|A2

is defined as the least relation

such that, for all s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2, σ1 ∈ (XA1→V), σ2 ∈ (XA2→V),

s1 7
σ1−−_
A1

s′1 ∧ s2 7
σ2−−_
A1

s′2 ∧ σ1∼σ2 =⇒ (s1, s2) 7
σ1‖|σ2−−−−_
A1‖|A2

(s′1, s
′
2)

Clearly, synchronous composition ‖| is commutative and associative.
For a synchronous automaton A, we can define a string-extended tran-

sition relation 7
(.)
−−_
A

∗
⊆ S × (XA→V)∗ × S in the standard way as the least

relation such that

s 7 ε−_
A

∗
s′ for all s, s′ ∈ S(

s 7 w−_
A

∗
s′′ ∧ s′′ 7 σ−_

A
s′

)
=⇒ s 7 w�σ−−−_

A

∗
s′ for all s, s′, s′′ ∈ S, w ∈

(XA→V)∗, σ ∈ (XA→V)

Synchronous automata accept both finite and infinite words, hence their
language consists of a finite and infinite part, L(A) = L∗(A) ∪ L∞(A). All
states of the automaton are by definition accepting: For finite words, this
corresponds to prefix-closed languages. The finite language part L∗(A) is
thus defined as

L∗(A) =
{
w ∈ (XA→V)∗ | ∃s∈S . s0 7

w−_
A

∗
s
}
.

An infinite word w ∈ L∞(A) is accepted if there exists an infinite state-
transition sequence in A corresponding to w∞. Alternatively, the infi-
nite part L∞(A) can be understood as the language formed by the upper
bounds of infinite chains of prefixes in L∗(A).

Linearized automata. Similar to synchronous automata being defined
over synchronous (X→V)ω words, linearized automata are automata over
linearized (X×V)ω words. A linearized automaton A with variable set
XA ⊆ X is a tuple of alphabet Γ = (XA×V), states S, transition rela-

tion 7
(.)
−−_
A
⊆ S× (XA× V)×S, initial state s0 ∈ S, and accepting states

Sa ⊆ S. Based on the transition relation 7
(.)
−−_
A

, the string-extended tran-

sition relation 7
(.)
−−_
A

∗
can be defined symmetrically to the construction for

synchronous automata. In contrast to synchronous automata, composi-
tion ‖ for linearized automata A1, A2 interleaves individual transitions,

4.1. LINEARIZATIONS 121

and synchronizes on common symbols, in a way similar to process alge-
bras [Hoa85][Mil80]. The composed automaton is defined as

A1‖A2 =
(
(XA1×V) ∪ (XA2×V), S1 × S2, 7

(.)
−−−−_
A1‖A2

, (s01, s02), Sa1 × Sa2
)
.

The composed transition relation 7
(.)

−−−−_
A1‖A2

is defined as the least relation

such that, for all s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2, x ∈ XA1∪XA2 , a ∈ V ,

x∈XA1\XA2 ∧ s1 7
ax−−_
A1

s′1 =⇒ (s1, s2) 7
ax−−−−_

A1‖A2

(s′1, s2)

x∈XA2\XA1 ∧ s2 7
ax−−_
A2

s′2 =⇒ (s1, s2) 7
ax−−−−_

A1‖A2

(s1, s
′
2)

x∈XA1∩XA2 ∧ s1 7
ax−−_
A1

s′1 ∧ s2 7
ax−−_
A2

s′2 =⇒ (s1, s2) 7
ax−−−−_

A1‖A2

(s′1, s
′
2)

Interleaving composition ‖ is commutative and associative.
Linearized automata accept both finite and infinite words, where the

set of accepting states is restricted to Sa. The finite language part L∗(A) is
then defined as

L∗(A) =
{
w ∈ (XA→V)∗ | ∃s∈Sa . s0 7

w−_
A

∗
s
}
,

and an infinite word w ∈ L∞(A) is accepted if the infinite state-transition
sequence in A corresponding to w∞ contains infinitely many states of the
accepting set Sa.

Two linearized automata A1 and A2 may have the same languages, so
that L(A1) = L(A2). In this case, we write A1 ≈ A2 to indicate that A1

simulates A2, and vice versa.

Thread automata. Thread automata are linearized automata with a given
purpose: one thread automaton represents the family of sequential threads
implementing a given synchronous automaton in our theory. We speak of
a family of threads because for variables x, y ∈ X with x 6!∗ y, and val-
ues a, b ∈ V , a thread automaton for x, y may accept both words axby and
byax, while for actually implemented threads, typically one of the two se-
quences must be chosen. Therefore, the automaton represents both the se-
quential thread producing axby and the sequential thread producing byax.

For mapping synchronous automata to their thread automaton equiv-
alent, we shall define a linearization map Lin . According to the intuition
provided by Fig. 4.6, a thread automaton is synthesized such that it ac-
cepts precisely the linearized language of its corresponding synchronous
automaton.

122 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

For a given synchronous automaton A =
(
XA→V, S, 7

(.)
−−_
A

, s0,
(.)−−→

∗

A

)
,

the corresponding thread automaton Lin(A) has alphabet Γ = (XA×V),

states Lin(S) = S×(XA→V), transition relation 7
(.)

−−−−_
Lin(A)

⊆ Lin(S)× (XA×

V)× Lin(S), initial state Lin(s0) = (s0, ∅), and accepting set Sa = S × {∅}.
States Lin(S) of the thread automaton Lin(A) are pairs (s, σ), whereas s ∈
S denotes a state ofA, and σ ∈ (XA→V) is a macrosymbol (partial overXA)
indicating the symbols that have already been accepted by the automaton
since the last “empty” state (s, ∅). This notion will be made clear in the
construction below.

For the synchronous automatonA, define the local variable dependency
order ∗

A as

 ∗
A = Unweight

((.)−−→
∗

A

)
,

where the Unweight operator is defined in Def. 2.12 in Section 2.2.4. The

construction of the transition relation 7
(.)

−−−−_
Lin(A)

from the synchronous tran-

sition relation 7
(.)
−−_
A

and the local variable dependency order ∗
A is achieved

by applying the following rules in the construction:

1. For all s, s′ ∈ S, σ ∈ (XA→V), if s 7 σ−_
A

s′, then unify states (s, σ) and

(s′, ∅) in Lin(S), and label the unified state as (s′, ∅).

2. For all s, s′ ∈ S, σ ∈ (XA→ V) such that s 7 σ−_
A

s′, for all partial

macrosymbols σ′ ⊂ σ and (XA×V)-symbols γ ∈ (σ\σ′) such that
σ′ ⊆ ∗−1

A (γ),
(s, σ′) 7

γ
−−−−_
Lin(A)

(s, σ′∪{γ}),

where ∗−1
A (γ) is the (symbol-extended) inverse image of γ through the

(symbol-extended) local variable dependency order ∗
A, as defined in

Def. 2.9.
The latter rule ensures that for all s, s′ ∈ S, and for all chains of mi-

crosymbols γ1, γ2, . . ., γn such that (s, ∅) 7
γ1−−−−_

Lin(A)
7

γ2−−−−_
Lin(A)

· · · 7
γn−−−−_

Lin(A)
(s′, ∅),

the total order of the symbols in the chain corresponds to a linear extension
of ∗

A.

1-channel automata. A 1-channel automaton is simply a thread automa-
ton applied to an identity equation: while a generic thread automaton en-
codes the generic SSDL subprogram Pi referenced by an SSDL equation of

4.1. LINEARIZATIONS 123

the form
x̄Oi := Pi(x̄Ii),

the special case of a 1-channel automaton encodes the identity function
corresponding to the equation, for some x, x′ ∈ X ,

x′ := x.

Recall that identity equations are introduced to an SSDL program by rewrit-
ing it to the linearization-matching form. A 1-channel relates two vari-
ables, where one variable is the input, and the other is the output of the
channel: each 1-channel in a chain adds a capacity of one symbol.

Because 1-channel automata always encode the same (identity) func-
tion, they have a canonical structure: For a 1-channel automaton encoding
equation x′ := x, denoted as Ax′ := x, the following holds:

• The state set S is equal to {{ax} | a ∈ V } ∪ {∅}.

• The initial state s0 is ∅.

• The set of acception states Sa is {∅}.

• The transition relation 7
(.)

−−−−−_
Ax′ := x

is the least relation such that

∅ 7 ax−−−−−_
Ax′ := x

{ax} for all a ∈ V , and

{ax} 7 ax
′

−−−−−_
Ax′ := x

∅ for all a ∈ V.

Having thus defined our automata-based framework for formalizing
realizations, we are ready to tackle another example of a linearized SSDL
program, where we shall illustrate the consecutive steps in the lineariza-
tion process.

Example (The frequency divider revisited.). We go back to the ex-
ample of a frequency divider, frequency-divide , introduced in Sec-
tions 2.1.2 and 2.2.1. frequency-divide receives time ticks on input
in and emits time ticks on output out on every second incoming tick.
Tick variables may either have a value of 1 (tick present) or 0 (no tick
present).

The SSDL program from Section 2.2.1 does not quite match
the partitioning normal form (PNF) for an SSDL program. We

124 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

program frequency-divide-root;
input in;
output out;

program frequency-divide;
input in;
var state, laststate;
output out;

state := if in=1 then 1-laststate else laststate fi;

laststate := 1 fby state;
out := if in=1 then state else 0 fi;

endprogram;

out := frequency-divide(in);
endprogram;

Figure 4.7: Program frequency-divide in PNF

program frequency-divide-root;
input in;
output in’, out;

...

in’ := in;
out := frequency-divide(in’);

endprogram;

Figure 4.8: Program frequency-divide in linearization-matching PNF

i i’ o

... |||| ||...

Figure 4.9: Composition of thread automaton, 1-channel automaton, and
environment (schematic)

4.1. LINEARIZATIONS 125

therefore surround frequency-divide with a superprogram,
frequency-divide-root , shown in Fig. 4.8. We build a linearized
implementation of frequency-divide with a channel for in of capac-
ity 2. The capacity of 2 is realized by a 1-channel composed with the
thread of frequency-divide , which provides capacity for one more
in symbol, hence the total capacity for in is 2. As an output variable
for the 1-channel and an input for the thread, an additional variable
in’ is introduced: Rewriting the program to its linearization-matching
form, we end up with the program shown in Fig. 4.8. Figs. 4.10(a) and
4.10(b) show the corresponding synchronous automata for the identity
equation in’ := in and subprogram frequency-divide , respectively.
Note that in is abbreviated i and out is written as o. In the automaton
for frequency-divide , the two possible valuations for state variable
laststate are mirrored by automaton locations named Even and Odd
for clarity.

Fig. 4.10(c) shows the linearized variant of the synchronous au-
tomaton in Fig. 4.10(b), which is simply the thread automaton for
frequency-divide . Similarly, Fig. 4.10(d) shows the 1-channel au-
tomaton for in and in′. The thread automaton, the 1-channel automa-
ton, and the environment of frequency-divide ’s implementation are
composed according to Fig. 4.9. The 1-channel automaton accepts in

symbols as inputs, and in′ symbols as outputs, which are in turn ac-
cepted by the thread automaton.

With both an automata-based formalization, which closely resembles
our intuition about the actual implemented system, and a word-based for-
malization, which concisely captures the nature of linearized words as
a superimposition of synchronization constraints, we are thus ready to
demonstrate the equivalence of both frameworks. This equivalence has
already been hinted at in the commutative diagram of Fig. 4.6. Conse-
quently, the next section will show that the language of the linearized au-
tomata indeed coincides with the linearized language of the synchronous
automata.

126 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

{1i,1i’}

{0i,0i’}

(a) Synchronous
automaton for
in’ := in

Even

Odd

{1i,0o} {1i,1o}

{0i,0o}

{0i,0o}

(b) Synchronous
automaton for
frequency-divide

1i'

0o
1i'

1o

0i'0o

0i' 0o

Even, {0i’}

Even, ∅

Odd, {1i'}Even, {1i'}

Odd, ∅

Odd, {0i'}

(c) Thread automaton

{1i}

∅

1i 1i’

{0i}

0i 0i’

(d) 1-channel au-
tomaton

Figure 4.10: Automata for frequency-divide

4.1. LINEARIZATIONS 127

L(Lin(A))

lin��(L(A))

Lin(A1) || Lin(A2) ...
...L

Lin

A1 ||| A2

Lin(A1 ||| A2) ...

L

lin��

A

Lin(A)

L(A)

L

Lin
lin��

|||

||

L

L(A1 ||| A2)

Figure 4.11: The commutative diagram refined

4.1.5 Equivalence

We go back to a refined version of our original commutative diagram in
Fig. 4.6, shown in Fig. 4.11: The somewhat mysterious map ‖ ◦ Lin ◦ ‖|−1

on the left-hand side of Fig. 4.6 is now more clearly illustrated. In order to
show our original claim of interest, we will have to demonstrate that

lin./(L(A1‖|A2)) = L(Lin(A1)‖Lin(A2))
[

= L(Lin(A1‖|A2))
]
,

holds, as the case of more than two automata will then follow from com-
mutativity and associativity of ‖| and ‖.

According to Fig. 4.11, it will thus be sufficient to concentrate on two
central properties: Firstly, that the linearized language of a single syn-
chronous automaton coincides with the language of its linearized counter-
part. This is the property lin./(L(A)) = L(Lin(A)) on the front lower right
hand side of Fig. 4.11. Secondly, that construction of linearized automata
from synchronous automata, Lin , distributes over composition. This is the
property Lin(A1‖|A2) = Lin(A1)‖Lin(A2) on the back lower left hand side
of Fig. 4.11. Our claim of interest will then follow from the combination of
both properties.

The equivalence proof thus proceeds in several steps: Lemma 4.5 shows
that acceptance of a macrosymbol σ by a synchronous automaton A fol-
lows from existential acceptance of lin./(σ) by its linearized automaton
Lin(A), and that universal acceptance of lin./(σ) by Lin(A) follows from
σ-acceptance by A. Lemma 4.6 states that linearized automata in a given
state always accept sets of linearized words consistent with the partitions
induced by lin./, so that for given macrosymbol σ, existential and universal
acceptance of words in lin./(σ) coincide. Lemmas 4.7 and 4.8 demonstrate
that a synchronous automatonA in state swill accept a synchronous word

128 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

w and enter state s′ precisely if its linearized counterpart Lin(A) accepts
linearized words lin./(w) on its way from state (s, ∅) to (s′, ∅).

From Lemma 4.9, if follows that the linearized language of a single syn-
chronous automaton coincides with the language of its linearized automa-
ton. Lemma 4.10 shows that the linearization map Lin is compositional,
so the linearized product of two linearized automata Lin(A1) and Lin(A2)
simulates the linearized automaton of the synchronous product of their
synchronous counterparts A1 and A2. Theorem 4.11, finally, states the
main result of this section, coincidence of the language of linearized au-
tomata with the linearized language of the corresponding synchronous
automata.

Lemma 4.5 (Existential and universal acceptance of lin./(σ)-languages for
Lin(A)). Let A be a synchronous automaton, and let Lin(A) be its linearized
counterpart. For a given σ ∈ (XA → V), we write ∃Wσ short for ∃Wσ ∈
lin./(

(.)−−→
∗

A , σ), and symmetrically for ∀Wσ. Then the following holds, for all
σ ∈ (XA→V), for all s, s′ ∈ S,

1. ∃Wσ.(s, ∅) 7
Wσ−−−−_

Lin(A)

∗
(s′, ∅) =⇒ s 7 σ−_

A
s′

2. ∀Wσ.(s, ∅) 7
Wσ−−−−_

Lin(A)

∗
(s′, ∅) ⇐= s 7 σ−_

A
s′

Both statements can be deduced by a comparison of the construction

of Lin(A), based on
(.)−−→

∗

A , with lin./(
(.)−−→

∗

A , σ). The detailed proof can be
found in the appendix.

Lemma 4.6 (Equivalence of existential and universal acceptance of lin./(w)--
languages for Lin(A))). Let A be a synchronous automaton, and let Lin(A) be
its linearized counterpart. For a given w ∈ (XA→V), we write ∃Ww short for

∃Ww ∈ lin./(
(.)−−→

∗

A , w), and symmetrically for ∀Ww. Then the following holds,
for all σ ∈ (XA→V), for all w ∈ (XA→V)ω, for all s, s′ ∈ S,

1. ∃Wσ.(s, ∅) 7
Wσ−−−−_

Lin(A)

∗
(s′, ∅) ⇐⇒ ∀Wσ.(s, ∅) 7

Wσ−−−−_
Lin(A)

∗
(s′, ∅)

2. ∃Ww.(s, ∅) 7
Ww−−−−_

Lin(A)

∗
(s′, ∅) ⇐⇒ ∀Ww.(s, ∅) 7

Ww−−−−_
Lin(A)

∗
(s′, ∅)

We write (s, ∅) 7
lin./(

(.)−−→
∗

A ,w)
−−−−−−−−−_

Lin(A)

∗

(s′, ∅) to denote both existential and universal

acceptance of lin./(
(.)−−→

∗

A , w) by Lin(A).

4.1. LINEARIZATIONS 129

For the proof of statement 1., the ⇐ direction is clear. The ⇒ direction
of statement 1. is an application of Lemma 4.5. Statement 2. follows from
statement 1. by an inductive argument. Again, the detailed proof is given
in the appendix.

Lemma 4.7 (Equivalence of σ-acceptance forA and lin./(
(.)−−→

∗

A , σ)-acceptance
for Lin(A)). Let A be a synchronous automaton, and let Lin(A) be its linearized
counterpart. For all states s, s′ ∈ S, and for all symbols σ ∈ (XA→V),

s 7 σ−_
A

s′ ⇐⇒ (s, ∅) 7
lin./(

(.)−−→
∗

A ,σ)
−−−−−−−−−_

Lin(A)

∗

(s′, ∅)

Proof. Combine Lemma 4.5 and statement 1. of Lemma 4.6.

Lemma 4.8 (Equivalence ofw-acceptance forA and lin./(
(.)−−→

∗

A , w)-acceptance
for Lin(A)). Let A be a synchronous automaton, and let Lin(A) be its linearized
counterpart. For all states s, s′ ∈ S, and for all words w ∈ (XA→V)ω,

s 7 w−_
A

∗
s′ ⇐⇒ (s, ∅) 7

lin./(
(.)−−→

∗

A ,w)
−−−−−−−−−_

Lin(A)

∗

(s′, ∅)

Proof. We write Eq(s1, w
′, s2) as a shorthand for

s1 7
w′

−−_
A

∗
s2 ⇐⇒ (s1, ∅) 7

lin./(
(.)−−→

∗

A ,w′)
−−−−−−−−−−_

Lin(A)

∗

(s2, ∅),

and show the property by induction over w:

1. Eq(s, ε, s′′) for all s′′ ∈ S

2. Eq(s, w, s′′) =⇒ Eq(s, w�σ, s′′′) for all σ ∈ (XA→V), for all s, s′′, s′′′ ∈ S

Statement 1. is clear by the construction rule for Lin : if s 7 ε−_
A

∗
s′, then

s = s′, hence (s, ∅) 7
lin./(

(.)−−→
∗

A ,ε)
−−−−−−−−−_

Lin(A)

∗

s′ for lin./(
(.)−−→

∗

A , ε) = {ε}, and vice

versa. Statement 2. follows from Lemma 4.7 combined with Lemmas 4.6
and 4.3.

130 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

Lemma 4.9 (Equality of lin./
((.)−−→

∗

A , L(A)
)

and L(Lin(A))). Let A be a syn-
chronous automaton. Then its linearized language is equal to the language of its
linearized counterpart Lin(A).

lin./
((.)−−→

∗

A , L(A)
)

= L(Lin(A))

Proof. Direct application of Lemma 4.8, where s is set to the initial state s0,
and s′ is any accepting state of A.

Lemma 4.10 (Lin is compositional). Let A1, A2 be synchronous automata.
Then it holds that the linearized product of the linearized automata of A1 and A2

simulates the linearized automaton of the synchronous product of A1 and A2:

Lin(A1)‖Lin(A2) ≈ Lin(A1‖|A2).

The proof for this lemma can be found in the appendix. It proceeds
by establishing a bijection between states of Lin(A1)‖Lin(A2) and states
of Lin(A1‖|A2). To show equivalence of the two transition relations, it is
demonstrated that the linearized composition ‖ for transition paths indi-
vidually ordered by ∗

A1
and ∗

A2
has the same effect as composing orders

 ∗
A1

and ∗
A2

in the synchronous composition ‖|, and then constructing
linearized transition paths from the composite automaton through Lin .

Theorem 4.11 (Equality of lin./(L(A1‖|A2‖| · · · ‖|An)) andL(Lin(A1)‖Lin(A2)
‖ · · · ‖Lin(An))). For some n ∈ N, let A1, A2, . . . , An be synchronous automata
corresponding to respective subprograms in a valid SSDL program in partioning
normal form. Then it holds that

lin./(L(A1‖|A2‖| · · · ‖|An)) = L(Lin(A1)‖Lin(A2)‖ · · · ‖Lin(An)).

Proof. We note that for the composite synchronous automatonA = A1‖|A2‖|
· · · ‖|An, the variable synchronization relation

(.)−−→
∗

A is equal to the global

variable synchronization relation
(.)−−→

∗
, as defined in Def. 2.10. The global

relation
(.)−−→

∗
, in turn, is used for constructing linearized words through

lin./(.). The theorem then follows from commutativity and associativity of
‖| and ‖, and by application of Lemmas 4.9 and 4.10.

After having spent the effort to formalize the notion of linearizations of
synchronous programs, we shall put our linearization theory to work for
one possible application: property preservation for Linear Temporal Logic
(LTL) formulas. This will be the subject of the next section.

4.2. PROPERTY PRESERVATION 131

4.2 Property preservation

As we have laid out in Section 2.1, simple and formally defined mod-
els of computation such as synchronous languages provide an abstract
way of specifying reactive systems and their behaviors. Analysis with
respect to behavioral properties is typically much easier at this abstract
level. Needless to say, the usefulness of the abstract verification result for
practical applications hinges on the preservation of the property along the
design process following the verification task, where for instance correct-
by-construction synthesis may be used. This section shall examine the
preservation issue for synchronous programs and their linearizations.

4.2.1 Overview

At the onset, it is not entirely clear exactly what kinds of properties are
preserved through the process of linearization, as outlined in Section 4.1.
Intuitively, for individual variables, the sequence of symbols observed in
linearized runs will coincide with the sequence observed in runs of the
synchronous program. Therefore, any assertion on the progression of an
individual variable that holds for a synchronous program should also hold
for its linearization. After briefly introducing temporal logic, we shall il-
lustrate this with a small example.

For specifying abstract behavioral properties, we use the Linear Tem-
poral Logic (LTL) framework [MP92]. LTL is a well-known formalism in
the field of behavioral specification of reactive systems [Var01]. An LTL
formula ϕ describes a set, or language, of infinite words; this set is also
called the model of ϕ. An LTL formula over atomic propositions γ ∈ Γ has
the following syntax2:

ϕ ::= tt | γ | ¬ϕ | ϕ ∨ ϕ′ | ϕ U ϕ′,

where the LTL formula tt denotes the set of all words, the formula γ cor-
responds to the set of all words satisfying proposition γ, ϕ ∨ ϕ′ is the set
of all words satisfying ϕ or ϕ′, and ϕ U ϕ′ is the set of words for which ϕ
holds at least until ϕ′ holds (but ϕ′ is eventually required). We write LTLΓ

for the set of LTL formulas over propositions Γ. This very basic set of op-
erators already allows to express an extensive range of properties. Besides
the standard derived operators such as ∧ and ⇒, three LTL-specific de-
rived operators are the “eventually” operator 3 defined as 3ϕ ⇔ tt U ϕ,

2We use the stuttering-free subset of LTL, therefore the next operator # is omitted.

132 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

the “always” operator 2 defined as 2ϕ ⇔ ¬3(¬ϕ), and the “weak until”
operator W defined as ϕW ψ ⇔ ϕUψ ∨2ϕ.

Example (Properties of frequency divider). We go back to the
frequency-divide example from Section 4.1. A natural choice for
atomic LTL propositions are symbols γ ∈ (X×V), where an LTL proposi-
tion γ=ax holds for a synchronous or linearized word if its first symbol
for variable x is ax. An example for a property for frequency-divide

that can be specified in LTL(X×V) is the following:

“It always holds that an emission of 0out is eventually fol-
lowed by an emission of 1out, and that an emission of 1out is
eventually followed by an emission of 0out.”

This property can be expressed in LTL:

2
(
(0out ⇒ 31out) ∧ (1out ⇒ 30out)

)
Of course, the property will only hold if we make additional assump-
tions on the input in, but this is not in the focus of our demonstration.
The only two atomic propositions in the formula, 0out and 1out, are re-
stricted to one variable, out. Consequently, both for synchronous or
linearized words, it suffices to look at a projection of the word to out

in order to judge whether the property holds. We make sure that the
meaning of an atomic proposition aout, for some a∈ V , is well-defined
for the case of out-projected synchronous and linearized words: such a
projection simply satisfies the proposition if its first symbol equals aout.

Def. 4.5 asserts that, for all synchronous words w ∈ (X→V)∞ and
corresponding linearized words W ∈(X×V)∞, W |out=w|out, so the pro-
jection to out is equal for the synchronous and the linearized case. So
we can easily conclude that if the above formula holds on all traces of
freq-divide ’s synchronous automaton, then it also holds on the pro-
jection to out of all linearized traces of freq-divide .

The example leaves open two important issues: How to deal with the
frequent case of properties relating several variables? And how to define
what it means for a complete linearized word to satisfy an LTL formula, as
we have only talked informally about the projection of a linearized word
to a single variable? These two open questions set the stage for the rest of
this section.

4.2. PROPERTY PRESERVATION 133

4.2.2 LTL for synchronous and linearized words

LTL for synchronous words. Synchronous words are an instance of the
more general class of set-valued infinite words: set-valued words have do-
main Σ∞, where each σ ∈ Σ constitutes a finite set {γ1, γ2, . . . , γn}. We
define the semantics of LTL over set-valued words for stuttering-free LTL
formulas as follows: for all w∈Σ∞,

w |≡ tt

w |≡ γ ⇐⇒ γ ∈ w1

w |≡ ¬ϕ ⇐⇒ w 6|≡ ϕ

w |≡ ϕ ∨ ψ ⇐⇒ (w |≡ ϕ) ∨ (w |≡ ψ)

w |≡ ϕ U ψ ⇐⇒ ∃j ∈ N.
(
w(j) |≡ ψ ∧ ∀i ∈ N.(i < j ⇒ w(i) |≡ ϕ)

)
.

LTL for linearized words For linearized words, which are a special case
of variable-partitioned words with symbol set Γ = Γx1 ∪Γx2 ∪ · · ·Γxn , a
different interpretation of atomic propositions is needed: a proposition ax

identifies those words where the first occurence of an Γx-symbol is ax. For
variable-partitioned words Γ∞, we thus define a linearized semantics for
LTL formulas as follows: for all W ∈ Γ∞,

W |= tt

W |= ax ⇐⇒ (W |x)1 = ax

W |= ¬ϕ ⇐⇒ W 6|= ϕ

W |= ϕ ∨ ψ ⇐⇒ (W |= ϕ) ∨ (W |= ψ)

W |= ϕ U ψ ⇐⇒ ∃j ∈ N.
(
w(j) |= ψ ∧ ∀i ∈ N.(i < j ⇒ w(i) |= ϕ)

)
.

Our LTL interpretation is easily extended from single linearized words
to sets of linearized words, which are the (X×V)∞-languages. For a lan-
guage L ⊆ (X×V)∞, we write L |= ϕ to denote that for all W ∈ L, it
holds that W |= ϕ. Compared to the LTL semantics for set-valued words,
we have simply adapted the semantics to the different interpretation of
atomic propositions as W |= ax ⇔ (W |x)1 = ax. We ensure that for our
nonstandard interpretation of atomic propositions, there exists a decision
procedure for finite symbol sets Γ: any LTL formula under the linearized
interpretation can be translated to an LTL formula under the (decidable)
standard word interpretation |=W [SC85], where W |=W γ ⇔ W1 = γ, by
exploiting the following equivalence:

W |= ax ⇐⇒ W |=W

(∨
γ∈(Γ\Γx)

γ
)
U ax.

134 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

Note that the interpretation for atomic propositions ax is consistent with
the equivalence classes induced by ≡lin (Prop. 4.2) over (X×V)∞-words.
So if, for some w ∈ (X→V)∞, any word in lin./(w) satisfies ax, then all
words in lin./(w) satisfy ax. For general formulas ϕ ∈ LTL(X×V), the lin-
earized interpretation is not generally consistent with ≡lin : This is triv-
ially clear for the formula ¬1x U 1y applied to infinite synchronous words
w ∈ ({x, y}→V)∞ such that w = {1x, 1y}{. . .} . . . and x 6!∗ y, so that the
linearized words are of the form lin./(w) = {1x1y. . . , 1y1x. . . , . . .}. While
not having consistency for general LTL(X×V)-formulas, the best we can do
is to establish a criterion which ensures consistency with ≡lin at least for
some formulas ϕ ∈ LTL(X×V). In fact, consistency will later be shown to
follow from another property, preservability for an LTL formula. A formula
ϕ ∈ LTL(X×V) is preservable if its |=-satisfaction for all linearizations of
a synchronous word can be deduced from its |≡-satisfaction for the syn-
chronous word, and vice versa. Preservability is the criterion which does
precisely address the two open issues of relating several variables and pre-
serving complete linearized words, and shall be treated next.

4.2.3 Preservation

Preservable formulas. Having defined the LTL semantics for both syn-
chronous and linearized words, we are now ready to examine the issue of
property preservation. We can formally define what it means for an LTL
formula over synchronous words to be preserved for the linearized words.

Definition 4.7 (Preservable formulas). For a given variable set X , value set
V , and linearization map lin./, an LTL formula ϕ is called preservable, written
Pres(ϕ), if for all w ∈ (X→W)∞, for all W ∈ (X×V)∞,

w |≡ ϕ ⇐⇒ lin./(w) |= ϕ.

Ideally, for an LTL formula ϕ, we should have a check on the structure
of ϕ which rejects a formula if it is not preservable, and possibly accepts
it otherwise. Such a check is described in the following: it recursively
collects and returns the set of variables referenced in subformulas of ϕ, or
returns a token indicating non-preservability of the subformula, resulting
in non-preservability of the entire formula.

For implementing the check, we shall define a preservable variable map
PVar : LTL(X×V) → ℘(X)∪{>} which maps a formula ϕ ∈ LTL(X×V) to ei-
ther the subset of those variables from X that are referenced by the atomic
propositions in ϕ, or the special symbol >, which indicates that the for-
mula is not preserveable.

4.2. PROPERTY PRESERVATION 135

The codomain of PVar is the powerset of X extended with top element
>, ℘(X)∪{>}. Over this domain, we define a partial order v such that
X ′ v > for all X ′ ∈ ℘(X), and X ′ v X ′′ if X ′ ⊆ X ′′ for all X ′, X ′′ ∈ ℘(X).
v induces a least upper bound operator t in the usual way: we note that
X ′ tX ′′ = X ′ ∪X ′′ for all X ′, X ′′∈℘(X), and X ′ t > = > tX ′ = > for all
X ′∈℘(X)∪{>}.

In the definition of PVar , we shall make use of the variable dependency
relation ∗ from Def. 2.7. ∗ is naturally extended from a binary relation
overX to a binary relation over the extended variable powerset ℘(X)∪{>}
as, for all X ′, X ′′ ∈ ℘(X),

X ′ ∗ X ′′ ⇐⇒ ∀x′∈X ′ .∀x′′∈X ′′ . x′ ∗ x′′,

as well as > 6 ∗ X ′, X ′ 6 ∗ >, and > 6 ∗ >. Likewise, the Syncn./ pred-
icate of Def. 4.6 is extended to domain ℘(X)∪{>} such that ¬Syncn./(>)
for all n ∈ N0. With these preliminaries in place, we are ready to define
the preservable variable map PVar in Def. 4.8, as well as the auxiliary no-
tion of a single-variable conjunctive form of an LTL formula in Def. 4.9. The
single-variable conjunctive form is enforced for the first argument of an
until-formula if the entire formula is to be preservable.

Definition 4.8 (Preservable variable map PVar). Let ϕ ∈ LTL(X×V) be an
LTL formula. The preservable variable map PVar is then defined over the struc-
ture of ϕ as follows:

PVar(tt) = ∅
PVar(ax) = {x}

PVar(¬ϕ) = PVar(ϕ)

PVar(ϕ ∨ ψ) = PVar(ϕ) t PVar(ψ)

PVar(ϕ U ψ) =


PVar(ϕ) t PVar(ψ) if PVar(ψ) ∗ PVar(ϕ)

and ϕ∈1-CF and Sync1
./(PVar(ψ))

> otherwise

Definition 4.9 (Single-variable conjunctive form). We denote as single-
variable formulas ϕ1 those formulas for which PVar(ϕ1) 6= > and |PVar(ϕ1)| ≤
1, where |PVar(ϕ1)| denotes the cardinality of the variable set PVar(ϕ1). An
LTL formula ϕ is in single-variable conjunctive form, written ϕ ∈ 1-CF , if there
exists an equivalent conjunctive formula ϕ1-CF of the form

ϕ1-CF ::= ϕ1 | ϕ1-CF ∧ ψ1-CF

such that ϕ1-CF ⇐⇒ ϕ.

136 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

Having thus defined the preservable variable map PVar , we are ready
to show a first property. It is a generalization of the intuitive claim made in
the frequency-divide example at the beginning of the section: In order
to assert an LTL property referring to variable x for a given wordW , it suf-
fices to examine its projection to variable x. Based on PVar , we generalize
this claim to variable sets referenced by LTL formulas ϕ in Lemma 4.12.

Lemma 4.12 (Projection to PVar(ϕ) preserves ϕ). Let ϕ ∈ LTL(X×V) be an
LTL formula with PVar(ϕ) 6=>. Then for allW ∈(X×V)∞ such thatW |PVar(ϕ)∈
(X×V)∞,

W |= ϕ ⇐⇒ W |PVar(ϕ) |= ϕ.

Proof. By the definition of |= for atomic propositions ax, and by Def. 4.8,
the linearized language {W ∈ (X×V)∞ | W |= ϕ} is closed under intro-
duction or removal of symbols not in (PVar(ϕ)×V). The property then
follows.

The following theorem demonstrates the central property of our preser-
vation theory: Checking PVar(ϕ) 6=> for a given LTL formula ϕ is a sound
check for preservability of ϕ, that is, the formula ϕ will always be rejected
by the check if ϕ is not preservable.

Theorem 4.13 (Soundness of PVar). Let ϕ ∈ LTL(X×V) be an LTL formula.
Then ϕ is preservable if PVar(ϕ) 6=>:

PVar(ϕ) 6= > =⇒ Pres(ϕ).

The proof can be found in the appendix: it proceeds by structural in-
duction over the constructs of LTL, whereby the U operator demands the
most attention. This is reflected in the rather complex criterion defined
within PVar for PVar(ϕ U ψ) 6= >. With a sound criterion for checking
preservability of LTL formulas in place, we can go back to the issue of
≡lin-consistency of formulas, which is now elegantly resolved.

Lemma 4.14 (Preservable formulas are ≡lin-consistent). Let ϕ ∈ LTL(X×V)

be a preservable formula. Then ϕ is consistent with ≡lin , that is, for all ≡lin-
equivalence classes L ⊆ (X×V)∞,

∃W∈L .W |=ϕ ⇐⇒ ∀W∈L .W |=ϕ.

4.2. PROPERTY PRESERVATION 137

Proof. ⇐ is clear. For proving ⇒, we note that as a consequence of Theo-
rem 4.13 and Def. 4.8, Pres(ϕ) ⇒ Pres(¬ϕ). From Pres(¬ϕ), it follows that,
for all w ∈ (X→V)∞,

¬(w |≡ ¬ϕ) ⇐⇒ ¬(∀W∈ lin./(w) .W |=¬ϕ),

and hence,
w |≡ ϕ ⇐⇒ ∃W∈ lin./(w) .W |=ϕ.

By definition of ≡lin , the equivalence class L is in the image of lin./, so W
is indeed in lin./(w) for some w ∈ (X→V)∞, and the ⇒ direction of the
lemma thus follows from the above statement.

We have thus shown that by computing PVar , we can identify LTL for-
mulas that are preservable according to Pres . Our check has been shown to
be sound, but not tight: indeed, there may be formulas for which PVar(ϕ)=
>, but which would actually be preserved according to Pres . However, we
note that for the frequent case of variable subsets satisfying Sync1

./ , at least
three important classes of properties will pass our check: invariance (2),
eventuality (3), and response.

Property 4.15 (Preservation of 2, 3, response). Let ϕ, ψ ∈ LTL(X×V) be
propositional LTL formulas, that is, combinations of atomic propositions tt and
ax (and derived propositions) involving only operators ¬ and ∨ (and derived op-
erators). Then

1. Pres(2ϕ) if Sync1
./(PVar(ϕ))

2. Pres(3ϕ) if Sync1
./(PVar(ϕ))

3. Pres(2(ϕ ⇒ 3ψ)) if Sync1
./(PVar(ϕ) t PVar(ψ))

Besides its actual methodical value, the work on property preservation
has served yet another purpose: it has demonstrated that the framework
of linearized words and automata from Section 4.1 is indeed a useful foun-
dation for reasoning about implementations of synchronous dataflow pro-
grams.

138 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

4.3 Related Work

This section cites some related works both for the area of linearizations of
synchronous programs, and property preservation.

Linearizations of synchronous programs. Approaches related to ours
can be both found in the area of concurreny theory, and in the synchronous
language community. Related to the former field of study, our framework
uses equivalence classes over sets of linearized words for concurrent runs.
This mechanism is equivalent to the framework of Mazurkiewicz traces
[DR95], which shall be briefly discussed. Besides, two works from the syn-
chronous language community on linearization of synchronous programs
bear some resemblance to ours [CGP99][PBC05].

• Mazurkiewicz trace theory [DR95] is well-known for describing equiv-
alence classes of concurrent runs, and can be seen as a generaliza-
tion of the framework of linearized words, which applies only to
the case of (variable-)partitioned sets of symbols. The concrete for-
malization of the equivalence relation is also different: while stan-
dard Mazurkiewicz trace theory uses symmetric dependency rela-
tions over symbols, and relates words in the same equivalence class
through rewriting, our framework uses a dual criterion of equiv-
alence, coincidence of projection W1|x = W2|x, and fulfillment of
length constraints between prefixes #W |x ≤ #W |y +n. An alter-
native formalization of the equivalence based on symmetric depen-
dency relations over symbols and rewriting is possible for linearized
words, but involves a more heavyweight formalization. For instance,
the length constraint that for all prefixes W ′, #W ′|x − 1 ≤ #W ′|y ≤
#W ′|x + 1, is not directly expressible by dependency relations over
symbols (X×V).

• [CGP99] and its formal underpinning in [CCGJ97] describe the dis-
tribution of automata in the imperative format OC [PBM+93]: OC,
in turn, can be synthesized from synchronous programs. There are
two main differences to our approach: Firstly, the primary program
representation in [CCGJ97] is on the level of linearizations, so their
framework does not directly address the question of mapping from
synchronous programs/automata to linearized counterparts. In our
framework, for instance, a direct relation between synchronous and
linearized trace languages can be expressed. Secondly, on the level of
linearized words, [CCGJ97] considers semi-commutations, instead

4.3. RELATED WORK 139

of symmetric dependency relations in our framework: it would also
seem nontrivial to extend their chosen automata framework to the
symmetric dependency case. Methodically, semi-commutations make
the theory apply to less implementation-oriented scenarios: in a dis-
tribution theory for synchronous dataflow programs, semi-commu-
tations capture program-induced causality only, assuming absence
of implementation-induced synchronization, such as boundedness
assumptions on channels, or mapping to common threads. Towards
use in finite-state verification and preservation, it is well known that
the class of regular languages is not closed under semi-commutation
rewriting. Consequently, the connection to finite-state models, such
as embodied by the LTL framework, is problematic for [CCGJ97],
and would necessitate further constraints.

• [PBC05] describes a similar model to ours on the level of automata:
like linearized automata, their “microstep automata” encode the pos-
sible causal behaviors of a synchronous program. In contrast to lin-
earized automata, which model strictly length-preserving synchro-
nous programs, microstep automata also encode non-length-preser-
ving synchronous programs, and feature explicit clock transitions.
The underlying purpose of the automata formalization is somewhat
different in both frameworks: Microstep automata are embedded in
a preservation theory for multiclock synchronous programs, where
the focus is chiefly on semantics preservation under the assumption
that absent messages are not communicated in an asynchronous im-
plementation. Conversely, our linearization theory uses linearized
automata to demonstrate the correctness, and provide an operational
model for, the trace-based framework embodied by the linearization
map lin./. Relating trace languages by a linearization map has a more
declarative flavor than automata construction, and is convenient for
reasoning about relations between synchronous and linearized trace
languages, as demonstrated by our LTL-based preservation theory.

Property preservation. There are two relevant areas for related research:
firstly, direct research on property preservation for reactive systems, and sec-
ondly, research on temporal logics vs. concurrent traces.

• Most existing works on property preservation in the model checking
community address the general paradigma of refinement-based de-
sign. Lemma 4.1 shows, in a sense, that linearization has a different
methodical flavor than classical behavioral refinement either based

140 CHAPTER 4. LINEARIZATIONS, PROPERTY PRESERVATION

on trace sets [Bro93] or based on transition systems [CGL94][DGG97]
[LGS+95]. Both in our approach and in refinement-based design,
each abstract behavior corresponds to a set of “refined” (linearized)
behaviors, but in linearization, “refinements” of different abstract
behaviors never overlap. Furthermore, linearization theory is con-
cerned with identifying admissible run-time observations in a con-
current systems, while refinement-based design typically aims at sub-
sequently discarding possible behaviors until a more or less unique
behavior is determined.

• The relationship between temporal logics and Mazurkiewicz traces
has been explored e. g. in [Leu02]. The methodical background of
concurrency-oriented temporal logics may be summarized as fol-
lows: a designer specifies a formula describing possible runs of a
concurrent implementation. The concurrent implementation is hence
the primary object of verification, and the focus is on the design of
logics whose semantics is sufficiently fine-grained to distinguish rel-
evant observations, yet is also consistent with the equivalence classes
imposed by the underlying trace theory. In contrast, the methodical
background of the preservation theory in Section 4.2 is to verify a
property of a synchronous abstraction of a concurrent system, using
the standard interpretation of LTL over set-valued words, and take
advantage of a preservation principle for assessing properties of the
system itself, using a closely related LTL interpretation. Overall, this
leads to mutually different tradeoffs in the semantic interpretation of
LTL formulas between the two approaches.

Chapter 5

Conclusion

5.1 Summary

In this thesis, we have motivated and introduced a simple synchronous
dataflow language, which was used as the formal basis for the distribution-
related work in Chapters 3 and 4. The concrete choice of computational
model has been supported by a review of the particular features of data-
flow languages, and by an evaluation of the synchronous dataflow model
with respect to architecting and programming of software. Subsequently,
the syntax and semantics of SSDL, a simple synchronous dataflow lan-
guage, have been defined, including the particular aspect of causality anal-
ysis.

Based on the synchronous dataflow language SSDL, we have described
two implementation schemes for synchronous dataflow programs: firstly,
a singleprocessor implementation scheme, where a synchronous dataflow
program is partitioned into several threads running on one processor, and
the composite multithreaded program implements the semantics of the
synchrous dataflow program using inter-thread communication primitives.
Secondly, an implementation scheme for the multiprocessor case, where a
synchronous dataflow program is split across several processors commu-
nicating over some event-triggered, bounded-jitter communication medi-
um. Both implementation schemes have been shown to preserve certain
critical aspects of the dataflow program’s semantics.

As a theoretical foundation, we have formalized the notion of threads
and finite channels in software-based implementations of synchronous
dataflow program within the framework of linearized automata and lin-
earized words. Together with transition systems and languages on the
level of synchronous dataflow programs, this induces a dual refinement

141

142 CHAPTER 5. CONCLUSION

relation between runs of synchronous programs and their linearizations,
and between synchronous automata and their linearized counterparts. The
two refinement maps for languages and automata were shown to be coin-
cident. As an application of the theory, it was shown how a behavioral
property verified on the abstract level can be used for inferring properties
of the linearization.

Summarizing, with synchronous dataflow models as an example, the
computer science community has arrived at specification formalisms and
languages that allow expressing a system’s behavior in a largely adequate
and intuitive way, with sound formal foundations. For comprehension
and validation, the advantages of using such formalisms over bottom-
up design based on sequential language coding and low-level concur-
rency/communication handling are widely acknowledged. Deterministic
models such as synchronous languages are especially attractive for reac-
tive systems modeling, and can be efficiently implemented as real-time
programs based on a variety of platform mechanisms for communication
and synchronization, albeit under some idealizing assumptions.

5.2 Outlook

Based on recent results from this thesis and other works, one may be
tempted to take as a given the big picture of a seamless development pro-
cess for later phases of development, based exclusively on synchronous
programming both at the architecture and programming level, combined
with tightly defined refinement relations for obtaining real-world imple-
mentations. Despite advances in implementation techniques, one has to
acknowledge that there are still some conceptual hurdles on the way to-
wards this big picture.

The problem with determinism. One problem in correct-by construc-
tion implementation of synchronous programs are the strong, idealizing
assumptions inherent in the communication and synchronization seman-
tics, when taken at face value. As an example, synchronous dataflow pro-
grams describe functional programs, which map a timed input to a unique
response. This inherently deterministic view on system construction leads
to systems that may be expensive or impossible to implement on certain
platforms. It is likely that one will not be able to hold up strict determin-
ism in practice, especially in cost-sensitive domains such as Automotive.

This problem is nicely illustrated in the multiprocessor implementation
scheme of Section 3.3, which needs to rely on a (lightweight) synchroniza-

5.2. OUTLOOK 143

tion mechanism in addition to the base protocol in order to implement the
synchronous program in a fault-tolerant way, and needs to couple preser-
vation guarantees with dedicated assumptions about operational condi-
tions, as illustrated by Properties 3.22 and 3.23 in Section 3.3. It seems quite
clear that the idealized operational conditions necessary for full preserva-
tion will not always hold in real-world settings.

As a side note, the problem of implementing strong assumptions on the
level of models is not narrowly restricted to the field of synchronous lan-
guages: for a number of commercial approaches such as UML-RT [IBM03],
if semantic preservation were taken seriously, similar problems would
arise in correct-by-construction implementation. The problem is also not
likely to vanish entirely with the (expensive) adoption of stronger base
protocols [Kop97][Fle]. In fact, fault-tolerant design, which anticipates pos-
sible implementation failures at run-time in a correct-by-construction me-
thodology, may remain just as relevant even with the advent of new plat-
forms, as illustrated e. g. in [BBRN05].

We argue that for the specific problem of determinism and the gen-
eral problem of model-based predictions about implementation behavior,
there remains an unsettled terrain to be explored. Our argument is based
on the observation that strict determinism is often not needed in an im-
plementation, but is neverthess desirable on the level of models. For in-
stance, we argue that not all messages in a synchronous program have
the same character. On the one hand, embedded real-time control systems
communicate sequences of sampled state values, often directly related to a
measurement of their physical surroundings, where the precise preserva-
tion of the sampled sequence is of lesser importance than the preferrably
short latency from measurement to reaction. In contrast, the approach as
outlined in Chapter 4 is well-suited for event communication, where dis-
crete events are communicated, and latency may be compromised in favor
of preservation. This distinction is by no means unique to the embedded
sector: Consider the two predominant transport protocols in the Internet,
UDP for unreliable, connectionless, timely datagram traffic, and TCP for
a reliable, connection-oriented service, with possible deferment of queued
packets.

A broader view: soft conformance. As an outlook, we shall hint at a
notion of “soft conformance”, which is expected to formally grasp some
of the inherent wisdom from the engineering field for building not quite
deterministic, but perfectly correct systems with respect to the posed re-
quirements. By providing a rigorous definition of such soft conformance

144 CHAPTER 5. CONCLUSION

relations in the future, we may hope to transfer the field of complex real-
time systems design from being more of an art to becoming a true engi-
neering discipline.

We concentrate on concurrency and communication aspects of embed-
ded systems design. With respect to these aspects, we envision a method-
ology that uses different degrees of determinism on different abstraction
levels:

Loosely coupled, asynchronous models on the specification level The
need for more loosely coupled notions of concurrency and communi-
cation is exemplified by the popularity of Message Sequence Charts
(MSCs) [Int96] and related notations. These more example-oriented
techniques support an explorative and loose style of design, which is
often helpful when conceiving systems in early phases of development.

Tightly coupled, synchronous models on the design level. Exemplified by
tools/formalisms such as AutoFOCUS, Simulink, SCADE, STATECHARTS,
ESTEREL. Determinism on this level has the major advantage that (1)
system-level validation and verification becomes possible (reduced state-
space), (2) static guarantees about memory and time bounds are feasi-
ble, (3) efficient synthesis is available.

Loose concurrency and communication at the implementation level This
is made necessary by (1) the desire to use cost-efficient hardware with
good average-case utilization and (2) the complex and nondeterministic
nature of platforms and combined HW/SW systems.

The relationship between the latter two levels is the subject of soft con-
formance: an implementation in soft conformance with a design if the
implementation’s behaviors are within an acceptable region around the
original (design) behavior.

The difficulty is to define terms like “acceptable” and “region” satis-
factorily. We will probably need to consider at least two complementary
forms of relaxation

Discrete components/controllers, “message semantics” “Better late than
never”, at least up to some temporal/spatial bound, is the name of the
game here. The design’s traces are fully preserved (up to a bound),
causal relations are respected, but the timing may be permuted. We be-
lieve that the formal relationship captured in Chapter 4 is a good start-
ing point towards a notion of soft conformance in this direction.

5.2. OUTLOOK 145

(Sampled) continuous controllers, “state semantics” Here, one is typically
rather interested in the “freshest value” with minimal delay, while dis-
carding old samples if they arrive too late. Control loops are known to
tolerate a bounded number of such losses, and sample loss may even
be anticipated in the controller design.

This thesis is chiefly a contribution to the question of implementing
message semantics for synchronous programs, and is therefore a first step
in this direction. As a whole, soft conformance techniques for continu-
ous and mixed discrete/controllers would be an important contribution
for further improvements to the practical applicability of the synchronous
approach.

146 CHAPTER 5. CONCLUSION

Appendix A

Definitions and proofs for
Chapter 2

Definition A.1 (Least upper bound (lub)). For a partial order (S,v) and a
subset S ′ ⊆ S, s ∈ S is called an upper bound of S ′ iff

∀s′ ∈ S ′ . s′ v s

s is called a least upper bound of S’, written s =
⊔
S ′, iff

1. s is an upper bound of S’, and

2. for all upper bounds s′′ of S ′, s v s′′.

Definition A.2 (Complete partial order (cpo)). Let (S,v) be a partial order.
By an ω-chain of the partial order, we denote an increasing chain s1 v s2 v · · · v
si v · · · , where si ∈ S are elements of the partial order.

Then (S,v) is a complete partial order iff any increasing chain {si | i ∈ ω}
of elements si ∈ S has a least upper bound

⊔
{si | i ∈ ω} in S.

Definition A.3 (Pointwise extension of v,
⊔

to finite products). Let S1,
S2, . . ., Sn be cpos with orderv and lub

⊔
. The extension ofv and

⊔
to the finite

product S1 × S2 × · · · × Sn is defined as, for si, s′i ∈ Si, S ′i ⊆ S,

(s1, s2, . . . , sn) v (s′1, s
′
2, . . . , s

′
n) iff s1 v s′1 ∧ s2 v s′2 ∧ · · · ∧ sn v s′n⊔

(S ′1 × S ′2 × · · · × S ′n) =
(⊔

S ′1,
⊔

S ′2, . . . ,
⊔

S ′n

)
Property A.1 (Length-preservation for function tuples). Let f1 : S → S1,
f2 : S → S2, . . ., fn : S → S1 be length-preserving functions. Define the
function

〈f1, f2, . . . , fn〉(s) =
(
f1(s), f2(s), . . . , fn(s)

)
for s ∈ S.

Then function 〈f1, f2, . . . , fn〉 is length-preserving.

147

148 APPENDIX A. DEFINITIONS AND PROOFS FOR CHAPTER 2

Property A.2 (Length-preservation for function composition). The com-
position of two length-preserving functions f and g, f ◦ g, is length-preserving.

Property A.3 (Continuity of function tuples). Let f1 : S → S1, f2 : S → S2,
. . ., fn : S → S1 be continuous functions. Define the function

〈f1, f2, . . . , fn〉(s) =
(
f1(s), f2(s), . . . , fn(s)

)
for s ∈ S.

Then function 〈f1, f2, . . . , fn〉 is continuous.

Property A.4 (Continuity of function composition). The composition of two
continuous functions f and g, f ◦ g, is continuous.

Definition A.4 (Prefix closure). For a stream domain V ω, a subset L v V ω is
prefix-closed iff

x ∈ L ∧ x′ v x⇒ x′ ∈ T for all x, x′ ∈ V ∞

Lemma A.5 (Length preservation and monotony implies prefix closure
of image.). Let f : (V ∗)n → (V ast) be a length-preserving and monotonic
function with mapping n-tuples of streams x̄ ∈ (V ∗)n to streams y ∈ V ∗. Then
f ’s image on V ∗ is prefix-closed.

Proof. Let y = f(x̄) be any element of f ’s image. Let y′ v y be any prefix
of y. For m = min(#x̄), let L denote the set

L = {z0 = f(εn), z1 = f(x̄1), z2 = f(x̄1 � x̄2), . . . , zm = f(x̄) = y}.

We note that because of length-preservation, there exists a k̄ ∈ Nn
0 such that

for all stream tuples x̄ ∈ (V ∗)n, #f(x̄) = min(#x̄ + k̄). Clearly, #(εn) =
(0, 0, . . . , 0), #x̄1 = (1, 1, . . . , 1), and so on, so there exists a unique k ∈
N0 such that for all zi with 0 ≤ i ≤ n, it holds that #zi = i + k , and
zi v zi+1 because of monotony. Z is obviously part of f ’s image. But
y′ must be equal to z(#y′−k), because there can be only one prefix of y of
length #y′, and therefore y′ ∈ Z. So for any y, any prefix y′ is in f ’s image.
Consequently, the image of f is prefix-closed.

Lemma A.6 (Transitive and irreflexive relation). For a set D, let R be some
transitive and irreflexive relation over D ×D. Then R is antisymmetric.

Proof. R contains only distinct pairs. For distinct d, d′ ∈ D, assume there
is a symmetric pair dRd′, d′Rd. But then transitivity forces dRd and d′Rd′,
leading to a contradiction as R is required to be irreflexive.

Appendix B

Definitions and proofs for
Chapter 3

Upper and Lower Bounds. We will use the following properties for work-
ing with upper and lower bounds in the proofs for Lemmas 3.14 and
3.17. Let S be a set, let F,G : S → R be functions from S to the reals
such that upper and lower bounds exist for F,G, and let mins∈S(F (s)) and
maxs∈S(F (s)) be the lower and upper bounds of F on S, respectively. Fur-
thermore, let C be some constant. Then the following properties hold:

max
s∈S

(C) = C (B.1)

min
s∈S

(C) = C (B.2)

max
s∈S

(F (s) +G(s)) ≤ max
s∈S

(F (s)) + max
s∈S

(G(s)) (B.3)

min
s∈S

(F (s) +G(s)) ≥ min
s∈S

(F (s)) + min
s∈S

(G(s)) (B.4)

max
s∈S

(−F (s)) = −min
s∈S

(F (s)) (B.5)

min
s∈S

(−F (s)) = −max
s∈S

(F (s)) (B.6)

max
s∈S

(F (s)) < min
s∈S

(G(s)) =⇒ ∀s ∈ S.F (s) < G(s) (B.7)

max
s∈S

(F (s)) ≤ min
s∈S

(G(s)) =⇒ ∀s ∈ S.F (s) ≤ G(s) (B.8)

Lemma 3.3 (Harmonic clocks, properties). Let Ti and Tj be two tasks with
harmonic clocks ci � cj . Then

1. Cj ◦ Rel i ◦ Ci = Cj

2. Cj ◦ Rel	i ◦ (Id+1) ◦ Ci = Cj

3. Rel i ◦ Ci ◦ Rel j = Rel j

149

150 APPENDIX B. DEFINITIONS AND PROOFS FOR CHAPTER 3

Proof. For 1., Prop. 3.2 yields, for ci � cj ,

Rel i ◦ Ci ≥ Rel j ◦ Cj
Cj ◦ Rel i ◦ Ci ≥ Cj ◦ Rel j ◦ Cj (monotony of Cj)
Cj ◦ Rel i ◦ Ci ≥ Cj (Cj ◦ Rel j = Id)

But also, due to Rel i◦Ci ≤ Id , Cj◦Rel i◦Ci ≤ Cj , it holds thatCj◦Rel i◦Ci =
Cj .

For 2., we start with the second inequation of Prop. 3.2:

Rel	i ◦ (Id+1) ◦ Ci ≤ Rel	j ◦ (Id+1) ◦ Cj
Cj ◦ Rel	i ◦ (Id+1) ◦ Ci ≤ Cj ◦ Rel	j ◦ (Id+1) ◦ Cj (monotony of Cj)
Cj ◦ Rel	i ◦ (Id+1) ◦ Ci ≤ Cj (Cj ◦ Rel	j = (Id−1))

But also Rel	i ◦ (Id +1) ◦ Ci ≥ Id , hence Cj ◦ Rel	i ◦ (Id +1) ◦ Ci ≥ Cj , and
the equality follows.

For 3., Prop. 3.2 yields, again,

Rel j ◦ Cj ≤ Rel i ◦ Ci.

Chaining with Rel j and simplifying Cj ◦ Rel j = Id , we obtain

Rel j ≤ Rel i ◦ Ci ◦ Rel j.

We note that also Id ≥ Rel i◦Ci, hence Rel j ≥ Rel i◦Ci◦Rel j , so the equality
in 3. follows.

Lemma 3.4 (Harmonic clocks, write sampling). Let Ti and Tj be two tasks
with harmonic clocks ci � cj , and let task Ti be write sampling with respect to
task Tj . Then the following holds:

1. Rel j ◦ Cj < Wi ◦ Ci
2. Ci ◦ Rel j ◦ Cj = Ci ◦Wi ◦ Ci.

And if ci � cj , the following holds:

3. Ci ◦Wi = Id .

Proof. For part 1., we know from Def. 3.3

Rel i ◦ Ci ◦ Rel j ◦ Cj < Wi ◦ Ci < Rel i ◦ (Id+1) ◦ Ci ◦ Rel j ◦ Cj.

From Prop. 3.2, it follows that

Rel j ◦ Cj ≤ Rel i ◦ Ci

151

and therefore, chaining with the monotonic function Rel j ◦ Cj and simpli-
fying Cj ◦ Rel j = Id ,

Rel j ◦ Cj ≤ Rel i ◦ Ci ◦ Rel j ◦ Cj.

Combining with the left-hand side inequation of Def. 3.3 yields

Rel j ◦ Cj < Wi ◦ Ci,

which proves part 1. of the lemma.
For part 2., we expand Def. 3.3 with Rel j = Rel i◦Ci◦Rel j from Lemma 3.3,

so

Rel i ◦ Ci ◦Relj ◦ Cj < Wi ◦ Ci < Rel i ◦ (Id+1) ◦ Ci ◦Relj ◦ Cj.

Using the left limit of Rel j = Rel i ◦ Ci ◦ Rel j , this can be rewritten as

Rel i ◦ Ci ◦Relj ◦ Cj < Wi ◦ Ci ≤ Rel	i ◦ (Id+1) ◦ Ci ◦Relj ◦ Cj.

Chaining with the monotonic function Ci yields

Ci ◦Rel i ◦Ci ◦Relj ◦Cj ≤ Ci ◦Wi ◦Ci ≤ Ci ◦Rel	i ◦ (Id+1) ◦Ci ◦Relj ◦Cj.

Now using Ci ◦ Rel i = Id and Ci ◦ Rel	i = Id−1, we can simplify to

Ci ◦Relj ◦ Cj ≤ Ci ◦Wi ◦ Ci ≤ (Id−1) ◦ (Id+1) ◦ Ci ◦Relj ◦ Cj,

which proves the equality of part 2.
For part 3., we use Ci ◦ Rel j ◦ Cj = Ci from Lemma 3.3 to simplify

Def. 3.3:
Rel i ◦ Ci < Wi ◦ Ci < Rel i ◦ (Id+1) ◦ Ci.

Eliminating Ci, and replacing strict inequality with the a limit, It follows
that

Rel i < Wi ≤ Rel	i ◦ (Id+1).

Chaining with the monotonic function Ci, and using Ci ◦ Rel i = Id, Ci ◦
Rel	i = Id−1 yields

Id ≤ Ci ◦Wi ≤ (Id−1) ◦ (Id+1)

which proves the property.

Lemma 3.14. Let N be some non-master node in a cascade under normal oper-
ating conditions. Then (j − 1)-synchronization of N implies j-receptiveness of
N .

152 APPENDIX B. DEFINITIONS AND PROOFS FOR CHAPTER 3

Proof. For j-receptiveness of N , Equations 3.5 (case (1)) and 3.6 (case (2))
must hold.

(1) We can rewrite Equation 3.5 as

Q+ (ti,j−1 − t0,j−1) < dmin(0, i) + (t0,j − t0,j−1).

This condition is quantified over all possible executions of the cascade un-
der normal operating conditions: we indicate the set of such executions
with NOC . Using Equations B.1–B.8, we eliminate the quantification and
use lower/upper bounds instead:

Q+ max
(NOC)

(ti,j−1 − t0,j−1) < dmin(0, i) + min
(NOC)

(t0,j − t0,j−1).

From Section 3.3.3, it follows that T/(1+ε) is a lower bound for t0,j−t0,j−1.
Because N is (j − 1)-synchronized by assumption, the bounded message
jitter property from Section 3.3.3 yields max(NOC)(ti,j−1−t0,j−1) = dmax(0, i).
Substituting and using Equation 3.1, the following must hold:

Q+
∑

sj∈Li(Ni)
∆li(sj) <

T

1 + ε
.

Using the (T − Q)/2 bound for the message jitter from Definition 3.5, we
have to show

Q+
T −Q

2
<

T

1 + ε
.

Solving for Q yields the condition (0 ≤ ε < 1)

Q < T

(
1− ε

1 + ε

)
,

which holds for Q < T · (1− 2ε), 0 ≤ ε < 1. This proves case 1.
(2) By assumption, it is true that (j − 1)-synchronized(N). Rewriting

Equation 3.6 and using upper/lower bounds yields:

Tma

1+ε
+ min

(NOC)
(ti,j−1 − t0,j−1)>max

(NOC)
(t0,j − t0,j−1)+dmax(0, i)

With T/(1−ε) as an upper bound for t0,j−t0,j−1, dmin(0, i) as a lower bound
for (ti,j−1 − t0,j−1), and Equation 3.1, we obtain:

Tma

1 + ε
>

T

1− ε
+

∑
sj∈Li(Ni)

∆li(sj).

153

Substituting our choice for Tma from equation 3.2 and solving for
∑

sj∈Li(Ni)
∆li(sj)

with 0 ≤ ε < 1 yields:∑
sj∈Li(Ni)

∆li(sj) <
T (1− 5ε)

2(1− ε2)
.

For 0 ≤ ε < 1, this inequation follows from Definition 3.5. This proves
case 2.

Lemma 3.17. Let N be some non-master node in a cascade under transient fault
conditions. Then if there exists an n, 1 ≤ n ≤ npf , such that N is (j − n)-
synchronized, then N is j-receptive.

Proof. By assumption, there exists an n ∈ {1, . . . , npf } such thatN is (j−n)-
synchronized. Let n′ be the smallest such n. Then for j-receptiveness of N ,
Equations 3.5 (case (1)) and 3.6 (case (2)) must hold.

(1) We distinguish cases (1a) (N is (j − 1)-synchronized) and (1b) (N is
(j − n′)-synchronized, and 2 ≤ n′ ≤ npf).

(1a) See case (1) of the proof for Lemma 3.14.
(1b) We can rewrite Equation 3.5 as

Q+ (ti,j−1 − t0,j−1) < dmin(0, i) + (t0,j − t0,j−1).

The equation is implicitly quantified over the set of executions under tran-
sient fault conditions, TFC . Quantification is removed by taking upper/lower
bounds:

Q+ max
(TFC)

(ti,j−1 − t0,j−1) < dmin(0, i) + min
(TFC)

(t0,j − t0,j−1). (B.9)

For obtaining an upper bound for ti,j−1 − t0,j−1, we split the term ti,j−1 −
t0,j−1 using the identity

ti,j−1 − t0,j−1 = (ti,j−n′ − t0,j−n′)

+(ti,j−1 − ti,j−n′)

−(t0,j−1 − t0,j−n′).

Taking the maximum over executions TFC , and using Equations B.1–B.6,
we obtain

max
(TFC)

(ti,j−1 − t0,j−1) ≤ max
(TFC)

(ti,j−n′ − t0,j−n′)

+ max
(TFC)

(ti,j−1 − ti,j−n′)

− min
(TFC)

(t0,j−1 − t0,j−n′),

which can be resolved as follows:

154 APPENDIX B. DEFINITIONS AND PROOFS FOR CHAPTER 3

• max(TFC)(ti,j−n′ − t0,j−n′):
We observe that, by assumption of Lemma 3.17 and using the right-
hand side condition of Equation 3.4, ti,j−n′−t0,j−n′ ≤ dmax(0, i). There-
fore, dmax(0, i) is a valid upper bound.

• max(TFC)(ti,j−1 − ti,j−n′):
According to the operational definition of N , N will first detect a
message absence (yielding Tma/(1 − ε) as an upper bound for the
duration of cycle j − n′) and then perform n′ − 2 unsynchronized
steps (yielding an upper bound of (n′−2)·T/(1−ε) for the remaining
cycles). The total upper bound is Tma/(1− ε) + (n′ − 2) · T/(1− ε).

• min(TFC)(t0,j−1 − t0,j−n′):
The lower bound for the duration of n′ − 1 cycles of the master is
(n′ − 1) · T/(1 + ε).

We substitute the upper bound for ti,j−1− t0,j−1 into Equation B.9, and use
T/(1 + ε) as a lower bound for t0,j − t0,j−1 and Equation 3.1 for dmax− dmin.
Then the following property remains to be shown:

Tma
1− ε

+ (n− 2)
T

1− ε
+Q+

∑
sj∈Li(Ni)

∆li(sj) < n′
T

1 + ε
.

Solving for n′ results in the condition (0 ≤ ε < 1, T > 0):

n′ <
1

4Tε

(
T (1 + ε)−

(
2Q+ 2

∑
sj∈Li(Ni)

∆li(sj)
)
(1− ε2)

)
.

For 0 ≤ ε < 1, this holds if

n′ <
1

4Tε

(
T −

(
2Q+ 2

∑
sj∈Li(Ni)

∆li(sj)
))
.

This follows from n′ ≤ npf and Equation 3.3, so we’re done for case 1.
(2) We distinguish cases (2a) (N is (j − 1)-synchronized) and (2b) (N is

(j − n′)-synchronized and 2 ≤ n′ ≤ npf).
(2a) See case (2) of the proof for Lemma 3.14.
(2b) For this case, it is true that ¬(j − 1)-synchronized(N). Rewriting

Equation 3.7 and using upper/lower bounds yields:

T

1+ε
+min

(TFC)
(ti,j−1 − t0,j−1)>max

(TFC)
(t0,j − t0,j−1)+dmax(0, i). (B.10)

A lower bound for ti,j−1−t0,j−1 is again found by splitting up the term and
using Equations B.1–B.6:

155

• min(TFC)(ti,j−n′ − t0,j−n′):
By assumption of Lemma 3.17 and using the left-hand side condition
of Equation 3.4, ti,j−n′−t0,j−n′ ≥ dmin(0, i), so dmin(0, i) is a valid lower
bound.

• min(TFC)(ti,j−1 − ti,j−n′):
N will first detect a message absence (lower bound Tma/(1 + ε)) and
then perform n′ − 2 unsynchronized steps (lower bound (n′ − 2) ·
T/(1+ε) for the remaining cycles). The total lower bound is Tma/(1+
ε) + (n− 2) · T/(1 + ε).

• max(TFC)(t0,j−1 − t0,j−n′):
The upper bound for the duration of n′ − 1 cycles of the master is
(n′ − 1) · T/(1− ε).

With T/(1− ε) as an upper bound for t0,j − t0,j−1 and Equation 3.1, substi-
tuting the above bounds into Equation B.10 yields:

Tma
1 + ε

+ (n′ − 1)
T

1 + ε
> n′

T

1− ε
+

∑
sj∈Li(Ni)

∆li(sj).

Solving for n′ yields (0 ≤ ε < 1, T > 0):

n′ <
1

4Tε

(
T (1− ε)− 2

∑
sj∈Li(Ni)

∆li(sj)(1− ε2)
)
.

For 0 ≤ ε < 1, this constraint is satisfied if

n′ <
1

4Tε

(
T (1− ε)− 2

∑
sj∈Li(Ni)

∆li(sj)
)
.

Again, for n′ ≤ npf , this follows from Equation 3.3. This concludes the
proof for case 2.

156 APPENDIX B. DEFINITIONS AND PROOFS FOR CHAPTER 3

Appendix C

Definitions and proofs for
Chapter 4

As a property of lin./, Lemma C.1 demonstrates that using the minimum-
weight reflexive-transitive closure for the relations constituting lin./ is not
strictly necessary, and the usage of the reflexively-transitively reduced re-
lations actually suffices from a formal standpoint.

Lemma C.1 (Sufficiency of reduced relations for defining lin./). Let ./ −

be the map defined as, for all x, y ∈ X ,

./−(x, y) = min
(

(.)−→(x, y) , ∆(x, y)
)
,

where (.)−→ is the reduced variable synchronization relation from Def. 2.10, and ∆
is the reduced queuing capacity relation from Def. 4.1. It then holds that, for all
W ∈ (X×V)ω,(
∀x,y∈X .#W ′|x≤#W ′|y+./−(x,y)

)
⇐⇒

(
∀x,y∈X .#W ′|x≤#W ′|y+./(x,y)

)
.

Proof. ⇐ is clear. ⇒ follows from the fact that minimum-weight reflexive-
transitive closure (Def. 2.14) combines addition for transitive pairs, which
is mirrored by conjunction of inequations in (m,n ∈ N)

#W ′|x≤#W ′|y+m ∧#W ′|y≤#W ′|z+n =⇒ #W ′|x≤#W ′|z+n+m,

and selection of the minimum element for multiple weights, again mir-
rored by conjunction of inequations in (m,n ∈ N)

#W ′|x≤#W ′|y+m ∧#W ′|x≤#W ′|y+n =⇒ #W ′|x≤#W ′|y+min(m,n).

157

158 APPENDIX C. DEFINITIONS AND PROOFS FOR CHAPTER 4

For the definition of lin./, using the minimum-weight reflexive-transitive

closure of synchronization relations,
(.)−−→

∗
and ∆∗ has an important me-

thodical advantage over the usage of reduced relations (.)−→ and ∆: The
rewriting of an SSDL program to its linearization-matching form, as de-
scribed in Section 4.1.2, introduces a number of variable copies in order
to match a given distribution to threads and 1-channels. However, the in-
troduction such variable copies typically does not provide an improved
understanding of the program, or its linearizations. One is typically in-
terested in projections of the relations (.)−→ and ∆ relating the original
variables of an SSDL program, without their copies. For the reflexive-

transitive variants
(.)−−→

∗
and ∆∗, the projection onto the original variables

is immediately clear by removing pairs referring to variable copies. For the
reduced relations, on the other hand, removing pairs referring to copies
would not yield the correct result.

Lemma 4.3 (Concatenation of linearized words is linearized word). Let
w,w′ ∈ (X→V)∗ be synchronous words. Then for all W,W ′∈(X×V)∗,

W ∈ lin./(w) ∧ W ′∈ lin./(w
′) =⇒ (W �W ′)∈ lin./(w �w

′)

Proof. The first constraint of Def. 4.5, ((W �W ′)|x = (w �w′)|x), is clearly sat-
isfied by W �W ′. For the second constraint, #(W �W ′)|x ≤ #(W �W ′)|y+./
(x, y), we note that for all z ∈ X , #W |z is equal to #w, so #(W �W ′)|z =
#W ′|z + #w, and hence the second constraint holds for W �W ′ iff it holds
for W ′.

Lemma 4.4 (Linearized word with 1-synchronized variables is concate-
nation of linearized words). Let X ′ be a 1-synchronized variable set. Let w ∈
(X ′→V)∗, w′ ∈ (X ′→V)ω be synchronous words. Then for all W ′′ ∈ (X ′× V)ω,

W ′′∈ lin./(w �w
′) =⇒ ∃W∈lin./(w),W ′∈lin./(w

′) . W �W ′=W ′′

Proof. Let W ′′′ be the prefix of W ′′ such that #W ′′′ = |X ′| ·#w, where |X ′|
is the size of X ′. We can deduce that #W ′′′|x = #w for all x ∈ X ′, as all
other possibilities for W ′′′ would violate the 1-synchronization constraint
for X ′. We can further deduce that W ′′′|x = w|x for all x ∈ X ′, which is
the first required constraint for W ∈ lin./(w) according to Def. 4.5. The
second constraint holds for all prefixes of W ′′ ∈ lin./(w �w′) by definition,
and hence for W ′′′ v W ′′. So there exists a W = W ′′′ such that W ∈ lin./(w),
and W ′∈ lin./(w

′) follows symmetrically.

159

Lemma 4.5 (Existential and universal acceptance of lin./(σ)-languages for
Lin(A)). Let A be a synchronous automaton, and let Lin(A) be its linearized
counterpart. For a given σ ∈ (XA → V), we write ∃Wσ short for ∃Wσ ∈
lin./(

(.)−−→
∗

A , σ), and symmetrically for ∀Wσ. Then the following holds, for all
σ ∈ (XA→V), for all s, s′ ∈ S,

1. ∃Wσ.(s, ∅) 7
Wσ−−−−_

Lin(A)

∗
(s′, ∅) =⇒ s 7 σ−_

A
s′

2. ∀Wσ.(s, ∅) 7
Wσ−−−−_

Lin(A)

∗
(s′, ∅) ⇐= s 7 σ−_

A
s′

Proof. For statement 1., we show the equivalent statement

¬
(
s 7 σ−_

A
s′

)
=⇒ ¬

(
∃Wσ.(s, ∅) 7

Wσ−−−−_
Lin(A)

∗
(s′, ∅)

)
.

We write ∗
A= Unweight(

(.)−−→
∗

A) for the local variable dependency order
of A. If there is no transition s 7 σ−_

A
s′, then by the construction proce-

dure of Lin(A) from A, any W ′ such that (s, ∅) 7 W ′

−−−−_
Lin(A)

∗
(s′, ∅) will be

a linearization of some symbol σ′ 6= σ. But then clearly the constraint
∀x ∈ XA.(W

′|x = σ|x) from the definition of lin./ in Def. 4.5 cannot hold,

thus W ′ 6∈ lin./(
(.)−−→

∗

A , σ).
Statement 2. can be similarly deduced by a comparison of the construc-

tion of Lin(A) with lin./(∗
A, σ): We first note that, by the construction rule

for Lin(A), on any transition path from (s, ∅) to (s′, ∅) in Lin(A), all pos-
sible sequences of all symbols γ ∈ σ, γ ∈ X × V , in an order consistent

with ∗
A= Unweight(

(.)−−→
∗

A) are accepted by Lin(A). On the other hand,

according to Def. 4.5, lin./(
(.)−−→

∗

A , σ) allows precisely those words W with

∀x ∈ XA. (W |x = σ|x), and
∀x ∈ XA.∀W ′∈ v−1(W) . #W ′|x ≤ #W ′|y+./(∗

A, x, y).

So the first constraint mandates that the sequence of symbols γ1 � γ2 � . . . �
γn = W corresponds precisely to the macrosymbol {γ1, γ2, . . . , γn} = σ.
For the second constraint, we note that for all x, y ∈ XA,./(∗

A, x, y ≤ 1 by
Def. 4.1, so x ∗y ⇔ x

0−→
∗
y, and x 6 ∗y ⇔ x

1−→
∗
y. That is, if ∗

A forces
symbol by to follow symbol ax in the construction of the transition path in

Lin(A) from (s, ∅) to (s′, ∅) corresponding to s 7 σ−_
A

s′, so does
(.)−−→

∗
A in

160 APPENDIX C. DEFINITIONS AND PROOFS FOR CHAPTER 4

the construction of W ∈ lin./(∗
A, σ), and vice versa. So both constraints

together ensure that allW ∈ lin./(∗
A, σ) will be accepted by Lin(A) on the

transition path from (s, ∅) to (s′, ∅).

Lemma 4.6 (Equivalence of existential and universal acceptance of lin./(w)--
languages for Lin(A))). Let A be a synchronous automaton, and let Lin(A) be
its linearized counterpart. For a given w ∈ (XA→V), we write ∃Ww short for

∃Ww ∈ lin./(
(.)−−→

∗

A , w), and symmetrically for ∀Ww. Then the following holds,
for all σ ∈ (XA→V), for all w ∈ (XA→V)ω, for all s, s′ ∈ S,

1. ∃Wσ.(s, ∅) 7
Wσ−−−−_

Lin(A)

∗
(s′, ∅) ⇐⇒ ∀Wσ.(s, ∅) 7

Wσ−−−−_
Lin(A)

∗
(s′, ∅)

2. ∃Ww.(s, ∅) 7
Ww−−−−_

Lin(A)

∗
(s′, ∅) ⇐⇒ ∀Ww.(s, ∅) 7

Ww−−−−_
Lin(A)

∗
(s′, ∅)

We write (s, ∅) 7
lin./(

(.)−−→
∗

A ,w)
−−−−−−−−−_

Lin(A)

∗

(s′, ∅) to denote both existential and universal

acceptance of lin./(
(.)−−→

∗

A , w) by Lin(A).

Proof. For statement 1., the ⇐ direction is clear. The ⇒ direction follows
directly from combination of properties 1. and 2. of Lemma 4.5.

For statement 2., we first prove three auxiliary statements

2a. (s, ∅) 7
lin./(

(.)−−→
∗

A ,ε)
−−−−−−−−−_

Lin(A)

∗

(s, ∅)

2b. ∃Wσ.∃Ww (s, ∅) 7 Wσ−−−_
Lin(A)

∗
(s′′, ∅)∧(s′′, ∅) 7 Ww−−−_

Lin(A)

∗
(s′, ∅) ⇒∃Wσ�w.(s, ∅) 7

Wσ�w−−−_
Lin(A)

∗
(s′, ∅)

2c. ∀Wσ.∀Ww (s, ∅) 7 Wσ−−−_
Lin(A)

∗
(s′′, ∅)∧(s′′, ∅) 7 Ww−−−_

Lin(A)

∗
(s′, ∅) ⇒∀Wσ�w.(s, ∅) 7

Wσ�w−−−_
Lin(A)

∗
(s′, ∅)

Statement 2a. is clear by the construction rule for Lin : if s 7 ε−_
A

∗
s′, then

s = s′, hence (s, ∅) 7
lin./(

(.)−−→
∗

A ,ε)
−−−−−−−−−_

Lin(A)

∗

s′ for lin./(∗
A, ε) = {ε}, and vice versa.

Statements 2b. and 2c. follow from the structure of 7
(.)

−−−−_
Lin(A)

∗
and Lemma

4.4. The overall proof for 2. is obtained by induction over w, combining
statements 1., 2a., 2b., and 2c..

Lemma 4.10 (Lin is compositional). Let A1, A2 be synchronous automata.
Then it holds that the linearized product of the linearized automata of A1 and A2

simulates the linearized automaton of the synchronous product of A1 and A2:

Lin(A1)‖Lin(A2) ≈ Lin(A1‖|A2).

161

Proof. We first note that the two alphabets coincide: the alphabet is equal
to ((XA1∪XA2)×V) for both automata. To show the equality, we first define
a map F from states of Lin(A1)‖Lin(A2) to states of Lin(A1‖|A2) as follows:
for all s1 ∈ S1, s2 ∈ S2, σ1 ∈ (XA1→V), σ2 ∈ (XA2→V),

F ((s1, σ1), (s2, σ2)) = ((s1, s2), σ1 ∪ σ2)

Note that F is a bijection between the state sets: in the opposite direction,
any state ((s1, s2), σ) of Lin(A1‖|A2) can be mapped to the unique state
((s1, σ|XA1

), (s2, σ|XA2
)) by the inverse of F , F−1. We also observe that F

maps the initial state of Lin(A1)‖Lin(A2), ((s01, ∅), (s02, ∅)), to the initial
state of Lin(A1‖|A2), ((s02, s02), ∅), and similar for accepting states Sa.

It remains to show that the two transition relations coincide up to bijec-
tion F . We shall establish the following property: for s1 a state of A1, s2

a state of A2, we write s12∅ for ((s1, ∅), (s2, ∅)) and s1′2′∅ for ((s1, ∅), (s2, ∅)).
Then for all W ∈ ((XA1∪XA2)×V)∗ such that ∀x∈(XA1∪XA2) .#W |x=1,

s12∅ 7
W−−−−−−−−−−_

Lin(A1)‖Lin(A2)

∗
s1′2′∅ ⇔ F (s12∅) 7

W−−−−−−−_
Lin(A1‖|A2)

∗
F (s1′2′∅)

For automaton Ai, for i ∈ {1, 2}, we write ∗
i for the variable depen-

dency order Unweight
((.)−−→

∗

Ai

)
. Similarly, we write ∗

12 for

Unweight
((.)−−→

∗

A1‖|A2

)
. Now note the following connection:

Lin(A1)‖Lin(A2): We know from the definition of Lin that the set of Wi ∈
Xi×V)∗ accepted on the transition from (si, ∅) to (si, ∅) in Lin(Ai), (s′i∅)
is the set of ∗

i -linearizations of macrosymbol σi ∈ (Xi→V) such that
si 7

σi−−_
Ai

s′i. For constructing Lin(A1)‖Lin(A2), the two individual au-

tomata A1, A2 are then composed using parallel composition ‖.

Lin(A1‖|A2): All W12 ∈ ((XA1∪XA2)×V)∗ accepted on the transition from
F (s12∅) to F (s1′2′∅) in Lin(A1‖|A2) are respective ∗

12-linearizations of
macrosymbols σ12 ∈ (Xi→V) such that (s1, s2) 7

σ12−−−−_
A1‖|A2

(s′1, s
′
2). By the

definition of the synchronous product ‖|, it clearly holds that ∗
12= (∗

1

∪ ∗
2)
∗, the reflexive-transitive closure of the union of the individual

orders.

So if we can show that composition ‖ has the same effect as combining
union and reflexive-transitive closure for variable dependency orders ∗

1,
 ∗

2, to construct ∗
12, we can effectively show equivalence of

s12∅ 7
W−−−−−−−−−−_

Lin(A1)‖Lin(A2)

∗
s1′2′∅ and F (s12∅) 7

W−−−−−−−_
Lin(A1‖|A2)

∗
F (s1′2′∅).

162 APPENDIX C. DEFINITIONS AND PROOFS FOR CHAPTER 4

Linearized automaton composition ‖ Order composition
 ∗

12= (∗
1∪ ∗

2)
∗

si’, ∅

si, ∅

ax

...

... ...

ax

...

ax

...

by

...

by

...

by

...

... ...

...

||

...
... ...

...

s3-i, ∅

...

...

...

s3-i’, ∅

... ...

... ...

...

=

x∉XA(3-i) ∨ y∉XA(3-i)

ax

...

... ...

ax

...

ax

...

by

...

by

...

by

...

... ...

...

...
... ...

...

(si’,∅),(s3-i’,∅)

(si,∅),(s3-i,∅)

x ∗
i y =⇒ x ∗

12 y

si’, ∅

si, ∅

ax

...

... ...

ax

...

ax

...

by

...

by

...

by

...

... ...

...

||

...
... ...

...

=
ax

...

... ...

ax

...

ax

...

cz

...

cz

...

cz

...

... ...

...

...
... ...

...

(si’,∅),(s3-i’,∅)

(si,∅),(s3-i,∅)

s3-i’, ∅

s3-i, ∅

by

...

... ...

by

...

by

...

cz

...

cz

...

cz

...

... ...

...

...
... ...

...

x∉XA(3-i)z∉XAi

x ∗
i y ∧ y ∗

3−iz =⇒ x ∗
12z

Figure C.1: Comparison of linearized automaton composition ‖ and order
composition (∗

1∪ ∗
2)
∗

163

Now note the correspondance between the linearized automaton com-
position ‖ and relation composition ∗

12= (∗
1∪ ∗

2)
∗, sketched in Fig. C.1

for a pair of linearized automata Lin(Ai) and Lin(A3−i), for all variables
x, y, z ∈ XA1∪XA2 , for all a, b, c ∈ V .

x ∗
i y ⇒ x ∗

12 y: In the upper row of Fig. C.1, for automaton Lin(Ai),
let x, y ∈ XAi

be a variable pair such that symbols ax always precede
symbols by on all transition paths from (si, ∅) to (s′i, ∅) of Lin(Ai). From
the structure of SSDL programs, and from the causality check described
in Section 2.2.4, we can conclude that for the other linearized automaton
Lin(A3−i), it holds that either x 6∈XA3−i

∨ y 6∈XA3−i
, or that symbols ax

and by are not causally constrained on any transition path from (s3−i, ∅)
to (s′3−i, ∅). Then by definition of linearized composition ‖, for the com-
posed automaton Lin(Ai)‖Lin(A3−i), symbols ax always precede sym-
bols by on all transition paths from s12∅ = ((si, ∅), (s3−i, ∅)) to s1′2′∅ =
((s′i, ∅), (s′3−i, ∅)). This corresponds to the property x ∗

i y ⇒ x ∗
12 y

for order composition.

x ∗
i y ∧ y ∗

3−iz ⇒ x ∗
12z: In the lower row of Fig. C.1, for automaton

Lin(Ai), let x ∈ XAi
, y ∈ XAi

∩XA3−i
be a variable pair such that symbols

ax always precede symbols by on all transition paths from (si, ∅) to (s′i, ∅)
of Lin(Ai). For automaton Lin(A3−i), symmetrically, let z ∈ XA3−i

be a
variable such that symbols by always precede symbols cz on all transi-
tion paths from (s3−i, ∅) to (s′3−i, ∅) of Lin(A3−i). Then by definition of
‖, for the composed automaton Lin(Ai)‖Lin(A3−i), symbols ax always
precede symbols cz on all transition paths from s12∅ = ((si, ∅), (s3−i, ∅))
to s1′2′∅ = ((s′i, ∅), (s′3−i, ∅)). This corresponds to the property x ∗

i

y ∧ y ∗
3−iz ⇒ x ∗

12z for order composition.

It also holds that, for all x, z ∈ XA1∪XA2 ,

x ∗
12 z ⇒

(
∃i∈{1, 2} . x ∗

i z
)
∧

(
∃i∈{1, 2} .∃y∈XA1∩XA2 . x

∗
i y∧y ∗

3−iz
)
,

so our analysis captures all possible sources of x ∗
12 z. Because au-

tomaton composition Lin(A1)‖Lin(A2) and order composition (∗
1∪ ∗

2)
∗

thus yield the same transition paths from state s12∅/F (s12∅) to state
s1′2′∅/F (s1′2′∅), it holds that, for all W ∈ ((XA1 ∪XA2)× V)∗ such that
∀x∈(XA1∪XA2) .#W |x=1,

s12∅ 7
W−−−−−−−−−−_

Lin(A1)‖Lin(A2)

∗
s1′2′∅ ⇔ F (s12∅) 7

W−−−−−−−_
Lin(A1‖|A2)

∗
F (s1′2′∅).

Consequently, Lin(A1)‖Lin(A2) and Lin(A1‖|A2) have the same alphabet,
states, transition relation, initial state, and accepting states up to bijection

164 APPENDIX C. DEFINITIONS AND PROOFS FOR CHAPTER 4

F , so
Lin(A1)‖Lin(A2) ≈ Lin(A1‖|A2).

The following is an auxiliary lemma that will be needed in the proof for
Theorem 4.13.

Lemma C.2 (Indices for dependent symbol sets). Let w ∈ (X→V)∞ be a
synchronous word. Let X ′, X ′′ ⊆ X be two variable sets such that X ′ ∗ X ′′.
For some i∈N, for some W ∈ lin./(w), let I ′∈N be an index into W such that I ′

points to the W -symbol corresponding to some γ′∈wi|X′ , and let I ′′N be an index
into W such that I ′′ points the W -symbol corresponding to some γ′′ ∈ wi|X′′ .
Then for all valid choices of w, i, W , γ′, γ′′, it holds that I ′ ≤ I ′′.

Proof. We note that for x, y∈X , x ∗y ⇔ x
0−→
∗
y. Then the lemma follows

from the constraint ∀x, y∈X .#W |x ≤ #W |y+./ (x, y) in the definition of
lin./ in Def. 4.5.

Theorem 4.13 (Soundness of PVar). Let ϕ ∈ LTL(X×V) be an LTL formula.
Then ϕ is preservable if PVar(ϕ) 6=>:

PVar(ϕ) 6= > =⇒ Pres(ϕ).

Proof. As a preliminary note, we observe that, for allϕ ∈ LTL(X×V), Pres(ϕ)
or

w |≡ (ϕ) ⇐= lin./(w) |= (ϕ)

can be rewritten to

w 6|≡ (ϕ) =⇒ lin./(w) 6|= (ϕ),

which in turn reduces to, according to the respective LTL semantics defi-
nitions for ¬ϕ,

w |≡ (¬ϕ) =⇒ lin./(w) |= (¬ϕ).

But ¬ϕ is in LTL(X×V) just like ϕ, so the ⇐ direction for Pres(ϕ) follows
from the proof for the⇒ direction for Pres(ϕ′) for all ϕ′ ∈ LTL(X×V). So we
shall concentrate on the ⇒ direction for Pres in the following.

We write Sound(ϕ) ⇔ PVar(ϕ) 6=> ⇒ Pres(ϕ) for the soundness con-
dition of the theorem, and show Sound(ϕ) by structural induction:

Sound(tt): Pres(tt) is clear, hence Sound(tt).

165

Sound(ax): For preservation of atomic propositions ax, we know from the
constraint in the definitition of lin./ in Def. 4.5 that, for a given w ∈ (X→
V)∞, for allW ∈ lin./(w), for all x ∈ X ,W |x = w|x, andW |x is nonempty.
So clearly, for all w ∈ (X→V)∞, w |≡ ax =⇒ lin./(w) |= ax, so Pres(ax)
and Sound(ax).

Sound(ϕ) =⇒ Sound(¬ϕ): Pres(ϕ) =⇒ Pres(¬ϕ) follows from the LTL
semantics of ¬, and from P⇒P ′ =⇒ ¬P ⇒ ¬P ′ for propositions P, P ′.

Sound(ϕ)∧Sound(ψ) =⇒ Sound(ϕ ∨ ψ): Pres(ϕ) ∧ Pres(ψ) =⇒ Pres(ϕ ∨
ψ) follows from (P ⇒ P ′) ∧ (Q ⇒ Q′) =⇒ (P ∨P ′ ⇒ Q∨Q′) for
propositions P, P ′, Q,Q′.

Sound(ϕ)∧Sound(ψ) =⇒ Sound(ϕ U ψ): It is either the case that

PVar(ϕ)=> ∨ PVar(ψ)=> ∨ (PV ar(ψ) 6 ∗PVar(ϕ))

∨ ϕ 6∈1-CF ∨ ¬Sync1
./(PVar(ψ)),

then Sound(ϕ U ψ) trivially holds by Def. 4.8. Or it is the case that

PVar(ϕ) 6=> ∧ PVar(ψ) 6=> ∧ (PV ar(ψ) ∗PVar(ϕ))

∧ ϕ∈1-CF ∧ Sync1
./(PVar(ψ)),

whereby we know by assumption that Pres(ϕ) and Pres(ψ). In order to
satisfy Sound(ϕ U ψ), we have to show Pres(ϕ U ψ), written out as

w |≡ ϕUψ =⇒ lin./(w) |= ϕUψ.

According to the synchronous LTL semantics, w |≡ ϕ U ψ corresponds
to the statement

∃i∈N . w(i) |≡ψ ∧ w(1) |≡ϕ ∧ · · · ∧ w(j) |≡ϕ ∧ · · · ∧ w(i−1) |≡ϕ (Pres-LHS).

where 1 ≤ j < i. This statement must be shown to imply, for all W ∈
lin./(w),

∃I∈N .W (I) |≡ψ∧W (1) |≡ϕ∧· · ·∧W (J) |≡ϕ∧· · ·∧W (I−1) |≡ϕ (Pres-RHS).

By assumption Pres(ψ) and by w(i) |≡ ψ, it follows that lin./(w
(i)) |≡ ψ,

and lin./(w
(i))|PVar(ψ) |≡ψ by Lemma 4.12.

Now for some word w ∈ (X→V)∞, let W ∈ lin./(w) be any one of its
linearized words. According to Lemma 4.4, because Sync1

./(PVar(ψ))
and w|PVar(ψ) = w′ � (w(i)|PVar(ψ)) for some w′ ∈ (PVar(ψ) × V)∗, there

166 APPENDIX C. DEFINITIONS AND PROOFS FOR CHAPTER 4

exists an I ′ ∈ N such that W (I′)|PVar(ψ) ∈ lin./(w
(i))|PVar(ψ) and thus,

W (I′)|PVar(ψ) |≡ ψ. Lemma 4.12 yields that there must be also a corre-
sponding I ∈ N such that W (I) |≡ ψ. So we have shown that the first
conjunct of Pres-RHS holds.

For the remaining conjuncts of Pres-RHS, let ϕ1-CF be a single-variable
conjunctive term equivalent to ϕ. If w(1) |≡ϕ1-CF ∧ · · · ∧ w(j) |≡ϕ1-CF ∧
· · ·∧w(i−1) |≡ϕ1-CF , then for all variables x∈X , the respective projection
w(j)|x |≡-satisfies those conjuncts in ϕ1-CF relating to x (Lemma 4.12).
Because of the constraint ∀x ∈X .W |x = w|x in the definition of lin./ in
Def. 4.5, and because of the coincidence of |≡ and |= for single-variable
projections of words, for all W ′ ∈ lin./(w), for all variables x∈X , for all
1 ≤ j < i, the respective projection W ′(j)|x |=-satisfies those conjuncts
in ϕ1-CF relating to x. Consequently, because ϕ1-CF is by definition con-
junctive, for 1≤J <I ′′, W ′(J) |=-satisfies ϕ1-CF , where I ′′ is some upper
bound. But PVar(ψ) ∗ PVar(ϕ), so by applying Lemma C.2 to the
symbol wi, it is clear that I ≤ I ′′, where I is the index into W from the
proof for the first conjunct of Pres-RHS. Consequently,

∃I∈N . W (I) |≡ψ ∧W (1) |≡ϕ ∧ · · · ∧W (J) |≡ϕ ∧ · · · ∧W (I−1) |≡ϕ,

so we are done with the proof for Pres(ϕ U ψ) under the given assump-
tions, and Sound(ϕ U ψ) follows.

Appendix D

The Brock-Ackerman anomaly

The following example is taken from Russell [Rus89]. Consider a process,
shown on the left hand side of Fig. D.1, with a single input channel and a
single output channel. The behavior of the process is as follows: It makes
a top-level choice between two behaviors. The first behavior is to output
a 0, then wait for an input token, and then output a 0. We summarize this
as 0; read; 0. In the same notation, the other possible behavior is read; 0; 1.
The input/output relation is derived as:

Input Output
ε 0 or ε
nonempty 00 or 01

The second process on the right hand side of Fig. D.1 can make a three-
way choice between the first two possible behaviors of the first processes,
and the behavior 0; read; 1. Clearly, the I/O relation is the same as for the
first process.

Figure D.1: Example for untimed dataflow network with nondeterminism

167

168 APPENDIX D. THE BROCK-ACKERMAN ANOMALY

Now suppose that both processes feed back their outputs as inputs,
shown by the dotted lines. Modified in such a way, both processes have
only a single output, and no input. In the fed-back version, the first pro-
cess can produce either ε or 00, while the second can produce ε, 00, or
01. Thus, two processes have the same input/output relation, but when
placed in identical contexts, the respective composite processes have dif-
ferent input/output relations. In a sense, the input/output relation fails
to capture the different causal dependencies in statements read; 0; 1 and
0; read; 1.

Note that the Brock-Ackermann anomaly is a specific case of the “full
abstraction” problem, which is usually stated as follows: A semantics is
called fully abstract iff all equivalent terms, programs, or input-output be-
haviors are identified, i. e. mapped to the same semantic value. Equiva-
lence is defined with respect to some relevant observation, such as con-
vergence behavior in all possible term contexts for terms, or equivalent se-
mantics in all possible contexts for data-flow processes [Win93]. A model
is (informally) called natural if its structure is understandable without re-
sorting to explicit notions of e. g. program equivalences or orderings. For
instance, models built by using standard constructions of denotational se-
mantics are generally considered natural. The “full abstraction” problem
can then be summarized as synthesizing and finding natural models for
given languages which are also fully abstract, i. e. formally adequate. For
many programming languages, the standard techniques of denotational
semantics yield natural models that are too concrete [Sto88]. The Brock-
Ackermann anomaly, conversely, may be seen as an instance of a too ab-
stract model: the relational semantics identifies behaviors which, opera-
tionally, can be distinguished by some context.

Bibliography

[AAR05] U. Assman, M. Aksit, and A. Rensink, editors. Model Driven
Architecture, volume 3599 of LNCS. Springer Verlag, Berlin,
2005. European MDA Workshops: Foundations and Appli-
catios, MDAFA 2003 and MDAFA 2004 Twente, The Nether-
lands, June 2003 and Linkoping, Sweden, June 2004 Revised
Paper selection.

[ABG95] T. P. Amagbegnon, L. Besnard, and P. Le Guernic. Implemen-
tation of the Data-flow Synchronous Language Signal. In Pro-
ceedings of the ACM Symposium on Programming Languages De-
sign and Implementation (PLDI’95), pages 163–173. ACM, 1995.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[AGLS01] Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky.
Compositional refinement for hierarchical hybrid systems.
In Proceedings 3rd International Workshop on Hybrid Systems:
Computation and Control (HSCC ’00), volume 2034 of LNCS.
Springer Verlag, 2001.

[Alb79] A. J. Albrecht. Measuring application development produc-
tivity. In Proceedings IBMGUIDE/SHARE Applications Devel-
opment Symposium, California, USA, 1979.

[Arm96] J. L. Armstrong. Erlang - A survey of the language and its
industrial applications. In Proceedings of the symposium on in-
dustrial applications of Prolog (INAP96), 1996.

[AUT03] AUTOSAR consortium. AUTOSAR consortium homepage,
2003. URL: http://www.autosar.de .

169

http://www.autosar.de

170 BIBLIOGRAPHY

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural lan-
guage with iteration. Communications of the ACM, 20(7):519–
526, July 1977.

[BA81] J. Dean Brock and William B. Ackerman. Scenarios: A model
of non-determinate computation. In Proceedings of the Inter-
national Colloquium on Formalization of Programming Concepts,
pages 252–259, London, UK, 1981. Springer-Verlag.

[BBR+05] A. Bauer, M. Broy, J. Romberg, Bernhard Schätz, P. Braun,
U. Freund, N. Mata, R. Sandner, and D. Ziegenbein. Auto-
MoDe: Notations, Methods, and Tools for Model-Based De-
velopment of Automotive Software. In Proceedings of the 2005
SAE World Congress, Detroit, MI, 2005. Society of Automotive
Engineers.

[BBRN05] I. Broster, A. Burns, and G. Rodríguez-Navas. Timing analy-
sis of real-time communication under electromagnetic inter-
ference. Real-Time Systems, 30(1–2):55–81, May 2005.

[BCE+03] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le
Guernic, and R. De Simone. The synchronous languages
twelve years later. Proceedings of the IEEE, 2003.

[BCG+02] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P.
Talpin, and S. Tripakis. A protocol for loosely time-triggered
architectures. In Proceedings of EMSOFT 2002. Springer-
Verlag, 2002.

[BCGH94] A. Benveniste, P. Caspi, P. Le Guernic, and N. Halbwachs.
Data-flow synchronous languages. In A Decade of Con-
currency, Reflections and Perspectives, REX School/Symposium,
pages 1–45, London, UK, 1994. Springer-Verlag.

[Ber00] G. Berry. The Foundations of ESTEREL. Proof, Language and
Interaction: Essays in Honour of Robin Milner, 2000.

[BFH+92] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond,
and C. Ratel. Minimal state graph generation. Science of Com-
puter Programming, 18:247–269, 1992.

[BH95] Ed Baroth and Chris Hartsough. Visual programming in the
real world. In Visual object-oriented programming: concepts and

BIBLIOGRAPHY 171

environments, pages 21–42. Manning Publications Co., Green-
wich, CT, USA, 1995.

[BJK+05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of Reactive Systems,
volume 3472 of LNCS. Springer, 2005.

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli. Now you may com-
pose temporal logic specifications. In Proceedings of the 16th
Annual ACM Symposium on Theory of Computation, pages 51–
63, April 1984.

[BR04] Andreas Bauer and Jan Romberg. Model-based deployment:
From a high-level view to low-level code. In Proceedings of the
1st International Workshop on Model-Based Methodologies for Per-
vasive and Embedded Software (MOMPES), Hamilton, Canada,
June 2004.

[Bro86] M. Broy. A Theory for Nondeterminism, Parallelism, Com-
munication, and Concurrency. Theoretical Computer Science,
45(1):1–61, 1986.

[Bro87] F. P. Brooks. No silver bullet: essence and accidents of soft-
ware engineering. IEEE Computer, 20(4):10–19, 1987.

[Bro93] M. Broy. Interaction refinement – The easy way. In Program
Design Calculi: Proceedings of the 1992 Marktoberdorf Interna-
tional Summer School. Springer-Verlag, 1993.

[BRS00] P. Braun, M. Rappl, and J. Schäuffele. Softwareentwicklung
für Steuergerätenetzwerke – Eine Methodik für die frühe
Phase. In VDI Tagung Elektronik im KFZ, number 1547 in VDI-
Berichte, Baden-Baden, 2000.

[BS01] M. Broy and K. Stølen. Specification and development of in-
teractive systems: Focus on streams, interfaces, and refinement.
Springer-Verlag New York, Inc., 2001.

[Cas92] Paul Caspi. Clocks in dataflow languages. Theoretical Com-
puter Science, 94(1):125–140, 1992.

[CCGJ97] B. Caillaud, P. Caspi, A. Girault, and C. Jard. Distributing
automata for asynchronous networks of processors. European
Journal of Automation, 31(3):503–524, 1997.

172 BIBLIOGRAPHY

[CCL91] M. Chen, Y. Choo, and J. Li. Crystal: Theory and Pragmatics
of Generating Efficient Parallel Code. In Parallel Functional
Languages and Compilers, Frontier Series, chapter 7, pages 255–
308. ACM Press, 1991.

[CCM+03a] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis.
Translating discrete-time simulink to lustre. In EMSOFT
2002, volume 2855 of LNCS, pages 84–99, 2003.

[CCM+03b] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,
and P. Niebert. From Simulink to SCADE/Lustre to TTA:
A layered approach for distributed embedded applications.
In Proceedings of the 2003 ACM SIGPLAN conference on Lan-
guages, Compilers, and Tools for Embedded Systems, pages 153–
162. ACM Press, 2003.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages
and Systems, 16(5):1512–1542, September 1994.

[CGP99] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution
of reactive systems for asynchronous networks of proces-
sors. IEEE Transactions on Software Engineering, 25(3):416–427,
May/June 1999.

[Cla89] D. Clark. HIC: An operating system for hierarchies of
servo loops. In Proceedings of IEEE International Conference on
Robotics and Automation, 1989.

[CP96] P. Caspi and M. Pouzet. Synchronous Kahn Networks. In
International Conference on Functional Programming, pages 226–
238, 1996.

[dBOP+00] L. du Bousquet, F. Ouabdesselam, I. Parissis, J.-L. Richier, and
N. Zuanon. Specification-based testing of synchronous soft-
ware. In Proceedings 5th Int’l Workshop on Formal Methods for
Industrial Critical Systems (FMICS), April 2000.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpreta-
tion of reactive systems. ACM Transactions on Programming
Languages and Systems, 19(2):253–291, 1997.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces.
World Scientific, Singapore, 1995.

BIBLIOGRAPHY 173

[DS02] L.A.J. Dohmen and L.J. Somers. Experiences and Lessons
Learned Using UML-RT to Develop Embedded Printer Soft-
ware. In M. Oivo and S. Komi-Sirviö, editors, Proceedings of
PROFES 2002, volume 2559 of LNCS, pages 475–484, 2002.

[dSP] dSPACE GmbH. dSPACE Homepage. URL: http://www.
dspace.com/ .

[Dud04] F. Dudenhöffer. Elektronik-Ausfälle: Tendenz steigend.
Hanser Automotive Electronics + Systems, April 2004.

[E+97] J. Eisenmann et al. Entwurf und Implementierung von
Fahrzeugsteuerungsfunktionen auf Basis der TITUS Client
Server Architektur. In Systemengineering in der Kfz-
Entwicklung, number 1374 in VDI Berichte, pages 309–325,
1997.

[Eis05] U. Eisemann. Guidelines for a Model-based Development
Process with Automatic Code Generation. In Proceedings of
the 3rd Workshop on Object-oriented Modeling of Embedded Real-
Time Systems (OMER3), Paderborn, Germany, 2005. Heinz-
Nixdorf Institut.

[Ele05] Focus: Qualität + Diagnose. elektronik industrie, July 2005.
URL: http://www.elektronik-industrie.de .

[ETA] ETAS Engineering Tools GmbH. ETAS Homepage. URL:
http://en.etasgroup.com/ .

[Ets01] K. Etschberger, editor. CAN Controller Area Network - Grund-
lagen, Protokolle, Bausteine, Anwendungen. Hanser, 2001.

[Fle] FlexRay Group. FlexRay Group Homepage. URL: http://
www.flexray-group.org .

[FMHH01] T. Führer, B. Müller, F. Hartwich, and R. Hugel. Time trig-
gered CAN (TTCAN). In SAE World Congress, Detroit, 2001.
SAE number 2001-01-0073.

[GEB03] J. Guo, S. H. Edwards, and D. Borojevich. Comparison of
dataflow architecture and Real-Time Workshop Embedded
Coder in power electronics system control software design.
In CPES 2003 Power Electronics Seminar and NSF/Industry An-
nual Review, 2003.

http://www.dspace.com/
http://www.dspace.com/
http://www.elektronik-industrie.de
http://en.etasgroup.com/
http://www.flexray-group.org
http://www.flexray-group.org

174 BIBLIOGRAPHY

[GP92] T. R. G. Green and M. Petre. When Visual Programs are
Harder to Read than Textual Programs. In Human-Computer
Interaction: Tasks and Organisation, Proceedings ECCE-6, 1992.

[GS88] J. B. Goodenough and L. Sha. The priority ceiling protocol:
A method for minimizing the blocking of high priority ada
tasks. In IRTAW ’88: Proceedings of the second international
workshop on Real-time Ada issues, pages 20–31, New York, NY,
USA, 1988. ACM Press.

[Har87] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8, 1987.

[HHK01] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A
time-triggered language for embedded programming. In Pro-
ceedings of EMSOFT 2001. Springer-Verlag, 2001.

[HMP92] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are
digital clocks? In ICALP ’92: Proceedings of the 19th Inter-
national Colloquium on Automata, Languages and Programming,
pages 545–558, London, UK, 1992. Springer-Verlag.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice-
Hall, 1985.

[HPS02] H. Huang, P. Pillai, and K. Shin. Improving wait-free algo-
rithms for interprocess communication in embedded realtime
systems, June 2002.

[HRR91] N. Halbwachs, P. Raymond, and C. Ratel. Generating Effi-
cient Code from Data-Flow Programs. In Proceedings of the
Third International Symposium on Programming Language Im-
plementation and Logic Programming, Passau, Germany, 1991.
Springer Verlag.

[HSE97] F. Huber, B. Schätz, and G. Einert. Consistent Graphical Spec-
ification of Distributed Systems. In J. Fitzgerald, C.B. Jones,
and P. Lucas, editors, Industrial Applications and Strengthened
Foundations of Formal Methods (FME’97), LNCS 1313, pages
122–141. Springer Verlag, 1997.

[IBM03] IBM Rational. Rational Rose RealTime, C++ Reference,
2003.06.00 edition, 2003.

BIBLIOGRAPHY 175

[Int96] International Telecommunications Union (ITU), Geneva,
Switzerland. ITU-T Recommendation Z.120: Message Sequence
Chart (MSC), October 1996.

[JD75] J.B.Dennis and D.P.Misunas. A preliminary architecture for a
basic data-flow processor. In Proceedings of the Second Annual
Symposium on Computer Architecture, pages 126–132. ACM,
1975.

[JHM04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar.
Advances in dataflow programming languages. ACM Com-
puting Surveys, 36(1):1–34, 2004.

[Kah74] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In Proc. of IFIP 74 Congress, Amsterdam, 1974.
North Holland.

[Kfz04] 17% der Autofahrer haben mit Elektronikproblemen ihres
Fahrzeugs zu kämpfen. Kfz-Elektronik, May 2004. URL:
www.kfz-elektronik.de/article/b_040122.htm .

[Kop92] Hermann Kopetz. Sparse Time versus Dense Time in Dis-
tributed Real-Time Systems. In Proceedings of the 12th Inter-
national Conference on Distributed Computing Systems (ICDCS),
pages 460–467, 1992.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer, Boston, 1997.

[KP02] Raimund Kirner and Peter Puschner. International workshop
on WCET analysis - summary. Research Report 12/2002,
Technische Universität Wien, Institut für Technische Infor-
matik, Vienna, Austria, 2002.

[Lee03] Edward A. Lee. Model-Driven Development: From Object-
Oriented Design to Actor-Oriented Design. In Workshop on
Software Engineering for Embedded Systems From Requirements
to Implementation, Chicago, IL, 2003. Invited talk.

[Lee05] E. Lee. Absolutely Positively On Time: What Would It Take?
IEEE Computer, July 2005.

[Leu02] M. Leucker. Logics for Mazurkiewicz Traces. PhD thesis, RWTH
Aachen, 2002. Aachener Informatik Berichte AIB-2002-10.

www.kfz-elektronik.de/article/b_040122.htm

176 BIBLIOGRAPHY

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem.
Property preserving abstractions for the verification of con-
current systems. Formal Methods in System Design, 6(1):11–44,
1995.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
ACM, 20(1), 1973.

[LM87] E. Lee and D. Messerschmitt. Synchronous dataflow. Proceed-
ings of the IEEE, 75:1235–1245, 1987.

[LT87] N. A. Lynch and Mark R. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 137–151, 1987.

[Mac94] S. G. MacDonell. Comparative review of functional complex-
ity assessment methods for effort estimation, 1994.

[Mil80] R. Milner. A calculus of communicating systems. Springer-
Verlag, 1980.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer, New York, 1992.

[MS83] J. McGraw and S. Skedzielewski. SISAL—Streams and Itera-
tion in a Single Assignment Language: Reference Manual. Liver-
more National Laboratory, Livermore, CA, 1983.

[MT00] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture Descrip-
tion Languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

[MW] The MathWorks Inc. The MathWorks Inc. Homepage. URL:
http://www.mathworks.com .

[Nik90] R.S. Nikhil. Id reference manual. Technical Report CSG
Memo 284-1, Massachusetts Institute of Technology, Labora-
tory for Computer Science, 1990.

[OMG05] Object Management Group. Unified Modeling Language (UML)
Superstructure, August 2005. Version 2.0 formal/05-07-04.

http://www.mathworks.com

BIBLIOGRAPHY 177

[OSE01] OSEK VDX consortium. OSEK/VDX Operating System Version
2.2, 2001.

[PA92] D.E. Perry and A.L.Wolf. Foundations for the study of
software architecture. SIGSOFT Software Engineering Notes,
17(4):40–52, 1992.

[Par95] T. M. Parks. Bounded Scheduling of Process Networks. PhD the-
sis, University of California at Berkeley, 1995.

[PBC05] D. Potop-Butucaru and B. Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous spec-
ifications. In Proceedings of the Fifth International Conference on
Application of Concurrency to System Design, ACSD 2005, 2005.

[PBM+93] J.P. Paris, G. Berry, F. Mignard, P. Couronne, P. Caspi, N. Halb-
wachs, Y. Sorel, A. Benveniste, T. Gautier, P. Le Guernic,
F. Dupont, and C. Le Maire. Projet SYNCHRONE : les for-
mats communs des langages synchrones. Technical Report
RT-0157, INRIA, 1993.

[PMSB96] S. Poledna, Th. Mocken, J. Schiemann, and Th. Beck. ER-
COS: An operating system for automotive applications. Re-
search Report 21/1996, Technische Universität Wien, Institut
für Technische Informatik, 1996.

[PT91] G. M. Papadopoulos and K. R. Traub. Multithreading: A re-
visionist view of dataflow architectures. In Proceedings of the
18th International Symposium on Computer Architecture (ISCA),
volume 19, pages 342–351, New York, NY, 1991. ACM Press.

[RB04] J. Romberg and A. Bauer. Loose synchronization of event-
triggered networks for distribution of synchronous pro-
grams. In Proceedings 4th ACM International Conference on Em-
bedded Software, Pisa, Italy, September 2004.

[Ree95] H. J. Reekie. Realtime Signal Processing. PhD thesis, University
of Technology at Sydney, Australia, 1995.

[RH05] G. Rosu and K. Havelund, editors. Proceedings of the Fourth
Workshop on Runtime Verification (RV’04), volume 113 of Elec-
tronic Notes in Theoretical Computer Science. Barcelona, Spain,
2005.

178 BIBLIOGRAPHY

[Rus89] James R. Russell. Full abstraction for nondeterministic
dataflow networks. In Annual Symp. Foundations of Computer
Science, pages 170–177, 1989.

[RVA+98] J. Rufino, P. Veríssimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-tolerant broadcasts in CAN. In 28th Interna-
tional Symposium on Fault-Tolerant Computing Systems, pages
150–159, Munich, Germany, June 1998. IEEE.

[RWNH98] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Au-
tomatic Testing of Reactive Systems. In Proceedings of the 19th
IEEE Real-Time Systems Symposium, 1998.

[SC85] A. P. Sistla and E. M. Clarke. Complexity of propositional
temporal logics. Journal of the ACM, 32:733–749, 1985.

[SC04] N. Scaife and P. Caspi. Integrating model-based design and
preemptive scheduling in mixed time- and event-triggered
systems. In Proceedings of ECRTS, pages 119–126, 2004.

[Sel03] B. Selic. The Pragmatics of Model-Driven Development. IEEE
Software, 20(5):19–25, 2003.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on
an Emerging Discipline. Prentice-Hall, 1996.

[Soc04] Society of Automotive Engineers (SAE). Architecture Analysis
& Design Language (AADL), November 2004. SAE Standard
No. AS5506.

[SPFR98] M. Saksena, A. Ptak, P. Freedman, and P. Rodziewicz.
Schedulability analysis for automated implementations of
real-time object-oriented models. In IEEE Real-Time Systems
Symposium, 1998.

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Comput., 39(9):1175–1185, 1990.

[SRS+03] B. Schätz, J. Romberg, M. Strecker, O. Slotosch, and K. Spies.
Modeling Embedded Software: State of the Art and Beyond.
In Proceedings of ICSSEA 2003 16th International Conference on
Software and Systems Engineering and their Applications, 2003.

BIBLIOGRAPHY 179

[SS72] D. Scott and C. Strachey. Towards a mathematical semantics
for computer languages. In Proceedings Symposium on Com-
puters and Automata, pages 19–46. Wiley, 1972.

[Sta01] T. Stauner. Systematic development of hybrid systems. PhD the-
sis, Technische Universität München, 2001.

[Sto88] Allen Stoughton. Fully abstract models of programming lan-
guages. Pitman Publishing, Inc., Marshfield, MA, USA, 1988.

[Sys05] SysML Partners. Systems Modeling Language (SysML) Specifi-
cation version 1.0 alpha, 2005. URL: www.sysml.org .

[Tan96] A. S. Tanenbaum. Computer Networks. Prentice-Hall, 1996.

[TB94] K. Tindell and A. Burns. Guaranteeing message latencies on
controller area network (CAN). In Proceedings 1st International
CAN Conference, September 1994.

[THW01] W. Taha, P. Hudak, and Z. Wan. Directions in Functional
Programming for Real(-Time) Applications. In Proceedings
of 2001 Workshop on Embedded Software, EMSOFT’01, volume
2211 of LNCS, pages 185–203, 2001.

[TSSC05] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi. Semantics-
preserving and memory-efficient implementation of inter-
task communication under static-priority or edf schedulers.
In ACM Intl. Conference on Embedded Software (EMSOFT),
2005.

[Var01] M.Y. Vardi. Branching vs. linear time: Final showdown. In
ETAPS: European Joint Conference of Theory and Practice of Soft-
ware, 2001.

[Ves00] S. Vestal. Formal verification of the metah executive using
linear hybrid automata. In Proceedings of the Sixth IEEE Real
Time Technology and Applications Symposium (RTAS), page 134,
Washington, DC, USA, 2000. IEEE Computer Society.

[Wig01] U. Wiger. Four-fold increase in productivity and quality. In
FemSYS 2001, Munich, Germany, 2001.

[Win93] Glynn Winskel. The formal semantics of programming languages:
An introduction. MIT Press, Cambridge, MA, USA, 1993.

www.sysml.org

180 BIBLIOGRAPHY

[WL88] J.L. Welch and N. Lynch. A new fault-tolerant algorithm for
clock synchronization. Information and Computation, 77(1):1–
36, 1988.

List of Figures

2.1 A dataflow network example: frequency-divide 16
2.2 An unbounded dataflow network: faulty-integrator . . 24
2.3 Program frequency-divide 31
2.4 Semantics of Mini-SSDL . 34
2.5 Program threeish . 38
2.6 sample definition . 40
2.7 fby-every definition . 40
2.8 Translation rules for every operator 41
2.9 The oil pump illustrated . 42
2.10 Program oil-pump . 43
2.11 Two non-reactive programs 45
2.12 Program no-causal-cycle 46
2.13 Two programs with identical stream semantics and differ-

ent operationalizations . 47
2.14 Three C implementations . 47

3.1 Automotive in-vehicle network (schematic) 54
3.2 Data inconsistency example 58
3.3 abs example with wait-free IPC 59
3.4 Programs diff , modular-diff 62
3.5 Variable dependency order ∗ for differentiator , dt-delay 63
3.6 Two C implementations of dt-delay 63
3.7 C implementation of diff . 63
3.8 “A” and “N” alignments for two tasks 65
3.9 “A” and “N” alignments for one task 67
3.10 Three configuration rules for semantics-preserving inter-task

communication . 68
3.11 Example sequence for ci ≺ cj 69
3.12 Example sequence for ci � cj 69
3.13 Example sequence for ci �� cj 70

181

182 LIST OF FIGURES

3.14 Example sequence for oil-pump based on composition with
clock functions and local indices 73

3.15 Example for a synchronization cascade 84
3.16 Processing phases for step k of a node Ni. Filled arrow-

heads denote synchronizing messages, empty arrowheads
correspond to nonsynchronizing messages 85

3.17 Activation, states, and transitions of a node Ni 87
3.18 Mapping a dataflow network to a cascade 99

4.1 Program twice-identity . 107
4.2 Two implementations of

twice-identity . 107
4.3 Example synchronous run for program twice-identity . . 108
4.4 Example linearized runs for program twice-identity . . . 108
4.5 Composition of threads and 1-channels (schematic) 110
4.6 Commutative diagram for linearization maps Lin , lin./ . . . 118
4.7 Program frequency-divide in PNF 124
4.8 Program frequency-divide in linearization-matching PNF 124
4.9 Composition of thread automaton, 1-channel automaton, and

environment (schematic) . 124
4.10 Automata for frequency-divide 126
4.11 The commutative diagram refined 127

C.1 Comparison of linearized automaton composition ‖ and or-
der composition (∗

1∪ ∗
2)
∗ 162

D.1 Example for untimed dataflow network with nondeterminism167

	Introduction
	Problem Statement
	Contributions
	Thesis Outline

	Synchronous Dataflow Programs
	Rationale
	Dataflow: A brief history
	Why dataflow programs?
	Why synchronous?
	Why discrete?

	The synchronous dataflow language SSDL
	Mini-SSDL syntax
	Mini-SSDL semantics
	SSDL
	Non-reactive programs and causality analysis

	Related work

	Two Implementation Schemes
	Platforms
	Singleprocessor implementation
	Subprograms, task partitions, and clocks
	Preemptive scheduling and data consistency
	Sequential code synthesis
	Three configuration rules for semantics-preserving inter-task communication
	Examples
	Formal analysis

	Multiprocessor implementation
	Introduction
	Synchronization cascades
	Environment assumptions
	Analysis of operational modes
	Properties of synchronization cascades

	Related work

	Linearizations, Property Preservation
	Linearizations
	Overview
	Synchronization and composition
	Words
	Automata
	Equivalence

	Property preservation
	Overview
	LTL for synchronous and linearized words
	Preservation

	Related Work

	Conclusion
	Summary
	Outlook

	Definitions and proofs for Chapter 2
	Definitions and proofs for Chapter 3
	Definitions and proofs for Chapter 4
	The Brock-Ackerman anomaly

