
Institut für Informatik
Technische Universität München

Real-Time

Simulation and Visualization

of Deformable Objects

Joachim Georgii

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans-Joachim Bungartz
Prüfer der Dissertation: 1. Univ.-Prof. Dr. Rüdiger Westermann

2. Hon.-Prof. Hans-Christian Hege, Zuse Institute Berlin

Die Dissertation wurde am 19.09.2007 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 06.12.2007 angenommen.

To my wife, my children, my family, and my friends

Abstract

In this thesis, I present a framework for physical simulation and visualization of de-
formable volumetric bodies in real time. Based on the implicit finite element method a
multigrid approach for the efficient numerical simulation of elastic materials has been
developed. Due to the optimized implementation of the multigrid scheme, 200,000 el-
ements can be simulated at a rate of 10 time steps per second. The approach enables
realistic and numerically stable simulation of bodies that are described by tetrahedral or
hexahedral grids. It can efficiently simulate heterogeneous bodies—i.e., bodies that are
composed of material with varying stiffness—and includes linear as well as non-linear
material laws.

To visualize deformable bodies, a novel rendering method has been developed on
programmable graphics hardware. It includes the efficient rendering of surfaces as well
as interior volumetric structures. Both the physical simulation framework and the ren-
dering approach have been integrated into a single simulation support system. Thereby,
available communication bandwidths have been efficiently exploited. To enable the
use of the system in practical applications, a novel approach for collision detection has
been included. This approach allows one to handle geometries that are deformed or
even created on the graphical subsystem.

i

Zusammenfassung

In dieser Arbeit präsentiere ich ein Framework für die physikalische Simulation und
Visualisierung von deformierbaren volumetrischen Körpern in Echtzeit. Basierend auf
der Methode der impliziten finiten Elemente wurde ein Mehrgitteransatz zur effizien-
ten numerischen Simulation elastischer Materialien entwickelt. Durch die optimierte
Implementierung des Mehrgitterverfahrens können 200.000 Elemente mit einer Rate
von 10 Zeitschritten pro Sekunden simuliert werden. Der Ansatz ermöglicht die re-
alistische und numerisch stabile Simulation von Körpern, die durch Tetraeder- oder
Hexaedergitter beschrieben sind. Er kann heterogene Körper – das heißt Körper, die
aus unterschiedlich steifem Material bestehen – effizient simulieren und berücksichtigt
lineare sowie nicht-lineare Materialgesetze.

Zur Visualisierung deformierbarer Körper wurde eine neuartige Renderingmetho-
de auf programmierbarer Graphikhardware entwickelt. Sie beinhaltet sowohl das ef-
fiziente Rendering von Oberflächen als auch von internen volumetrischen Strukturen.
Das Simulationsframework und die Renderingmethode wurden in ein eigenständiges
Simulationssystem integriert. Dabei wurden die verfügbaren Kommunikationsband-
breiten effizient ausgenutzt. Um den Einsatz des Systems in praktischen Anwendungen
zu ermöglichen, wurde ein neuer Ansatz zur Kollisionserkennung integriert. Dieser
Ansatz ermöglicht die Handhabung von Gittern, die auf dem graphischen Subsystem
deformiert oder sogar erst konstruiert werden.

iii

Acknowledgements

I want to thank all persons that helped to make this work possible. First of all, I really
have to thank all my colleagues, Kai Bürger, Christian Dick, Stefan Hertel, Polina Kon-
dratieva, Dr. Martin Kraus, Dr. Jens Krüger, Thomas Schiwietz, and Jens Schneider.
Not only did they support me in proof-reading this thesis but also provided me with
ideas and discussions over the whole period of the last years.

At this point, I have to include my previous colleagues, namely Konstantinos Pana-
giotou and Dr. Peter Kipfer. Particularly, I want to thank my students Florian Echtler,
Benjamin Herrmann, Stefan Plafka, Jochen Strunck, Michael Henze, Matthias Wag-
ner, and Alexandru Duliu, who worked on several parts of the overall system. Special
thanks go to Gerhard Schillhuber, who supported me in including the interface for the
PHANTOM® haptic device, and Dr. Mario Botsch, who assisted me with the compar-
ison to the Cholesky solver. Furthermore, I want to thank the physicians I have worked
with, namely Dr. Maximilian Eder, Dr. Laszlo Kovacz and Prof. Dr. Hubertus Feußner.

Last but not least I want to thank my advisor, Prof. Dr. Rüdiger Westermann, who
all the time had an open office and ear. This thesis would certainly not have been
possible without his inspiration. He really taught me a lot during my time at his chair,
and at this point I just can say: Thank you!

v

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Notation xix

1 Introduction 1
1.1 Contribution . 1
1.2 Research Publications . 4
1.3 About this Thesis . 5

2 Simulation 7
2.1 Related Work . 8
2.2 Elasticity Theory . 11
2.3 Finite Element Framework . 16

2.3.1 Finite Elements . 16
2.3.2 Linear Strain Approximation 20
2.3.3 Corotated Strain Approximation 22
2.3.4 Non-Linear Strain . 23
2.3.5 Higher-Order Finite Elements 25
2.3.6 Dynamics . 26

vii

viii CONTENTS

2.3.7 Time Integration . 27
2.3.8 Boundary Conditions . 30
2.3.9 Mixed Boundary Conditions 32
2.3.10 Material Update . 33
2.3.11 Modified Material Laws . 34

2.4 Implicit Multigrid Solver . 37
2.4.1 The Multigrid Idea . 37
2.4.2 Nested Hierarchies . 38
2.4.3 Non-Nested Hierarchies . 39
2.4.4 Coarse Grid Correction . 40
2.4.5 Galerkin Property . 42
2.4.6 Convergence and Numerical Error 43

2.5 Fast Sparse Matrix-Matrix Products 46
2.5.1 Matrix Data Structures . 47
2.5.2 Naive Approach . 48
2.5.3 1-Step Approach . 48
2.5.4 1-Step Stream Acceleration 49
2.5.5 Symmetry Optimization . 52
2.5.6 Parallelization . 52
2.5.7 Performance Measurement . 54

2.6 Mass-Spring Systems . 56
2.6.1 Theory . 57
2.6.2 Volume Preservation . 58
2.6.3 GPU Architecture and Functionality 59
2.6.4 GPU Implementation . 61
2.6.5 Irregular Volumetric Models 64
2.6.6 Discussion . 67

2.7 Results and Validation . 72
2.7.1 Real-Time Multigrid Simulation Framework 72
2.7.2 Comparison with Cholesky Solver 82
2.7.3 Soft Tissue Validation . 83

3 Rendering 87
3.1 Related Work . 88

3.1.1 Render Surface . 88
3.1.2 Volume Rendering of Unstructured Grids 88

CONTENTS ix

3.2 Direct3D 10 Graphics Pipeline . 90
3.3 Deformable Surface Rendering . 91

3.3.1 High-Resolution Render Mesh 91
3.3.2 Advanced Shading Techniques 96

3.4 Deformable Volume Rendering . 97
3.4.1 Tetrahedral Grid Rendering Pipeline 98
3.4.2 Iso-Surface Rendering . 106
3.4.3 Cell Projection . 109
3.4.4 Implementation . 110
3.4.5 Visualization of Internal Material Properties 111
3.4.6 High-Resolution Render Volumes 112

3.5 Performance Measurements . 114
3.5.1 Surface Rendering . 114
3.5.2 Volume Rendering . 115

4 Collision Detection 119
4.1 Related Work . 120
4.2 Contribution . 123
4.3 Screenspace-Accurate Object Intersection 125

4.3.1 Object Sampling . 125
4.3.2 Ray Merging . 128
4.3.3 Primitive Separation . 130

4.4 GPU-CPU Data Transfer . 131
4.4.1 Texture Packing . 132
4.4.2 Intersection Tests . 135

4.5 Collision Response . 135
4.6 Results . 136

4.6.1 Scenes . 136
4.6.2 Analysis . 139
4.6.3 Non-Closed Polygonal Objects 141

5 The Deformable Bodies System 143
5.1 Overview . 143

5.1.1 Generating Models . 145
5.1.2 Runtime Computations . 145
5.1.3 Changing Parameters at Runtime 146

5.2 Parallelization . 146

x CONTENTS

5.2.1 Multiple Threads . 147
5.2.2 Multiple Nodes . 149

5.3 Results . 150

6 Conclusion 155
6.1 Future Work . 156

Bibliography 160

List of Figures

1.1 Overview of publications on parts of the research covered in this thesis . 4
1.2 Basic interplay of the system components described in Chapters 2–4 . . 5

2.1 Strain tensor . 12
2.2 Poisson’s Ratio . 13
2.3 Comparison of linear Cauchy and non-linear Green strain 14
2.4 Finite element types . 17
2.5 Coordinate transformation for finite elements 20
2.6 Comparison of the linear, corotational and non-linear simulation 25
2.7 Comparison between linear tetrahedra and Serendipity tetrahedra 26
2.8 Vertex Fixation . 31
2.9 Modified material laws in 2D . 35
2.10 Modified material laws in 3D . 36
2.11 Regular subdivision scheme for various finite element types 39
2.12 Geometric relations between elements in a non-nested hierarchy 40
2.13 Comparison of multigrid V-cycle and full multigrid algorithm 41
2.14 Comparison of pure geometric and Galerkin multigrid approach 43
2.15 Analysis of the algebraic error of the multigrid method 44
2.16 Convergence of the multigrid V-cycles and full multigrid algorithm . . . 45
2.17 Row-compressed matrix format . 47
2.18 Matrix-vector products using a symmetric sparse matrix format 53
2.19 Volume preserving forces in mass-spring systems 59
2.20 Stages of the programmable graphics pipeline 60
2.21 Sequence of valence textures . 66
2.22 GPU cloth simulation . 69
2.23 Interactive GPU-based deformations of the bunny model 70
2.24 Tetrahedral models . 73

xi

xii LIST OF FIGURES

2.25 Linear time complexity of the multigrid solver 74
2.26 Deformation of a tetrahedral horse model 75
2.27 Visualization of internal stress . 75
2.28 Comparison of the multigrid and the conjugate gradient solver for linear

strain . 76
2.29 Comparison of the multigrid and the conjugate gradient solver for coro-

tational strain . 78
2.30 Simulation of non-linear strain . 81
2.31 Experimental setup of the soft tissue validation 84
2.32 Soft tissue validation by means of a pig’s liver 85
2.33 Surface distance error of the liver experiment 85

3.1 Stages of the Direct3D 10 graphics pipeline implemented on recent GPUs 90
3.2 Displacing a high-resolution render surface on the GPU 93
3.3 Normal calculation on the GPU . 94
3.4 Lighting on GPU deformed render surface 95
3.5 Fur shading . 96
3.6 Overview of the GPU tetrahedral grid rendering pipeline 98
3.7 Ray-based tetrahedra sampling . 100
3.8 Data stream overview of the GPU tetrahedra rendering pipeline 101
3.9 Deforming Cartesian grids . 102
3.10 Iso-surface rendering of the deformed visible male data set 108
3.11 Drawbacks of the Powersort algorithm 109
3.12 Visualization of internal properties of the liver data set 112
3.13 Visualization of internal properties of the heterogeneous horse model . . 113
3.14 Direct volume rendering of the engine data-set 113
3.15 Different rendering modes of the bunny model 114
3.16 Interactive deformation and rendering of various objects 115
3.17 Direct volume rendering of the NASA bluntfin data set 117
3.18 Close-up views of the NASA bluntfin data set 117
3.19 Direct volume rendering of the deformed visible human data set 117

4.1 Interactive collision detection between polygonal objects 123
4.2 A diagrammatic overview of the proposed collision detection algorithm 125
4.3 Illustration of interference, self-interference, and partial inversion . . . 126
4.4 Calculation of collision rays by using depth-peeling 128
4.5 Mipmap texture of collision rays . 129

LIST OF FIGURES xiii

4.6 Mipmap construction . 130
4.7 Primitive separation . 130
4.8 Ray merging and primitive separation 131
4.9 Texture Packing: Counting . 132
4.10 Texture Packing: Shifting . 133
4.11 Texture Packing: Moving . 134
4.12 Repulsion forces . 136
4.13 (Self-) collisions between deformable objects 137
4.14 Collisions between dynamic GPU objects 138
4.15 Rigid body collisions . 138
4.16 (Self-) Collisions between non-closed dynamic and rigid objects 142

5.1 Interplay of the simulation, render, and collision engine 144
5.2 Interplay of the system threads . 147
5.3 Interplay of the simulation threads . 148
5.4 System distribution on multiple compute nodes 149
5.5 Screenshot of the tum.3D defo application 150
5.6 Deforming the Mount St. Helens terrain 151
5.7 Force fields allow for intuitive deformations 152
5.8 Breast Augmentation . 152
5.9 Deformation of the dragon model . 153
5.10 Stress visualization of a bending beam 153

6.1 Validation of the soft tissue deformation by means of volumetric or-
ganic data sets . 158

List of Tables

2.1 Elastic modulus and Poisson’s ratio of some materials 13
2.2 Finite element shape functions . 18
2.3 Timing statistics for the update of nested multigrid hierarchies 54
2.4 Timing statistics for the update of non-nested multigrid hierarchies . . 55
2.5 Memory and arithmetic analysis of the point-centric and the edge-cen-

tric mass-spring approach . 68
2.6 Performance comparison between the point-centric and edge-centric

mass-spring approach . 69
2.7 GPU simulation performance rates for volumetric mass-spring models . 71
2.8 Timing results for different models using the linearized Cauchy strain

measure . 74
2.9 Timing statistics for different models using the corotational strain . . . 77
2.10 Timing statistics for different models using the non-linear Green strain . 79
2.11 Timing statistics for higher-order finite elements 82
2.12 Comparison of the multigrid solver with a direct Cholesky solver 83

3.1 Performance of the GPU surface render engine 114
3.2 Element, memory, and timing statistics of the tetrahedral grid rendering

pipeline for various data sets . 116
3.3 Timing statistics for different rendering modes 118

4.1 Triangle counts of various collision scenes 139
4.2 Timing statistics of the collision detection pipeline 140

xv

List of Algorithms

1 Two grid correction . 41
2 1-step multiplication of sparse matrices 49
3 Stream construction for sparse matrix-matrix products 51
4 Point-centric mass-spring system . 62
5 Edge-centric mass-spring system . 63
6 Volumetric mass-spring system . 65
7 Volumetric element-centric mass-spring system 67
8 Pseudo-code snippets for ray-based GPU tetrahedra rendering 104

xvii

Notation

Notation Description Definition on page

Ω Reference Configuration of the object 11
λ, µ Lamé coefficients 13
E Elastic modulus (Young’s modulus) 13
ν Poisson’s ratio 13
E Strain tensor 12, 14
ε Strain tensor, linearized notation 11
Σ Stress tensor 12
σ Stress tensor, linearized notation 11
σMises Von-Mises stress norm 111
D Matrix of material law: σ = Dε 14
u, u(x) Displacement field 11
f, f(x) External (surface) forces 11
g, g(x) Volumetric forces 11
ρ Density 27

Ni(x) Finite element shape functions 17
Φ Finite element shape matrix 17
B Finite element strain matrix 21
Ke Finite element stiffness matrix 21
K Global stiffness matrix 21
K(u) Global non-linear stiffness function 23
M e Finite element mass matrix 27
M Global mass matrix 27
Ce Finite element damping matrix 27
C Global damping matrix 27

xix

Chapter 1

Introduction

Efficient and physics-based simulation of deformable objects is of increasing interest in
a number of applications such as virtual environments, computer games, and medical
simulators. Due to the computational complexity of the underlying physical models,
simplified models are typically used in real-time applications. Such models sacrifice
physical correctness for computational speed, which makes it difficult in general to
verify how well these model can simulate the behavior of real objects and materials.
Usually, these models are either limited by the kind of materials that can be simulated
efficiently, or they use very coarse approximations to simulate the underlying physical
phenomenons, which are only valid for specific kinds of deformations. On the contrary,
physics-based simulation is advantageous, because the underlying model is well under-
stood, and thus these methods are applicable in scenarios where physical accuracy is
required, for example in medical applications such as surgical training or pre-operative
and intra-operative planning.

In many real-time applications, not only fast and accurate simulation is of growing
interest but also high-quality visualizations of such deformable bodies. The efficient
coupling of numerical simulation methods with advanced rendering techniques has not
been considered so far to the best of our knowledge. In particular, interactive volume
rendering techniques that allow one to visualize internal material properties at simula-
tion time are important in a wide range of applications.

1.1 Contribution

Due to these observations, the main goal of my PhD is to review the question whether
physics-based simulation is really too slow as to be applied in real time, and to even

1

2 CHAPTER 1. INTRODUCTION

challenge it. Another goal was to demonstrate that physically accurate simulation and
advanced visualization techniques of deformable volumetric bodies can be integrated
efficiently into one single simulation support system, which can be used in many prac-
tical applications.

Finite element methods are the best known techniques to accurately model the be-
havior of deformable objects based on the theory of elasticity—and thus they are the
state-of-the-art technique for physics-based simulation. Consequently, I started out
with an analysis of the linear finite element methods commonly applied to solve prob-
lems in structural mechanics. When going through the related work in the field of
real-time approaches, it was most striking that the employed numerical techniques did
not make use of well established optimization methods at all. In particular, although
multigrid approaches were known to be optimal solvers for second-order elliptical par-
tial differential equations, they have not been applied to the simulation of deformable
objects in real-time environments. Therefore, my first objective was the development
of a multigrid solver suitable for the simulation of deformable objects based on the lin-
ear elasticity theory. Compared to previous finite-element-based methods, this solver
allows for the real-time simulation of considerably larger models consisting of up to
200,000 elements. The developed physics-based simulation engine even outperforms
many simplified approaches at the same time observing physical laws. Therefore, one
important result of this thesis is that physics-based simulation is not necessarily too
slow for real-time environments.

Along a different avenue, numerical simulation performed on graphics processing
units (GPUs) has become popular in recent years. Consequently, the evaluation of
GPU-based simulation techniques for deformable bodies was an additional research
goal. It turned out, however, that only for simplified models, e.g., mass-spring systems,
the GPU can clearly outperform the CPU1. This is mainly due to the fact that the irreg-
ular data structures involved in the computations induce a significant overhead on the
GPU. Moreover, due to the limitation of the floating-point precision to 32 bit on recent
GPUs up to the NVIDIA G80 series, it became apparent that physical simulation—
exhibiting heterogeneous materials—on the GPU will most likely not pay off at the
end. Nevertheless, interesting algorithmic concepts for GPU mass-spring systems have
been developed, which can be applied in other fields, too.

Therefore, I focused on the optimization of the CPU simulation engine. Primary, the
finite element method had to be extended to account for the geometric non-linearity of
the underlying model—a favored method is based on corotated finite elements. More-

1CPU = Central Processing Unit

1.1. CONTRIBUTION 3

over, the full elastic model yielding a system of non-linear equations has been inte-
grated, too. Solving for these approaches basically results in systems of linear equations
that continuously change in every simulation step. Therefore, at the core of these ex-
tensions was the development of novel algorithms that allow the multigrid solver to be
updated very quickly. Finally, these extensions result in a generic multigrid framework,
that can be applied in many other application fields, too.

In many computer graphics applications, visually pleasant renderings of the de-
formed objects are required—especially in real-time environments. Typically, the sim-
ulation meshes are too small (despite the achieved multigrid optimizations) to allow for
high-quality renderings. Therefore, a high-resolution render mesh can be bound to the
simulation mesh to improve the visual quality. The load of deforming and rendering
these meshes according to the simulation has been put entirely on the GPU, thereby
minimizing the CPU-GPU bandwidth requirements.

Since the visualization of internal states of the simulation is of great interest—
particularly in medical applications—I have also developed a volume rendering engine
that can visualize deforming unstructured meshes. Volume rendering of unstructured
tetrahedral meshes is an ongoing research area in the visualization community. Al-
though many papers have been published in this area, a large majority of them focuses
on static meshes. This is possibly due to the fact that simulation and visualization are
mostly separate systems, where the simulation is performed offline on a supercomputer
and the results are analyzed afterwards. For each time step the mesh geometry has to be
uploaded to the GPU anyway. However, since my aim was to tightly couple simulation
and visualization, there was a strong need to develop a volume rendering technique
for dynamic and unstructured tetrahedral grids. In this context, a novel generic and
scalable pipeline for tetrahedral grid rendering has been designed, which exploits the
programmable functionality of current graphics hardware.

The conceptual separation of simulation and rendering has also a deep impact on
contact-handling algorithms. Since the CPU is no longer aware of the rendered geome-
try, it cannot determine collisions of that geometry. On the other hand, because collision
detection between n convex primitives can produce up toO(n2) overlapping primitives,
whereas typically much less intersections occur, the GPU’s parallel architecture is not
very well suited for this kind of algorithms. Although the GPU can efficiently ren-
der and transform this geometry, the whole collision detection pipeline realized on the
GPU does not seem to be compatible to CPU solutions. Therefore, a novel GPU-CPU
hybrid approach has been developed that allows to combine the best of “both worlds.”
Although my motivation for this research was the conceptual separation of the sys-

4 CHAPTER 1. INTRODUCTION

tem into a simulation engine (executed on the CPU) and a render engine (executed on
the GPU), the collision approach proposed is of great interest in virtual environments
and computer games, since there is an ongoing trend to modify or generate geometry
exclusively on the GPU using programmable shaders.

1.2 Research Publications

The work described in this thesis has been partially published in several research pa-
pers, which can be categorized in three groups as shown in Figure 1.1. Among the pa-
pers on numerical simulation of deformable objects, the GPU mass-spring approaches
[GEW05, GW05c] have to be mentioned. The core of the multigrid framework has
been presented in [GW05a, GW06a]. GPU-CPU hybrid collision detection has been
addressed in [GKW07]. Recently, an extension of the simulation to incorporate modi-

A Multigrid Framework for
 Real-Time Simulation

 of Deformable Volumes
[GW05a,GW06a]

Mass-Spring Systems
on the GPU

[GW05c]

Interactive Simulation of
Deformable Bodies on GPUs

[GEW05]

A Generic and Scalable
Pipeline for GPU Tetrahedral

Grid Rendering
[GW06b]

Interactive Simulation and
Rendering of Heterogeneous

Deformable Bodies
[GW05b]

Interactive GPU-based
Collision Detection

[GKW07]

Physically Accurate Real-Time
Simulation of Deformable Bodies

for Surgical Training and
Therapy Planning

[GWF04]

Advanced Volume Rendering
Techniques for

Medical Applications
[GSK+06]

Advanced Volume Rendering
 for Surgical Training

 Environments
[GEK+07]

FreeForm Image
[SGW07]

Simulation Rendering Applications

T
im

e

Figure 1.1: Overview of publications on parts of the research covered in this thesis.

1.3. ABOUT THIS THESIS 5

fied material laws has been proposed in the context of image deformations [SGW07].
This extension (generalized to 3D) is discussed thoroughly in Section 2.3.11. On the
rendering side, the coupling of the CPU simulation with the rendering geometry on the
GPU has been published in [GW05b]. The tetrahedral grid rendering pipeline has been
proposed in [GW06b]. The importance of my work for medical applications has been
demonstrated from the very beginning [GWF04, GSK+06, GEK+07].

As customary in most scientific publications, this thesis is written in the academic
plural. This should not obscure that the research is achieved by myself, but it should
demonstrate that many others have helped to obtain the results presented in this thesis
(as outlined in the acknowledgments).

1.3 About this Thesis

This thesis is structured in three main chapters—simulation, rendering and collision de-
tection. Although there are dependencies between these chapters, they can essentially
be read separately. Related work, methods and results are presented in each chapter
individually. The basic interplay of these three chapters (also defining the basic depen-
dencies) is illustrated in Figure 1.2.

Especially Chapter 2, entitled “Simulation,” consists of a number of building blocks.
The basics of the theory of elasticity are briefly described in Section 2.2. Section 2.3
gives a detailed description of the finite element method. Thus, this section might be
skipped by the experienced reader. It should be noted, however, that some applied tech-
niques differ from the state-of-the-art to allow for symbolic calculations. In Section 2.4,

Rendering
Chapter 3

Collision
Chapter 4

GPUCPU

Simulation
Chapter 2

Figure 1.2: Basic interplay of the system components described in Chapters 2–4.

6 CHAPTER 1. INTRODUCTION

the core multigrid technique is presented in detail, including a thorough convergence
analysis. To allow for real-time performance even if the system matrices are subject
to changes, optimized algorithms to evaluate sparse matrix-matrix products have been
developed. Since these algorithms are a general means of sparse matrix computations,
Section 2.5 is interesting in its own. It also includes performance measurements of the
developed algorithms. Then, I make an excursion to GPU simulation techniques in Sec-
tion 2.6, focusing on mass-spring systems due to their simplicity. For that reason, this
section is also self-contained, and the reader interested only in mass-spring systems on
GPUs can concentrate on this section. Finally, I give the results for the CPU multigrid
framework, considering all parts of the system using different strain formulations. This
includes comparisons with other numerical solvers, in particular the conjugate gradi-
ent method and the Cholesky factorization. Additionally, the engine is evaluated with
respect to soft tissue simulation required in medical applications.

Chapter 3 exclusively discusses rendering aspects. In Section 3.3, I start with high-
resolution triangular meshes that are displaced on the GPU according to the simulation,
thereby enabling high-quality visualizations without affecting the simulation update
rates. The proposed volume rendering algorithms are thoroughly described in Section
3.4. Finally, I give results for all rendering algorithms including performance measure-
ments on current graphics hardware.

In Chapter 4, I describe a general method for detecting collisions between geome-
tries that are deformed or even generated on the graphics subsystem. A detailed discus-
sion of all stages of the pipeline is given. Additionally, special effort has been put on the
reduction of bandwith requirements. Therefore, a GPU technique to convert sparsely
filled textures into dense textures of reduced size has been developed.

In the following Chapter 5, “The Deformable Bodies System,” the interplay of the
three main system components as shown in Figure 1.2 is described. Parallelization
strategies including multiple CPU cores and multiple compute nodes connected over a
fast network are addressed. In Section 5.3, I summarize the benefits of the deformation
engine developed. Finally, I conclude this thesis with a short summary and discussion
of future research directions in Chapter 6.

Chapter 2

Simulation

The efficient numerical simulation of deformable bodies is an ongoing research area
with applications in a number of different fields. On the one hand, real-time enter-
tainment scenarios such as computer games require plausible simulation. Therefore,
simplified models yielding interactive update rates are frequently applied. On the other
hand, in medical applications—including pre-operative and intra-operative planning as
well as surgical training—physical accuracy is one of the core requirements. Typically,
this implies that real-time performance cannot be achieved due to the computational
complexity of the simulation. For that reason, accuracy is often sacrificed for compu-
tational speed, yielding plausible rather than accurate results. In this chapter, we show
that physics-based simulation of deformable bodies can be performed in real time even
on commodity computer hardware, because advanced numerical schemes, data struc-
tures, and algorithms allow for a highly efficient implementation.

We present a physics-based method for the real-time simulation of deformable bod-
ies. The simulation builds upon the physical laws of continuum mechanics. Thus,
such a simulation can directly incorporate real-world material constants. To reduce
the computational complexity of the applied finite element discretization, multireso-
lution techniques have been considered. In particular, we show that due to the effi-
ciency of a numerical multigrid scheme, the gap in simulation time between mass-
spring systems and FEM simulations can be reduced dramatically. In the following,
we give a detailed description of our simulation based on the finite element method.
After a very brief summary of the theory of elasticity in Section 2.2, we describe
the implemented finite element framework in Section 2.3—including linear Cauchy
strain, corotated Cauchy strain, and non-linear Green strain as well as higher-order fi-
nite elements. Additionally, we introduce modified material laws in Section 2.3.11,

7

8 CHAPTER 2. SIMULATION

which also allow for intuitive non-physical deformations. In Section 2.4, we intro-
duce the multigrid technique utilized to efficiently solve the resulting sparse system of
linear equations. The results of the latter two sections have been partially published
[GW05a, GW05b, GW06a, SGW07]. As the system matrices in some simulation set-
tings are not constant over time, we have developed a novel algorithm for the fast com-
putation of sparse matrix-matrix products required in the update of the multigrid hier-
archy as described in Section 2.5. The results of the multigrid simulation framework
are presented in Section 2.7.

Simple approximations such as mass-spring systems cannot fulfill the requirement
of physical accuracy. However, they still allow for plausible results. A special ad-
vantage is that pipelined SIMD hardware architectures like GPUs can be utilized to
accelerate the simulation significantly. However, there are several restrictions on the
stability of such systems, and therefore application-specific adaptions of simulation pa-
rameters are required. We introduce mass-spring systems and their implementation on
last-generation GPUs in Section 2.6. The results of this section have been previously
published [GEW05, GW05c]. Finally, we also compare the GPU mass-spring imple-
mentations to the previously explained multigrid framework in terms of speed.

2.1 Related Work

To study the motion of a mechanical system caused by external forces, physics-based
simulation is needed. The equations of motion can be formulated and solved to pre-
dict the dynamic behavior of deformable objects exhibiting material-dependent prop-
erties by utilizing finite element methods [Bat02, Bra01]. Typically, the workings in
mechanics, material science and numerics do not focus on interactivity or even real
time. In contrary, the computer graphics community has been focusing on interac-
tive approaches to the simulation of such systems for over 20 years. In the following,
we restrict ourselves to the research performed in the context of interactivity. From
a large scale perspective, these techniques can be classified according to the underly-
ing object discretization, the object’s intrinsic deformation behavior, i.e., strain mea-
sure, and the method employed to integrate the equations of motion over time (see
[GM97, NMK+05] for thorough overviews of the state of the art in this field).

Mass-Spring Systems

The most efficient and most popular techniques for simulating deformable objects based
on physical properties are mass-spring systems. There is a large body of literature on

2.1. RELATED WORK 9

this specialized field [PB81, LTW95, BW98, DSB99, BFA02, BMF03, FGL03, BA04].
Mass-spring systems cannot simulate the real physical behavior of a deformable body
as they only use a simplified model. Continuous bodies are approximated by a finite
set of point masses that are connected via links to account for material stiffness. De-
termining proper spring constants to realistically simulate real materials is quite cum-
bersome. Gelder et al. [Gel98] showed how to choose spring constants to model ho-
mogeneous materials. Spring constants can also be configured automatically by neural
networks that have been trained to mimic the dynamic behavior of special materials
[RNP01]. Nonetheless, very plausible results can be achieved with this method if ad-
ditional constraints are imposed, such as volume preservation [Pro95] and plasticity
[LTW95, THMG04].

Physics-Based Methods in Graphics

In the computer graphics community, finite difference models have been considered
very early [TPBF87, TF88, TW88] to solve the partial differential equations derived
from the theory of elasticity. Such models approximate continuous bodies by a set of
discrete, regularly distributed sample points, and they approximate the stress and strain
by finite difference equations. They are amenable to simulate the elastic behavior of
curves, surfaces, and solids.

Finite element methods (FEM) [Bat02] have been employed more and more fre-
quently to derive accurate numerical schemes for the governing equations of motion
of deformable volumetric bodies. Based on a discretization of the body into a set of
elements, e.g., linear tetrahedral elements, boundary elements [JP99], or finite volumes
[TBNF03], the solution of the equations to be solved on the domain is then character-
ized by parameters of these elements.

Implicit solution methods require the assembly of all element equations into a large
system of algebraic equations, which can be solved using matrix pre-inversion [BNC96]
or the conjugate gradient method [MDM+02, EKS03, HS04, MG04]. An accelera-
tion method was proposed in [CDA99], where a pre-computed linear elastic model is
interpolated at run-time. Besides the use of implicit methods in finite element sim-
ulations, they have also been employed in finite difference and mass-spring models
[TPBF87, LTW95, BW98, DSB99] to enable stable simulations even for large time
steps. Capell et al. proposed a shape manipulation tool to control the elastic simulation
by a skeleton [CGC+02a].

While the mentioned approaches consider the linear strain measure, i.e., the Cauchy

10 CHAPTER 2. SIMULATION

strain1, a corotational formulation of the linear strain has become popular. This for-
mulation has been introduced by Rankin et al. [RNO88]. It eliminates artifacts typi-
cally introduced by the Cauchy strain when applying large deformations. In Rankin
et al.’s method, the rotational part of the deformation is extracted for each finite el-
ement, and the forces are computed with respect to the initial reference frame. In
this way, stable and fast simulations can be obtained. In the graphics community,
the corotational formulation has been integrated recently into interactive applications
[EKS03, HS04, MG04, WBG07]. These methods cannot handle more than very few
thousands of elements, because conjugate gradient methods are applied as numeri-
cal solvers, which have a quadratic worst case complexity. In contrast to an earlier
approach, where the rotational part was extracted per vertex [MDM+02], the global
stiffness matrix has to be reassembled in every time step to account for element-local
rotations.

Explicit finite element methods avoid the construction and solution of a large sys-
tem of equations. Therefore, the non-linear Green strain2 can be integrated much more
efficiently into these methods. Interactive simulation techniques using this measure
have been presented in [ZC99, WDGT01, PDA01, DDCB01, ML03]. However, meth-
ods based on explicit time integration are limited due to the Courant condition3, which
significantly restricts the largest possible time step for stiff materials.

To accelerate finite element methods, multiresolution techniques based on adaptive
refinement have been proposed [CGC+02b, DDCB01, GKS02]. Multigrid schemes
for the deformation of surfaces were presented in [WT04, SYBF06]. To the best of
our knowledge, an implicit yet interactive multigrid approach for volumetric bodies
has not yet been used in the graphics community. A multigrid method computes the
correct FEM solution on the entire mesh at the finest level. This is in contrast to other
multiresolution techniques, e.g., [DDBC99, DDCB01], where the solution is computed
adaptively for sub-meshes at different resolutions resulting in inconsistent deformations
at different hierarchy levels.

Apart from finite element methods, many specialized simulation techniques were
developed in the graphics community. They are not based on well-established models
such as the elasticity differential equations but define ad-hoc energies to achieve plau-
sible deformations. However, none of these approaches has been validated with respect
to the real physical behavior. Botsch and Kobbelt presented a free-form shape editing
tool based on radial basis functions [BK05]. Later, this work was extended to a more

1A definition is found in Equation (2.9) on page 14
2A definition is found in Equation (2.4) on page 12
3see Section 2.3.6

2.2. ELASTICITY THEORY 11

realistic shape model minimizing an energy functional [BPWG07]. Other approaches
are physics-based, but they consider only a set of modes that are interpolated at runtime
[HSO03]. James and Pai achieve reasonable speed-ups by exploiting graphics hard-
ware to perform this interpolation [JP02]. A simplified model for the simulation of thin
shells has been proposed [GHDS03]. A point-based approach for simulation has been
considered in [MKN+04].

2.2 Elasticity Theory

To simulate the dynamic behavior of deformable volumetric objects, we first have to
derive the equations describing the deformation of an elastic solid in equilibrium. Given
the elastic solid in the reference configuration Ω ⊂ R3, the deformed object is modeled
using a displacement function u(x), u : Ω → R3. The displacement function describes
the displacement vector of every point x ∈ Ω, yielding the deformed configuration
{x + u(x) | x ∈ Ω}. Analogously, the object can be represented in 1D or 2D.

The potential energy of a system in static equilibrium (zero kinetic energy) is sta-
tionary. This leads to the following well-known variational formulation for static elas-
ticity problems [Bat02]:

Π =
1

2

∫
Ω

εTσ dx −
∫

Ω

gTu dx −
∫

∂Ω

fTu dx = min. (2.1)

Π is the (virtual) potential energy density associated with the displacement field u.
The first term represents the elastic energy stored in the solid, while the second and
third terms represent the work done by the body force g = g(x) and by the applied
tractions f = f(x) through the displacement u. Solving the equation finally comes
down to finding a displacement field u minimizing Π with respect to given external
forces f and g.

In the equilibrium equation (2.1), ε and σ are derived from the symmetric strain
tensor E and the symmetric stress tensor Σ:

ε = (ε1, . . . , ε6)
T = (E11, E22, E33, E12, E13, E23)

T, (2.2)

σ = (σ1, . . . , σ6)
T = (Σ11, Σ22, Σ33, 2 Σ12, 2 Σ13, 2 Σ23)

T. (2.3)

In its general form, the Green strain tensor describes the non-linear relation between
deformation and displacement. Given an infinitesimal cube in the objects reference

12 CHAPTER 2. SIMULATION

Figure 2.1: The strain tensor describes the ratio of elongation of an infinitesimal cube for each
of the red directions. Due to the symmetry Eij = Eji ∀i, j.

configuration, the strain tensor describes the ratio of elongation of that cube in each of
the directions of the coordinate system, yielding a symmetric tensor (see Figure 2.1)

E =
1

2
(∇(x + u))T∇(x + u)− 1

2
I3,3 =

1

2

(
∇u + (∇u)T + (∇u)T∇u

)
,

where I3,3 is the 3× 3 identity matrix. The single components of the tensor thus are

Eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
+

1

2

3∑
k=1

∂uk

∂xi

∂uk

∂xj

. (2.4)

Analogously, the stress tensor Σ describes the respective forces acting on planes
within a body. The relation between stress and strain in general is described by the
tensor of elastic constants C as Σij = CijklEkl. In an isotropic and fully elastic body,
stress and strain tensors are coupled through Hooke’s law (linear material law):

Σ = λ

(
3∑

i=1

Eii

)
· I3,3 + 2µ E . (2.5)

Here, λ and µ are the Lamé coefficients, which can be derived from the more intuitive

2.2. ELASTICITY THEORY 13

Figure 2.2: The Poisson’s ratio describes the ratio of transverse contraction ∆d
d to longitudinal

stretching ∆l
l in the direction of the force.

Material Elastic modulus [109N/m2] Poisson’s ratio

Rubber 0.01− 0.1 0.5
Magnesium metal (Mg) 45 0.35
Aluminium alloy 69 0.33
Glass (all types) 72 0.24
Titanium (Ti) 105− 120 0.34
steel 190− 210 0.27− 0.30

Table 2.1: For some materials the elastic modulus and Poisson’s ratio are given. Param-
eters have been taken from http://en.wikipedia.org/wiki/Young’s modulus
and http://en.wikipedia.org/wiki/Poisson ratio.

elastic modulus E and Poisson’s ratio ν:

λ =
E ν

(1 + ν)(1− 2ν)
, (2.6)

µ =
E

2(1 + ν)
. (2.7)

The elastic modulus is a measure for the “stiffness” of the material. Poisson’s ratio
describes the ratio of transverse contraction to longitudinal stretching4 in the direction
of the force (see Figure 2.2). A Poisson ratio close to 0.5 guarantees volume preser-
vation. Typical materials have values in the range from 0.3–0.4. The elastic modulus
and Poisson’s ratio for some common materials are listed in Table 2.1. In particular,
organic material is known to have values in the range from 0.45–0.49. Therefore, these
materials are almost incompressible.

In short, we write σ = Dε with D being the matrix of the material law containing

4In the 3D case this is only valid for infinitesimal small longitudinal stretching.

14 CHAPTER 2. SIMULATION

the Lamé coefficients:

D =



λ + 2µ λ λ

λ λ + 2µ λ

λ λ λ + 2µ

4µ

4µ

4µ


. (2.8)

To account for the fact that only half of the tensor is stored in σ and ε, the last three
elements in the diagonal of D are weighted by a factor of 2. It can thus be guaranteed
that the determined elastic energy 1

2

∫
Ω

εTσ dx is the same as if the full tensors E and
Σ would have been considered.

A common simplification is to neglect the quadratic terms in the definition of the
strain tensor (2.4), yielding the Cauchy strain tensor E = 1

2

(
∇u + (∇u)T

)
, which

consists of the components:

Eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.9)

While this approximation is appropriate for small deformations, it leads to non-realistic
results for large deformations. In particular, as the Cauchy tensor is not invariant un-
der rotations, incorrect forces are very likely to occur in the linear setting (see Figure
2.3). To analyze this fact in more detail, we examine the Cauchy strain of a deformed

Figure 2.3: The images show the displacements due to external forces as they were simulated
using the linear Cauchy strain tensor (left) and the non-linear Green strain tensor (right).

2.2. ELASTICITY THEORY 15

configuration x + u0,

E(u0) =
1

2

(
∇u0 + (∇u0)

T
)

.

We consider a rigid rotation of this configuration R(x+u0) using an orthogonal matrix
R. Then, the Cauchy strain belonging to the respective displacement u = R(x+u0)−x

is

E(u) =
1

2

(
∇ (R(x + u0)− x) + (∇ (R(x + u0)− x))T

)
=

1

2

(
R(I +∇u0)− I + (I + (∇u0)

T)RT − I
)
,

which differs from E(u0) in general. In contrast, the Green strain for the rotated con-
figuration is (due to the orthogonality of R)

E(u) =
1

2

(
(∇(R(x + u0)))

T (∇(R(x + u0)))
)

=
1

2

(
(∇(x + u0))

T RTR ∇(x + u0)
)

= E(u0),

and thus equals the strain E(u0) of the unrotated configuration.
The linearized strain tensor is commonly used in real-time applications due to per-

formance considerations. As the system including the Green strain tensor becomes
non-linear, its solution requires more complex numerical evaluations compared to the
linear case. As a matter of fact, only a few attempts have been reported to integrate the
non-linear strain tensor into real-time applications [DDCB01]. These approaches, how-
ever, have always been combined with explicit time integration schemes, thus requiring
small step sizes to guarantee stability (Courant condition).

A good trade-off between Cauchy and Green strain tensor is the so-called corotated
strain tensor. It is only a linear approximation just as the Cauchy strain, but it accounts
for the geometric non-linearity by calculating per-element rotations. The corotated
strain was first introduced by Rankin and Nour-Omid [RNO88] and has been used
in the computer graphics community for the physics-based simulation of deformable
bodies [MG04, EKS03, HS04].

16 CHAPTER 2. SIMULATION

2.3 Finite Element Framework

In this section, we describe the finite element framework which we have developed. Al-
though this section can be skipped by an experienced reader, the implementation differs
in some parts from standard approaches. Our work was inspired by the early approach
by Bro-Nielsen and Cotin [BNC96], who introduced the implicit finite element method
to the graphics community to the best of our knowledge.

In contrast to many other approaches, the non-linear simulation is handled symbol-
ically in our framework. Because the complexity of the assembly process is thereby
shifted to the pre-processing stage, system matrices can be quickly updated in every
frame. To perform the symbolical pre-calculations, we make use of a polynomial alge-
bra library. It can be utilized to perform analytic integration of finite element equations
rather than numerical integration as it is commonly applied. This analytic integration
is required by the non-linear simulation. However, it also simplifies the incorporation
of higher-order finite elements into our framework, since it disburdens from the need to
carefully adapt the numerical integration schemes for each element type. Therefore, all
kinds of finite elements can be likewise used for linear, corotated, and non-linear strain
simulation.

In the following, we will first describe the theory behind finite elements and how
they are used to approximate continuous equations. Then, the finite element types used
in the current framework are introduced. This also includes higher-order elements and
their analytical integration. Next, the basic steps that have to be performed for the three
simulation types—linear, corotated, and non-linear strain—are described. Then, we
present the dynamics of the system, the time integration schemes accomplished, and
the boundary conditions used. Finally, we show that the framework can be extended by
modified material laws to allow for rigid deformations that do not obey physical laws.

2.3.1 Finite Elements

Finite elements are discrete elements with the basic property that they have a well-
defined interpolation function. In contrast to finite difference methods, where values
are considered only at discrete samples, finite element methods take the continuum
within an element into account. Therefore, finite element methods can achieve higher
accuracy in general. Today, finite element methods are used in many different appli-
cations including static and dynamic structural analysis, acoustic calculations, thermal
calculations, fluid simulation, and determination of electric and magnetic fields.

A finite element with DoF degrees of freedom (numbers of “free” vertices) is de-

2.3. FINITE ELEMENT FRAMEWORK 17

Triangle Quad Quadratic quad

Tetrahedron Serendipity tetrahedron Hexahedron

Figure 2.4: Finite element types.

scribed by its vertices vj, 0 ≤ j < DoF. Figure 2.4 shows some commonly used finite
element types. Data values are only given at the vertices, and arbitrary (element local)
interpolation schemes are used to obtain values in the interior of an element.

Based on the so-called shape functions Ni : R3 → R, an interpolation function
for every 3D point can be defined. Let us assume that vectors fi ∈ R3 are given for
every vertex of the finite element, then a vector f ∈ R3 can be obtained for every point
x ∈ R3 within one single finite element by

f(x) =
DoF−1∑

i=0

Ni(x) · fi. (2.10)

With the shape matrix

Φ(x) =

 N0(x) NDoF−1(x)

N0(x) . . . NDoF−1(x)

N0(x) NDoF−1(x)


(2.11)

the interpolation can be written shortly as

f(x) = Φ(x) f e,

18 CHAPTER 2. SIMULATION

Element type DoF Shape function for the i-th vertex of one finite element

Triangles 3 Ni(x1, x2) = ci
0 + ci

1x1 + ci
2x2

Quads 4 Ni(x1, x2) = ci
0 + ci

1x1 + ci
2x2 + ci

3x1x2

Quadratic
Quads

9 Ni(x1, x2) = ci
0 + ci

1x1 + ci
2x2 + ci

3x1x2 + ci
4x

2
1 + ci

5x
2
2+

+ci
6x

2
1x2 + ci

7x1x
2
2 + ci

8x
2
1x

2
2

Tetrahedra 4 Ni(x1, x2, x3) = ci
0 + ci

1x1 + ci
2x2 + ci

3x3

Serendipity
Tetrahedra

10
Ni(x1, x2, x3) = ci

0 + ci
1x1 + ci

2x2 + ci
3x3

+ci
4x1x2 + ci

5x1x3 + ci
6x2x3

+ci
7x

2
1 + ci

8x
2
2 + ci

9x
2
3

Hexahedron 8 Ni(x1, x2, x3) = ci
0 + ci

1x1 + ci
2x2 + ci

3x3+
+ci

4x1x2 + ci
5x1x3 + ci

6x2x3 + ci
7x1x2x3

Table 2.2: Finite element shape functions.

where f e = (fT
0 , . . . , fT

DoF−1)
T is the linearization of the vectors fi of one finite ele-

ment.

For a number of common finite element types the shape functions are listed in Table
2.2. For the 2D case, we use triangular and quadrilateral elements. Triangles allow
for linear interpolation functions, while quadrangular elements either use bilinear or
quadratic shape functions. In the 3D case, tetrahedral elements with linear shape func-
tions are commonly used. A special semi-quadratic interpolation scheme defining the
Serendipity tetrahedra is proven to give good results in the context of finite element
methods [Bat02]. We have also implemented hexahedral elements with trilinear inter-
polation.

To determine the coefficients ci
j, 0 ≤ i, j < DoF of the shape functions, a system of

linear equations is build from the interpolation conditions

Ni(vj) =

{
1 i = j

0 i 6= j
.

Since the shape functions are linear with respect to the coefficients, these conditions
can be formulated as a system of equations with S ∈ RDoF×DoF:

S ci = ei 0 ≤ i < DoF .

2.3. FINITE ELEMENT FRAMEWORK 19

Solving this system yields the unknown coefficients ci. Here, ei is the i-th unit vector,
and the matrix entry Sij contains the j-th summand of the shape function (without the
coefficient ci

j) evaluated for the coordinates of vi. Since this small system has to be
solved for every unit vector, the coefficients ci

j can be determined most efficiently from
the inverse of S as

ci
j = (S−1)ji.

Symbolic Finite Element Integration

Solving partial differential equations with finite elements usually requires to integrate
over each finite element (since the continuous solution is approximated by means of the
interpolation schemes). To obtain full flexibility, this integration is performed analyt-
ically in our framework. Consequently, all finite element types can be integrated very
easily in all kinds of simulations. To discretize the equilibrium equation of the potential
elastic energy (2.1) using finite elements, the integral∫

Ω

εT(x) σ(x) dx

has to be determined. Both ε and σ depend on the displacement field u(x), and Ω

denotes the domain of the finite element considered.

Given displacement values Ui ∈ R3 at the supporting vertices of the element, the
unknown solution is approximated by u(x) =

∑DoF−1
i=0 Ni(x) ·Ui. As the unknowns Ui

are constant with respect to x and u(x) is linear in the Ui’s, integration requires only the
shape functions Ni(x) to be considered. As these are polynomials in x1, x2, and x3, the
analytic integration can be performed in a standard finite element and transformed to
Ω by means of a coordinate transformation. This transformation involves the Jacobian
determinant as an additional factor in the integration. Here, a standard finite element
denotes a finite element with all (outer) vertex coordinates being either zero or one.
For higher-order elements, the middle vertices on each edge are determined by linear
interpolation. The integration boundaries can be determined more easily for a standard
element.

The mapping J : R3 → R3 from the standard finite element to Ω can be deter-
mined by using the interpolation function of the standard element. Given a point w in
the coordinate space of the standard finite element and its associated shape functions
N̂i : R3 → R, N̂i(w) can be evaluated. Then, these values can be used to determine

20 CHAPTER 2. SIMULATION

Figure 2.5: A standard tetrahedral element is mapped to an arbitrary tetrahedral element using
the coordinate transformation J .

the respective position in the element Ω by interpolating the vertex positions vi:

J (w) =
DoF−1∑

i=0

N̂i(w) vi.

Thus, by calculating the shape functions N̂i once for the standard finite element, the
coordinate transformation J and the required Jacobian determinant det

(
∂x
∂w

)
can be

determined for every finite element.

Given the mapping J from a standard tetrahedron to a given tetrahedral element Ω

(see Figure 2.5), the element integral then is:

∫
Ω

εT(x) σ(x) dx =

1∫
0

1−w1∫
0

1−w1−w2∫
0

εT(J (w)) σ(J (w))

∣∣∣∣det

(
∂x

∂w

)∣∣∣∣ dw3 dw2 dw1.

Since both J and its Jacobian determinant det
(

∂x
∂w

)
are polynomials in w1, w2, and w3,

the respective integral can be solved for analytically. The described integration method
can also be used for all other finite elements described above by adapting the integration
boundaries to the respective element type.

2.3.2 Linear Strain Approximation

If linear Cauchy strain is considered and linear shape functions are used, the finite
element equations become rather simple. Given displacements vectors Ui ∈ R3 at

2.3. FINITE ELEMENT FRAMEWORK 21

every supporting vertex, the displacement field is approximated by

u(x) =
DoF−1∑

i=0

Ni(x) Ui. (2.12)

Due to the linearity of the shape function Ni(x), all partial derivatives of Ni(x) and also
of u(x) are constant. Therefore, the Cauchy strain is constant within each element:

ε =

(
∂u1

∂x1

,
∂u2

∂x2

,
∂u3

∂x3

,
1

2

(
∂u1

∂x2

+
∂u2

∂x1

)
,
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)
,
1

2

(
∂u2

∂x3

+
∂u3

∂x2

))T

.

Due to the linearity of the interpolation (2.12) with respect to Ui, ε can be written
as ε = B ue, where ue is the linearization of the vectors Ui of one finite element,
ue = (UT

0 , . . . , UT
DoF−1)

T. This is not only true for linear elements, but also for higher-
order elements. The matrix B ∈ R6×3DoF contains the respective partial derivatives of
the shape functions Ni(x):

B =



∂N0(x)
∂x1

. . . ∂NDoF−1(x)

∂x1
∂N0(x)

∂x2
. . . ∂NDoF−1(x)

∂x2
∂N0(x)

∂x3
. . . ∂NDoF−1(x)

∂x3
1
2

∂N0(x)
∂x2

1
2

∂N0(x)
∂x1

. . . 1
2

∂NDoF−1(x)

∂x2

1
2

∂NDoF−1(x)

∂x1
1
2

∂N0(x)
∂x3

1
2

∂N0(x)
∂x1

. . . 1
2

∂NDoF−1(x)

∂x3

1
2

∂NDoF−1(x)

∂x1
1
2

∂N0(x)
∂x3

1
2

∂N0(x)
∂x2

. . . 1
2

∂NDoF−1(x)

∂x3

1
2

∂NDoF−1(x)

∂x2


.

(2.13)

Then, the integrals in the variational formulation (2.1) can be calculated by taking
the first variation with respect to the unknown element displacement vector ue:

∂

∂ue

1

2

∫
Ω

εTσ dx =
∂

∂ue

1

2

∫
Ω

(ue)TBTD B ue dx =

(∫
Ω

BTD B dx

)
ue = Keue.

For linear elements, the partial derivatives in the matrix B are all constant (independent
of x), and thus the integral can be determined by multiplying with the finite element
volume: Ke =

∫
Ω

BTDB dx = BTDB
∫

Ω
1 dx.

In general, we obtain the element stiffness matrix Ke ∈ R3DoF×3DoF by performing
an integration of the matrix BTDB over Ω as described in the last section,

Ke =

∫
Ω

BTDB dx.

All element stiffness matrices are assembled into the global stiffness matrix K with

22 CHAPTER 2. SIMULATION

respect to the global indices of the shared vertices (supporting points). Finally, the
system of linear equations

Ku = f

is deduced, where f now contains external vertex, surface as well as body forces such
as gravity or momentum of force. More details about the derivation of the force vectors
is given in Section 2.3.8. The vectors u and f are both constructed by linearizing the
vertex displacement and force vectors with respect to the global ordering of the vertices.

2.3.3 Corotated Strain Approximation

A rotational invariant formulation of the Cauchy strain tensor is obtained using the
so-called corotated strain of linear elasticity introduced by Rankin and Nour-Omid
[RNO88]. In this formulation, finite elements are first rotated into their initial con-
figuration before the strain is computed. In this way, although the strain is still approxi-
mated linearly, artificial forces as they are introduced by the Cauchy strain (see Section
2.2) are significantly reduced. Rotations are calculated per element using a polar de-
composition of the deformation gradient ∇(x + u(x)) as proposed in [EKS03, HS04].

Given the interpolated displacement field u within a finite element at a fixed time-
step, the deformation gradient can be calculated by

∇(x + u(x)) = ∇

(
x +

DoF−1∑
i=0

Ni(x) Ui

)
= I3,3 +

DoF−1∑
i=0

(∇Ni(x)) Ui.

The values ∇Ni(x) can be pre-computed, and in case of linear shape functions the
∇Ni(x) are constant within each element. A constant deformation gradient based on
the current displacement field u can finally be calculated at runtime for each element.
If higher-order finite elements are used, the deformation gradient for each element is
not constant any more. In this case, either the deformation gradient can be evaluated at
a specific point of the element, for instance the center of gravity, or the values ∇Ni(x)

can be integrated over the element domain Ω in a pre-process, yielding an averaged
deformation tensor for every element5. Again, the current deformation gradient can
be determined from the displacement field u at runtime in the same way as it was
done for the linear elements. By using an algorithm for the polar decomposition of
an arbitrary matrix as described by Higham et al. [Hig86, HS90], the decomposition
∇(x + u(x)) = OeH can be determined in a fast and stable way. The quadratically

5The values∇Ni(x) have to be normalized with respect to the finite element volume.

2.3. FINITE ELEMENT FRAMEWORK 23

convergent algorithm proposed is given by the following iterative scheme:

A0 = ∇(x + u(x)),

An+1 =
1

2

(
An + (A−1

n)T
)
.

The matrix A obtained after a few steps (typically, we use 5 iterations) is the rotational
part, Oe = A5, and it is used as per-element rotation. Once the rotation matrices Oe

have been calculated for all finite elements, the element stiffness matrix Ke is replaced
by OeKe(Oe)T, and the global stiffness matrix is reassembled.

A solution to the variational problem (2.1) is found by solving a system of linear
equations with the updated system matrix K. As will be demonstrated in Figure 2.6, the
corotated strain—although it is still an approximation—yields nearly the same results
as the non-linear Green strain for typical examples. On the other hand, due to the
linear approximation a significant difference between the Green strain and the corotated
Cauchy strain can be observed in cases of large displacements. It is worth noting that
the rotations are calculated explicitly—or in other words, the rotations are calculated
from the displacement field of the last simulation step. Due to this fact, if rotations
change drastically from one time step to another, instabilities can occur.

2.3.4 Non-Linear Strain

The simulation of deformations based on the Green strain tensor using an implicit time
integration scheme requires a non-linear system of equations K(u) = f to be solved.
Basically, the functional K(u) adds higher-order terms to the stiffness matrix K:

K(u) = Ku + higher-order terms.

To calculate a solution to this system we employ the Newton method, which is based
on the first order Taylor approximation of the system of equations

K(ũ + e) ≈ K(ũ) +K′(ũ) e.

Here, K′ is the Jacobian matrix of K. Given an initial solution ũ, this solution can be
corrected by solving the equation for e = u− ũ, which only requires a system of linear
equations based on the Jacobian matrix to be solved:

K′(ũ) e = f −K(ũ).

24 CHAPTER 2. SIMULATION

Newton solvers are well-known to be sensitive with respect to the initial guess. To im-
prove stability, we could account for the total elastic energy as an indicator. Increasing
energy during the current Newton step indicates a poor initial guess. In this case, a new
displacement vector is calculated from the previous time steps using extrapolation, and
the Newton step is repeated. These steps are performed until convergence is achieved.
However, accounting for the total energy has a significant performance impact, and thus
we stick with the simple Newton method.

To construct the system of non-linear equations K(u), we utilize symbolic alge-
bra operations in the pre-processing step. The set of all non-linear element stiffness
equations is assembled symbolically into a system of non-linear equations. From the
definition of the strain (2.4) it can be seen that ΣijEij can be expressed in terms of
nodal shape functions Ni(x). By first applying the material law to express Σ in terms
of E , E can then be expressed by the partial derivatives of u, where u is interpolated
as shown in equation (2.10) using the shape functions Ni(x). Symbolic calculation of
ΣijEij results in a polynomial in the unknown variables ui of each finite element, with
its coefficients being polynomials in x1, x2, x3. After spatial element integration has
been performed as described in Section 2.3.1, only variables ui are left. To account
for the variational problem (2.1), the first derivative with respect to the unknowns ui is
calculated, resulting in 3 DoF equations for each element in the 3D simulation case.

These polynomials, which share a large number of monomials, can then be assem-
bled into a global system of symbolic equations. Therefore, the local vertex indices are
converted into the respective global indices within the whole polynomial. The number
of monomials to be evaluated in this system is significantly smaller (about a factor of 3)
than the number of monomials contained in the set of element equations. Consequently,
multiple evaluations of monomials can be avoided at runtime. In the same way, the Ja-
cobian matrix can be expressed symbolically by applying symbolic derivation and then
be evaluated using the current parameter values at runtime. However, this approach has
the disadvantage that the whole system of non-linear equations with all polynomials for
K and its Jacobian matrix K′ has to be stored in memory. Due to this reason, for the
simulation of large models where the respective system of equations does not fit into
main memory, incremental approaches as described by Bathe [Bat02] should be fa-
vored. Similar to the corotated simulation, these approaches require the system matrix
to be reassembled in every time step. However, in contrast to the corotated simulation,
element matrices are not constant any more and have to be rebuilt in every time step,
too.

To further improve the evaluation of the polynomials at runtime, all required mono-

2.3. FINITE ELEMENT FRAMEWORK 25

mials
∏

i,j uj
i are computed once at the beginning of the simulation step from the current

displacement vector u. As these monomials occur in several equations of the system
as well as in the Jacobian matrix, an additional speed-up of about a factor of 2 can be
achieved. In Figure 2.6, a comparison of the linear, corotational and non-linear simula-
tion exhibiting the same external forces is shown.

Figure 2.6: Comparison of the linear, corotational, and non-linear simulation of gravity. The
deformation of the latter one is shown as reference in blue color. While the linear Cauchy strain
(red color) fails to approximate the deformation properly, only very small differences can be
observed in case of the corotational strain (green color).

2.3.5 Higher-Order Finite Elements

It is well known that the approximation of parameters such as strain and stress across
the deformable body tends to produce locking. This phenomenon describes the fact
that a finite element simulation based on the variational formulation predicts a stiffer
behavior of the body than it would arise in reality. Due to this effect, linear finite
element approaches using linear shape functions produce significantly different results
on different ranges of scale (see Figure 2.7 (a), (b), and (c)). The less elements are used,
the stiffer the behavior of the deformable object. To achieve best accuracy, higher-order
finite elements such as Serendipity tetrahedra are included in the simulation framework.
Although locking effects cannot be avoided entirely by means of such elements, they
produce much more realistic simulations of material properties using the same number
of vertices as in the linear case (see Figure 2.7 (d), (e), and (f)). In particular, the

26 CHAPTER 2. SIMULATION

(a) (b) (c)

(d) (e) (f)

Figure 2.7: Comparison between linear tetrahedra ((a), (b), and (c)) and Serendipity tetrahedra
((d), (e), and (f)) on different levels of resolution (384 (a), 3072 (b), 24576 (c) resp. 48 (d),
384 (e), 3072 (f) elements) using the Cauchy strain. Note that compared to linear elements,
Serendipity tetrahedra introduce additional nodes per element. Thus, to allow for a fair compar-
ison, the same number of nodes is used in both examples. Therefore, every Serendipity element
is split into linear tetrahedra (as will be shown in Figure 2.11), resulting in 8 times as many
elements.

simulation based on 384 Serendipity elements produces more accurate results than 24k
linear elements (see Figure 2.7).

Calculations

Higher-order finite elements like quadrangular elements or Serendipity tetrahedra are
supported in Cauchy strain, corotated Cauchy strain, and Green strain simulation. Pre-
calculations can be performed in the same manner as described in Section 2.3.2 and
2.3.4 to build the stiffness matrix K or the system of non-linear equationsK. However,
since not all partial derivatives of the shape functions Ni(x) are constant, the integration∫

Ω
BTDB dx of the matrix BTDB has to be calculated component-wise using the

analytical integration method as described in Section 2.3.1. Note that all entries of the
matrix B = B(x) are polynomials in x1, x2, x3.

2.3.6 Dynamics

In the previous sections we have focused on computing the static equilibrium state of
the displacement field with respect to external forces. We now extend this approach
to the simulation of the system dynamics using the Lagrangian equation of motion
[Bat02]:

Mü + Cu̇ + Ku = f. (2.14)

2.3. FINITE ELEMENT FRAMEWORK 27

M is called the mass matrix, and C denotes the damping matrix. Consequently, to
achieve best accuracy, we avoid simple mass lumping6 (especially in case of higher-
order finite elements) and use the correct matrix instead:

M e =

∫
Ω

ρ ΦT(x) Φ(x) dx.

Here, Φ(x) is the shape matrix as defined (2.11) and ρ is the density of the finite ele-
ment. Note that ρ is not required to be constant within an element. With the damping
constant α, the damping matrix is calculated as Ce = α M e. We restrict ourselves
to mass-proportional damping here. However, more general Rayleigh damping can be
integrated as well. Then, an additional damping constant β is introduced, and Ce is
computed as Ce = α M e + β Ke. Both the global mass matrix M and the damping
matrix C are built by assembling all single element matrices.

In case of the non-linear simulation, the equation of motion is analogously given as

Mü + Cu̇ +K(u) = f.

2.3.7 Time Integration

To solve for the dynamic simulation based on the equation of motion (2.14), a time
integration scheme has to be selected. We use discrete time steps t0 + k · dt, k ∈ N, to
capture the motion of a deformable body starting at time t0. The temporal derivatives of
u, u̇ and ü, have to be approximated appropriately. We distinguish between the implicit
Euler scheme and the implicit Newmark scheme.

Implicit Euler Time Integration

Using a finite difference discretization of u̇ and ü, the equation of motion (2.14) leads
to

M
ut+dt − 2ut + ut−dt

dt2
+ C

ut+dt − ut−dt

2 dt
+ K ut+dt = f t+dt.

This equation can be written as K̃ ut+dt = f̃ t+dt by updating the right-hand side f t+dt

and the stiffness matrix K (or the system of equationsK(u) in the non-linear case) with

6Mass lumping: the mass is concentrated on the vertices, thus yielding a diagonal mass matrix.

28 CHAPTER 2. SIMULATION

the appropriate terms:

K̃ = K +
M

dt2
+

C

2dt
,

f̃ t+dt = f t+dt + M
2ut − ut−dt

dt2
+ C

ut−dt

2dt
.

To update the force vector f̃ t+dt in every time step, only one additional vector uold stor-
ing ut−dt is required. If the matrix C is a scaled version of M , one matrix-vector product
and two vector-vector linear combinations are required to update the force vector. In
case of Rayleigh damping, an additional matrix-vector product and vector addition is
needed. After updating the force vector, uold is set to ut for the next time step. Then,
the system of equations K̃ ut+dt = f̃ t+dt is solved for ut+dt.

Implicit Newmark Time Integration

The Newmark scheme uses another discretization of u̇ and ü to transform the equation
of motion (2.14) into a set of difference equations. A second-order-accurate implicit
Newmark scheme avoids artificial damping typical to implicit Euler integration. Second
order approximation is obtained by setting the parameters adequately (more details can
be found in [Bat02, Wil98]):

u̇t+dt = u̇t +
(
0.5 üt + 0.5üt+dt

)
dt,

ut+dt = ut + u̇t dt +
(
0.25 üt + 0.25 üt+dt

)
dt2.

By replacing u̇t+dt and üt+dt (deduced from the second equation),

üt+dt = 4
ut+dt − ut − u̇tdt

dt2
− üt,

in the equation of motion (2.14), the system of algebraic equations K̃ut+dt = f̃ t+dt (or
K̃(ut+dt) = f̃ t+dt in the non-linear setting) reads as

K̃ = K +
4M

dt2
+

2C

dt

f̃ t+dt = f t+dt + M

(
4ut

dt2
+

4u̇t

dt
+ üt

)
+ C

(
2ut

dt
+ u̇t

)
.

If the matrix C is a scaled version of M , one matrix-vector product, a component-wise
linear combination of ut, u̇t, and üt, and a vector addition is required to determine f̃ t+dt

in every time step. In case of Rayleigh damping, an additional matrix-vector product

2.3. FINITE ELEMENT FRAMEWORK 29

and vector addition is required. The system of equations K̃ ut+dt = f̃ t+dt is solved for
ut+dt in every time step. In contrast to the Euler time integration scheme, additional
vectors storing u̇t and üt have to be kept and updated in every time step.

The Problem of Explicit Methods

Explicit time integration schemes determine the unknown ut+dt by approximating the
elastic force Kut based on the displacement field of the previous time step. Solving a
system of equations can be avoided, if M and C are approximated by mass-lumping.
The explicit Euler method yields:

ut+dt =

(
M

dt2
+

C

2dt

)−1(
f t+dt −Kut + M

2ut − ut−dt

dt2
+ C

ut−dt

2dt

)
.

However, the stability of explicit schemes is limited by the Courant condition, which
restricts the size of the time step dt:

dt < h

√
ρ

λ + 2µ
.

More details can be found in the contributions by Debunne et al. [DDBC99] and the
original work by Courant et al. [CFL28]. Here, h denotes the smallest distance of two
vertices in the reference configuration, ρ is the density of the object in its reference
configuration and λ, µ are the Lamé coefficients. Even worse, the time step depends
on the stiffness and density of the underlying material. In fact, the stiffer the simulated
materials are, the smaller time steps are required. This means that a large number of
simulation steps has to be performed to accurately simulate very stiff materials. On
the one hand, this increases the simulation time significantly. On the other hand, sim-
ulation gets numerically instable, because numerical rounding errors accumulate very
quickly if several thousands of time steps are performed per second to simulate real
physical materials. The problems aggravate if larger simulation meshes are used since
h is smaller in this case. Therefore, explicit time integration can in general not provide
high update rates and numerical stability. Constant update rates—as they are typically
required in interactive applications—cannot be achieved if different materials are used.
In contrast, implicit schemes are numerically more complex but allow for larger time
steps. As we will show, by using our advanced multigrid scheme presented in Section
2.4 for the implicit time integration, the simulation of physical materials can be per-
formed at significantly lower computational costs, and it clearly outperforms explicit
methods for stiff materials.

30 CHAPTER 2. SIMULATION

2.3.8 Boundary Conditions

Vertex Fixation

For the task of object deformation it is essential that particular mesh vertices or even
regions can be fixed in order to restrict the effects of the applied deformations. This
is accomplished by zeroing all entries in the respective rows of the system matrix K

(or the system of equations K) a vertex belongs to and by setting the respective vertex
force to zero. To keep our numerical schemes stable, the matrix is kept at full rank.
Therefore, the diagonal elements in the intersection of the respective rows and columns
are set to a base stiffness value EI specified for the entire object. In this way the matrix
structure does not have to be changed, and the update operation for single rows can be
implemented very efficiently.

Moreover, we cannot only fix a vertex at its initial position but at any deformed po-
sition, too. As a deformation is specified by a global force field acting on the reference
configuration, a vertex can be fixed by simply associating a constant force to it. This
means that one can first deform the model as desired, yielding the appropriate force
vectors, and then fix parts of the deformed model by freezing the respective force vec-
tors. In summary, for a fixed vertex i at position vi we have the constraint EI · ui = fi.
If fi 6= 0 the vertex is fixed at the deformed position vi + ui = vi + 1

EI
fi.

Gravity

It is straightforward to consider volume forces such as gravity in the simulation. The
integral ∫

Ω

gTu dx

from the variational formulation of the elasticity problem (2.1) defines the contribution
of gravity to the potential energy. Using the shape function of the finite element, the
displacement field can be approximated as usual (2.10). Given the shape matrix Φ(x)

(2.11) the integral is then written as∫
Ω

gTΦ(x) ue dx =

(∫
Ω

gTΦ(x) dx

)
ue.

Taking the first derivative of the variational problem with respect to ue yields the vol-
ume force

∫
Ω

ΦT(x) gdx. Here, g is the acceleration of gravity multiplied by the density
of an infinitesimal small volume element. For homogeneous elements the density is

2.3. FINITE ELEMENT FRAMEWORK 31

Figure 2.8: Vertices can also be fixed at deformed positions. On the left, the horse model in its
reference configuration is shown. In the middle, a deformation is applied by specifying external
forces. On the right, the result is shown after the green vertices have been fixed and all external
forces have been released. Due to the vertex fixation forces, the object is kept in its deformed
state. Note, that red vertices in all images illustrate vertices that are fixed in their reference
configuration.

constant, and g can be factored out of the integral. For each finite element, the contri-
butions of all vertices belonging to that element are accumulated into the global gravity
vector taking the global vertex indices into account.

External Point Forces

In addition to volume forces, external forces can be specified for every vertex of the
simulation mesh. These forces are directly added to the respective entries in the global
force vector. Since in animations it is often preferable to apply external forces smoothly,
vertex forces are optionally scaled with a weighting function ω(t). This function scales
the forces from zero to one over a number of time steps, thus avoiding any unnatural
jumps in the animation.

Haptic Input Devices

Our simulation framework is also coupled with a force feedback device, the SensAble’s
PHANTOM®. As such devices require high update rates for the force feedback, an
extra thread is spawned to communicate with the device. Note that the real force vector
f t has to be used for force feedback instead of the updated right-hand side of the time
discretization f̃ t. The force feedback for the current step f t+dt is extrapolated based on
the last two force fields f t and f t−dt:

f t+∆t = f t +
∆t

dt

(
f t − f t−dt

)
∀0 ≤ ∆t ≤ dt.

32 CHAPTER 2. SIMULATION

From the interface of that device, a 3D movement vector is determined, which is trans-
formed into object space to apply the appropriate forces. This movement vector is used
to add an impulse to the dynamic system, which is proportional to the movement since
the previous time step. Based on the respective discretization scheme, the previous
time step’s displacement vector ut is updated to account for the specified movements.
Implicitly, this comes down to an additional impulse in the dynamic system, which is
also incorporated in the current force feedback field.

Using a force feedback device also allows to “feel” the forces that are applied by the
user. This is a very important property in applications such as surgical training, where
the surgeon should be trained with the real forces required by a real intervention.

So far, the positional information is only used heuristically to control the deforma-
tion process by adding an impulse. If it is required to match the specified control points
exactly—the user moves a mesh vertex to a specific position—, a mixed boundary for-
mulation of the finite element method has to be used. It comes at the expense of matrix
updates if the user moves different vertices of the mesh. Thus, costly updates are likely
to occur in every simulation step. In the case of corotated strain—where the matrix is
reassembled anyway in every step—mixed boundary conditions might be integrated at
lower costs. Mixed boundary conditions will be discussed in detail in the next section.

2.3.9 Mixed Boundary Conditions

So far, the deformation process was exclusively controlled by external forces. If mixed
boundary condition are applied, the mesh vertices are basically split into two parts:
vertices, for which displacements are given, and vertices, for which forces are given.
For example, if for a number of vertices a displacement is specified, and we set the
forces of all other vertices to zero, we obtain a deformed configuration that matches
the specified displacements exactly, while the other parts of the object are deformed
according to the physical model.

More precisely, the system of linear equations(
K11 K12

K21 K22

)(
u1

u2

)
=

(
f1

f2

)

with known displacements u1 and known forces f2 but unknown displacements u2 and

2.3. FINITE ELEMENT FRAMEWORK 33

unknown forces f1 has to be solved. A solution can be determined in two steps:

Solve for u2 : K22u2 = f2 −K21u1

Compute f1 : f1 = K11u1 + K12u2

To avoid the reconstruction of a sparse matrix data structure every time the boundary
conditions change, the system matrix can be updated by setting the respective entries
to zero; thus, the solution process is restricted to the sub block K22 of the matrix. Note,
that a copy of the matrix is kept to account for the sub blocks K11, K12, and K21. More
details about the specific matrix format can be found in Section 2.5.1.

Mixed boundary conditions cannot only be used to improve the positional accuracy
of input-device-driven deformations, but they also allow for more advanced interaction
schemes. Skeleton-driven deformation would be an application of mixed boundary
conditions. By specifying a skeleton in the volumetric mesh, displacement vectors ui

at the respective skeleton vertices can be determined by an arbitrary skeleton animation
technique. These displacements are used as boundary conditions for the deformation
problem, and any other regions in the deformation mesh can be influenced by external
forces, too. More details can be found in various skeleton-driven animation publications
such as [CGC+02a].

2.3.10 Material Update

Changing Element Stiffness Values

An important feature a deformation tool should provide is the possibility to flexibly
adjust stiffness values. As we aim at assigning these values interactively while the
simulation is running, the simulation method must be able to instantaneously react to
such changes.

Fortunately, it can be observed that the element matrices Ke do not have to be
rebuilt if only the stiffness E of the respective finite element has to be changed. This
is because Σ is a multiple of the elastic modulus E in the equation of the material law
(2.5). Thus, E can be factored out of the element matrix. This means that the element
matrix only has to be scaled by the factor Enew/Eold, and the global stiffness matrix
has to be reassembled to account for the new stiffness values. As the matrix structure
does not change, this update can be achieved efficiently. In the corotated setting, where
the system matrix has to be reassembled in every simulation step anyway, updating
stiffness values comes at no additional costs.

34 CHAPTER 2. SIMULATION

Plasticity Simulation

So far, our discussion was restricted to the deformation of purely elastic materials. In
shape deformation, however, the user does not expect the object to move back into its
reference configuration once the control handles are released. To avoid this behavior,
forces induced by the user can be accumulated into a global force field, and the resulting
displacements of the grid points are computed just at the very end of the user interac-
tion. This is advantageous because the system matrix does not have to be updated in
order to account for the plasticity. Instead, we consider the system of linear equations
in the form

K (uplastic + u) = fplastic + f

where K uplastic = fplastic are the plastic deformations computed so far, and f are
the forces applied by the current user input. The plastic forces fplastic are determined
empirically. Alternatively, they can be defined by the user to keep the object in a specific
state. In this case, all forces acting at the time of the user input are copied to the plastic
forces fplastic.

Note that physically accurate simulation of plasticity could be integrated in the
framework as well. Then, plasticity is determined from the current stress (e.g. us-
ing the von Mises stress norm), and the variational formulation is extended to account
for plasticity. More details can be found in the book by Bathe [Bat02].

2.3.11 Modified Material Laws

We have focused on the physical behavior of the simulation of deformable bodies. In
shape manipulation, however, the user possibly wants to achieve a particular, intuitive
deformation that typically does not obey the physical model. For example, as-rigid-
as-possible deformations introduced by Alexa et al. [ACOL00] are a well-established
method for shape manipulation. They are characterized by a minimum amount of scal-
ing and shearing to enforce rigidity. However, as-rigid-as-possible deformations con-
tradict physical behavior. For instance, volume preservation is no longer a preferable
property. In this section, we thus introduce modified material laws that mimic this rigid
behavior. Moreover, we can control to either favor rotations or shearing of the material.
These material laws extend the proposed physical finite element framework towards a
flexible shape manipulation tool.

For instance, such modified material laws are of great interest in the context of im-
age deformation as has been shown in a joined work with Thomas Schiwietz [SGW07].
There, we have presented a flexible image deformation technique using different mate-

2.3. FINITE ELEMENT FRAMEWORK 35

rial laws. In combination with image segmentation algorithms to quickly fixate vertices
or assign stiffness values to different parts of the image, an intuitive and flexible user
interface for image deformation tasks has been demonstrated. Figure 2.9 shows some
images generated with this approach. Now, we extend the material laws to 3D.

In an isotropic and fully elastic body stress (Σ) and strain (E) tensors are coupled
through Hooke’s law (linear material law). As observed by many authors, shape defor-
mations obeying physical laws are often not desired when manipulating objects. For
example volume preservation as enforced by Hooke’s law is a physical phenomenon
that contradicts shape-preserving as-rigid-as-possible deformations. Volume preserva-
tion, on the other hand, can be avoided by prohibiting transversal contractions of the
material being deformed. This is achieved by appropriately varying Poisson’s ratio ν

in Hooke’s law (2.5), which defines the ratio of transverse contraction to longitudinal
stretching in the direction of the force. In particular, setting ν = 0 yields λ = 0;
thus, any curvature in a direction perpendicular to the direction of stretching or bending
is avoided. In Figure 2.9 and 2.10 we compare the deformation of a material under
stretching with (b) and without (c) transversal contractions in the 2D and 3D case.

To enable as-rigid-as-possible transformations, we further enforce the physical sim-
ulation with respect to an anisotropic material law. By doing so we enable the user to
flexibly control the resulting deformations by continuously varying between rigid and
highly elastic materials within one object. The anisotropic material law is simulated by
adding a scaling factor α to the off-diagonal elements in the stress tensor, yielding the
rigid material law

Σ = E

 E11 α E12 α E13

α E21 E22 α E23

α E31 α E32 E33

 (2.15)

(a) Reference (b) Hooke’s (c) Rigid law (d) Rigid law (e) Rigid law
image law (α = 1) (α = 100) (α = 0.1)

Figure 2.9: Modified material laws in 2D: Images (b) and (c) show the difference between
Hooke’s law and the rigid law if the castle is stretched vertically. Images (d) and (e) demonstrate
the effects of reducing the amount of shearing (d) and rotation (e) while the castle is dragged to
the right.

36 CHAPTER 2. SIMULATION

(a) Reference (b) Hooke’s (c) Rigid law (d) Rigid law (e) Rigid law
object law (α = 1) (α = 10) (α = 0.1)

Figure 2.10: Modified material laws in 3D: Images (b) and (c) show the difference between
Hooke’s law and the rigid law if the cube is stretched vertically. Images (d) and (e) demonstrate
the effects of reducing the amount of shearing (d) and rotation (e) while the cube is picked on a
single corner.

with E being the elastic modulus.
The modified material law allows for transformations minimizing the amount of

shearing or rotation, respectively, and it can thus effectively be used to produce as-
rigid-as-possible transformations. For a value of α = 1 the material law is isotropic.
By decreasing the value of α, the internal stress is reduced in direction of x2 (and x3)
if strain is induced in direction of x1, and vice versa. Consequently, such a setting
favors shearing instead of rotation. Contrarily, by setting α to a value larger than 1
rotations instead of shearing will be favored. The effects of different values of α are
demonstrated in Figure 2.9 (d) and (e) for the 2D case and in Figure 2.10 (d) and (e)
for the 3D case. Note that generally the rigid material law does not preserve volume.
However, a larger value of α leads to volume growth if shearing forces are applied,
while small values of α tend to preserve volume in this case.

Updating Material Laws

Not only the stiffness values can be updated, but also the material law considered for
each element. In this case, the element matrices have to be rebuilt (including time-
consuming integration in case of higher-order finite elements). Therefore, the update
process is not interactive in general. However, if only a small number of elements is
changed, the update can still be achieved at interactive rates.

2.4. IMPLICIT MULTIGRID SOLVER 37

2.4 Implicit Multigrid Solver

In this section, we present an advanced numerical solver for the governing equation
of motion of elastic materials. From the discussions in the last section, we can derive
some important properties the solver must take into account:

1. The matrices derived from typical finite element meshes are scattered (random)
sparse. Therefore, efficient data structures and algorithms for these matrices are
required in the solution process.

2. The system matrix is frequently updated, i.e., in every time step. Fortunately, the
structure of the matrices stays the same as long as the topology of the simulation
mesh does not change. Thus, data structures and algorithms to efficiently sup-
port matrix updates are required, thereby enabling a simulation framework that
provides the linear, corotated, and non-linear setting likewise.

In the following, we present a numerical multigrid solver operating on different grid
resolutions. We start with an introduction to multigrid techniques, and we then describe
our approach including the generation of appropriate mesh hierarchies. In Section 2.5
we will show how the multigrid solver can be efficiently implemented to address the
aforementioned requirements.

2.4.1 The Multigrid Idea

Multigrid methods provide a general means for constructing scalable linear solvers for
elliptical partial differential equations [Bra77, Hac85, BHM00]. In the graphics com-
munity, multigrid methods have just recently gained attention in a number of different
applications [BFGS03, AKS05, SYBF06]. Multigrid methods exploit the fact that a
problem can be solved on different scales of resolution. Two observations are of ma-
jor importance in such approaches. First, a basic property of many iterative solvers
for systems of linear or non-linear equations is smoothing. Many relaxation methods
such as Gauss-Seidel reduce high frequencies in the error very quickly while low fre-
quencies are damped rather slowly. Second, the remaining low-frequency errors can be
accurately and efficiently solved for on a coarser grid. A multigrid strategy combines
both observations by transferring the smoothed error to the coarser grid and vice versa.
Recursive application of this basic idea to each consecutive system on a hierarchy of
grid levels leads to a multigrid V-cycle.

For the efficient simulation of an elastic deformable solid we have developed a

38 CHAPTER 2. SIMULATION

geometric multigrid method7. This method includes geometry-specific restriction and
interpolation operators. These operators form the essential multigrid components as
they are used to transfer quantities between different levels of the object hierarchy.

In this work, we define an appropriate finite element hierarchy, which allows for
an efficient implementation of multigrid components. The result is a method that uni-
formly damps all error frequencies with a computational cost that depends only linearly
on the problem size.

2.4.2 Nested Hierarchies

The geometric multigrid method requires a mesh hierarchy that represents the de-
formable object at different levels of resolution. On this hierarchy, appropriate transfer
operators to map quantities between different levels have to be designed. Starting with
a finite element mesh at the coarsest resolution level, a common way to construct the
hierarchy in a top-down approach is to split every element as shown in Figure 2.11.
By subdividing all elements synchronously, T-vertices8 can be avoided. This approach
results in a nested hierarchy, which allows the transfer operators to be defined in a
straightforward way, but it requires the initial mesh to be fine enough to achieve a proper
representation of the object’s boundary at ever finer resolution levels. Furthermore, sub-
sequent subdivisions might lead to a fine mesh containing ill-shaped tetrahedra that are
not well-suited for finite element simulations. Analogously, not only tetrahedral ele-
ments can be refined uniformly but all element types presented in Section 2.3.1. Figure
2.11 gives an overview of the subdivision performed in each of the cases.

For all element types, the transfer operators can be defined by interpolation along
the element edges. For most element types this yields a linear interpolation scheme ac-
counting for two attributes of the coarse grid. In cases of quadratic quads or Serendipity
tetrahedra, quadratic interpolation, which takes three attributes into account, may be
performed to achieve better approximations. The respective restriction operator R is
defined by the inverse interpolation scheme I . In matrix notation, it is defined by the
transposed interpolation matrix R = IT.

For volumetric objects given on a Cartesian grid this generation of nested hierar-
chies does not pose a restriction, because the entire domain is covered for every level.
If we start with a coarse representation of an arbitrary object, however, rather shallow
hierarchies are constructed and the multigrid method cannot be used to its full potential.
In addition, because the subdivision scheme does not account for the object’s surface

7Geometric multigrid methods determine the restriction and interpolation operators from geometric properties.
8A T-vertex is a vertex on an edge of an element that is only considered by adjacent elements.

2.4. IMPLICIT MULTIGRID SOLVER 39

Triangle Quad Quadratic quad

Tetrahedron Serendipity tetrahedron Hexahedron

Figure 2.11: Regular subdivision scheme for various finite element types. The new vertices and
edges are highlighted in red.

at the finest scale, it leads to poor visual results, and the simulation cannot achieve full
accuracy due to the improper object approximation.

2.4.3 Non-Nested Hierarchies

To avoid the previously mentioned drawbacks, we propose linear transfer operators that
do not require a nested hierarchy and can be integrated efficiently into the multigrid
scheme. These operators establish relations in a multilevel hierarchy of unstructured
and unrelated meshes by means of barycentric interpolation as illustrated in Figure
2.12.

Initially, we start with a coarse mesh H and a fine mesh h. For every tetrahedron in
H , all vertices of h inside this tetrahedron are determined. The barycentric coordinates
of these vertices with respect to the circumscribed element are calculated, and they
are used as interpolation weights to map values from the coarse grid to vertices on the
fine grid via the interpolation operator Ih. Each fine grid vertex stores the respective
coarse grid vertices and corresponding weights. For vertices in h that lie outside the
coarse mesh, barycentric coordinates to the closest tetrahedron in the coarse mesh are
computed. The restriction operator that is required in the multigrid method to gather

40 CHAPTER 2. SIMULATION

Figure 2.12: Geometric relations between elements in a non-nested hierarchy are illustrated (the
2D case is shown for simplicity). Dotted and solid lines indicate the coarse and the fine mesh
respectively. For some fine mesh vertices, barycentric interpolation weights are highlighted by
dotted red lines.

values from a finer resolution level is determined from the interpolation operator Rh =

IT
h .

For higher-order elements, the respective finite element shape functions can be used
instead of barycentric interpolation. However, they usually yield a larger support of the
interpolation kernel, which can affect the solver’s performance. Therefore, a higher-
order element can be split into smaller linear elements. These linear elements can be
completely defined by the vertices of the higher-order element, and barycentric interpo-
lation within such elements can be used to define the interpolation operator. Of course,
edges are approximated linearly and thus the interpolation is not as precise as in the
previous case. On the other hand, multigrid solvers are typically not too sensitive to the
interpolation scheme, and it turned out that the simpler and faster interpolation schemes
lead to good results, too.

2.4.4 Coarse Grid Correction

The essential step in the multigrid method is the coarse grid correction. The equation
to be solved on the finer grid with grid size h is

Khuh = fh.

Using a coarser grid with grid size H , the defect equation KHeH = rH can be consid-
ered in addition to the fine grid defect equation (given an initial solution ûh)

Kheh = rh = fh −Khûh.

2.4. IMPLICIT MULTIGRID SOLVER 41

Kh and KH are the system matrices on the fine and the coarse grid, respectively. eh and
eH are the absolute errors between the exact solution and the approximate solution on
either grid. rh and rH are the residuals on these grids. To establish a relation between eh

and eH , and between rh and rH , the linear transfer operators Ih and Rh are employed.
As Ih can be replaced by Ih = RT

h , only the restriction operator is required by the
coarse grid correction scheme.

Given the linear transfer operator Rh, as well as an initial approximation ûh of the
displacement values on the fine grid h of the deformable solid, a new approximation uh

can be computed as shown in Algorithm 1.

Algorithm 1 Two grid correction
¬ Pre-smooth Relaxation of ûh

­ Compute residual rh = fh −Khûh

® Restrict residual to coarse grid rH = Rhrh

¯ Solution on coarse grid KHeH = rH

° Transfer correction eh = RT
h eH

± Correction uh = ûh + eh

² Post-smooth Relaxation of uh

The relaxation of ûh in stage ¬ avoids the transfer of quantities from the fine grid
that cannot be reduced on the coarse grid, and the relaxation of the result uh in stage ²

avoids high frequencies introduced by numerical inaccuracies. In general, 1–2 Gauss-
Seidel steps are sufficient for both pre- and post-smoothing.

V-Cycle By recursive application of the coarse grid correction to stage ® and by using
a pre-conditioned conjugate gradient method to compute the solution of stage ® on the

Figure 2.13: Illustration of the computations performed within a single multigrid V-cycle (left)
and a full multigrid algorithm with µ = 1 (right). The arrows indicate transfer operations. The
circles denote relaxation steps.

42 CHAPTER 2. SIMULATION

coarsest grid, a full multigrid V-cycle is derived.

Full Multigrid Algorithm (FMG) The idea of the full multigrid algorithm is to calcu-
late a good initial guess by solving the problem on the coarser grids, where the number
of grid points is typically small compared to the fine grid. By interpolating this solution
on a finer grid, an approximate solution can be found very efficiently. On the fine grid,
this solution can then be corrected by one (or generally µ) multigrid V-cycle. This leads
directly to a multigrid scheme as illustrated in Figure 2.13.

2.4.5 Galerkin Property

A purely geometric multigrid approach typically determines the coarse grid matrices
by discretizing the problem at the respective coarser grids. With the restriction and
interpolation operators we have deduced, this approach fails to converge quickly in
some settings as will be shown in Section 2.4.6. In our multigrid approach, we construct
the coarse grid matrices in a different way. Given the fine grid equation

Khuh = fh,

we build a coarse grid equation by multiplying with Rh from the left and utilizing
uh = RT

h uH and fH = Rhf
h:

RhK
hRT

h︸ ︷︷ ︸
KH

uH = fH .

In fact, the interrelationship KH = RhK
hRT

h is known as Galerkin property [BHM00].
In our approach, for all but the finest hierarchy level the system matrices are computed
as

KH = Rh Kh RT
h .

The Galerkin property guarantees a consistent calculation on the different levels of res-
olution with respect to the grid transfer operators. Thus, it assures optimal convergence
of the multigrid scheme for both nested and non-nested geometric hierarchies, and it
allows us to use unstructured and irregular meshes. On the other hand, this approach
requires complex numerical operations to build the coarse grid matrices. For that rea-
son, we have developed a novel algorithm for this task, and we will present it in Section
2.5.

2.4. IMPLICIT MULTIGRID SOLVER 43

2.4.6 Convergence and Numerical Error

Geometric Multigrid

In this section, we show in more detail why a purely geometric multigrid approach does
not work well in our case. It constructs the coarse grid matrices by applying the same
discretization scheme as for the finest matrix. In contrast, the Galerkin approach builds
the coarse grid matrices by applying the Galerkin property. Figure 2.14 demonstrates
the different convergence behavior for various models. All examples are based on a
two-grid correction step using only two different hierarchy levels. Given an initial
tetrahedralization of some hundred elements, a regular subdivision was performed to
build the finer grid. As shown, although all models are based on nested and collateral
grids, the purely geometric multigrid diverges for some examples. This is related to
the irregular structure of the underlying base meshes. If the structure is regular (i.e., all
vertices have the same valence) as for example in the bridge model, the Galerkin and
geometric multigrid show the same behavior.

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 0 2 4 6 8 10 12 14

re
l.

 e
rr

o
r

V-cycles

liver
liver (Galerkin)

bunny
bunny (Galerkin)

bridge
bridge (Galerkin)

Figure 2.14: We analyze the relative error using a two grid correction for various nested models.
The Galerkin approach always shows good convergence while the geometric approach only
works well for regular meshes (bridge example). In this case, the Galerkin approach basically
comes down to the purely geometric approach.

44 CHAPTER 2. SIMULATION

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14

re
l.

 e
rr

o
r

V-cycles

Bunny11k
Dragon13k

Horse10k
Bridge3k

Bridge24k

Figure 2.15: Analysis of the algebraic error of the multigrid method: The relative error is
plotted against the number of V-cycles. Note that the convergence strongly depends on the
models and the underlying mesh hierarchies. In case of the horse model, an unsuited hierarchy
is used. Therefore, fast convergence cannot be achieved.

We focus on the Galerkin approach in the remaining parts of this thesis. As a side
note let us mention that, in contrast to the geometric approach, the Galerkin approach
can handle non-nested mesh hierarchies as well. Therefore, it enables more flexibility
in the mesh generation procedure.

Galerkin Multigrid

We prove the effectiveness of the Galerkin multigrid solver by analyzing the numerical
error for several models using nested and non-nested hierarchies. In all of our tests,
we have simulated gravity for the respective object while it was fixed at some vertices.
Figure 2.15 plots the numerical error against the number of multigrid V-cycles.

To measure the relative error after each V-cycle, we first calculate the exact solution
u, and we then determine the relative error ε of the current approximation ũ as

ε =
‖u− ũ‖2

‖u‖2

.

2.4. IMPLICIT MULTIGRID SOLVER 45

As shown in Figure 2.15, the best convergence rates can be achieved when nested hi-
erarchies are applied (bridge models). Due to the limited floating-point precision of 64
bit, numerical errors accumulate noticeably for stiff matrices and larger models. There-
fore, many more V-cycles are required in the bridge24k simulation to yield the same
relative error as in the bridge3k simulation. For non-nested hierarchies, convergence
rates are typically very good. In case of the horse model, however, the convergence
is poor due to an unsuited mesh hierarchy, i.e., the vertices of the coarse grid are not
a uniform thinning of the fine mesh vertices. Nonetheless, good results are obtained.
Despite the poor condition number of the heterogeneous model, the Galerkin multigrid
approach converges, and the numerical error after three V-cycles is small enough to
be invisible in the rendering of the object. This is due to the fact that the multiscale
approach tends to distribute the numerical error uniformly across all vertices.

Faster convergence can be achieved with the Full Multigrid algorithm (FMG), where
an initial guess is calculated from the coarse grids. Note that in dynamic simulations

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16

re
l.

 e
rr

o
r

V-cycles

Bridge24k(FMG)
Bridge24k(V-cycles)

Liver8k(FMG)
Liver8k(V-cycles)

Figure 2.16: Convergence of the multigrid V-cycles and full multigrid algorithm: The relative
error is plotted against the number of V-cycles / parameter µ for FMG. Note that the convergence
strongly depends on the models and the underlying mesh hierarchies. In all examples, gravity
is applied yielding a poor initial guess for the solver. The FMG results in significant smaller
errors, especially in the first steps. Taking into account that the computational costs of one FMG
step are roughly as much as two V-cycles, the FMG algorithm is not always advantageous.

46 CHAPTER 2. SIMULATION

the result of the previous time step is usually an appropriate initial guess, and thus a
full multigrid algorithm is not necessary. On the other hand, to analyze the numerical
strength of the multigrid scheme, it is worth analyzing the FMG scheme. In cases of
rapid changes in the right-hand side of the system of equations, for example if gravity is
switched on, the FMG algorithm can achieve slightly better convergence rates as shown
in Figure 2.16.

2.5 Fast Sparse Matrix-Matrix Products

Up to now we have described a multigrid approach that uses geometric restriction and
interpolation operators on nested and non-nested hierarchies. In particular, this ap-
proach respects the Galerkin property to determine coarse grid matrices and thus to
guarantee optimal convergence for the given transfer operators. As we have shown,
many applications require frequent updates of the system matrix, which implies that
the respective coarse grid matrices have to be updated, too. Now, we present a novel
approach to perform these update operations very efficiently. In particular, we de-
scribe several algorithms that are optimized to build a multigrid hierarchy based on the
Galerkin property. We also analyze the algorithms with respect to in-place updates,
where the structure of the matrices is determined symbolically in a pre-processing step,
and only the values of the non-zero entries are replaced in the update operation. These
algorithms are a general means for building multigrid solvers for a wide range of sparse
matrix problems. Moreover, the algorithms can be easily modified to accommodate ef-
ficient calculations of sparse matrix-matrix products where only one matrix is substance
to changes.

To achieve improved memory and computational complexity, sparse matrices are
stored in optimized data structures. At the core of sparse matrix operations are op-
timized data structures such as the Yale sparse matrix format [Gus78, EGSS82] and
improvements thereof [McN83, BS87]. Due to the low compute-to-memory ratio of
sparse matrix computations, formats that try to store dense blocks were developed
[BW99, PV05]. Additionally, parallelization strategies for sparse matrix vector prod-
ucts have been discussed [BM05]. Recently, fast sparse matrix algorithms have been
analyzed theoretically [YZ05]. It is worth noting that despite the advances in the devel-
opment of sparse matrix data structures and algorithms, sparse matrix-matrix products
are still not standard in sparse libraries, e.g. PETSc [BBE+04].

In the accurate numerical simulation of deformable bodies using multigrid schemes,
one of the main computational challenges is the frequent update of the system matrix.

2.5. FAST SPARSE MATRIX-MATRIX PRODUCTS 47

If the corotated strain formulation is used, element rotations are applied in every sim-
ulation step, which requires to reassemble the entire system matrix. As long as the
topology of the simulation mesh does not change, the structure of the system matrix
and of all matrices of the multigrid hierarchy remain unchanged. Therefore, while the
data values stored in the sparse matrix data structure have to be updated in every simu-
lation step, the data structure itself can be reused. To update the multigrid hierarchy, the
Galerkin property is exploited. For that reason, we now focus on the fast calculation of
sparse matrix products E = R K RT, where both R and K are given in a sparse matrix
format. We assume, that R is constant, while K is subject to non-structural changes.

2.5.1 Matrix Data Structures

Our improved sparse matrix data structure is row-based (Yale or compressed row format
[EGSS82]). We store the non-zero entries and the respective column indices of a matrix
K in two separate arrays, row by row. Additionally, for every row i, an index to the first
non-zero element of the respective row is stored as depicted in Figure 2.17. The set of
indices to non-zero entries for every row i is denoted by SK

i . In the following, we refer
to this format as row-compressed (RC) matrix format.

... Column Indices ...

 ... Data Values ...

... Rows ...

...

S
1

S
2

S
3

...
S
n

Figure 2.17: Row-compressed matrix format: A pair of data value and column index is stored
for every non-zero entry of the matrix, row by row. For every row, a reference to the respective
positions in these arrays is kept.

Since in the formulation of the 3D elasticity problem as described previously the
system matrix consists of 3 × 3 blocks of generally non-zero elements, we also pro-
vide a matrix format that stores entire blocks of data instead of single data values. In
this way, we can reduce the memory that is required to store the indices significantly.
Analogously, 2 × 2 blocks are stored in the 2D setting. In the following, we refer to

48 CHAPTER 2. SIMULATION

this format as block-row-compressed (BRC) matrix format. For the sake of clarity we
assume a row-compressed format throughout the following discussion. The extension
to the BRC format is straightforward.

2.5.2 Naive Approach

The naive approach to perform a multiplication R K RT of two sparse matrices R and
K is to use an intermediate representation F = R KT, which can then be used to
calculate E = R FT. Splitting the product in this way is best suited for the RC matrix
format, because it requires only the calculation of sparse dot products and therefore
allows accessing the data structures in an optimal way. Note that the second matrix in
both single products is transposed, and thus these products efficiently access the rows
of the data structure of the non-transposed matrix.

2.5.3 1-Step Approach

To avoid the intermediate representation F , let us now have a closer look at the matrix
product to be performed. Expanding the matrix product E = R K RT yields

Eij =
∑
l∈SR

i

Ril

 ∑
k∈SK

l ∩SR
j

KlkRjk

 .

The outer sum is evaluated only for non-zero entries in the index set SR
i . The inner

sum is optimized by only considering indices in the intersection of the two index sets
SK

l and SR
j , as in all other cases the resulting summand is zero. It is worth noting

that now all sums access our data structure row-wise, such that we have optimal cache
coherence. To perform an in-place update of the matrix E (assuming the structure of
E is already known), only indices j ∈ SE

i have to be considered. The pseudo-code for
this case is listed in Algorithm 2. To create the matrix structure of E, the respective
loop is performed for all indices j = 0 to E.numCols −1. An entry in the sparse matrix
structure is only created if Eij 6= 0. The benefits of this matrix multiplication strategy
are the following:

1. No additional memory is required to store an intermediate product as in the naive
approach.

2. All matrices are accessed in a row-wise order resulting in optimal memory access
patterns.

2.5. FAST SPARSE MATRIX-MATRIX PRODUCTS 49

Algorithm 2 1-step multiplication (in-place)
Require: Matrices K, R, matrix structure of E
Ensure: E = RKRT

for i = 0 to E.numRows do
for j ∈ SE

i do
Eij = 0;
for l ∈ SR

i do
double sum = 0;
for k ∈ SK

l ∩ SR
j do

sum = sum + Klk ·Rjk;
end for
Eij = Eij + sum ·Ril;

end for
end for

end for

However, due to the avoidance of additional memory the inner sum might be cal-
culated several times (the same index j and l can occur for different indices i). Note
that this effect is only noticeable if an in-place update is performed. For the symbolic
processing, where the structure of the destination matrix has to be determined, the
avoidance of an intermediate representation performs fastest in all of our tests. How-
ever, this observation might only be true if the matrix R is very sparse as in the case of
geometric transfer operators.

In the next section, we will describe how to build an acceleration structure for in-
place matrix multiplication. Although it comes at the expense of additional memory
requirements, an acceleration of up to a factor of 15 is achieved compared to the naive
approach described in Section 2.5.2.

2.5.4 1-Step Stream Acceleration

Random sparse matrix-matrix products are well-known to be memory bound rather than
compute bound. The 1-step approach as described is mainly limited by two observa-
tions. First, the whole (ordered) sets SK

l and SR
j in Algorithm 2 have to be processed to

account for their intersection SK
l ∩SR

j , whereas this intersection is typically very small
or even empty. Second, the indices l and j themselves are determined by processing
sparse index sets. Therefore, accessing these sets SK

l and SR
j produces scattered read

operations, which can most likely not be served from the cache.
To address the first issue, we have developed a novel acceleration data structure that

stores the intersection of the index sets SK
l and SR

j for all indices l and j. To address

50 CHAPTER 2. SIMULATION

the second issue, we construct a stream that is aligned with the matrix K and thus avoid
scattered memory read operations to access the pre-computed intersections SK

l ∩ SR
j .

Furthermore, because the left and right matrices of the product are the same (except
for transposition) and do not change over time, their contributions to the product can
be encoded into the stream to avoid scattered memory read operations to access the
data values of R. Summarizing, we build a stream that encodes data values of R along
with instructions how these values are multiplied with respective non-zero entries of
the matrix K as well as their destination indices. These indices are used to scatter the
appropriate fractions into the destination matrix E. In this way, only the final write
operation accesses the memory randomly. Due to the fact that the destination matrix
E is smaller in size than the source matrix, memory access operations are optimized
compared to the setting where we stream over entries of E while randomly accessing
values of K.

Stream Design

The acceleration data structure is aligned with the sparse matrix data structure of K,
and it is constructed from two streams: A control stream contains control flags and a
data stream contains copied data values of R and respective indices to E. A single byte
of the control stream is interpreted as follows: The sign flag indicates whether the next
non-zero entry of the matrix K should be fetched or the previous entry of K is further
used. The remaining seven bits indicate the number of data value/index pairs from the
data stream that should be processed. Note that at most 127 pairs can be encoded in
one single byte. If a matrix entry from K is scattered more often into the result matrix,
an additional control byte has to be used with the sign flag set to false.

Stream Construction

The stream construction can be performed analogously to a 1-step multiplication as
described in Algorithm 2. However, this approach performs the operations in the wrong
memory layout, since the outer loops process the destination matrix E rather than the
matrix K. Therefore, we change the ordering of the loops. The outer loops running
over all entries of the destination matrix now becomes the innermost loop, yielding
outer loops over all elements of the matrix K (using the indices l and k). Then, for
each entry of the matrix K, all products Ril · Rjk and indices i, j into the destination
matrix E are determined and can be directly encoded into the data stream. Algorithm
3 lists the respective pseudo code for the stream construction phase. E.getIndex(i, j)

2.5. FAST SPARSE MATRIX-MATRIX PRODUCTS 51

Algorithm 3 Stream construction (in-place)
Require: Matrices K, RT, structure of matrix E
Ensure: E = RKRT

for i = 1 to E.numRows do
for j ∈ SE

i do
Eij = 0;

end for
end for
for l = 0 to K.numRows do

for k ∈ SK
l do

for i ∈ SRT

l do
for j ∈ SE

i ∩ SRT

k do
Eij = Eij + Klk ·RT

li ·RT
kj ;

stream.push(RT
li ·RT

kj , E.getIndex(i, j));
end for

end for
stream.setNext();

end for
end for

calculates the index of the element in the linearized data array of E. This index is used
to quickly access the respective element in the stream processing stage. The stream’s
push() operation stores the passed value and index into the data stream and increments
the number of pairs stored in the last control byte. If the maximum number of 127

is exceeded, a new control byte with a next-entry flag set to false is appended to the
control stream. The stream’s setNext() operation creates a new control byte with the
next-entry flag set to true, thus advancing to the next non-zero element of K.

Stream Processing

The processing of the stream to update the destination matrix E is performed as follows.
Initially, l and k are the row and column indices of the first non-zero entry of K.

1. If a next-entry flag is encountered, the index k is advanced to the next non-zero
entry in row l. If no such entry is available, the row index l is incremented to the
next non-empty row, and k is set to the respective first non-zero column index.
The value Klk is stored in a temporary register t. From the control byte, the
number p of weight/index pairs that have to be processed next are determined.

2. The following steps are performed p times:
A data value w and index value i are read from the data stream. The product w · t

52 CHAPTER 2. SIMULATION

is accumulated at the position E(i), where E(i) addresses the i-th position in the
linearized representation of E.

3. Steps (1.) and (2.) are repeated until the entire stream has been processed (all
non-zero entries of K are encountered).

Stream Optimization

The stream can be optimized with respect to the data values w stored in the stream.
As in some settings, e.g., in cases of nested hierarchies, it is likely that the same value
w is repeated several times, we can save memory by storing w only once together
with a set of destination indices. Therefore, the data value/index pairs are sorted with
respect to their values w after all pairs belonging to a single entry of K have been
generated. Finally, the control stream needs to be adjusted to store for each data value
w the number of destination indices to be considered.

2.5.5 Symmetry Optimization

So far we have not considered any symmetry of the matrix K. If the matrix K is
symmetric, the 1-step algorithm and the stream acceleration can be performed nearly
twice as fast. This is due to the fact, that only the upper triangular matrix of E has
to be computed, and the lower triangular part can be determined from the respective
mirrored entries. We do not introduce a symmetric row-compressed format, as in this
case matrix-vector products cannot be processed at full performance rates due to the
improper memory access patterns. A symmetric row-compressed format only stores
the upper triangular matrix of K. On average, a single row-vector product then can
only access half of the data values of K efficiently, while the other half of the values
have to be fetched from different rows (see Figure 2.18).

For that reason, we do not change the matrix format. Instead, the lower triangu-
lar matrix is determined from the upper triangular part. If the block-row-compressed
matrix format is used, this step can be performed efficiently, as 3 × 3 blocks can be
copied at once. For the pure row-compressed format, this symmetry optimization is not
efficient since single data values have to be copied.

2.5.6 Parallelization

The 1-step stream acceleration algorithm can efficiently be parallelized by distributing
the data and control streams as well as the destination matrix E to N compute nodes.

2.5. FAST SPARSE MATRIX-MATRIX PRODUCTS 53

Figure 2.18: Matrix-vector products using a symmetric sparse matrix format: On average, a
row-vector product can only access half of the data values of K memory-efficiently (green),
while the other half of the values have to be fetched from different rows (red).

Each node k only has to store a part of the stream, together with a copy of the result
matrix Ek. For the purpose of clarity, we assume that the matrix K is duplicated on
each node, although only the non-zero elements corresponding to the respective parts
of the stream are required. The stream can be split at the next-entry flags. Additionally,
an offset into the matrix K has to be stored at each node such that the part of the stream
kept at this node can be aligned with the matrix K. In general, splitting the stream into
disjoint parts for which the same number of operations have to be performed requires
to count not only the number of non-zero entries of K but also the number of write
operations (addresses into the matrix Ek). Only in case of regular meshes, i.e., constant
valences, it is sufficient to ensure that each node processes the same number of entries
of K.

Finally, the matrices Ek have to be gathered and accumulated to calculate the result
E =

∑N
k=1 Ek. This can be achieved most efficiently in a log step reduce operation by

combining each two matrices at every second node and proceeding recursively with the
results. Since all matrices Ek have the same structure, this summation can be performed
in place without the need to newly build sparse matrix data structures.

54 CHAPTER 2. SIMULATION

2.5.7 Performance Measurement

In this section, we analyze the performance and memory requirements of the presented
sparse matrix algorithms. In Section 2.7 we will give thorough timings statistics for the
overall simulation. All timings in this section are measured on an Intel Core™ 2 Duo
2.4 GHz equipped with 2 GB RAM but only one CPU core is employed in our examples.

In the following, we employ the 1-step stream acceleration approach to compute
the RKRT matrix products deduced from the Galerkin property on each level of the
multigrid hierarchy. We distinguish between nested and non-nested hierarchies as the
latter are more expensive to be updated due to the higher fill rate of both restriction and
interpolation matrices.

Table 2.3 shows the timings for building the multigrid hierarchy for various models
using nested meshes. We give timings for the algorithms used in the pre-processing
stage (including the generation of sparse matrix data structures) and the respective in-
place variants that can be applied at runtime once the structures of the matrices are
already known. For each example we give timings for both the row-compressed (RC)
and the block-row-compressed (BRC) matrix format. As the latter severely benefits
from the symmetry optimization described in Section 2.5.5, the timings for the sym-
metric algorithms are given in parentheses if applicable. Columns four and five show
the time required by the naive implementation, columns six and seven list the timings
for the 1-step algorithm. Finally, the last three columns give the initialization time,

model di
m

en
si

on
/

fil
lr

at
io

sp
ar

se
fo

rm
at

na
iv

e

na
iv

e
(i

np
la

ce
)

1-
st

ep

1-
st

ep
(i

np
la

ce
)

st
re

am
(i

ni
t)

st
re

am
(i

np
la

ce
)

st
re

am
(m

em
)

bridge3k 2.46k RC 406 25 168 24 31 1 1.8 MB
1.4% BRC - - 131 22 27 2 2.1 MB

(61) (13) (26) (1) (1.7 MB)

bridge24k 15.7k RC 19.0k 233 4690 204 247 10 13 MB
0.25% BRC - - 3673 180 233 13 16 MB

(1720) (103) (207) (12) (13 MB)

Table 2.3: Timing statistics in [ms] for construction and update of various nested multigrid hi-
erarchies using various sparse matrix formats and algorithms. The numbers in parentheses give
the timings for the symmetric variants described in Section 2.5.5. Note that the stream initial-
ization requires the structure of the destination matrix to be known, thus the 1-step algorithm
has to be performed before.

2.5. FAST SPARSE MATRIX-MATRIX PRODUCTS 55

model di
m

en
si

on
/

fil
lr

at
io

sp
ar

se
fo

rm
at

na
iv

e

na
iv

e
(i

np
la

ce
)

1-
st

ep

1-
st

ep
(i

np
la

ce
)

st
re

am
(i

ni
t)

st
re

am
(i

np
la

ce
)

st
re

am
(m

em
)

liver3k 2.52k RC 720 163 446 219 193 7 15 MB
1.4% BRC - - 379 212 180 7 15 MB

(177) (102) (131) (5) (9 MB)

bunny11k 9.00k RC 8258 732 4770 906 677 25 46 MB
0.39% BRC - - 4098 997 566 26 46 MB

(2161) (514) (424) (17) (28 MB)

horse50k 36.7k RC 212k 3347 144k 5802 6311 180 300 MB
0.10% BRC - - 123k 6654 4198 167 300 MB

(67.8k) (3646) (2664) (111) (179 MB)

Table 2.4: Timing statistics in [ms] for construction and update of various non-nested multigrid
hierarchies using various sparse matrix formats and algorithms. The numbers in parentheses
give the timings for the symmetric variants described in Section 2.5.5. Note that the stream ini-
tialization requires the structure of the destination matrix to be known, thus the 1-step algorithm
has to performed before.

update time, and required memory for the 1-step stream accelerated algorithm. Note
that both initialization and update are in-place variants. Thus, the 1-step algorithm
has to be used initially to determine the structure of the result matrix. Table 2.4 gives
the same information but now the models use a non-nested hierarchy. From the given
performance measurements the following results can be concluded:

1. The block-row-compressed matrix format is preferable as it allows for efficient
symmetry optimizations at the same time avoiding the previously mentioned draw-
backs of a symmetric matrix format.

2. The 1-step algorithm shortens pre-processing times significantly. It generates the
structure of the matrices 2–4 times faster than the naive approach. This is both
true for the RC and BRC sparse matrix formats9.

3. The in-place variant of the 1-step algorithm can only outperform the naive ap-
proach if nested hierarchies are applied. In case of non-nested hierarchies, the
naive approach computes the results faster than the 1-step algorithm. However,
the naive approach requires additional memory (the temporary matrix F , which

9Note that the naive algorithm could benefit from the symmetry optimizations in the same way as the 1-step
algorithm if the BRC format is applied.

56 CHAPTER 2. SIMULATION

has to be constructed in a pre-process with the naive approach).

4. The stream-accelerated 1-step algorithm for the in-place update outperforms the
naive approach by a factor of 10–30. It comes at the expense of additional mem-
ory but the data can be efficiently streamed through the CPU. The performance
benefit clearly compensates for the additional memory requirements.

Due to these results, we employ the 1-step algorithm in the pre-processing stage of
the deformable object’s simulation to determine the structure of the matrices. In cases
of time-dependent matrices, the 1-step stream acceleration is performed to quickly up-
date the data values of the respective matrix hierarchy. In particular, this algorithm is
used in both the corotated and the non-linear strain simulations in every time step.

It is worth noting that the proposed data structures and algorithms for computing
sparse matrix-matrix products can be used in many other applications, too. The stream-
ing approach can be easily modified to compute sparse matrix-matrix products in which
one of the matrices is constant. Since the approach can easily be parallelized on multi-
core architectures or multiple compute nodes, it can also be employed to handle large
matrices.

2.6 Mass-Spring Systems

In a range of applications, especially in gaming and entertainment, simulation of de-
formable objects is only required to appear plausible. In this case, simpler physical
models, such as mass-spring systems, might lead to visually acceptable results and
achieve a significant performance gain at the same time. However, these models intro-
duce inherent drawbacks compared to the “real” physical simulation described before.
In particular, heterogeneous or stiff materials are hard to be handled due to the un-
derlying explicit time integration scheme. Therefore, the application of this model is
restricted to the Courant condition.

To visualize system dynamics, the geometric representation of the system has to
be modified according to the computed motion. If the simulation is carried out on the
CPU, the displaced geometry has to be sent to the GPU in every animation frame for
rendering purposes, thus decreasing performance. Therefore, the goal of this research
project was to evaluate how mass-spring systems can be implemented on the GPU most
efficiently, at the same time avoiding any transfer over the graphics bus for the rendering
of the deformed object.

2.6. MASS-SPRING SYSTEMS 57

In the following, we present and analyze different implementations of a mechanical
system on recent GPUs. Although we focus on mass-spring models, the concepts we
propose can also be employed in other applications. In many applications, retrieval and
evaluation of adjacent elements’ states is an intrinsic mechanism despite different rules
to update each part of the system.

In particular, we have implemented a mass-spring system based on regular triangu-
lar mesh structures. Edges are treated as springs connecting pairs of mass points. Under
the influence of external forces, e.g., forces exerted by user interaction, gravity, or colli-
sion, the object deforms into a configuration where the external forces are compensated
by opposing internal forces. In the most basic form, only the springs themselves apply
forces, seeking to preserve their rest length when compressed or stretched.

Furthermore, we demonstrate a mass-spring system based on irregular tetrahedral
grids. Here, volume preservation as proposed by Lee et al. [LTW95] was included. The
proposed implementation is distinct from previous approaches in that physics-based
simulation and rendering of deformable bodies is performed entirely on programmable
graphics hardware. For example, forces applied to a vertex are computed and accu-
mulated in parallel fragment units. Additionally, displaced vertex coordinates can be
directly rendered without any read-back to CPU memory. In this way, a significant
speed up can be achieved both for the numerical simulation as well as for the render-
ing. Moreover, it is not only possible to display the surface of the body but also interior
properties, such as forces, because the entire body resides in GPU memory.

2.6.1 Theory

Starting with a volumetric body or surface representation, we imagine the mass of the
body or surface to be condensed at discrete vertices, which are connected to each other
via springs. Doing so, we get a representation based on single mass-points, which are
generally connected in an irregular way. Springs can rotate arbitrarily, and the forces
they exert on connected points are obtained from Hooke‘s law

Fij = Fij(xi, xj) = Dij

‖lij‖ − ‖l0ij‖
‖lij‖

· lij. (2.16)

Here, Dij > 0 describes the stiffness of the spring connecting points xi and xj , and
lij = xj − xi is the distance between these points. The rest length of the spring in its
initial configuration is denoted by ‖l0ij‖. The force Fij is acting on xi. For symmetry
reasons it is essential that Fij = −Fji. For every mass point, forces exerted by all

58 CHAPTER 2. SIMULATION

connected springs have to be accumulated. These forces should balance the external
forces F ext

i acting on a single mass point. As external forces are exerted continually,
the balance between internal and external forces has to be achieved dynamically.

In the current implementation, positions of mass points xi are updated with respect
to their velocity and acceleration using the Lagrangian law of motion

mi ẍi + ci ẋi −
∑
j∈Γi

Fij(xi, xj) = F ext
i (2.17)

with mi being the mass and ci the damping constant. Γi denotes the 1-neighborhood
of point xi. As forces Fij depend non-linearly on the positions of all mass points, the
equation of motion (2.17) yields in general a non-linear system of equations. To avoid
this, we restrict ourselves to explicit time integration. Given a time step dt, the new
position of each point is calculated using the Verlet integration. As this scheme does
not require point velocities to be explicitly calculated or stored, the current velocity is
always consistent with the current point position. New point positions xi can then be
computed as

xt+dt
i =

F tot
i

mi

dt2 + 2 xt
i − xt−dt

i ,

where the total force F tot
i is computed as

F tot
i = F ext

i +
∑
j∈Γi

Fij(x
t
i, x

t
j)− ci

xt
i − xt−dt

i

dt
.

As the force calculation is solely based on point positions at the current time step,
forces F tot

i as well as updated point positions can be computed in parallel. Since the
position update in general affects all springs, external and internal forces are no longer
in balance. This results in a dynamic behavior of the system. To guarantee convergence,
a reasonably small integration time step satisfying the Courant condition10 [CFL67] has
to be chosen.

2.6.2 Volume Preservation

We want to mention an addition to conventional mass-spring systems to enforce volume
preservation. It is well known that mass-spring simulations cannot preserve volume as
they are not based on a volumetric simulation. Therefore, stable situations can (and
will) occur where parts of the model are inverted. Since the springs are no longer

10See also Section 2.3.7

2.6. MASS-SPRING SYSTEMS 59

Figure 2.19: Illustration of volume preserving forces. For the red vertex vi, forces are calculated
with respect to the stretching of the springs ij, ik, il. The volume force F v at vertex vi in the
direction of the opposite face’s normal ensures that each element resists changes of its initial
volume.

stretched in this case, the model is in a totally stable configuration.
To avoid such an unwanted behavior, we introduce artificial volume preserving

forces as introduced by Lee et al. [LTW95]. We regard the volumetric body as an
irregular tetrahedral mesh with vertices used as mass points and edges interpreted as
springs. Then, based on its initial configuration, we can establish a rest length for ev-
ery spring and a rest volume for every tetrahedron. For a single mass point x, we then
collect additional forces for every adjacent tetrahedron e based on the actual volume ve

compared to its rest volume v0
e using an artificial volume stiffness parameter Dv:

F v
e = Dv(ve − v0

e) ne.

Here, ne is the (outfacing) unit-length normal of the opposite tetrahedral face. As points
might move, the normal has to be recalculated in every time step. Using this technique,
we avoid inverted tetrahedral elements since they would result in negative volumes.
The resulting force F v

e strongly pushes the tetrahedron e towards its initial state. All
internal forces acting on a single vertex are illustrated in Figure 2.19.

2.6.3 GPU Architecture and Functionality

Early generations of graphics processors were solely optimized for the rendering of
lit, shaded and textured triangles. The rendering pipeline was implemented by a set of
special-purpose but fixed-function engines, prohibiting the use of such chips in non-
rendering applications. Nowadays, this design is abandoned in favor of programmable

60 CHAPTER 2. SIMULATION

Vertex
Shader

Rasterizer
Fragment

Shader
Blending/

Ops

F
ram

ebuffer

...

...

Render To Vertexarray

Render To Texture
Texture Texture Texture Texture

Figure 2.20: Stages of the programmable graphics pipeline.

function pipelines that can be accessed via high-level shading languages integrated into
Direct3D or OpenGL [Mic02, MGAK03].

On current GPUs, fully programmable parallel vertex and fragment (or pixel) units
are available, which provide powerful instruction sets to perform arithmetic and logical
operations. In addition to computational functionality, fragment and vertex units also
provide an efficient memory interface to server-side data, i.e., texture maps and frame
buffer objects. Not only can application data be encoded into such objects to allow for
high performance access on the graphics chip, but rendering results can also be written
to such objects, thus providing an efficient means for the communication between suc-
cessive rendering passes. Figure 2.20 gives an overview of the rendering pipeline as it
is implemented on last generation GPUs.

A GPU can be seen as a parallel SIMD11 stream processor. The input data are
streams of vertices, which are then processed by the programmable vertex stage. In
the rasterization stage, the stream of vertices (defining a set of primitives, e.g., trian-
gles, lines, points) is converted into a stream of fragments, where each fragment covers
a pixel of every primitive. These fragments are processed in the highly parallel pro-
grammable fragment (pixel) stage. Before the fragments are written into the frame
buffer, the blending stage combines the incoming fragments with the fragments already
stored in the frame buffer.

In recent years, a popular direction of research is leading towards the implementa-
tion of general techniques of numerical computations on graphics hardware [HBSL03,
BFGS03, KW03b, Krü06]. This research is mainly driven by the fact that the GPU’s
floating point performance and memory bandwidth outperforms current CPUs by far.

11Single Instruction Multiple Data

2.6. MASS-SPRING SYSTEMS 61

Additionally, the GPUs computational power is growing 2–3 times faster than Moore’s
Law. The results of these efforts have shown that for compute-bound applications as
well as for bandwidth-bound applications, the GPU has the potential to outperform
software solutions. However, this statement is valid only for such algorithms that can
be compiled to a stream program, which then can be processed by SIMD kernels as
provided on recent GPUs. Moreover, the local memory on GPUs is limited; thus the
algorithms are required to be adapted carefully to meet this restriction.

2.6.4 GPU Implementation

In the following, we discuss the implementation of mass-spring systems on the graph-
ics hardware architecture introduced in Section 2.6.3. Typically, the implementation
requires the following steps:

1. Calculation and accumulation of spring forces at mass points

2. Time integration of mass points

3. Update of point positions

As the first step requires adjacent points to be accessed, a GPU data structure able
to efficiently perform this operation needs to be developed. In the following we will
investigate the use of two different data structures in this particular scenario—a point-
centric and an edge-centric data structure. Depending on which data structure is used,
mass-spring simulation is implemented as shown in Algorithm 4 and 5.

The major difference is the way spring forces are calculated. In the point-centric
approach, for every mass point adjacency information is gathered. In the edge-centric
approach, every edge computes its spring force only once and scatters this force to the
mass points it connects.

Point-Centric Approach (PCA)

In the point-centric approach, a surface point needs to maintain its current and last
position for time integration, its mass, and references to all adjacent points including
spring stiffness and rest length. Consequently, the memory requirement for each vertex
is not constant and depends on its valence (the number of incident edges).

On the GPU, per-point attributes and references are stored in equally sized 2D tex-
ture maps. We store references into a 2D texture in a single float component, and we
use shader arithmetic to decode the appropriate 2D texture coordinates. A stream of

62 CHAPTER 2. SIMULATION

Algorithm 4 Point-centric mass-spring system
for all mass points i do

initialize total force Fi

// Gather force
for all neighboring mass points j do

calculate spring force Fij

add Fij to total force Fi

end for
update vertex position xi

end for

as many fragments as there are points is generated by rendering a view plane aligned
quadrilateral that covers exactly this number of pixels. In the fragment units the point-
centric algorithm is carried out by fetching attributes of adjacent points from the re-
spective texture maps. Forces are then calculated and used to update the position as
described above. These positions are written into an additional render target, which
becomes the container of point coordinates in the next simulation pass.

Using the proposed data structure, two different realizations of mass-spring simu-
lation on the GPU are possible. First, if all vertices have the same valence, all com-
putations necessary to update mass point positions can be performed in one rendering
pass. The execution has to be broken into multiple passes only if the valence exceeds
the number of available texture units. Second, if the valence is not constant, the compu-
tation has to be split into multiple rendering passes. To avoid processing of points that
have no further neighbor, a particular texture layout can be employed. We introduce
this layout in the next Section 2.6.5 when discussing irregular volumetric meshes.

The point-centric approach comes at the expense of calculating each spring force
twice as every spring is incident to two mass points. Moreover, the data structure
becomes very inefficient for large, irregular valences. Since as many textures as the
maximal valence of the mesh are required, the number of memory access operations as
well as the amount of memory to be kept can become the bottleneck of the simulation.

Edge-Centric Approach (ECA)

An edge-centric data structure overcomes the aforementioned drawbacks of a point-
centric approach. For each edge, references to both incident points as well as the spring
stiffness and rest length are stored in an appropriately sized edge texture. In a first
rendering pass, spring forces are calculated and rendered into a texture target—the
force texture. As there are three times more edges than points in a triangulation, this

2.6. MASS-SPRING SYSTEMS 63

Algorithm 5 Edge-centric mass-spring system
for all mass points i do

initialize total force Fi

end for
for all springs ij do

calculate spring force Fij

// Scatter force to incident mass points
add Fij to total force Fi of left mass point
add Fij to total force Fj of right mass point

end for
for all mass points i do

update vertex position xi

end for

texture is different in size than the texture keeping point coordinates— the point texture.
The problem now becomes to scatter the computed forces to the respective points, and
for every point to accumulate the received contributions. Such an operation is not
supported on recent GPUs, and gathering the forces using a point-centric data structure
results in the same problems as described above.

To enable GPU scattering, we harness the power of vertex processing. For every
edge, a point primitive is rendered twice into a render target that has the same size as
the point texture. First, primitives are rendered to the respective position of the left mass
point of each edge. In the second pass, the target position is the right mass point in this
texture. As both target positions are already stored in the edge texture, this structure can
directly be rendered as server-side vertex array. A vertex shader program decodes the
stored references into appropriate point coordinates to determine the respective raster
position in the render target. In every pass, the force texture is used as additional vertex
attribute array. Forces are negated in the fragment shader of the second pass, before they
are accumulated in the current render target. In this way, multiple points are rendered
into the same entry of a point-centric render target, which finally stores the force per
mass point.

Independent of the points’ valences in the mesh, the edge-centric approach only
requires four rendering passes. The first three passes operate as just described, and in
the fourth pass the time integration of mass point positions is performed using computed
per-point forces. In addition, forces are only computed once for each edge, reducing
the number of arithmetic operations and texture fetches to be performed.

64 CHAPTER 2. SIMULATION

2.6.5 Irregular Volumetric Models

In the following, we restrict the discussion to tetrahedral meshes, and we include the
volume preservation described in Section 2.6.2. As the volume preservation requires
the information of neighboring tetrahedral elements, storing only edges as described
above is not sufficient. To develop an appropriate data structure for this kind of meshes
we first have to think about the operations to be performed on this structure.

Considering one tetrahedral element, for each of the four corner points a force vector
has to be computed. This vector depends on the elements’ edge lengths and volumes as
well as the respective rest and stiffness values. For each mesh vertex these forces are
finally summed up by looping over all incident tetrahedra.

So-called dependent texture fetches slow down the performance considerably. De-
pendent texture fetches read from a texture address that has been determined from a
texture value that was fetched earlier. Such operations prevent the GPU from issu-
ing all texture fetches in parallel, and it is therefore desirable to have as few fetches
depending on each other as possible.

If we investigate the aforementioned approach, it is easy to see that it requires four
(internal) rendering passes, each pass performing four dependent texture fetches as the
shader program first has to read the indices of the four corner points. This makes a total
of 16 dependent fetches (one level of indirection) per tetrahedron and simulation step.

A more efficient data structure is based on the observation that to predict the dy-
namic behavior of the mass-spring model, every mesh vertex v must calculate the ex-
erting force vector in each frame. This vector is influenced by the one-ring neighbor-
hood around v, i.e., all mesh vertices that are connected to v via a spring. To account
for volume preservation, every vertex computes the volume loss or gain of all adjacent
tetrahedra and tries to correct this change by an additional displacement. Therefore,
access to all tetrahedral elements sharing the center vertex v is required. Since these
operations are performed in parallel for every vertex in the mesh, they are perfectly
suited for an implementation on data parallel stream architectures such as GPUs.

To optimally exploit the architecture of recent GPUs (including parallel computa-
tions and high memory bandwidth), we have integrated volume preservation into the
point-centric data structure. First, a 2D vertex texture is created, which stores mesh
vertices in the RGB color components. We then construct a sequence of equally sized
2D textures, each of which encodes one of the tetrahedral elements adjacent to the re-
spective vertex in the vertex texture. Tetrahedra are encoded by three references into
the vertex texture and a stiffness value as well as three spring rest lengths and the rest
volume of the tetrahedron. These values are stored in a pair of RGBA textures.

2.6. MASS-SPRING SYSTEMS 65

Algorithm 6 Volumetric mass-spring system
for all points xi do

for all tetrahedra e incident on xi = xe
0 do

// via three texture fetches
get center vertex coordinate xe

0

get corner indices i1, i2, i3, get element stiffness De

get rest spring lengths l01, l
0
2, l

0
3, get rest volume v0

e ,
// via three dependent fetches
get coordinates of xe

1, x
e
2, x

e
3 through i1, i2, i3

calculate force at xe
0

add to total force F e
0

end for
end for

On a per-vertex basis, we keep track of forces due to compression or stretching
by following the references to connected mass points. In a fragment shader, exerted
forces are computed for every vertex in parallel, and at every node the resulting forces
are accumulated. If the force calculation is not executed per tetrahedron but per mass
point, only three dependent fetches are needed per point, making a total of 12 such
operations per tetrahedron and simulation step. Note that the index of one of the points
(the current center vertex) is already known and does not need to be fetched. In pseudo
code notation the program reads as in Algorithm 6.

Valence Textures

The presented data structure has the drawback that the texture sequence must be large
enough to keep a number of references equal to the maximum valence of any of the
mesh vertices. In typical meshes, however, we see a rather inhomogeneous distribution
of valences. For instance, in the meshes we have used to demonstrate our approach
valences ranging from 6 to 32 can be found. To avoid the memory overhead that is
introduced by storing for every vertex as many neighbors as the maximum valence in
the mesh, we construct different sized textures.

Initially, mesh vertices are sorted with respect to their valence. Then, we recursively
generate a sequence of 2D textures at ever decreasing size, which store the topology and
additional parameters. We build a 2D texture large enough to keep all vertices, and we
construct a list of Vmin equally sized textures, where Vmin is the minimum valence of
all vertices. These textures are filled with respective references into the vertex texture.
Note that the layout of values in these textures is with respect to decreasing valence
from top/left to bottom/right (see Figure 2.21). We then build the remaining Vmax−Vmin

66 CHAPTER 2. SIMULATION

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

V_0 V_1 V_2 V_3

Figure 2.21: Sequence of valence textures. The smallest square contains all points that have
highest valence. This results in valences in the range V0. The next bigger power-of-two square
contains all vertices from the smallest square, and it is filled with vertices with remaining highest
valences. Therefore, the range of valence of the new vertices can be determined as V1. This can
be repeated until no vertices are left, resulting in a sequence of power-of-two textures.

textures of reduced size by removing all vertices with a valence equal to Vmin from the
texture, and we continue the recursive process with this texture. This procedure is
repeated until all vertices have been discarded.

In each animation frame, a set of quadrilaterals covering as many fragments as there
are values in the corresponding texture from the list is rendered, and force contributions
are computed for each remaining vertex. Already accumulated results are rendered into
a texture render target, which can be accessed in upcoming passes to retrieve summed
values. To account for the differently sized render targets, the viewport is adjusted in
each rendering pass.

Element-Centric Approach

To include volume preservation into the edge-centric approach as described above, an
appropriately sized tetrahedra texture has to be stored. Therefore, we call the resulting
method element-centric. Besides updating spring forces, volume repulsion forces have
to be calculated for every tetrahedron as shown in Algorithm 7.

In a first rendering pass, for every tetrahedron the geometry information is gathered
using four dependent texture fetches. Then, the respective spring (edge) forces as well

2.6. MASS-SPRING SYSTEMS 67

Algorithm 7 Volumetric element-centric mass-spring system
for all mass points i do

initialize total force Fi

end for
for all tetrahedra e do

// via three texture fetches
get corner indices i0, . . . , i3
get rest length for each edge l001, l

0
02, l

0
03, l

0
12, l

0
13, l

0
23

get element stiffness De, get rest volume v0
e

// via four dependent texture fetches
get vertex coordinates xe

0, . . . , x
e
3 through i0, . . . , i3

// Force calculation
calculate spring force for every edge F01, F02, F03, F12, F13, F23

calculate volume force for every vertex F v
0 , . . . , F v

3

// Scatter force to incident mass points
add F v

0 + F01 + F02 + F03 to total force F e
0 of 0th vertex of e

add F v
1 + F12 + F13 − F01 to total force F e

1 of 1st vertex of e
add F v

2 + F23 − F20 − F21 to total force F e
2 of 2nd vertex of e

add F v
3 − F03 − F13 − F23 to total force F e

3 of 3rd vertex of e
end for
for all mass points i do

update vertex position xi

end for

as volume forces can be determined for each corner vertex. These values are written
to four force textures of the same size employing the multiple render targets exten-
sions, e.g., OpenGL ARB draw buffers extension. Then, four tetrahedral scatter-
ing passes scatter the appropriate forces to the respective position in the vertex texture,
where the final forces are accumulated.

2.6.6 Discussion

In the following, we will evaluate and compare the developed GPU data structures. In
particular, memory requirements as well as the number of texture fetches and arithmetic
operations are compared for point-centric and edge-centric approaches. We further
distinguish between texture fetches and dependent texture fetches, with the latter ones
being dependent on the result of an earlier texture look up. Such fetches are known to
be a potential bottleneck in GPU applications as the pipeline has to be stalled until the
result of the first texture fetch is available.

68 CHAPTER 2. SIMULATION

Analysis

In this section, N denotes the maximal valence of a vertex in a triangulation. The
number of vertices and edges are denoted nv and ne, respectively. For regular meshes,
nv and ne are related by N = 2ne/nv. In the general case, N can be significantly larger.

Table 2.5 shows the statistics for the point-centric (PCA) and the edge-centric (ECA)
approach. In PCA, for every mass point and every adjacent point the reference to this
point, the stiffness of the spring connecting both points, and the spring’s rest length are
encoded in an RGB texel. In ECA, two references to the points connected by the spring,
spring stiffness, and rest length are encoded in one RGBA quadruple. While forces are
stored in an RGB texture map, an RGBA texture is used to keep each point position
and its mass. Throughout the discussion we do not consider the overhead introduced
by the Verlet time integration as it adds the same additional expense to both approaches,
i.e., 2nv texture fetches to get the current and the previous point position and about 10

arithmetic operations to perform the integration.

Performance Measurement

On our target architecture, a Pentium4 3 GHz processor equipped with an ATI X800
XT card, we can render about 240 million points per second from the server-side edge
texture as described above. Even for the largest mesh we consider in our investigations,
consisting of 5122 vertices, this throughput allows us to perform GPU scattering in ECA
about 480 times per second. As will be shown below, this time is justifiable compared
to the time required by force calculation and time integration.

For a regular triangular mesh of valence 6 as shown in Figure 2.22 (a), the PCA
requires nv + ne more texture fetches than ECA and the same number of dependent
fetches. In addition, the number of operations to be performed in the fragment units
is slightly increased. The memory requirement of ECA, on the other hand, is slightly
higher compared to PCA. This is due to the texture needed to store the resulting forces
of the first pass. As can be seen in Table 2.6, due to the lower number of arithmetic
and memory access operations, even for regular meshes exhibiting rather low valence,

mem. RGB mem. RGBA tex. fetches dep. tex. fetches ops

PCA N · nv nv nv + N · nv N · nv 10 N · nv

ECA ne ne + nv ne 2 ne 14 ne

Table 2.5: Comparison of memory requirement, texture fetches, and arithmetic operations for
the point-centric approach (PCA) and the edge-centric approach (ECA).

2.6. MASS-SPRING SYSTEMS 69

(a) (b)

Figure 2.22: GPU cloth simulation: (a) A cloth patch fixed on 4 points under influence of
gravity. (b) Interaction of different objects in an example scenario. The arrows describe the
direction of wind forces and additional forces applied to the balls.

force calculation force accumulation Verlet integration total

PCA 1282 0.54 ms 0.20 ms 0.74 ms
ECA 1282 0.40 ms 0.12 ms 0.20 ms 0.72 ms

PCA 2562 2.34 ms 0.74 ms 3.08 ms
ECA 2562 1.76 ms 0.52 ms 0.74 ms 3.02 ms

PCA 5122 9.82 ms 3.18 ms 13.0 ms
ECA 5122 7.34 ms 2.08 ms 3.18 ms 12.6 ms

Table 2.6: Performance comparison (ATI X800 XT) between the point-centric (PCA) and edge-
centric (ECA) approach. All timings are measured for a regular mesh with valence 6.

ECA outperforms PCA in terms of runtime.

For irregular meshes, on the other hand, the benefits of ECA will grow substantially
as ECA does not depend on the maximal valence of the mesh. With increasing valence,
both memory requirements and texture fetch operations of PCA will increase as well.
Moreover, a potentially large number of rendering passes has to be performed. Even
if an optimized texture layout is employed to minimize the number of fragments to be
processed, this texture cannot be packed densely in general and thus introduces some
overhead in the current application. Since each successive rendering pass covers less
pixels, the setup costs for a single rendering pass become more and more noticeable.
For example, PCA performs 1.6 times slower in total for a 2562 mesh with valences in
the range from 3 to 12.

The most crucial limitation of ECA in the current scenario is with respect to ad-
ditive blending in the render target that is used to accumulate the force contributions.

70 CHAPTER 2. SIMULATION

As 32 bit floating-point blending was not supported on any GPU when this project was
developed, force accumulation was performed inadequately in 8 bit fixed-point pre-
cision. In contrast to PCA, where force accumulation is carried out in the fragment
shader with 24 bit floating point precision on an ATI Radeon X 800 graphics cards, nu-
merical precision is therefore a problem in ECA. However, very recent graphics cards
(e.g., NVIDIA 8800 GTX) overcome this limitation as they allow for full precision
floating-point blending. Examples for a cloth simulation environment based on our
PCA implementation for regular meshes are shown in Figure 2.22 (a) and (b).

Volumetric Objects

Figure 2.23 shows deformations on volumetric objects that have been performed using
the proposed GPU mass-spring system. As our implementation accelerates both sim-
ulation and rendering of the deformed bodies, our timings include the entire system.
Table 2.7 shows the timings for differently sized models. The peak performance is
achieved on the ATI Radeon X800 with about 84, 000 tetrahedral elements. For larger
models, simulation performance basically remains the same, but rendering becomes
significantly slower due to the increased geometry load.

When comparing our results to those published in [THMG04], we recognize a
speedup of about a factor of 20. Our peak-rate is 8.9 million tetrahedra per second
(TPS) compared to 310 thousands TPS (including rendering) reported by Teschner et
al. Please note that—as it is typical for explicit time integration schemes—rendering
does not take place in every simulation frame, but in every fifth step, such that we
achieve a visual update rate of about 50 Hz. If the net simulation time excluding ren-
dering is compared, we are still faster by a factor of about 10.

However, the drawback of our method is that it introduces a significant memory
overhead. Neighboring tetrahedra are stored for every vertex separately, hence each
tetrahedron is stored four times in total. Furthermore, as tetrahedra share common

Figure 2.23: Interactive GPU-based deformations of the bunny model.

2.6. MASS-SPRING SYSTEMS 71

Model #Tetrahedra Computation & TPS rating FPS
rendering time [ms]

Cuboid 5012 2.70 1854440 370
Liver 7536 2.80 2690352 357

Bunny 9804 2.95 3313752 338
Double Bunny 19608 3.26 6019656 307

Large Bunny 84104 8.26 8999128 121

Table 2.7: GPU simulation performance rates (including rendering) for volumetric meshes on
ATI Radeon X800. As the integration time step is fixed to 4ms, a framerate of 250 fps or above
denotes real-time simulation.

edges, spring forces are calculated multiple times, depending on the valence of the
adjacent vertices.

Note that due to the restrictions on floating-point blending operations on graphics
hardware up to the NVIDIA GeForce 7 Series, the element-centric approach described
in Section 2.6.5 has not been implemented. However, since 32 bit floating-point blend-
ing is available on NVIDIA GeForce 8800 graphics cards, the element-centric approach
becomes very attractive. This approach is independent of the mesh valences, requires
less amount of memory and is expected to be faster than the point-centric implementa-
tion on current graphics hardware.

Explicit Time Integration

Due to the Courant condition there are hard constraints on the largest time step for
which stable simulation can still be achieved. In particular, the stiffer the materials are,
the smaller the time steps have to be chosen, resulting in a high numerical workload.
Because on current GPUs floating-point precision is limited to 32 bit, and numerical
errors thus accumulate rather fast, stability cannot be guaranteed for very stiff materi-
als. In particular, this prohibits the simulation of physical materials, since the elastic
modulus of such materials is in the range 104–1012. Therefore, GPU mass-spring sys-
tems are limited with respect to both the model size and the spring constants. On the
other hand, implicit time integration schemes require a system of linear equations to be
solved on the GPU. In the case of regular meshes, the resulting sparse matrices can be
represented by a few diagonals of non-zero elements, and thus linear algebra operations
can be performed efficiently on the GPU [KW03b]. For irregular meshes, the required
GPU data structures (for scattered-sparse matrices) are less efficient [KW03b], and thus
an optimized CPU approach is likely to outperform an implicit GPU implementation.

72 CHAPTER 2. SIMULATION

Tejada and Ertl [TE05] describe how to solve an implicit mass-spring system on the
GPU using a conjugate gradient method for the derived system of linear equations. The
basic idea of this method is the reformulation of the Lagrangian equation of motion into
a constant and a time-dependent part as described by Baraff et al. [BW98]. At runtime,
the matrix of the system of linear equations derived by implicit Euler time integration
is updated to take the current mesh deformation into account. However, from the expe-
rience we have made with the optimized CPU multigrid solver for the corotated strain
formulation, we expect a CPU solution based on our multigrid framework to be consid-
erably faster than the GPU implementation suggested by Tejada. It is worth noting that
the multigrid framework can be easily adapted to handle implicit mass-spring systems,
too. The matrix structure does not change, but the matrix values are continuously being
changed by the update procedure based on the deformed vertex positions. However, the
Galerkin update of the multigrid hierarchy can be performed at very high rates using
our acceleration structures as has been shown in Section 2.5.

2.7 Results and Validation

2.7.1 Real-Time Multigrid Simulation Framework

In the following, we give several examples that demonstrate the efficiency of the pro-
posed multigrid method. The models used in these examples are shown in Figure 2.24.
All experiments were run on an Intel Core™ 2 Duo 6600 2.4 GHz processor equipped
with 2 GB RAM. Since the simulation performed in 32 bit floating point precision in
some settings—especially for heterogeneous materials—fails to converge, all numer-
ical operations are calculated with double floating-point precision in our framework.
Since current GPUs only support 32 bit floating-point arithmetic, a GPU implementa-
tion of the finite element framework has not been considered in this work. We now dis-
cuss the simulation of three different types of strain—Cauchy strain, corotated Cauchy
strain, and Green strain.

Linear Cauchy Strain

As shown in Figure 2.25, the multigrid method scales linearly with the number of ele-
ments, and it achieves excellent performance rates even for large models. For the em-
ployed example of triangular finite elements in a 2D domain, interactive performance
can still be achieved for half a million simulated elements. It is worth noting that this
yields a sparse system matrix of dimension 2 · 5132 × 2 · 5132.

2.7. RESULTS AND VALIDATION 73

Liver (8k tets) Breast (10k tets) Bunny (11k tets)

Bridge (25k tets) Horse (50k tets) Dragon (67k tets)

Figure 2.24: Some tetrahedral models used throughout the discussion are shown. The surfaces
of the tetrahedral simulation meshes are rendered.

We discuss the performance results for 3D simulations using tetrahedral elements
in much more detail. In Table 2.8, timings for various models using nested and non-
nested hierarchies of different depths are listed. Tetrahedral meshes with up to 200,000
elements can be simulated interactively using the linear Cauchy strain measure.

Particularly in the last example of Table 2.8, where a deeper hierarchy allows the
multigrid approach to reach its full potential, the method is considerably faster than
implicit approaches utilizing the conjugate gradient method. In contrast to explicit
methods, the implicit multigrid solver enables much larger integration time steps and
guarantees stability at the same time. Even more importantly, the time step does not
depend on the material stiffness. This property enables stable simulations of heteroge-
neous bodies with an elastic modulus varying from 103 N/m2 to 1012 N/m2.

In Figure 2.26, different stiffness values have been assigned to different parts of
a finite tetrahedra mesh, which was constructed from a triangular horse model. In
particular, all four legs exhibit very high stiffness while the abdomen is made of soft
material. Consequently, the abdomen moves to the ground due to gravity while the legs
keep the rest of the horse in shape. Figure 2.27 shows the influence of wind forces and
gravity to bars of different density and stiffness. As the force is constant everywhere,
softer bars are deformed much more significantly than stiffer ones.

74 CHAPTER 2. SIMULATION

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384 65536 262144

ti
m

e
[m

s]

triangles

Figure 2.25: This figure illustrates the linear time complexity of the proposed multigrid solver.
For the Cauchy strain simulation of a 2D quad under gravity, ever more triangular finite elements
are used by applying a regular subdivision scheme. This leads directly to a nested hierarchy with
up to 10 levels. The time for one multigrid V-cycle is measured in milliseconds.

Model # Level # Tet # Vert TPS Time [ms]

Liver 2* 1467 464 1110 0.90
Bridge 3 3072 825 545 1.83

Liver 3* 8078 1915 189 5.29
Breast 2* 10437 2542 174 5.75
Bunny 2* 11206 3019 125 8.00
Bridge 4 24576 5265 76 13.20
Horse 3* 49735 12233 30 33.30

Dragon 4* 67309 16943 17 58.50
Bridge 5 196608 37281 10 98.80

Table 2.8: Timing results in time steps per second (TPS) for a single V-cycle for different
models using the linearized Cauchy strain measure. Since a single simulation thread is used,
only one kernel of the dual core CPU is employed. The star ∗ denotes the use of a non-nested
grid hierarchy.

In comparison to the solution proposed by Bro-Nielsen and Cotin [BNC96], our
multigrid solver can effectively exploit the sparsity of the problem. Bro-Nielsen and
Cotin suggested to use matrix pre-inversion as they observed this method of solution
to be fastest at runtime (ignoring the time-consuming pre-processing phase). However,
this observation is only true for rather small models, since the inverse matrix is gener-
ally not sparse anymore, and thus the CPU’s floating point units can be fully exploited.
On the other hand, if larger models are applied the dense inverse matrix introduces

2.7. RESULTS AND VALIDATION 75

Figure 2.26: The deformation of a tetrahedral horse model is shown. From left to right: the
initial model, the model exhibiting homogeneous and inhomogeneous stiffness under gravity,
and the heterogeneous model under additional external forces.

Figure 2.27: Visualization of the internal states (i.e., von Mises stress, see Section 3.4.5) of
three towers exhibiting different stiffness. A constant wind force is applied to all models. Stress
values are color-coded ranging from blue (low) to red (high). The volume rendering is achieved
with the techniques described in Chapter 3.

significantly more arithmetic operations compared to iterative approaches exploiting
the sparsity of the problem. In particular, if more than approximately 1,000 elements
are used, a conjugate gradient method operating on the sparse matrix data structures is
favorable to the dense pre-inversion approach on current CPUs.

The comparison to a diagonal pre-conditioned conjugate gradient method (see Fig-
ure 2.28 left) shows that the performance gain of our multigrid method increases with
the mesh size. This is due to the linear-time complexity of the multigrid approach,
which cannot be achieved by the conjugate gradient methods because the number of

76 CHAPTER 2. SIMULATION

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06

ti
m

e
[s

ec
]

#tetrahedra

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

ti
m

e
[s

ec
]

elastic modulus [N/m2]

Figure 2.28: Left: Comparison of the time required until convergence on a double logarithmic
scale for the multigrid method (solid line) and the diagonal pre-conditioned conjugate gradient
method (dashed line). The former method scales linearly with the number of tetrahedra, while
the latter one requires more and more iterations to achieve the same relative error of 10−2 in the
solution. The timings where measured using a cube model that was subsequently refined by the
split operation shown in Figure 2.11, and a fixed integration time step of 0.02 sec.
Right: Performance measurements for a bridge model consisting of 3k tetrahedral elements.
For ever stiffer materials, the conjugate gradient method (dashed line) requires more steps to
achieve the same relative error of 10−2 as the multigrid method (solid line). The elastic modulus
affects the performance of the conjugate gradient method significantly while it does not affect
the performance of the multigrid method. Only for extremely soft materials the performance of
the multigrid method drops down because forces cause only very local deformations that cannot
be solved for on a coarser grid.

required iterations grows with the matrix dimension. Even more importantly, both the
time step and the number of iterations until convergence of the multigrid approach do
not depend on the material stiffness as illustrated in Figure 2.28 on the right. Espe-
cially for stiff materials, the multigrid method taking advantage of multiple scales of
the problem is far superior to the ill-conditioned conjugate gradient method.

Corotated Strain

As already shown in Figure 2.6, the artifacts introduced by the linear strain measure can
almost entirely be avoided by using the corotational formulation of the linear Cauchy
strain. Extra costs are involved to update the system matrix according to the current
rotation frame. Consequently, the multigrid solver has to be updated, too. This is
more costly for a non-nested hierarchy (marked by a ∗ in the table) than for a nested
hierarchy. As shown in Section 2.5.7, matrix updates based on the novel 1-step stream
accelerated algorithm are roughly 2–3 times faster for nested hierarchies than for non-
nested ones. To improve the timings in the case of non-nested hierarchies, we clamp

2.7. RESULTS AND VALIDATION 77

matrix entries smaller than a certain threshold, e.g. 10−3, to zero. Thereby, the structure
of the restriction and interpolation matrix can be optimized, and the multigrid hierarchy
updates can be computed slightly faster. On the other hand, the convergence rate of the
multigrid method is not noticeably affected by these changes.

The timings given in Table 2.9 demonstrate, that most of the time is spent for matrix
reassembling. Updating and solving the system is typically less than a third of the
total time. The table lists in detail the time it takes to reassemble the system matrix
(“Assem.”) in the corotational setting and to built up the matrix hierarchy used by the
multigrid approach (“Update”). As the implemented system optionally uses multiple
threads for matrix reassembling, multigrid update and multigrid solve, the respective
timings for the multi-threaded variants on an Intel Core™ 2 Duo CPU are given, too.

ST MT MT
Model # Level # Tet # Vert Assem. Update Solve Total TPS Time

[ms] [ms] [ms] [ms] [1/sec] [ms]

Liver 2* 1467 464 7 1 5 13 126.0 7.9
Bridge 3 3072 825 15 2 3 20 62.0 16.1

Liver 3* 8078 1915 42 12 14 68 21.4 46.7
Breast 2* 10437 2542 49 10 23 82 16.5 60.6
Bunny 2* 11206 3019 57 11 23 91 15.6 64.1
Bridge 4 24576 5265 119 12 25 156 7.7 129.0
Horse 3* 49735 12233 285 77 74 436 3.1 322.0

Table 2.9: Timing statistics in milliseconds [ms] for different models using the corotational
simulation of linear strain. The major computational parts of the approach are analyzed. Beyond
the single threaded (ST) algorithm, a multi-threaded (MT) variant is measured on the dual core
architecture. The star ∗ denotes the use of a non-nested grid hierarchy.

Recently, corotated strain has become popular in the graphics community. Müller
and Gross [MG04] used element-based stiffness warping together with an optimized
conjugate gradient method to solve the respective system of linear equations. They
stated that 5000 tetrahedral elements can be simulated in 200 ms on an older Pentium 4
architecture. Additionally, they observed that the reassembling time is negligible com-
pared to the time required by the numerical solver. This is in contrast to our method,
where the multigrid solver is much cheaper than the reassembling process. Therefore,
we can roughly handle five times more tetrahedral elements within the same time using
a single simulation thread. Hauth and Strasser [HS04] proposed a similar method. For
337 tetrahedral elements they reported a simulation time of 15 ms per time step. They
achieve further speed-ups by performing the update of the corotational frame and thus
of the system matrix only in every 10th time step. However, this restricts the maximum

78 CHAPTER 2. SIMULATION

deformation that can occur between two consecutive time steps significantly. They
propose a hierarchical approach that determines the rotation on a coarser grid and prop-
agates it to a finer grid. However, this is only shown to be effective in combination with
the delayed update of the corotational frame.

In comparison to the conjugate gradient methods, a significant speedup can be
achieved by the multigrid approach. It was stated before that the time required by the
conjugate gradient solver is the bottleneck of the corotated simulation [HS04]. How-
ever, due to the significant speedup of the multigrid solver, the reassembling task is
now the most time-consuming part of the application. As a matter of fact, a perfor-
mance gain of up to 10 compared to the conjugate gradient method is achieved for
nested hierarchies (see Figure 2.29 left). Due to the fact that the performance is dom-
inated by the reassembling phase (and not by the multigrid hierarchy update), nearly
the same speedup can be observed for nested and non-nested hierarchies. However, for
stiffer materials the performance gain becomes ever better as illustrated in Figure 2.29
on the right.

It should be stated that the simulation of the corotated Cauchy strain is not uncon-
ditionally stable in contrast to the linear Cauchy strain. This is due to the fact that the

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06

ti
m

e
[s

ec
]

#tetrahedra

 0.01

 0.1

 1

 1000 100000 1e+07 1e+09 1e+11

ti
m

e
[s

ec
]

elastic modulus [N/m2]

Figure 2.29: Left: On a double logarithmic scale, timings are shown for the corotational sim-
ulation using the multigrid method including matrix reassembling and matrix hierarchy update
(solid line) and the conjugate gradient method (dashed line). Timings were measured using an
increasingly refined tetrahedral cube model (elastic modulus = 2 · 106 N/m2, integration time
step = 0.02 sec).
Right: Performance measures for a bridge model (3k tetrahedra). For ever stiffer materials, the
conjugate gradient method requires more steps to achieve the same relative error of 10−4 as
the multigrid method. The elastic modulus affects the performance of the conjugate gradient
method significantly while it does not affect the performance of the multigrid method. Only for
extremely soft materials the performance of the multigrid method drops down because forces
cause only very local deformations that cannot be solved for on a coarser grid.

2.7. RESULTS AND VALIDATION 79

element rotations are calculated explicitly. Thus, element rotations from the previous
time step are used in the current time step. Nevertheless, in all examples using time
steps between 20 ms and 30 ms we could not observe any instabilities. If the update of
the rotational frame is delayed to every fifth time step as proposed by Hauth and Strasser
[HS04], we quickly run into instabilities if larger forces are applied. Moreover, visual
artifacts can occur due to large rotational discontinuities immediately after the rotation
update. Therefore, we decided to perform the update in every frame, also achieving a
constant numerical workload for every time step. Furthermore, we interleave the rota-
tion update including the matrix reassembly and the solution of the system, which did
not impose any drawbacks. This means that the rotations from the second recent time
step are used within the current time step, but large discontinuities could not be ob-
served because rotations are updated in every frame. This implementation can roughly
double the performance on dual core architectures, since no communication besides the
synchronization of the threads is required.

Non-Linear Green Strain

Compared to the linear setting, real-time performance for the non-linear strain setting
can only be achieved if the number of elements is significantly reduced. However,
compared to the corotational setting the performance is lower by only a factor of about
2 (see Table 2.10). The table includes explicit timings for the evaluation of the system

ST MT MT
Model # Level # Tet # Vert Eval. Update Solve Total TPS Time

[ms] [ms] [ms] [ms] [1/sec] [ms]

Liver 2* 1467 464 15 2 7 24 44.4 23
Bridge 3 3072 825 33 2 5 40 29.5 34

Liver 3* 8078 1915 93 13 21 127 9.2 109
Breast 2* 10437 2542 121 12 32 165 6.5 155
Bunny 2* 11206 3019 151 13 31 195 5.9 170
Bridge 4 24576 5265 283 13 44 340 3.2 313

Table 2.10: Timing statistics in milliseconds for different models using the non-linear Green
strain measure. These include the evaluation of the system of non-linear equations and its
Jacobian at runtime (Eval.), the update of the multigrid solver of the Jacobian (Update) and the
solution time for one single Newton step (Solve). The total time in [ms] is given as well as the
time steps per second (TPS) required if multiple threads (MT) are spawned. The star ∗ denotes
the use of a non-nested grid hierarchy.

80 CHAPTER 2. SIMULATION

of non-linear equations and its Jacobian at runtime. Furthermore, the update of the
multigrid solver using the Jacobian matrix is shown as well as the solution time for one
single Newton step. It is worth to mention that in dynamic simulations, which typically
provide one with a good initial guess for the current solution, 1–2 Newton steps are
usually sufficient.

In the examples given in the table, the compression due to the assembly of the
system of equations is up to 3 : 1. For the liver model, only 33% of the total amount
of element monomials have to be evaluated. The worst compression is achieved for
the large bridge model, where the number of monomials is reduced to 40% of the total
amount. The amount of memory required to store the polynomials of the system of non-
linear equations and its Jacobian is considerable. However, for all of our examples the
total memory consumption of the application is still below 1 GB of RAM. In particular,
the polynomials of the system of non-linear equations and its Jacobian require roughly
800 MB for the largest 25,000 tetrahedral model. The number of monomials to be
evaluated at runtime ranges from one million for the smallest example to 40 million for
the largest one.

The multi-threaded variant shown in Table 2.10 uses multiple threads, each of which
evaluates a part of all polynomials. However, the performance gain is not significant
because the evaluation is mainly memory bound on our architecture and both CPU
cores use the same memory interface.

In comparison to other real-time approaches based on the Green strain tensor, our
timings are promising. Debunne et al. [DDCB01] stated to simulate a few hundred
elements in real-time on an admittedly outdated Pentium 3. However, due to the lim-
itations of the explicit time integration scheme, the performance strongly depends on
the stiffness of the simulated object. For the stiffest material with an elastic modulus
of 106 N/m2 they used 5000 time steps per second, and thus the number of elements
for which the simulation still achieves interactivity is significantly smaller. Picinbono
et al. [PDA00] and Zhuang and Canny [ZC99] reported similar performances for their
non-linear explicit methods. The Newton method applied in our solver is not uncon-
ditionally stable, since the system of equations K contains multivariate cubic polyno-
mials, and thus the Newton method can run into local minima. Nevertheless, we can
typically use larger time steps of up to 30 ms. Therefore, we can achieve a significantly
better performance for stiff materials in general. On the other hand, for unnaturally soft
materials, e.g. materials with an elastic modulus of 10 N/m2 as used in some previous
publications, explicit methods are likely to outperform our method on todays CPUs.

The efficiency and effectiveness of the non-linear solver is also demonstrated in

2.7. RESULTS AND VALIDATION 81

Figure 2.30: A simple example demonstrates the potential of the proposed non-linear simula-
tion engine. The bridge is discretized into 3k tetrahedral elements. Simulation and collision
detection with static obstacles are run at 30 time steps per second.

Figure 2.30, where large and global deformations of about 3,000 tetrahedral elements
including collision detection and response to static objects is performed in real-time.

Higher-Order Elements

In addition to linear finite elements discussed previously, higher-order elements can be
used in the simulation of the three strain types as well. In Table 2.11, we show timings
for quadrangular elements using bilinear interpolation and Serendipity tetrahedra.

From the performance measurements, one can see that higher-order elements can
still be used in real-time environments. Moreover, they allow for physically more accu-
rate results due to the improved interpolation of the finite element solution. To compare
the timings in Table 2.11 to linear elements, we consider the same number of vertices.
For that reason, the respective linear elements are subdivided to yield the same num-
ber of vertices as the simulation based on higher-order elements. In case of Cauchy
strain simulation, the simulation time for higher-order elements increases due to the
higher fill ratio of the system matrix (compared to linear elements). In case of coro-
tated strain, however, the matrix reassembly can be performed much more efficiently

82 CHAPTER 2. SIMULATION

Model # ele # vert Cauchy strain Corotated Strain Green strain
[ms] [ms] [ms]

quad (2D) 4096 4225 5 17 57
quad (2D) 16384 16641 21 56 228
quad (2D) 65536 66049 116 238 -

bridge (3D) 48 153 0.4 1.8 24
bridge (3D) 384 825 3.3 12.0 218
bridge (3D) 3072 5265 24.0 98.0 -

Table 2.11: Timing statistics of the simulation of higher-order finite elements using the three
strain measures. The total time required by one single time step is given in [ms]. In the 2D
quad example, quadrangular elements with bilinear shape function were used. In the 3D bridge
example, Serendipity tetrahedra were used.

in case of higher-order elements due to the reduced number of elements, and thus the
simulation times are noticeable faster. In case of non-linear simulation based on the
Green strain formulation, the simulation of higher-order finite elements comes at the
expense of more complex polynomials of higher order, which roughly doubles the sim-
ulation times compared to linear elements. We conclude, that higher-order elements
are strongly advantageous in the corotated setting, since they allow to reduce the num-
ber of simulated elements without affecting the accuracy of the results. Therefore, an
improved overall simulation performance can be achieved.

2.7.2 Comparison with Cholesky Solver

In a number of applications sparse direct solvers based on the Cholesky factorization
have shown to be very efficient. Botsch et al. state that a direct Cholesky solver is
superior to iterative solvers as well as multigrid solvers in the applications they have
tested (Laplacian and bi-Laplacian systems) [BBK05]. Fortunately, we could directly
compare our multigrid solver to the solver proposed by Botsch (based on the TAUCS
library [TCR03]). For this purpose we used various models and we abruptly applied
gravity to these models. Consequently, the multigrid solver could not benefit from the
initial guess as it typically does in dynamic simulation environments. Note that the
Cholesky solver as a direct solver can in no case benefit from an initial guess.

We choose the bunny model (11k tetrahedra), the bridge model (24k tetrahedra)
and the horse model (50k tetrahedra). In Table 2.12, we show the relative error and
solution times of both methods. The multigrid solver applied between 2 and 3 V-cycles.
Timings for both the multigrid solver and the Cholesky solver were measured on an

2.7. RESULTS AND VALIDATION 83

Multigrid Cholesky
model init/update [ms] error solve [ms] init/update [ms] error solve [ms]

Bunny11k 2218 / 11 0.051 14 295 / 175 3.7e-8 11
Bridge24k 1788 / 13 0.036 31 1266 / 761 1.5e-12 33
Horse50k 67916 / 81 0.19 70 1344 / 809 0.017 48

Table 2.12: Comparison of the multigrid solver with a direct Cholesky solver [TCR03] for
various models.

Intel Core™ 2 Duo 2.4 GHz. We also list the initialization time of both solvers as well
as the time required to update the system matrix in-place (the structure of the matrix
stays the same, but the data values change).

Table 2.12 shows that the Cholesky solver (at least for relatively small models)
achieves a significantly higher numerical accuracy. In addition, solution times of the
Cholesky solver are slightly faster. Nevertheless, the errors achieved by the multigrid
solver are visually sufficient. Thus, the deformations of the models do not change
when solving more accurately. Especially in dynamic simulations, where a good initial
guess is typically available, the multigrid solver is clearly superior in our experience.
For the measurements, we took a snapshot out of a dynamic simulation for the bridge
example. The multigrid solver achieved a relative error of 6.3 · 10−3 within 14 ms,
while the Cholesky solver required 28 ms yielding a relative error of 2.9 · 10−14. The
multigrid solver allows to trade performance for accuracy, thus yielding a more flexible
setup. On the other hand, if high numerical accuracy is required and/or a good initial
guess to the solution is not available (e.g., in a static elasticity problem), the Cholesky
solver is favorable. Generally, the initialization times are lower, and the same numerical
accuracy cannot be achieved with the multigrid solver in the same time.

However, the situation is totally different in simulation environments where the
system matrix changes frequently (corotated Cauchy strain, non-linear Green strain),
and thus the solvers have to be updated in every time step, too. Due to the novel 1-step
stream acceleration scheme (see Section 2.5.4) used in our multigrid framework, in-
place updates are several orders of magnitude faster than a respective in-place Cholesky
factorization. Therefore, in these scenarios the multigrid solver shows a great advantage
over the Cholesky solver.

2.7.3 Soft Tissue Validation

We have validated the simulation engine in the context of soft tissue deformations. We
performed measurements on a liver of a pig since its material parameters are known

84 CHAPTER 2. SIMULATION

Figure 2.31: Experimental setup of the soft tissue validation: The liver of a pig is placed in the
CT scanner. The carrier allows one to put different weights on the liver while it is scanned.

relatively well, and it can be obtained much easier than human tissue. To get a sim-
ulation model, the undeformed liver was digitized using a clinical CT scanner. In a
well-specified environment we put different weights on the liver and digitized the de-
formed organ again with the CT scanner. Styrofoam was put in between the liver and
the weight such that the surface of the liver is still clearly visible in the CT scan (Sty-
rofoam does not block x-ray radiation). We have used water in a plastic bin as weight,
since neither the water nor the plastic bin disturb the acquisition process. Styrofoam
was glued at the bottom of this bin. The experimental setup that carries this bin is
shown in Figure 2.31. After having scanned the deformed organs, the deformation of
the initial model under the same load was simulated using the finite element multigrid
approach.

In our experiment, we analyze the difference between the deformed surface of the
simulation model and the real data set. We extracted the object’s geometry from the
volumetric scans using the marching cubes algorithm [LC87]. The surface mesh of the
initial scan was then simplified [GH97], and a tetrahedralization was calculated using
the NETGEN package [Sch97], yielding a tetrahedral mesh of about 40,000 elements.
The material parameters were set homogeneously to an elastic modulus of 7500 N/m2

and a Poisson’s ratio of 0.4. We then simulated a load of 175 g (contact surface has
24 mm in diameter) acting on the liver model. The location of the force template to
be applied in the simulation is determined from the CT scan of the liver under load,
since it shows a clear mold of the weight. The result of the simulation can be seen

2.7. RESULTS AND VALIDATION 85

Figure 2.32: Soft tissue validation by means of a pig’s liver: The weight on the liver model
(left) is simulated (right). The average distance between the simulated and measured surface
was below the slice distance of the CT scanner.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120 140 160 180

D
is

ta
n

ce
 [

m
m

]

Timesteps

Maximal distance
Average distance

Figure 2.33: Surface distance error of liver experiment: The average distance error in the
dynamic simulation of a specific load on the liver quickly falls below 0.6 mm, which is the
accuracy of the CT scanner used for digitization. The maximum error is about 3 times higher
and occurs on the sharp boundary of the weight. Due to the limited resolution of the tetrahedral
mesh the error does not disappear.

in Figure 2.32. The distance of the dynamic simulation with respect to the surface
extracted from the scan of the deformed liver is plotted in Figure 2.33. For every vertex
of the simulation mesh, the shortest Euclidean distance to the deformed surface has
been determined. From that information, the average vertex distance and maximum
vertex distance as shown in Figure 2.33 have been obtained.

86 CHAPTER 2. SIMULATION

The results obtained with linear Cauchy strain are very good. This is due to the fact
that the liver is only locally compressed and thus elements do not rotate too much. On
the other hand, the precise material parameters of the real liver are not known. Our
best results where achieved with an elastic modulus of 7500 N/m2. In the literature,
a range of values from 3–40 kN/m2 can be found, where higher values correspond to
abnormal tissue and compressed tissue [YJH+01]. Therefore we have the feeling that
the assumed stiffness value was quite realistic for our ex-vivo experiments.

Chapter 3

Rendering

In this chapter, we focus on rendering aspects within the context of deformable objects
simulation. The main contribution is the development of an advanced render engine
on the GPU. It displaces and renders the deformable body according to the simulation
mesh. First, a triangular render surface can be bound to the simulation mesh yielding
high-quality visualizations of the surface of the deformable body. Second, a novel GPU
volume rendering technique especially designed for deformable tetrahedral meshes has
been developed. Analogously, the render engine can displace high-resolution tetra-
hedral meshes to achieve high-quality volume visualizations. Due to the system and
algorithm design, only minimal bus bandwidth is required to transfer data from the
CPU to the GPU for rendering purpose. The results of this chapter have been partially
published [GW05b, GW06b].

The reason why we have also considered volume rendering of deformable bodies
is twofold: First, volume rendering is useful to show internal structures of the deform-
ing object. Second, volume rendering allows us to analyze internal material properties
directly determined by the simulation, such as internal material stress or forces. The
challenge here is to visualize time-varying volumetric data given on dynamic unstruc-
tured grids.

In the following, we first summarize related work in this field, and we then briefly
describe very recent extensions of the programmable GPU rendering pipeline already
introduced in Section 2.6.3. In Sections 3.3 and 3.4, we describe the design of our
novel GPU render engine as well as the algorithms employed to deform and render
high resolution render meshes and grids. Finally, we demonstrate the results we have
achieved.

87

88 CHAPTER 3. RENDERING

3.1 Related Work

3.1.1 Render Surface

High-quality renderings of deformable objects is an ongoing demand in the graphics
community. Due to the limited resolution of the simulation grids in real-time applica-
tions, visualizations obtained from these grids are far below the rendering capabilities
of current graphics hardware. Therefore, typically high-resolution render meshes are
bound to the simulation grid, and they are displaced according to the deformations
calculated on the coarse simulation grid.

High-resolution render surfaces have been frequently applied to improve the visual
quality of animations [DDBC99, MDM+02, MKN+04, MG04, BK05, BPWG07]. All
of the referenced approaches typically use functions with compact support to bind the
high-resolution mesh to the simulation mesh. However, the deformed high-resolution
mesh has to be transferred to GPU memory for the final rendering, since all of the
calculations are performed on the CPU. Usually, this affects the performance of the
entire application significantly, yielding non-interactive behavior in the worst case.

3.1.2 Volume Rendering of Unstructured Grids

We now briefly review techniques for direct volume rendering of unstructured grids.
Object-space rendering techniques for tetrahedral grids accomplish the rendering task
by projecting each element onto the view plane to approximate the visual stimulus of
viewing the element. Three principal methods have been shown to be very effective in
performing this task: slicing, cell projection and ray-casting.

Slicing approaches can be distinguished in the way the computation of the sectional
polygons is performed. This can either be done explicitly on the CPU [WGTG96,
YRL+96], or implicitly on a per-pixel basis by taking advantage of dedicated graph-
ics hardware providing efficient vertex and fragment computations [WE98, WE01,
Wes01].

Tetrahedral cell projection [ST90], on the other hand, relies on explicitly computing
the projection of each element onto the view plane. Different extensions to the cell-
projection algorithm have been proposed in order to achieve better accuracy [SBM94,
WMS98] and to enable post-shading using arbitrary transfer functions [RKE00]. To
reduce visual artifacts that are typically for the cell projection approach, further im-
provements where achieved by Kraus et al. by applying correct perspective screen
space interpolation and logarithmic sampling of the pre-computed transfer functions

3.1. RELATED WORK 89

[KQE04]. Graphics hardware based approaches for cell projection have been sug-
gested, too [WKE02, WKME03b, WMFC02].

The most difficult problem in tetrahedral cell projection is to determine the correct
visibility order of elements. The fastest way is PowerSort [CMSS95, KLNR03], which
exploits the fact that for tetrahedral meshes exhibiting a Delaunay property the correct
order can be found by sorting the tangential distances to circumscribing spheres using
any customized algorithm. As grids in practical applications are usually not Delaunay
meshes this approach might lead to incorrect results, because topological cycles in the
data are not resolved correctly.

A different alternative is the sweep-plane approach [Gie92, SM97, SMK96, WE97].
In this approach the coherence within cutting planes in object space is exploited in order
to determine the visibility ordering of the available primitives. In addition, much work
has been spent on accelerating the visibility ordering of unstructured elements. The
MPVO method [Wil92], and later extended variants of it [CKM+99, SMW98], were
designed to account for topological information for visibility ordering. Techniques us-
ing convexification to make concave meshes amenable to MPVO sorting have been
proposed in [RE03]. Recently, a method to overcome the topological sorting of un-
structured grids has been presented [CICS05] and extended to account for large meshes
[CBPS06]. By using an initial sorter on the CPU a small set of GPU-buffers can be
used to determine the visibility order on a per-fragment basis. Based on the early work
on GPU ray-casting [PBMH02] a ray-based approach for the rendering of tetrahedral
grids has been proposed in [WKME03a].

Besides the direct volume rendering of tetrahedral grids there has also been an on-
going effort to employ GPUs for iso-surface extraction in such grids [DK91]. The cal-
culation of the iso-surface inside the tetrahedral elements was carried out in the vertex
units of programmable graphics hardware [Pas04, RDG+04]. Significant accelerations
were later achieved by employing parallel computations and memory access operations
in the fragment units of recent GPUs in combination with new functionality to render
constructed geometry without any read-back to the CPU [KSE04, RDG+04, KW05].
To avoid the explicit construction of iso-surface geometry, approaches based on tetrahe-
dra slicing [WE98] or cell projection [RKE00, WKE02, WKME03b, WMFC02] have
been used as well for iso-surface rendering. Very recently, an optimized hierarchical
CPU approach for iso-surface rendering has been proposed [WFKH07].

90 CHAPTER 3. RENDERING

3.2 Direct3D 10 Graphics Pipeline

In this chapter, we exploit the GPU for rendering purpose. We have already introduced
the architecture of GPUs in Section 2.6.3. Although early generations of graphics cards
were optimized for this purpose using a fixed-function pipeline, the programmabil-
ity enables the use of advanced rendering techniques. For example, the possibility to
displace vertex positions in the vertex stage allows us to effectively deform geometry
directly on the GPU.

The basic programmable rendering pipeline has already been illustrated in Figure
2.20. Note that very recent hardware architectures include an additional programmable
stage—the geometry shader. This stage allows us to amplify the incoming stream of
primitives. In other words, from each incoming primitive, an arbitrary (but bounded
above) number of output primitives can be generated. The general pipeline as it is
proposed by Direct3D 10 [BG05] and implemented on latest GPUs is shown in Figure
3.1. Due to the great impact of the geometry shader on the hardware architecture,
current graphics hardware implies a strong performance impact if the geometry shader
is to be used to its full potential, i.e., on NVIDIA GeForce 8800 cards. For that reason,
all implementations and timings given in the following were measured without the use
of the geometry stage. However, some of the presented algorithms can benefit from the
geometry shader stage once its performance is comparable to the other shader stages.

VertexShader Stage

Geometry Shader Stage

Pixel Shader Stage

Input Assembler

Rasterizer Stage

Output Merger

Input Data

Output Data

Stream Output Stage

Memory Resources:
Buffers,
Textures,

Constant Buffers

Buffer

Buffer, Texture, Constant Buffer

Buffer

Texture, Constant Buffer

Texture, Constant Buffer

Texture, Constant Buffer

States

Figure 3.1: Stages of the Direct3D 10 graphics pipeline implemented on recent GPUs.

3.3. DEFORMABLE SURFACE RENDERING 91

3.3 Deformable Surface Rendering

We now describe an advanced method to update a render mesh, i.e., a triangular mesh,
on the GPU—according to uploaded displacements of the boundary of the simulation
mesh. In this way, high-quality renderings of deformable bodies can be obtained. Since
bandwidth requirements are significantly reduced, these renderings can be achieved
at highly interactive rates. Vertices of the render mesh are bound to vertices of the
simulation mesh via interpolation weights, which are pre-computed and stored on the
GPU. At runtime, only the computed displacements of each simulation vertex need to
be transferred, and thus the deformation of high-resolution meshes can be driven by the
simulation engine at minimum bus transfer. Furthermore, high parallelism and memory
bandwidth of recent GPUs can be exploited to update the render mesh.

3.3.1 High-Resolution Render Mesh

The high-resolution render surface, which resides in local GPU memory, is represented
as an index array that contains references into a geometry image with associated per-
vertex attributes for every triangle. Both the index array as well as the geometry image
are internally stored as 2D textures. Every vertex in the geometry image gets assigned
additional references into the displacement texture that is sent from the CPU. These
references are accompanied by barycentric interpolation weights. Four references are
stored, one for each vertex of the (surface) tetrahedron closest to the vertex of the
render mesh. Once displacements of the simulation mesh are uploaded to the GPU,
a fragment program fetches respective displacement coordinates ui and interpolation
weights bi and computes the new vertex position as

v = vorig +
3∑

i=0

ui · bi, (3.1)

where vorig is the undeformed reference position. If additional vertex attributes are
sent with the displacement texture, e.g. color, these values are interpolated using the
same weights if desired. The fragment output is rendered into a 2D texture render tar-
get. To finally render the displaced triangular mesh, different possibilities are available
on recent GPUs: for example, OpenGL PixelBufferObjects and vertex texture
fetches using Direct3D Shader Model 3.0 or GLSL, just to name the most prominent
ones.

On traditional graphics architectures, textures could only be accessed in a fragment

92 CHAPTER 3. RENDERING

shader program. The Shader Model 3.0 and the GLSL specification also enable texture
access in the vertex units hence providing an effective means for displacing geome-
try on the GPU. This functionality is supported on most graphics hardware currently
available. To render a displaced surface, we render a static vertex array stored in GPU
memory. In a vertex shader program, vertex positions are fetched from the texture that
contains the displacements, and the vertex position is translated by the displacement
vector. Therefore, any read back of data to CPU memory is avoided.

Render Surface Binding

In this section, we show how to bind a high-resolution render surface to the simulation
grid. We decided to bind a single vertex of the render surface to a tetrahedral element
of the simulation mesh. In this way, we can guarantee continuous (piecewise linear)
displacements of the render surface for vertices bound to adjacent (at least one common
face) tetrahedral elements.

For vertices of the render surface that lie in the interior of the simulation mesh, the
barycentric coordinates of the respective tetrahedral elements are stored as interpola-
tion weights. For all other vertices, a unique tetrahedral element is determined. The
barycentric coordinates b0, b1, b2, and b3 of the render surface vertex with respect to
each tetrahedral element are calculated, and a tetrahedron is selected by minimizing the
following function:

w = max ({0} ∪ {|bi| : bi ≤ 0, i = 0, . . . , 3}) .

This function effectively penalizes elements that are far away from the render surface
vertex considered (they have at least one negative value bi).

It is obvious that this metric is only a rough approximation and is likely to fail in
some settings. However, for all models considered in this thesis, the results were con-
vincing and the render surface deformed smoothly with the simulation mesh. Finally,
for each vertex of the render surface, we store four barycentric weights and references
to the respective vertices in appropriate texture maps on the GPU.

GPU Update of the Render Surface

The vertices of the render surface are displaced by using a pre-pass shader that generates
the shared vertex array of the displaced geometry. The data required is a texture storing
the barycentric weights b0, b1, b2, and b3, a texture storing the respective simulation
grid indices j0, j1, j2, and j3 as well as a texture containing the displacements ui of

3.3. DEFORMABLE SURFACE RENDERING 93

the simulation grid’s vertices. Then, a quad is rendered to generate as many fragments
as there are vertices in the high resolution surface. A fragment shader calculates the
displacement vector

∑3
i=0 bi uji

for each vertex and writes it into the render target.
In a final render pass, the non-deformed geometry is rendered, and a vertex shader
reads the displacement texture generated in the pre-pass to update the vertex position
respectively. An schematic overview of the processing steps is given in Figure 3.2.

Weights
Indices

SimGrid
Displace

RS
Displacements

Fragment Shader (Prepass)

Vertex Shader

Fragment Shader

RS Vertices (undeformed)

Figure 3.2: Processing steps of displacing a high resolution render surface (RS) on the GPU.

Normal Calculation

Recalculation of per-vertex normals of the deforming render surface can effectively be
done in two different ways on the GPU. Here we assume that the normal is determined
by averaging the per-face normals of all adjacent triangles.

Scattering: For every face of the render surface, a cross product has to be performed
and the result has to be scattered to the respective vertex position of the geom-
etry image, where it is accumulated to achieve a per-vertex normal. The scatter
operation produces both memory and computation overhead.

Gathering: For each vertex of the render surface, per-face normals are gathered. This
operation is inefficient if the render surface mesh is not regular and thus not every
vertex has the same number of adjacent triangles to fetch normals from.

To accelerate the calculation of per-vertex normals, we describe an update technique for
the normals based on an initial decomposition of the render surface normals n. To the

94 CHAPTER 3. RENDERING

best of our knowledge, such an update strategy has not been applied to the rendering
of deformable objects so far. Here we assume that we know the normals n of the
undeformed render surface. They are decomposed into two parts: an interpolated coarse
grid normal N and an offset vector d. To determine the first part, we project the render
surface vertex on the respective tetrahedral surface face. Given the barycentric weights
w1, w2, and w3 of this projected vertex with respect to the tetrahedron and the simulation
grid normals N1, . . . , N3 at the respective face’s vertices v1, . . . , v3, the interpolated
normal is obtained by N =

∑3
i=1 Ni wi. Finally, the normal of the undeformed render

surface, n, can be decomposed into a simulation mesh normal part w0N and a face-
parallel part d:

n = w0 N + d,

where d =
∑3

i=1 wi+3 vi can be expressed in local barycentric coordinates w4, w5,

and w6 of the respective face. Since d is a vector (rather than a position), the sum∑3
i=1 wi+3 = 0 equals zero. The simulation normal scaling w0 can be obtained by

projection of N and n onto the face normal nf :

w0 =
nT

f N

nT
f n

.

Figure 3.3 illustrates this decomposition. If w0 is determined, we can directly calculate
the barycentric coordinates w4, . . . , w6 of the remaining offset d = n−w0N . Therefore,
we store the weights w0, . . . , w6 and the vector d in appropriate textures for each vertex
of the render surface.

Figure 3.3: Decomposition of the high-resolution render surface normal n (red) into an inter-
polated simulation normal w0N (black) and an offset vector d parallel to the face with normal
nf (green).

3.3. DEFORMABLE SURFACE RENDERING 95

At runtime, the normal ñ of a vertex of the deformed render surface can be approx-
imated by

ñ = w0

3∑
i=1

wi Ñi + d +
3∑

i=1

wi+3 ui,

where wi are the pre-calculated weights, Ñi are the normals of the appropriate deformed
simulation grid and ui are the displacement vectors of the corresponding vertices in the
simulation grid1. By pre-multiplying w1, w2, and w3 with w0, we can avoid to store
w0 explicitly. Because the offset vector is obtained in local barycentric coordinates of
the deformed triangle, calculated normals are consistent with the structure of the render
surface.

One remaining problem is that if triangles are scaled, the offset part d scales, too.
Normalizing the normal N does not cure the problem as this yields to unnaturally look-
ing normals due to the changing ratios of both parts. Therefore, we use area-weighted
normals Ni and Ñi in both the pre-processing stage as well as at runtime. Before light-
ing calculations are actually performed, the normals ñ are normalized.

Figure 3.4: Per-pixel lighting of the deformed render surface (32k triangles) looks naturally
even for large deformations. The surface can be displaced and rendered on the GPU at high
frame rates.

Although the normal calculation is only approximately, the images shown in Fig-
ure 3.4 demonstrate that the quality of the generated normals is visually pleasant. The
calculations of the new normals can be performed in the same shader that updates the
vertex positions using the OpenGL MultipleRenderTarget extension. An addi-
tional (dependent) texture fetch into the texture storing the normals of the simulation
grid using the same texture coordinates that are used to access the displacement texture
has to be performed. In addition, the weights wi and the pre-computed offset d have

1By re-ordering the indices and weights used to displace the mesh in Equation (3.1) in such a way, that u1, u2,
and u3 correspond to the face vertices, we do not need to store additional references.

96 CHAPTER 3. RENDERING

to be accessed in the shader. In the current implementation, the performance differ-
ence between the shader executed with and without normal update is negligible. This
is further validated in Section 3.5.

3.3.2 Advanced Shading Techniques

To achieve realistically looking animations, a fur shader has been integrated. Based on
the work by Tomohide [Tom02], Praun et al. and Lengyel et al. [PFH00, LPFH01],
fur rendering can be performed by blending several shells, which are textured with an
appropriate fur texture. In contrast to the previous work, our method geometrically ex-
trudes the shells in the vertex stage. Therefore, so-called fin textures [PFH00] rendered
at the silhouettes can be avoided if an adequate number of shells is used. Moreover, our
approach allows for dynamic fur effects.

The fur texture used has the important property that α-values decrease when moving
to outer shells. It is realized as a 3D texture, where the third coordinate encodes the shell
identifier. Typically, 20–30 shells are enough to generate images comparable to those in
Figure 3.5. The shells are generated by extruding the mesh in the vertex shader using the
normals of the (shared) vertices. To avoid multiple vertex texture fetches to determine
the vertex coordinates of the deformed mesh, the deformed vertices are copied into a
separate vertex array using the OpenGL PixelbufferObject extension [Ope04].
This array can be directly rendered for each of the shells to be considered. Each shell’s
identifier is used both to determine how far each vertex is extruded into its normal
direction, and which layer of the 3D fur texture is fetched in the fragment stage.

Figure 3.5: Fur shading yields realistic-looking imagery (left). On the right, the effect of
dynamic fur is demonstrated.

3.4. DEFORMABLE VOLUME RENDERING 97

To account for the motion of fur in real world, a simple dynamic model is included
by storing the vertex array of the previous time step. All in all, the vertex position vt

l

for shell layer l is determined as follows:

vt
l = vt + f

l

m
ñt + 3 · 2

l
m · log2(v

t−1 − vt + 1).

Here, vt and vt−1 are the deformed positions of the base shell at time steps t and t−1, ñt

is the normal of vertex vt, f is the fur length, m is the maximum number of used shell
layers, and the log2 is applied to each component of the vector. To avoid intersections
of consecutive shells, the dynamic term (the last term) is enforced to be clamped such
that its Euclidean norm is smaller than the distance to the base shell f l

m
.

3.4 Deformable Volume Rendering

Although recent advances in graphics hardware have opened the possibility to effi-
ciently render tetrahedral grids on commodity PCs, interactive rendering of large and
deformable grids is still one of the main challenges in scientific visualization. Such
grids are more and more frequently encountered in a number of different applications
such as plastic and reconstructive surgery, virtual training simulators, and visualization
in fluid and solid mechanics.

If we imagine a ray-casting approach, for each sample point along a ray the tetra-
hedral element the sample point is contained in has to be determined. The geometry
of this element is used to compute the point’s position in the local coordinate space
of the element. For this purpose, an element matrix built from the element’s vertex
coordinates can be used. For each element this matrix has to be computed only once
and can then be used to re-sample the data at every sample point in its interior. To do
so, a container storing the matrices of all elements has to be created on the GPU. It is
clear that this approach significantly increases the memory requirements. Moreover,
because the re-sampling is performed in the fragment stage, every fragment needs to be
assigned the unique identifier of the element it is contained in to address the respective
matrix. In scan-conversion algorithms this can only be done by issuing these identifiers
as additional per-vertex attributes during the rendering of the tetrahedral elements. Un-
fortunately, because every vertex is in general shared by many elements, a shared vertex
list can no longer be used to represent the grid geometry on the GPU. This causes an
additional increase in memory.

To avoid the memory overhead induced by pre-computations, element matrices can

98 CHAPTER 3. RENDERING

be calculated on the fly for every sample point. But then the same computations, in-
cluding multiple memory access operations to fetch the respective coordinates, have to
be performed for all sample points in the interior of a single element, thereby wasting
a significant portion of the GPUs compute power. As before, identifiers are required to
access vertex coordinates, and thus a shared vertex array cannot be used.

3.4.1 Tetrahedral Grid Rendering Pipeline

In this section we present a novel GPU pipeline for the rendering of tetrahedral grids
that avoids the aforementioned drawbacks. This pipeline is scalable with respect to
both large data sets as well as future graphics hardware. The proposed method has the
following properties:

• Per-element calculations are performed only once.

• Tetrahedral vertices and attributes can be shared in vertex and attribute arrays.

• Besides the shared vertex and attribute arrays nearly no additional memory is
required on the GPU.

• Re-sampling of (deforming) tetrahedral elements is performed using a minimal
memory footprint.

To achieve our goal we propose a generic and scalable GPU rendering pipeline for
tetrahedral elements. This pipeline is illustrated in Figure 3.6. It consists of multi-
ple stages performing element assembly, primitive construction, rasterization, and per-
fragment operations.

To render a tetrahedral element the pipeline is fed with one single vertex, which
carries all information necessary to assemble the element geometry on the GPU. As-

1 vertex1 vertex

Scalar
Texture

Vertex
Texture

Primitive
Construction

Fragment
Stage

Element
Assembly

Rasterizer

Per-Primitive Operations Per-Fragment Operations

1 vertex1 vertex
with attributeswith attributes

fragmentsfragments
with attributeswith attributes

fragmentstriangle striptriangle strip
with attributeswith attributes

Figure 3.6: Overview of the GPU tetrahedral grid rendering pipeline.

3.4. DEFORMABLE VOLUME RENDERING 99

sembled geometry is then passed to the construction stage where a renderable represen-
tation is built.

The construction stage is explicitly designed to account for the functionality on
very recent graphics hardware. With Direct3D 10 compliant hardware and geometry
shaders [BG05] it is possible to create additional geometry on the graphics subsys-
tem. In particular, triangle strips composed of several vertices, each of which can be
assigned individual per-vertex attributes, can be spawned from one single vertex. As
the geometry shader itself can perform arithmetic and texture access operations, these
attributes can be computed to take application-specific needs into account. By using the
aforementioned functionality the renderable representation can be constructed in turn
without sacrificing the feed-forward nature of the proposed rendering pipeline.

Although hardware-assisted geometry shaders are available on recent NVIDIA
GPUs, the use of the geometry stage slows down the overall rendering pipeline signifi-
cantly. In particular, it is still faster to render the triangle strips from a vertex array than
to generate it on the fly using the geometry stage. Therefore, we have implemented the
proposed pipeline using the older functionality as provided by Direct3D 9 or OpenGL
2.0. We emulate the primitive construction step using a render-to-vertexbuffer func-
tionality. The specific implementation will be discussed in Section 3.4.4. Although this
emulation requires additional rendering passes, it still results in frame rates superior to
what can be achieved by the fastest methods known so far.

Once the renderable representation has been built it is sent to the GPU rasterizer. On
the fragment level a number of different rendering techniques can be performed for each
tetrahedron, including a ray-based approach, iso-surface rendering, and cell projection.
The discussion in the remainder of this section is focused on the first approach, and we
describe the other rendering variants later in Sections 3.4.2 and 3.4.3.

The ray-based approach operates in a similar way as ray-casting by sampling the
tetrahedral grid along the view rays. In contrast, it does not compute the set of elements
that are hit consecutively along each ray but it lets the rasterizer compute the set of rays
intersecting each element. The interpolation of the scalar field at the sample points in
the interior of each element is then performed in the fragment stage, and the results are
finally blended in the color buffer.

The developed approach requires the tetrahedral elements to be sampled in correct
visibility order. To avoid the explicit computation of this ordering, we first partition the
eye coordinate space into spherical shells around the point of view. Each shell consists
of a fixed number of spherical slices (which define the sample points on each ray).
Figure 3.7 illustrates this partitioning strategy.

100 CHAPTER 3. RENDERING

These shells are consecutively processed in front-to-back order, simultaneously
keeping the list of elements that intersect the current shell. Intra-shell visibility or-
dering is then achieved by re-sampling the elements onto spherical slices positioned at
equidistant intervals in each shell (see right of Figure 3.7). Elements smaller than the
selected sampling rate can thus be missed.

Figure 3.7: Ray-based tetrahedra sampling: Tetrahedral elements are re-sampled onto spherical
slices around the point of view.

Tetrahedra intersecting more than one shell are stored in each of the respective lists,
and they might thus be rendered multiple times. In every rendering pass, however,
every element is only re-sampled onto the slices contained in the current partition.

In the following we describe the rendering pipeline for tetrahedral grids in more
detail. Essentially, it is a sampling of the attribute field at discrete points along the view
rays through the grid. The sampling process effectively comes down to determining
for each sampling point the tetrahedron that contains this point as well as the point’s
position in local barycentric coordinates with respect to this tetrahedron. Due to this
observation we decided to rigorously perform the rendering of each element in local
barycentric space. The following benefits are achieved by this approach:

1. Barycentric coordinates of sample points can directly be used to interpolate the
scalar values given at the grid vertices.

2. Barycentric coordinates can efficiently be used to determine whether a point lies
inside or outside an element.

3.4. DEFORMABLE VOLUME RENDERING 101

3. By transforming both the point of view and the view rays into the barycentric
coordinate space of an element, barycentric coordinates of sample points along
the rays can be computed with a minimum number of arithmetic operations.

4. Barycentric coordinates of vertices as well as barycentric coordinates of the view
rays through the vertices can be issued as per-vertex attributes, which then become
interpolated across the element faces during rasterization.

Figure 3.8 shows a conceptual overview of the entire rendering pipeline for tetrahedral
grids. The process is also described in Algorithm 8. For the sake of clarity, only
pseudo-code is given.

Scalar
Texture

Primitive
Construction

Fragment
Stage

Vertex
Texture

Blend
Texture

FramebufferBlending

Transfer Function

Element
Assembly

Application

CPUCPU

Tetrahedra
Indices

Figure 3.8: Data stream overview of the GPU tetrahedra rendering pipeline.

Data Representation and Transfer

The tetrahedral grid is maintained in a compact representation: a shared vertex array
that contains all vertex coordinates, and an index array consisting of one 4-component
entry per element. Each component represents a reference to the vertex array. While
the index array only resides in CPU memory, the vertex array is stored both on the CPU
and in a 2D floating-point texture on the GPU. Additional per-vertex attributes such as
scalar or color values are only held on the GPU.

By assigning a 3D texture coordinate to each vertex it is also possible to bind a
3D texture map to the tetrahedral grid. By one additional texture indirection the scalar

102 CHAPTER 3. RENDERING

(a) (b) (c)

Figure 3.9: Deforming a Cartesian grid (visible male data set): the 5122×302 Cartesian grid (a)
is displaced and rendered by means of a textured tetrahedral mesh consisting of 500k elements
using our approach (b). Image (c) clearly demonstrate that the mesh resolution is not sufficient
if scalar values are only sampled at the vertices.

or color values can then be sampled via interpolated texture coordinates from a 3D
texture map. This strategy is particularly useful for the efficient rendering of deformed
Cartesian grids. By deforming the geometry of a tetrahedral grid while keeping the 3D
texture coordinates fixed, the deformed object can be rendered at considerably higher
resolutions compared to an approach using linear interpolation of the scalar field given
at the displaced tetrahedra vertices (see Figure 3.9).

To render a tetrahedral grid, the CPU computes the set of elements (active elements)
intersecting each spherical shell. This can be easily achieved by determining the mini-
mum and maximum distances to the view point for each tetrahedron, and by comparing
these values to the shell borders. Each time a shell is to be rendered, the CPU uploads
its active element list, which is represented by a 4-component index array. This list is
then passed through the proposed rendering pipeline.

Element Assembly

For each shell to be rendered the active element list contains one vertex per element,
each of which stores four references into the vertex texture. In the element assem-
bly stage these indices are resolved by interpreting them as 2D texture coordinates.
The four vertices are obtained by four texture access operations, and they are then
transformed into the eye coordinate space. The transformed vertices are passed to the
primitive construction stage along with the four indices.

3.4. DEFORMABLE VOLUME RENDERING 103

Primitive Construction

In the primitive construction stage the per-element information that is needed in the up-
coming stages is constructed. First, for every element the matrix required to transform
eye coordinates into local barycentric coordinates is computed. The vertices, given in
homogeneous eye coordinates, are denoted by vi, i ∈ {0, 1, 2, 3}. The transformation
matrix can then be computed as

VB =
(

v0 v1 v2 v3

)−1

.

Next, the eye position veye = (0, 0, 0, 1)T is transformed into the barycentric coordinate
space of each element: beye = VB veye. It is important to note that only the last column
of VB is required. Thus, the number of required arithmetic operations is significantly
reduced. The barycentric coordinates of each vertex vi are given by the canonical unit
vectors ei. Finally, the directions of all four view rays passing through the element’s
vertices are transformed into barycentric coordinates via bi = ei−beye. As the mapping
from eye coordinate space to barycentric coordinate space is affine, these directions can
later be linearly interpolated across the element faces. In addition, the length of the view
vector li = ‖vi− veye‖2 is computed for each vertex in the primitive construction stage.
It is used in the fragment stage to normalize the barycentric ray directions bi.

Once the aforementioned per-element computations have been performed, each
tetrahedron is rendered as a triangle strip consisting of four triangles. These strips
are composed of six element vertices, which are first transformed to normalized device
coordinates. The respective bi, the barycentric eye position beye, and the length of the
view vector li are assigned to each vertex as additional attributes. Moreover, four in-
dices into the GPU attribute array are assigned to each vertex. These indices are later
used in the fragment stage to access the scalar field or the 3D texture coordinates used
to bind a texture map.

The rasterizer generates one fragment for every view ray passing through a tetrahe-
dron and interpolates the given per-vertex attributes. To reduce the number of generated
fragments, only front-faces are rendered using back face culling.

Fragment Stage

When rendering the primitives composed of attributed vertices in the described manner,
the rasterizer interpolates the bi and li and generates a local barycentric ray direction b

as well as its length l in eye coordinates for each fragment. By using the barycentric

104 CHAPTER 3. RENDERING

Algorithm 8 Pseudo-code snippets for ray-based GPU tetrahedra rendering.
elementAssembly (index)

for i = 0, . . . , 3 do
vi = texture (vertexTex, indexi);
vi = Modelview ∗ vi;

end for
return (index, v0, v1, v2, v3);

primitiveConstruction (index, v0, v1, v2, v3)
VB = inverse ((v0, v1, v2, v3));
beye = VB ∗ (0, 0, 0, 1)T;
for i = 0, . . . , 3 do

li = length (vi − (0, 0, 0, 1)T);
bi = ei − beye;
vi = Projection ∗ vi;

end for
Rasterize strip usingv0

b0

l0

 ,

v1

b1

l1

 ,

v2

b2

l2

 ,

v3

b3

l3

 ,

v0

b0

l0

 ,

v1

b1

l1


return (index, beye);

fragmentStage(interpol. v, interpol. b, interpol. l,
index, beye, const zs, const ∆zs)

for i = 0, . . . , 3 do
s[i] = texture (scalarsTex, indexi);

end for
for k = 0, . . . , n do

bc = beye + b/l ∗ (zs + k ∗∆zs);
if min (bc[0], bc[1], bc[2], bc[3]) < 0

out[k] = 0;
else

out[k] = dot (s, bc);
end if

end for
return (out);

3.4. DEFORMABLE VOLUME RENDERING 105

coordinates of the eye position beye, the view ray in local barycentric space can be
computed for each fragment as

b

l
· t + beye, t > 0,

where t denotes the ray parameter. This ray is sampled on a spherical slice with distance
zs from the eye point. The barycentric coordinate of the sample point is obtained by
setting t as the depth of the actual spherical slice, zs.

It is now clear that every fragment has all the information to determine the barycen-
tric coordinates of multiple sample points along the ray passing through it. If an equidis-
tant sampling step size ∆zs along the view rays is assumed, the coordinates of each
point are determined as

bk =
b

l
· (zs + k ·∆zs) + beye, k ∈ {0, 1, . . . , n− 1}. (3.2)

where n is the number of samples. The fragment program obtains the depth zs of the
first sample point and the sample spacing ∆zs as constant parameters.

A fragment can trivially decide whether a sample point is inside or outside the
tetrahedron by comparing the minimum of all components of bk to zero. A minimum
greater or equal to zero indicates an interior point. In this case the sample point is valid
and thus has a contribution to the color being accumulated along the ray. Otherwise,
the sample point is invalid and has to be discarded.

The barycentric coordinates are directly used to interpolate per-vertex attributes.
These can be scalar values that are first fetched from the attribute texture via the per-
vertex indices issued, or it can be a 3D texture coordinate that is used to fetch a scalar
value from a texture map. Finally, each fragment has determined one scalar value for
each of its n samples.

Once the scalar field has been re-sampled onto a number of sample points along the
view rays, these values in principle can be directly composited in the fragment program.
Unfortunately, as the elements within one spherical shell have not been rendered in
correct visibility order, this would lead to visible artifacts. On the other hand, we can
write four scalar values at once into one RGBA render target. Moreover, recent graphics
APIs allow for the simultaneous rendering into multiple render targets. Let m denote
the number of render targets available. This means that up to four times m spherical
slices can be re-sampled by one single fragment. Sampled values are rendered into the
respective component and render target using a max blend function. If a sample point is
outside the element, a zero value is written into the texture component and the sample is

106 CHAPTER 3. RENDERING

ignored. As no two tetrahedra contain the same sample point along any ray (apart from
samples at a shared face that yield the same scalar value for both elements), erroneous
results are avoided.

The number of samples that can be processed efficiently at once is restricted by the
output bandwidth of the fragment program. Because four render targets are available on
recent GPUs, up to 16 slices can be processed at once. This implies that the thickness
of each spherical shell is chosen to contain exactly 16 slices with regard to the current
sampling step size. To allow for this number, four additional texture render targets
have to be used to keep intermediate sampling results. Without utilizing the multiple
render target extension, four samples can be processed at once. To store the scalar
values, either an 8 bit fixed-point or a 16 bit half-floating-point format can be used, thus
keeping the memory bandwidth low.

Blending Stage

In the final stage up to four texture render targets are blended into the frame buffer.
In each of its four components these textures contain the sampled scalar value on one
spherical slice of the shell. The blending stage now performs the following two steps in
front-to-back order. First, scalar values are mapped to color values via a user-defined
transfer function. Second, a simple fragment program performs the blending of the
color values via alpha-compositing and finally outputs the result to the frame buffer.

3.4.2 Iso-Surface Rendering

To avoid the explicit construction of iso-surface geometry on the GPU, per-pixel iso-
surface rendering can be integrated into our proposed rendering pipeline. Instead of
sampling all the values along the view rays, only the intersection points between these
rays and the iso-surface are determined on a per-fragment basis. Thereby, the primitive
assembly and element construction stage remain unchanged, and only the fragment
stage needs minor modifications.

The combination of the ray equation in barycentric coordinates (with the unknown
parameter tiso)

biso = b · tiso + beye

with the barycentric interpolation of the known iso-value siso =
∑3

i=0 si · (biso)i yields

siso = tiso

3∑
i=0

si(b)i +
3∑

i=0

si(beye)i .

3.4. DEFORMABLE VOLUME RENDERING 107

Therefore, the view ray passing through a fragment intersects the iso-surface at depth

tiso =
siso −

∑3
i=0 si · (beye)i∑3

i=0 si · (b)i

.

It is worth noting that tiso is undefined if the denominator is zero. In this case the
interpolated scalar values along the ray are constant, and we can either choose any
valid value for tiso if the scalar value is equal to siso (the frontmost value is given at the
entry point of the ray, which can be determined as described in the Section 3.4.3) or the
ray has no intersection with the iso-surface.

The computed barycentric coordinate biso of the intersection point is tested against
the tetrahedron as described above. Only if the point is in the interior of the element an
output fragment is generated. Otherwise the fragment is discarded.

In this particular rendering mode the data representation stage has to be modified
slightly. Instead of building an active element list for every shell, only one list that
contains all elements being intersected by the iso-surface is built. These tetrahedra
can then be rendered in one single pass, or in multiple passes if more elements are
intersected by the surface than can be stored in a single texture map. The blending
stage becomes obsolete and can be replaced by the standard depth test to keep the
front-most fragments in the frame buffer. A fragments’ depth value is set to the depth
of the intersection point in the fragment program.

Lighting

To perform lighting on the extracted iso-surface on a per-pixel basis, per-element gra-
dients can be computed in the primitive construction stage as well. Given the scalar
values s (s is the vector of all scalar values of the elements’ vertices) and the barycen-
tric matrix VB, the gradient can be determined by

∇S =
[
V T

B s
]
0−2

.

The last component of the vector V T
B s is ignored. This formula is derived from the

fact that the scalar field is interpolated in the tetrahedral element. Given the barycentric
coordinates bj = bj(x), 0 ≤ j ≤ 3, for an arbitrary point x in the interior of the element,
the gradient reads as

(∇S)i =
∂

∂xi

(
3∑

j=0

bj · sj

)
=

3∑
j=0

∂bj

∂xi

sj ∀ 0 ≤ i < 3,

108 CHAPTER 3. RENDERING

Figure 3.10: Iso-surface rendering of the deformed visible male data set. The tetrahedral mesh
was adaptively refined to recover the skin and bone structures and consists of 5.1 million ele-
ments. Per-vertex scalar values were re-sampled from the original 3D data set.

where bj can be written using the barycentric matrix VB:
b0

b1

b2

b3

 = VB


x0

x1

x2

1

 .

Thus, ∂bj(x)

∂xi
= (VB)ji and finally

(∇S)i =
3∑

j=0

(VB)ji sj = (V T
B s)i.

Gradients are assigned as additional per-vertex attributes, and they are then used

3.4. DEFORMABLE VOLUME RENDERING 109

in the fragment stage for lighting calculations. Since the gradients are constant within
each tetrahedral element, a flat shaded iso-surface is obtained. To get smooth lighting,
gradients of all incident tetrahedra have to be averaged at the (shared) vertices. This re-
quires a pre-pass, which calculates per-element gradients and scatters their contribution
to all element vertices, where vertex gradients are finally accumulated. These gradients
are stored in a separate gradient texture that is accessed in the fragment stage of the
pipeline. By means of the barycentric coordinates biso of the considered sample point,
an interpolated gradient can be determined from the four accessed vertex gradients. An
example of smooth lighting is given in Figure 3.10.

3.4.3 Cell Projection

Tetrahedral cell projection is among the fastest rendering techniques for unstructured
grids as every element is only rendered once but it requires a correct visibility ordering
of the elements. To integrate tetrahedral cell projection into our pipeline we employ
the tangential distance or Powersort [KLNR03] on the CPU to determine the visibility
ordering, because this method is both fast and simple to implement. It guarantees
correct visibility sorting for meshes exhibiting the Delaunay property.

Although finite element meshes often have this property, it can be violated due to
the deformations applied. As a matter of fact, the meshes we render by means of the
proposed method may not be sorted correctly. In particular, when applying large forces
to deform the models, such artifacts can appear (see Figure 3.11). These artifacts are
totally avoided in the ray sampling approach. On the other hand, it requires tetrahedra
to be rendered several times as they might overlap more than one shell.

Figure 3.11: The left image shows visual artifacts that can occur due to the approximate visi-
bility sorting of the Powersort algorithm. The right image demonstrates that these artifacts are
avoided by means of our ray sampling approach.

110 CHAPTER 3. RENDERING

Tetrahedral cell projection is achieved by a modification of the fragment stage.
Given the fragment’s distance to the eye position zin, the barycentric coordinates of
this fragment can be computed as

bin =
b

l
· zin + beye. (3.3)

The intersection of a view ray with each of the faces of the corresponding tetrahedron
can be calculated using the ray equation bout = b/l · t + beye in barycentric coordinates.
To compute bout, four candidate parameters tk, k ∈ {0, . . . , 3} are obtained by solving
the equations 0 = bk/l · tk + (beye)k. These equations describe the fact that the sample
point bout has to lie on one of the tetrahedral faces; thus, at least one barycentric coor-
dinate of bout is zero. As the ray parameter t = zin corresponds to the entry point of the
ray, the value of t at the exit point is determined by

zout = min{tk : tk > zin, k = 0, . . . , 3}.

The barycentric coordinate of the exit point can then be derived according to equation
(3.3), and it can be used to calculate the scalar value at the ray’s exit point.

The length of the ray segment inside the tetrahedron can be calculated by zout− zin.
This information is required to compute a correct attenuation value for every fragment
as described by Stein et al. [SBM94]. The barycentric coordinates are used to obtain
scalar values at the entry and exit point, which are then accumulated along the ray2.

3.4.4 Implementation

On current graphics hardware, e.g. NVIDIA 8800 cards, the fastest implementation is
achieved if the geometry shader is not used. This is due to the fact, that the geometry
shader still introduces significant performance drawbacks. Hence, the primitive as-
sembly stage and the primitive construction stage are simulated via multiple rendering
passes. The implementation is then also suited for older graphics cards.

Once the CPU has uploaded the index texture to the GPU (see Section 3.4.1), a quad
covering four times as many fragments as active elements is rendered. Each fragment
reads its respective index to perform one dependent texture fetch to get the correspond-
ing vertex coordinate. The 4th component of each vertex is used to store the element
index. This index is used in the final fragment stage to fetch the barycentric transfor-
mation matrix. The vertex coordinates are written to a texture render target, which is

2Linear transfer functions are assumed here for simplicity.

3.4. DEFORMABLE VOLUME RENDERING 111

either copied into a vertex array (on NVIDIA cards) or directly used as a vertex array
(on ATI cards). In this pass, the transformation of vertices into eye coordinates can
already be performed.

In a second pass, each active tetrahedron reads its four vertices as described and
computes the last row of the barycentric transformation matrix, beye, which is stored
in an RGBA float texture. Due to the fact that only one index per tetrahedron can be
stored, we also build an RGBA texture that stores the four scalar values associated with
each active element in one single texel. If 3D texture coordinates are required they are
stored analogously in three RGBA textures.

We then use an additional index array to render the tetrahedral faces. We either use
7 indices per tetrahedron to render a triangle strip followed by a primitive restart mark
(on NVIDIA cards only) or we use 12 indices to render the tetrahedral faces separately.
Note that the index array does not change and can be kept in local GPU memory.

Finally, the fragment stage has to be modified such that every fragment now fetches
beye and performs all operations required to sample the element along the view rays in
local barycentric space. Although this increases the number of arithmetic and mem-
ory access operations considerably, we will show later that the implementation already
achieves excellent frame rates on customary graphics hardware.

3.4.5 Visualization of Internal Material Properties

The direct volume rendering method can be used to visualize internal properties of the
materials being deformed. One property that is of particular interest in a number of
applications is the internal stress. To compute the stress, we utilize the element stress
matrices ∫

Ω

D B dx

to assemble a global stress matrix. Here, D is the material law (2.8) and B is the ele-
ment strain matrix (2.13). By applying the computed displacement field to this matrix,
an averaged stress tensor is derived for each vertex. According to the linearization of
the stress tensor (2.2), the six entries of the symmetric tensor are obtained per vertex.

To visualize the tensor, we calculate the so-called von Mises stress norm [Bat02]
using the linearized form σ of the tensor:

σMises =

√√√√3
6∑

k=4

σ2
k +

3

2

3∑
k=1

(σk − σ̄)2 with σ̄ =
1

3

3∑
k=1

σk.

112 CHAPTER 3. RENDERING

Figure 3.12: Left: Boundary of an undeformed liver. Right: Visualization of the deformed
liver by means of direct volume rendering. The internal stress induced by the deformation is
color-coded from red (low stress) to green (high stress).

This norm yields a scalar value for each vertex, which can then be visualized by the
presented tetrahedral grid rendering approach. This norm is used in a number of ap-
plications to determine the critical stress of the deformed material. The critical stress
indicates that the material is substantially changed and does not show an elastic behav-
ior any more.

In medical applications, the von Mises stress norm can be employed to visualize
tissue stress. Due to a clinical intervention tissue can be stressed too much, thereby
inducing additional risks for the patient. By means of the proposed simulation and
visualization support system a surgeon can obtain immediate visual feedback about
the induced stress in all parts of the used volumetric model during surgical training or
pre-operative planning. And he can immediately adjust the intervention procedure ade-
quately. Figure 3.12 shows a stress visualization using a human liver data set. Due to the
influence of external forces the liver is highly stressed on its left side. To demonstrate
the effect of heterogeneous materials on the internal stress, we show the heterogeneous
horse model under gravity. As can be seen in Figure 3.13, the soft abdomen is highly
stressed whereas the stiffer legs induce much lower stress.

3.4.6 High-Resolution Render Volumes

Analogously to the high-resolution render surfaces described in Section 3.3, a high-
resolution tetrahedral grid can be bound to the simulation grid using barycentric coordi-
nates. Since the vertex positions of this mesh can be updated on the GPU in exactly the
same manner as described, the upload of updated vertex positions of the high-resolution

3.4. DEFORMABLE VOLUME RENDERING 113

Figure 3.13: Our method can be applied to visualize internal states of deforming volumetric
bodies efficiently. In the example, the internal stress of the heterogeneous horse model under
gravity is visualized in red.

Figure 3.14: These images show direct volume renderings of a tetrahedral mesh consisting of
1600k elements, which are bound to a 24k simulation mesh. A 3D texture of size 2562 × 110
storing the engine data set is bound to the mesh.

mesh can be avoided. This allows us to displace high-resolution meshes interactively
while at the same time achieving high quality images.

In Figure 3.14, the deformation of a Cartesian data set of resolution 2562 × 110

is shown. The simulation mesh consists of 24k tetrahedral elements, and the render
mesh is built of 1600k tetrahedra. To achieve best visual quality, the rendering of the
high-resolution mesh is further improved by storing the data set into a 3D texture and
applying this texture in the volume rendering pass. Every vertex stores coordinates into
this 3D texture instead of a scalar value. In the fragment stage, interpolated coordinates
are then used to fetch color values from the 3D texture map, which are finally blended
in the frame buffer.

114 CHAPTER 3. RENDERING

3.5 Performance Measurements

3.5.1 Surface Rendering

In the following we give performance measurements for the GPU render engine. All
timings were measured on an NVIDIA 8800 GTX graphics card. As shown in Table
3.1, the update of the high-resolution render surface comes nearly for free such that
the rendering of these surfaces can be achieved at highly interactive frame rates. The
rendering includes the time to displace the geometry in the vertex shader. The timings
measured include also normal calculations as described in Section 3.3.1 and per-pixel
lighting in the fragment shader.

Figure 3.15 shows the bunny model consisting of 11k tetrahedral elements. Besides

Model #Tris Update Rendering Fur (20 layers)

Sarah 16k <1 ms 2980 fps 212.0 fps
Car 36k <1 ms 1920 fps 102.0 fps

Bunny 64k <1 ms 756 fps 23.1 fps
Horse 64k <1 ms 842 fps 20.3 fps

Dragon 871k 1 ms 181 fps 3.7 fps

Table 3.1: Performance of the GPU surface render engine for different models (NVIDIA 8800
GTX). In the third column, timings are given for uploading displacement textures of the sim-
ulation mesh (size 162 to 642) to the GPU, and for updating the render geometry. The fourth
column shows the overall performance of the GPU render engine including the update of the
render surface, normal calculation, texture fetches in the vertex shaders to access the displaced
vertex coordinates and the normals, as well as per-pixel lighting. The last column shows the
performance (including update) that can be achieved if a fur shader using 20 extruded shells is
used for rendering.

(a) (b) (c) (d)

Figure 3.15: (a) Interactive deformation and rendering of the bunny finite element model
(11206 simulation tetrahedra). (b) A high resolution surface with 64k triangles is bound to
the simulation mesh. (c) A reduced surface (16k triangles) is rendered using the GPU-based fur
shader. (d) By applying a texture map to the fur, further realism can be achieved.

3.5. PERFORMANCE MEASUREMENTS 115

(a) (b)

Figure 3.16: (a) Interactive deformation and rendering of the car model (7k simulation tetra-
hedra) can be performed with 150 fps. The high resolution surface consists of 36k triangles.
(b) Interactive deformation and rendering of a manikin. The fur shader takes the dynamic of the
body into account as can be seen on the right hand side.

a high-resolution render surface (64k triangles), a GPU fur shader can be applied as
described in Section 3.3.2. Rendering performance decreases as can be seen in Ta-
ble 3.1 since several layers have to be rendered. However, the geometry has only to
be updated once. Therefore, instead of using a vertex texture fetch in every render-
ing pass, the displaced vertices are copied into a vertex buffer once using the OpenGL
PixelBufferObject extension. Figure 3.16 gives additional examples for interac-
tive deformations using the proposed GPU render engine.

3.5.2 Volume Rendering

We now analyze the performance of the tetrahedral grid rendering pipeline, and we
give timings for different parts of it. All tests were run on an Intel Core™ 2 Duo CPU
equipped with an NVIDIA 7900 GTX graphics processor. The size of the viewport was
set to 512× 512.

We have tested the tetrahedral rendering pipeline for both static and deformable
meshes using the simulation engine as described before. The GPU render engine re-
ceives computed displacements and updates the geometry of a volumetric body ac-
cordingly. While the simulation engine consecutively displaces the underlying finite
element grid, the render engine subsequently changes the geometry of the volumetric
render object. It is worth noting that all timings presented in this section exclude the
amount of time required by the simulation engine. In all our examples, the time re-

116 CHAPTER 3. RENDERING

quired to send updated vertices to the GPU is less than 1% of the overall rendering
time.

The proposed technique for direct volume rendering of unstructured grids is demon-
strated in Figures 3.17 to 3.19. Table 3.2 shows performance rates on our target archi-
tecture implementing the rendering pipeline described in Section 3.4.4. Timing statis-
tics for the alternative rendering modes are given in Table 3.3.

Scene horse bluntfin engine vmhead

Tetrahedra 50k 190k 1600k 3800k
Samples / ray 300 400 500 600

Samples / shell 4 8 8 8
Tets rendered 133k 424k 3438k 6618k

Vertices/scalars [MB] 0.27 1.1 17 17
Blend textures [MB] 1 2 2 2

Intermediate [MB] 3.3 13 13 13
GPU memory [MB] 4.6 16.1 32 32

CPU [ms] 2 6 63 156
GPU Geometry [ms] 11 12 65 135
GPU Fragments [ms] 43 85 445 732

Total time [ms] 56 103 573 1023

Table 3.2: Element, memory, and timing statistics of the tetrahedral grid rendering pipeline for
various data sets (NVIDIA 7900 GTX).

The first four rows of Table 3.2 show the number of tetrahedral mesh elements,
the number of sample points per ray, the number of samples per shell and the total
number of elements being rendered. As elements are likely to intersect more than
one shell, the number of rendered elements is approximately 2 times higher than the
mesh element count. Next, GPU memory requirements (excluding 3D texture maps)
are shown. The memory required by the vertex, scalar, and blend textures is listed.
Additional memory that is necessary due to the emulation of the construction stage on
GPUs without support for geometry shaders is summarized in the next row.

As shown by the measurements, the proposed rendering pipeline exploits the limited
GPU memory very effectively. On the other hand, even if the mesh does not fit into local
GPU memory the method can still be used efficiently. One possibility is to partition the
grid, and thus the vertex and attribute textures, into equally sized blocks. These blocks
can then be rendered in multiple passes, only requiring a separate active element list for
each partition and shell.

The next rows in Table 3.2 give detailed timings of the different rendering stages.

3.5. PERFORMANCE MEASUREMENTS 117

Figure 3.17: Direct volume rendering of the NASA bluntfin data set.

Figure 3.18: Close-up views of the NASA bluntfin data set.

Figure 3.19: Direct volume rendering of the deformed visible human data set. The tetrahedral
mesh consists of 3.8 million elements, and it is textured with a 5122 × 302 3D texture map.

118 CHAPTER 3. RENDERING

Scene horse bluntfin engine vmhead

Iso-Value 0.5 0.2 0.5 0.27
Iso-Surface [ms] 4.6 5.7 51 124

Cell Projection [ms] 19 54 341 1176

Table 3.3: Timing statistics for different rendering modes (NVIDIA 7900 GTX).

All timings are given in milliseconds. Starting with the time required by the CPU to
calculate the active element sets and to transfer all required data to the GPU, timings
for GPU primitive assembly and construction as well as per-fragment computations are
given.

From the timing statistics the following can be concluded: Although the current
implementation requires additional memory on the GPU and introduces an overhead
in terms of arithmetic and memory access operations, performance rates similar to the
fastest techniques so far can be achieved. A maximum throughput of 1.8 M tetrahe-
dra/sec has been reported recently by Cahallan et al. [CICS05] on an ATI Radeon 9800.
In comparison, our pipeline already achieves a peak rate that is over a factor of three
higher. In particular, it can be seen that one of the drawbacks of slice-based techniques,
i.e., multiple access to individual elements, can significantly be reduced due to the si-
multaneous evaluation of multiple sample points. It is clear, however, that in case of
elements that intersect only very few slices, some of these evaluations might be unnec-
essary. For this reason, we have chosen data-dependent numbers of slices as shown in
Table 3.2.

In Table 3.3, timing statistics for iso-surface rendering and cell projection are given.
In particular, the iso-surface rendering shows excellent performance rates. Even the
largest mesh consisting of 3.8 million tetrahedral elements can be rendered with 9 fps
on commodity hardware. The simple active tetrahedra table stored on the CPU in com-
bination with the ray-based iso-surface shader is superior to hierarchical data structures
recently developed [WFKH07]. In particular, for the bluntfin data set about 17 ms have
been reported on a 4-core Xeon architecture. In fact, our method runs three times faster
on commodity hardware for this example.

Chapter 4

Collision Detection

While it is clear how to detect collisions between polygonal models under weak time
constraints, there is an ongoing effort to develop techniques for interactive or even
real-time applications. The difficulty arises from the fact that the size of dynamic 3D
objects that can be rendered interactively has dramatically increased. Today, real-time
raster systems can render moving objects composed of many millions of triangles at
interactive rates. Such systems are used in many different areas of entertainment, in-
dustrial applications, and research. Moreover, as graphics capabilities become more
advanced, the list of applications is growing rapidly. These applications impose sig-
nificant performance requirements on the collision detection system, and they require
algorithms and data structures to deal with hard time constraints.

Over the last years there is also a growing demand for interactive collision detec-
tion between objects that can deform, and can thus self-interfere. Typical applications
include surgery simulators, cloth simulation, virtual sculpting, and free-form deforma-
tions. Interactive collision detection between deforming objects is complicated because
it requires frequent updates of the data structures used to accelerate the detection pro-
cess.

Even more important, geometric changes are increasingly performed on program-
mable graphics hardware using vertex programs and access to displacement textures
[GFG04, SJP05, BK05, GBK05]. In this case, the changes in geometry might not even
be known to the application program, which makes it difficult to maintain a data struc-
ture that appropriately represents the modified geometry. This problem is aggravated
due to recent graphics hardware supporting geometry shaders. With Direct3D 10 com-
pliant hardware [BG05] it is possible to create additional geometry on the graphics
subsystem. For instance, triangle strips or fans composed of several vertices can be

119

120 CHAPTER 4. COLLISION DETECTION

spawned from one single vertex. By using this functionality the renderable representa-
tion cannot only be modified but it can be constructed in turn on the graphics chip.

The implications thereof with respect to collision detection are dramatic: As large
parts of the geometry will continuously be modified and created on the GPU, CPU
algorithms relying on the explicit knowledge of the object geometry can no longer be
used. As a consequence, collision detection must either be performed entirely on the
GPU, or the information required to perform the collision test on the CPU has to be
created on the GPU and downloaded to the CPU.

In particular, this is true if high-resolution render surfaces are bound to the simula-
tion meshes. As the deformed render geometry is kept in local GPU memory, the CPU
cannot account for its collisions. On the other hand, keeping and updating a copy of the
render surface on the CPU for collision purpose affects the overall time of the simula-
tion system noticeably. Advanced hierarchical data structures have to be implemented
to allow for efficient determination of colliding triangle pairs in this scenario.

Therefore, we propose a novel GPU-based collision detection pipeline that ad-
dresses the aforementioned issues. It neither requires a high-level data structure to
be kept, nor does it need any assumptions about the movements or deformations of tri-
angles that can occur between two consecutive time steps. Finally, due to this design
the pipeline can even handle geometry that is created on the graphics subsystem. In the
following, we describe the single steps of the pipeline in detail. These results have been
published partially in [GKW07].

4.1 Related Work

Although a vast amount of literature has been published over the last decades, the ef-
ficient detection of collisions between large and dynamic polygonal models is still a
fundamental problem in a number of different areas ranging from computer animation
and geometric modeling to virtual engineering and robotics. For thorough surveys of
the various species of collision detection algorithms let us refer here to the work by Lin
et al. [LG98, LM04] and Teschner et al. [TKH+05].

According to the classification of collision detection algorithms into the three basic
categories static, pseudo-dynamic, and dynamic [HKM95], our method belongs to the
second class as it detects collision between moving objects at regular time intervals.
While a large number of static and pseudo-dynamic techniques have been developed in
the past, fewer approaches have explicitly addressed exact collision detection in time

4.1. RELATED WORK 121

and space [MC95, LSW99, RKC02, CS05].

Especially if a large number of objects have to be considered, collision detection
algorithms usually proceed in a broad phase and a narrow phase [SKTK95, CLMP95,
Hub95]. In the broad phase, approximate tests are performed to identify the poten-
tially colliding objects out of the entire set of objects. This step effectively prunes the
majority of all O(n2) possible object-object tests for n objects. In the narrow phase,
further tests identify the object primitives causing interference. Usually this is done in
a hierarchical manner by considering several levels of intersection testing between two
objects at increasing accuracy.

Hierarchical methods are often based on bounding volumes and spatial decompo-
sition techniques. Such methods enable the efficient localization of those areas where
the actual collisions occur, thus reducing the number of primitive intersection tests
[Möl97]. Over the last years, a number of different variants of hierarchical representa-
tions have been used, such as bounding sphere hierarchies [PG95, Hub96], axis aligned
bounding boxes [vdB97, BFA02], oriented bounding boxes [GLM96] and k-DOPs (dis-
crete oriented polytopes with k faces) [KHM+98, VT00].

In the context of deformable objects, the emphasis has been placed on the efficient
update of hierarchical object representations [DKT98, MKE03, JP04]. In particular,
the idea to delay tree updates has been shown to be an efficient means to accelerate
inter-object collision detection [LAM05]. A method for continuous collision detec-
tion between deformable meshes based on graph theory has been suggested [GKJ+05].
At the core of this method is the partitioning of polygonal meshes into sets of inde-
pendent primitives in which collisions can be detected in linear time. To avoid the
time-consuming pre-processing of the previous approach, a method based on Voronoi
diagrams has been presented recently by the same group [SGG+06]. The properties
of Voronoi diagrams are utilized to determine the closest primitives in a given set of
primitives. A GPU collision detection algorithm for deforming NURBS objects has
been developed recently in [GGK06]. This technique is based on a hierarchical AABB
traversal scheme entirely implemented on the GPU.

The algorithm we propose in this work originates in the early idea of using rasteriza-
tion hardware for interference detection between polygonal objects [RMS92, MOK95].
The underlying theoretical basis is given by Jordan’s theorem on the separation of a
plane by a closed curve in this plane. The same idea is employed in the shadow volume
algorithm proposed by Crow [Cro77] to detect whether a point lies inside or outside
of a polygonal shadow object. By using depth and stencil buffer hardware, the num-
ber of points being in front of a surface point can efficiently be counted and used for

122 CHAPTER 4. COLLISION DETECTION

classification. Building on this theory, methods based on voxels [BW02, HTG04] and
view-frusta [LCN99] have been proposed.

In comparison to previous approaches, our method is similar to suggestions made
by Knott and Pai [KP03]. By observing that scan-conversion algorithms only count the
number of intersections between a polygon P and the view ray up to the first point q

of the penetrating object, a variant that also detects additional points along these rays
was proposed. This is achieved by rendering the penetrating object as wire-frame such
that lines not entirely occluded by others “shine through” and leave a unique ID in the
frame buffer. As the method distinguishes between penetrating and penetrated objects,
it cannot handle self-intersections of one single deformable object.

Along a different line of research, hardware-supported occlusion queries have been
employed to accelerate collision detection [GRLM03]. Via an occlusion query the ap-
plication program can request the number of fragments that survive the depth test in the
rendering of a set of primitives. These queries can thus be used to accelerate the broad
phase of collision detection, i.e., by testing whether two objects can be trivially rejected
because they do not interfere in screen-space. To overcome sampling and precision er-
rors that can result in collisions being missed, Govindaraju et al. [GLM04] proposed
to “fatten” the objects, i.e., to extend the screen-space footprint of rendered primitives
both with respect to the number of covered fragments and the primitives depth. The use
of occlusion queries for intra-object collision detection including strategies to reduce
the number of potentially colliding primitive pairs was proposed in [GLM05].

Occlusion queries have been shown to be a very powerful means to reduce the num-
ber of potentially colliding primitive pairs. The reason why we decided not to use
occlusion queries is threefold: First, as occlusion queries have to be issued by the
application program, this mechanism seems to be problematic for the handling of col-
lisions between GPU objects (objects that are only known on the graphics subsystem).
Second, in the context of collision detection, occlusion queries work most effectively
if used in combination with a narrow-phase acceleration strategy on the CPU. This im-
plies a dynamic data structure to be kept on the CPU, which is difficult to maintain
efficiently in case of deformable objects or even GPU objects. Third, the effectiveness
in pruning a majority of intersection tests strongly depends on the camera position and
viewport. Thus, in general several views of the scene have to be rendered to prune a
considerable number of primitives.

4.2. CONTRIBUTION 123

4.2 Contribution

In this chapter, we present a novel collision detection algorithm for closed manifold
meshes that addresses the aforementioned issues. We also show how this algorithm ex-
tends to the detection of collisions between arbitrary, open 2D-manifolds. The method
is specifically designed for interactive handling of deformable objects and GPU objects,
i.e., polygonal objects that are modified or constructed on the GPU. Figure 4.1 shows
some examples.

(a) (b)

Figure 4.1: We present a method for interactive collision detection between polygonal objects.
This method can handle deformable objects (a) and objects that are constructed on the GPU (b).
For the latter scene consisting of 320k moving triangles the time spent for collision detection
using our approach is less than 25 milliseconds.

Our algorithm is developed in consideration of the observation that the Achilles’
heel of almost all collision detection algorithms for deformable objects is the dynamic
data structure used to represent the changing object geometry. We avoid the construc-
tion and repetitive update of such a data structure by shifting parts of the collision
detection algorithm onto the GPU. Our algorithm takes as input a renderable polygonal
object representation, and it only requires a GPU array containing the polygons to be
rendered. In particular, this allows the method to handle geometry that is arbitrarily
modified or created on the GPU. The proposed method proceeds in five passes:

1. Object sampling: Colliding objects are sampled along a set of rays via depth-
peeling, and all rays along which a collision occurs are detected. This is done
by exploiting the intrinsic strength of recent GPUs to interactively render high-
resolution polygonal meshes and to efficiently perform fragment operations.

124 CHAPTER 4. COLLISION DETECTION

2. Ray merging: On the GPU a mipmap texture containing screen-space bounding
boxes of ray-bundles at an ever increasing width is built.

3. Primitive separation: Primitives access the mipmap to test whether they are
potentially colliding or not. For each primitive, potentially colliding areas are en-
coded as screen-space bounding boxes in a texture map. From this information,
the set of potentially interfering primitives can be computed efficiently. In partic-
ular, due to this pass, the precision of interference computations is not constrained
by the resolution of the frame buffer we rendered to in the first pass.

4. Texture packing: The results generated in the previous pass are transferred to the
CPU. To keep bandwidth requirements and CPU processing as low as possible the
sparse texture map is first converted into a packed representation.

5. Intersection testing: Exact intersection testing is performed on the CPU. Per-
primitive screen-space bounding boxes that have been computed in pass three are
used to prune most of the remaining primitive pair tests.

A diagrammatic overview of the collision detection process as suggested in this
work is shown in Figure 4.2. It illustrates how the proposed method fits the GPU
stream architecture. It is designed as a pipeline of stages being successively applied
to the stream of model geometry and generated fragments. In contrast to previous
collision detection algorithms, it is a very unique feature of the proposed method that it
can handle geometry that is arbitrarily modified or even created on the GPU. The input
for the algorithm is a geometry stream as generated by a geometry transformation unit,
i.e., the vertex shader or the geometry shader on very recent graphics hardware. The
result is a fragment stream consisting of only the potentially colliding primitives, which
is written into a geometry texture.

The geometry texture is transferred to the CPU for exact intersection testing. Al-
though it is in general possible to compute polygon-polygon intersections on the GPU,
its data-parallel nature is not very well suited for the kind of operations required to
determine the colliding partners from the entire set of possible candidates. Therefore,
a CPU-GPU hybrid method is employed, in which the CPU is responsible for exact
intersection testing.

For many scenarios, the data transfer from the GPU to the CPU is most likely to
become the bottleneck in the entire collision detection system. Thus, we present a novel
GPU technique to convert a sparse texture into a packed texture of reduced size. The
proposed technique converts an input stream containing a few randomly scattered valid

4.3. SCREENSPACE-ACCURATE OBJECT INTERSECTION 125

Scene
Geometry

Transformer

Geometry Stage Fragment Stage

Ray Merger

Primitive Separator

Reducer

Sampler Rays

MIP Levels

Pot. Coll. Tris

Texture Maps

Packed Data Main Mem

GPU CPU

Object Sampler

Figure 4.2: A diagrammatic overview of the proposed collision detection algorithm.

data items into a stream consisting of only these items. As this stream is downloaded
to the CPU, bandwidth requirements are considerably reduced. Since the approach
can also be used to filter out fragments not going to participate in upcoming rendering
passes, it has a number of possible applications. At the end of Section 4.4.1, we will
outline some of them.

The remainder of this chapter is organized as follows. The infrastructure on the
GPU that is required to implement the collision detection pipeline is presented in Sec-
tion 4.3. First we describe how recent GPUs are used to determine the rays along which
potentially colliding polygons are hit. Furthermore, the use of parallel fragment units
for mipmap generation and intersection testing is outlined. Section 4.4 illustrates the re-
duction technique for sparse textures on GPUs, and we then describe how intersections
are finally determined on the CPU. Section 4.5 briefly describes the collision response
method applied in our test scenarios. We lastly analyze the properties of our algorithm
in a number of different scenarios and we present our results including the extension to
non-closed manifolds.

4.3 Screenspace-Accurate Object Intersection

4.3.1 Object Sampling

In the first pass of the proposed collision detection algorithm the polygonal scene is
sampled to detect rays along which at least one potentially colliding polygon is hit.
These rays will subsequently be called collision rays. Here we are searching for rays
that have either at least two consecutive hits with a front facing polygon or at least two
consecutive hits with a back facing polygon, or that first hit a back facing polygon.

126 CHAPTER 4. COLLISION DETECTION

Figure 4.3: Illustration of interference, self-interference, and partial inversion. All cases result
in two consecutive front or back facing polygons, or a back facing polygon as first hit along a
ray.

The underlying theoretical basis of this method is given by the generalization of
Jordan’s theorem to higher dimensions. A closed polyhedron P separates space into
an “inside” and an “outside.” If it has outfacing normals, any ray starting outside of P

and intersecting P has alternating front and back facing intersection points (silhouette
points are ignored). At the front facing intersection points the ray enters P and at the
back facing intersection points it is leaving P . If along a ray two consecutive front or
back facing intersection points are found, the ray enters a second object at the second
front facing point before the first object was left, or it leaves an object but was still in
another object 1. This also holds for an arbitrary number of objects. Examples of (self-)
interference are illustrated in Figure 4.3.

To detect intersecting closed polyhedra, it is therefore sufficient to detect consec-
utive front facing polygons or consecutive back facing polygons (silhouette polygons
are ignored), or a back facing polygon as first hit along any ray starting outside the
potentially colliding set. To detect all collisions, the space in which the polygons exist
has to be sampled as densely as possible.

Implementation

Although the rays being used to sample the objects’ faces can be chosen arbitrarily,
a uniform sampling along parallel rays leads to the most isotropic sampling in object
space. Scanline rendering algorithms simulate this by projecting the objects along an

1Here we assume that no object is entirely contained in any other object.

4.3. SCREENSPACE-ACCURATE OBJECT INTERSECTION 127

arbitrary but constant direction. To detect consecutive pairs of front or back faces, all
faces have to be rendered in correct visibility order with respect to an infinite viewer in
the direction of the projection. Depth-peeling is employed to achieve this ordering.

The use of depth-peeling to track intersection events in an ordered way was sug-
gested before by Guha et al. [GKMV03] and Hable and Rossignac [HR05] in the
context of GPU-based CSG2 rendering. By tracking the state of intersection points
between view rays and bounded solids, i.e., entering (1) or leaving (0), the state of a
boolean expression of these events can be determined correctly at any point along the
rays. We are interested in extending this idea to find consecutive events of the same
state.

Depth-peeling requires multiple rendering passes. For each pixel, in the n-th pass
the (n − 1)-th nearest fragments are rejected in a fragment program and the closest of
all remaining fragments is retained by the standard depth test. A floating-point texture
map—the depth map—is used to communicate the depth of the surviving fragments to
the next pass. A detailed description of this method is given by Everitt [Eve01]. The
number of rendering passes is equal to the objects’ depth complexity, i.e., the maximum
number of object points being projected to a single pixel. The depth complexity can
be determined by rendering the objects once and by counting the number of fragments
being projected to each pixel during scan-conversion. The maximum coverage of all
pixels is then collected in a log-step reduce-max operation [KW03b].

To detect two front or two back facing polygons in consecutive rendering passes it
is sufficient to store an additional tag indicating the expected facing of the fragment in
each entry of the depth map. The expected facing is determined by alternating between
front and back facing states, initially starting with a front facing state. In addition to
only comparing the current depth of the fragment to the value stored in the depth map, a
fragment shader also compares the expected facing to the actual one. If they differ, the
fragment is marked as a collision ray and is discarded in upcoming rendering passes.

The modified depth-peeling technique generates a texture map—the sampler ray—
in which the status is set to “on” for all collision rays, and to “off” for all other rays
(see Figure 4.4). As the sampling rate is constrained by the resolution of the frame
buffer, some interfering primitives, and thus collision rays, might not be detected. This
problem can be weakened by increasing the resolution to its maximum size, but it still
exists. On the other hand, a collision ray is only missed if all interfering primitives
along that ray are missed. If at least one of the intersections is detected, the upcoming
stage of the collision detection process will find all intersecting primitives.

2Constructive Solid Geometry

128 CHAPTER 4. COLLISION DETECTION

Figure 4.4: By using depth-peeling and fragment operations to detect front or back faces, col-
lision rays in each layer are determined (colored red). Three layers of the scene consisting of
bunny models are shown here.

4.3.2 Ray Merging

To determine potentially colliding primitives, i.e., polygons that are hit by a collision
ray, the information that was generated on a per-ray basis in screen-space has to be
carried over to the set of polygons. One possibility is to rasterize one fragment for
each polygon and to compute the rays intersecting the polygon in a fragment shader.
The status of each ray can be retrieved from the sampler ray texture, and the primi-
tive is assigned a flag indicating whether it is hit by at least one collision ray or not.
Unfortunately, from this information alone it is quite cumbersome to determine the
set of potentially colliding primitive pairs being needed for exact intersection testing.
Moreover, due to the different size of triangles in screenspace, the GPU’s fragment
processing cannot reach its maximum performance.

Therefore, we propose a more efficient strategy. At the core of this strategy is the
idea to generate the information required to efficiently determine the set of potentially
colliding primitives for each polygon. This inter-object relation is established via the
collision rays. In general, every polygon is hit by many collision rays. Thus, for a
particular polygon several of these rays are required to detect all potentially colliding
partners. In the following we describe a simple GPU data structure in which the rela-
tions between a primitive and all of its potential partners are encoded in one single ray

4.3. SCREENSPACE-ACCURATE OBJECT INTERSECTION 129

Figure 4.5: A mipmap texture represents bundles of collision rays at increasing width.

bundle. An example of the resulting mipmap texture is given in Figure 4.5.

The data structure consists of ray bundles at increasing width. For every collision
ray, the screen-space bounding box bb = (x<, y<, x>, y>) of the pixel this ray is passing
through is computed. The first two and last two components of the quadruple specify
the left-bottom and the top-right corner of this bounding box. Bounding boxes of sam-
pler rays that are “off” are set to (1, 1, 0, 0), such that they do not affect the union with
any other box. Bounding boxes are rendered into an RGBA 16 bit floating-point tex-
ture of the same size as the sampler ray texture. From this texture a mipmap hierarchy
is generated by computing at each level l the union of bounding boxes of the 2 × 2

corresponding texels at level l − 1. The union of two bounding boxes bb1 and bb2 is
calculated as

bb1 ∪ bb2 = (min(x<
1 , x<

2), min(y<
1 , y<

2), max(x>
1 , x>

2), max(y>
1 , y>

2)) .

This process is performed recursively until only one bounding box is left over (see
Figure 4.6).

For the sake of simplicity the initial texture size is assumed to be a power of two,
and we limit ourselves to quadratic textures. The mipmap finally stores screen-space

130 CHAPTER 4. COLLISION DETECTION

Figure 4.6: Mipmap construction: On the finest level, the screen-space bounding boxes (red)
are set to the pixel border of each collision ray (blue), or the texels are empty otherwise. For
2× 2 texels the union of their boxes (green) is calculated to obtain a bounding box (red) at the
next coarser level.

aligned bounding boxes of ray bundles, where a bundle only contains those rays that
have been marked as “on.” This mipmap can be used to find all potentially collision
rays of a particular primitive as explained next.

4.3.3 Primitive Separation

To find the ray bundle that contains all colliding rays intersecting a certain primitive,
we first compute the minimum mipmap level where the screen-space extent of one texel
is larger than the screen-space bounding box of the primitive itself (see Figure 4.7).

To efficiently find this level, we generate one fragment for each polygon and com-

Figure 4.7: Primitive separation: The screen-space bounding box of two triangles is shown in
green. The maximum extent of these boxes yields the mipmap level. The mipmap is sampled
(nearest neighbor filtering) at every corner of the box. Since the texels of the corners are still
neighboring at the next finer mipmap level, we can use this level instead. The bounding boxes
stored at each sample point (red) are combined to a single box. The output is the intersection
between this box and the triangle bounding box (yellow).

4.4. GPU-CPU DATA TRANSFER 131

pute the primitive’s screen-space bounding box in a fragment shader. From the extent
of this box the appropriate mipmap level is derived. As a primitive can intersect mul-
tiple ray bundles at this level, at every corner of the primitive’s screen-space bounding
box, one bundle along with its screen-space bounding box is fetched from the mipmap
hierarchy. (If the corresponding texels are still neighboring at the next finer mipmap
level, this level can be used instead.) The union of these boxes is then determined, and
the resulting bounding box is intersected with the screen-space bounding box of the
triangle. The coordinates of this box are stored in a target texture. If only empty ray
bundles are fetched from the mipmap, the respective entry in the render target is set to
zero, resulting in a texture that is sparsely filled. An overview of the ray merging and
primitive separation step is also given in Figure 4.8.

Figure 4.8: Ray merging and primitive separation.

4.4 GPU-CPU Data Transfer

The texture that is generated in the previous pass has to be transferred to the CPU for
exact intersection testing. Although it is possible to compute polygon-polygon inter-
sections on the GPU, the GPU’s data parallel nature is not very well suited for the kind
of operations required to determine the colliding partners. This can be performed most
efficiently by using a sweep-and-prune strategy which reduces the set of potential part-
ners by considering the bounding boxes of the polygons along the screen-space x−, y−,
and z−direction. The implementation of such a strategy on the GPU does not seem to
be very promising and has not been considered in this work.

By applying the technique described in the next section, a packed texture containing

132 CHAPTER 4. COLLISION DETECTION

the set of potentially colliding triangles is generated on the GPU. Each texel stores a
unique triangle ID as well as the screen-space bounding box of the set of rays intersect-
ing this triangle. The packed texture is finally transferred to the CPU for intersection
testing.

4.4.1 Texture Packing

This stage implements a general method to convert a sparse texture into a packed texture
that consists of only the non-empty texels in the sparse texture. The proposed method
significantly differs from the one presented in [GGK06] since it does not rely on a
global scattering pass and the sequence of operations is not data-dependent.

The reduction stage—although it is not a mandatory stage in the proposed collision
detection algorithm—is essential for our technique to perform most efficiently due to
the following reasons: First, the packed texture can be downloaded to the CPU at much
higher rates. Second, the processing of a large number of empty cells can be avoided
on the CPU. The texture reduce operation on the GPU is accomplished in three stages:

• Counting: Non-empty texels per row are counted in a log-step reduce-add oper-
ation along texture rows. A single-column texture storing these counts is read to
the CPU (see Figure 4.9).

• Shifting: In each row non-empty texels are shifted to the right of the texture (see
Figure 4.10). All rows are processed in parallel by rendering a vertical line.

• Moving: Packed rows are moved into the reduced texture. This texture is finally
downloaded to the CPU (see Figure 4.11).

The application program computes the total number of non-empty texels from the
single-column texture being read in the first step. This information is used to set the
size of the reduced target texture. In addition, the maximum number M of non-empty
texels per row is computed.

2
1
1
0
3
1
2
1

Step 1 Step 2

Figure 4.9: Counting: Step 1 executes a classification shader (selects only yellow texels here).
Step 2 counts the positive texels per line and reads them back to the CPU.

4.4. GPU-CPU DATA TRANSFER 133

Step 3bStep 3a

Figure 4.10: Shifting: First, a next-pointer list is constructed. Second, this list is traversed to
gather texels from the appropriate position. The orange arrow depicts the traversal direction.
For the sake of clarity only the shifting of every second line is shown.

In the second step the sparse texture is reduced horizontally. This is done in two
passes, the first of which proceeds from left to right and the second from right to left
(see Figure 4.10). To do such a reduction on the CPU we would simply traverse each
row from left to right, keeping a pointer to the current element in the reduced row and
copying the next non-empty element to this position. Unfortunately such a copying (or
scattering) operation is not available on recent GPUs. Thus, we have to convert this
operation into a gather operation. Therefore, we first sweep over the texture from left
to right and store into each texel the position of the preceding non-empty texel in the
same row. Before the first non-empty entry is encountered, a special key is stored. In
the second pass we sweep from right to left for M steps. If the rightmost texel in a row
is not empty we write zero into the texture, otherwise the address found in that texel is
written (Figure 4.10, blue texels). In all subsequent sweeps the address at the preceding
position in the same row is dereferenced first, and the retrieved address is written to the
render target. Sweeping is accomplished by rendering a vertical line primitive covering
as many pixels as there are rows in the sparse texture. As we only need to access a
single address per line, which can be stored in one component of an RGBA color value,
with every rendered line four columns can be processed at once.

After the horizontal reduction, the contiguous sets of texels in each row of the sparse
texture have to be copied into a render target of reduced size. This is done by rendering
for each row in the sparse texture a horizontal line covering as many pixels as there
are non-empty texels in this row. If the size of the packed texture is X × Y and ren-
dering the first L lines has generated N fragments, then the (L + 1)-th line starts at
position (N mod X, bN/Xc) in the target texture. If the length of this line is larger
than X − (N mod X) it has to be split into two or more lines of reduced length. This
is illustrated in Figure 4.11. The fragments generated for each line can fetch the corre-
sponding values from the sparse texture via appropriately chosen texture coordinates.
The read values are copied to the render target as shown in Figure 4.11. Due to perfor-

134 CHAPTER 4. COLLISION DETECTION

Step 4

Figure 4.11: Moving: Each packed row is finally copied at the appropriate position into the
target texture.

mance issues, the application program creates a vertex array containing all the required
information and renders this array using one single call.

Applications

The need for a texture reduction scheme on the GPU is paramount in a number of
graphics applications, where data is modified or generated on the GPU and has to be
processed further on the CPU. Popular examples include physics on GPUs [GH06],
where the results of approximate occlusion queries and collision response calculations
are used in the broad phase of collision detection on the CPU.

The texture reduction scheme provides a powerful mechanism to minimize the
bandwidth requirements in the proposed collision detection algorithm. On the other
hand it can also be used to discard fragments not going to participate in upcoming ren-
dering passes on the GPU. In typical fragment-based rendering algorithms it is often the
case that the fragment program is conditionally executed by only a small fraction of the
entire set of fragments generated by the rasterizer. Potential applications include adap-
tive techniques for texture filtering, rendering, or numerical simulation on the GPU. A
similar texture reduction technique based on histogram pyramids has been presented
recently by Ziegler et al. [ZTTS06]. In particular, they use their technique to generate
point clouds of arbitrary geometries for particle explosions.

As an alternative to the proposed texture reduction technique, fragments can also
be discarded using advanced GPU features like the early-z test or breaks in the frag-
ment stage. Unfortunately, on current graphics cards early-out mechanisms introduce
some overhead, i.e., either a branch instruction or additional rendering passes. More-
over, since the pixel shader hardware runs in lock-step, a performance gain can only be
achieved if all fragments in a contiguous array exit the program early. These observa-
tions are backed up by latest GPUBench [BFH04] results. Results for our target archi-
tecture, the GeForce 7800 GTX, are available at http://graphics.stanford.edu/

4.5. COLLISION RESPONSE 135

projects/gpubench/results/. These results attest current GPUs a rather bad branch-
ing performance even if all fragments in a 4× 4 block exit the program simultaneously.

As a matter of fact we believe that the proposed texture packing has the potential to
become a general means to efficiently filter out fragments from a generated fragment
stream. Thus, the method is not only highly beneficial in hybrid CPU-GPU approaches
to reduce bandwidth requirements but also in pure GPU techniques to minimize the
load in both the rasterization and the fragment stage.

4.4.2 Intersection Tests

After having received the texture containing all potentially colliding primitives, a sweep-
and-prune strategy [CLMP95] is utilized on the CPU to determine the colliding prim-
itive pairs. These are the primitives whose bounding boxes overlap along each of the
three screen-space axes. The extent of the bounding boxes in screen-space z-direction
is only computed if an overlap along the x- and y-direction has been detected. For those
primitives being detected a triangle-triangle intersection test is performed [Möl97], and
for each triangle a response vector is computed taking into account its own normal and
the normal of the colliding partner. Alternatively, any other CPU collision algorithm
based on axis-aligned bounding boxes can be used instead of the sweep-and-prune strat-
egy.

4.5 Collision Response

In this work, we only consider simple approaches to perform collision response. For
rigid bodies, the response vectors of all triangles belonging to a body are averaged and
used to compute the changes in the position and rotation of the body. For deformable
objects, per triangle response vectors are used to compute appropriate repulsion forces.
Given two colliding triangles, forces are calculated to push the triangles away from
each other as shown in Figure 4.12. Forces are only assigned to penetrating vertices,
and the repulsion forces are accumulated to account for all incident triangles.

It is worth noting here that more accurate and physically motivated techniques to
compute the collision response can be integrated into our approach but have not been
considered in this work. In particular, to accurately resolve collisions the simulation
step has to be stalled until all collisions are resolved, and this, in general, implies that
the per-frame computational time increases significantly. In real-time applications, the
use of repulsion forces has a beneficial property. Since the collision response is handled

136 CHAPTER 4. COLLISION DETECTION

Figure 4.12: Calculation of repulsion forces: Penetrating vertices (green) are pushed back in
the direction of the face normal of the other triangle.

via external forces, the per frame computational load is nearly constant. On the other
hand, repulsion forces cannot guarantee to resolve the collision within the next time
step (when the effect of the forces is determined), and objects can penetrate each other.

4.6 Results

We have tested the proposed collision detection algorithm in three different scenarios
consisting of several thousands up to a million triangles. All of our tests were run on an
Intel Core™ 2 Duo equipped with an NVIDIA GeForce 7800 GTX. In all of our tests a
1k×1k frame buffer was used to sample the objects along parallel view rays. All objects
are encoded as indexed vertex arrays stored in GPU memory. The timings given below
do not include the amount of time required for collision response calculations.

With the help of three test scenes the overall performance of our algorithm is demon-
strated in the next section, prior to a more detailed analysis. We verified that all inter-
secting primitive pairs at one time step were detected in the presented examples. How-
ever, because our algorithm belongs to the class of pseudo-dynamic collision detection
algorithms, some collisions might be missed due to the movement of objects.

4.6.1 Scenes

Deformable object collisions: In the first example the collision detection algorithm
was integrated into our interactive deformable bodies simulation. Collision detection
was performed on the render surface, which is bound to the tetrahedral simulation mesh
as described in Section 3.3. To perform the triangle intersection tests on the CPU, an
undeformed copy of the render surface geometry is stored. For the triangles to be
taken into account in the final step of the algorithm, the CPU copy of the triangle is
first displaced by interpolating the simulation displacement field for each vertex using
barycentric weights. The calculated repulsion forces are distributed to the simulation
vertices using the same weights. In Figure 4.13 two snapshots of an animation sequence

4.6. RESULTS 137

Figure 4.13: (Self-) collisions between deformable objects.

with bunny and horse models are shown. The depth complexity of the scenes along the
collision rays is 8. All collisions between the deforming objects were detected in less
than 40 ms.

GPU object collisions: To further demonstrate the ability of the proposed algorithm to
deal with geometry that is modified or even created on the GPU, we have used a scene
that is made of dynamic meshes being procedurally deformed on the GPU. Figure 4.14
shows this scene consisting of artificial creatures made of a spherical body and a number
of moving tentacles attached to it. Tentacles are animated and deformed by a vertex
shader program on the GPU. Rigid starships try to pass these creatures. Upon collision
with any other creature or any of the shuttles, tentacles retract and start growing again.

In contrast to all other examples, for every potentially colliding triangle that is de-
tected on the GPU the three vertex coordinates of this triangle along with its normal
and a unique tentacle ID are stored in different texture maps. These textures are then
packed and downloaded to the CPU. In this way the CPU can control the retraction

138 CHAPTER 4. COLLISION DETECTION

Figure 4.14: Collisions between dynamic GPU objects.

(a) (b) (c)

Figure 4.15: Rigid body collisions.

of tentacles via shader parameters, and it can simulate rigid body motion of the shut-
tles. The overall scene consists of 320k triangles. All collisions were detected in about
25 ms.

Rigid body collisions: Our last example demonstrates the capability of our method to
handle collisions between rigid bodies (see Figure 4.15). Although we are aware of
the fact that optimized CPU collision detection algorithms are probably more suited to
this particular application, the given examples allow for a clear analysis of the different
parts of our method.

The first scene in Figure 4.15 (a) consists of 60 rigid bunnies moving through space
due to gravity and collisions. The entire scene consists of half a million triangles. The
depth complexity of the scene as seen in the image is 16. The detection of all collisions
in the scene took 200 ms. We have also run the experiment by restricting the number

4.6. RESULTS 139

of rendering passes performed by the depth-peeling routine to six. In this case, the
performance increased to 120 ms, and even more interestingly only less than 5% of all
penetrating triangle-triangle pairs were missed. Alternatively, we have stopped depth-
peeling after seven passes and all fragments with a depth count greater than 6 were
marked as potentially colliding. In this case the performance dropped down slightly,
but on the other hand all triangle-triangle collisions were again resolved. The efficiency
of our approach is further demonstrates by the example in Figure 4.15 (c). Even for a
triangle count of 800k in the dragon scene and a number of 50k potentially colliding
primitives processed on the CPU, the method is still able to achieve about 4 frames per
second.

4.6.2 Analysis

Detailed statistics of all test scenes are presented in Table 4.1. The overall triangle
count is given in the first column. The second column presents the number of collision
rays. The number of triangles which are downloaded to the CPU is given next. In
the fourth column the number of triangles that survive the CPU pruning of overlapping
pairs of primitive bounding boxes is listed. The fifth column contains for each scene the
number of primitive intersection tests. The last column shows the number of detected
colliding triangle pairs.

Scene #
tr

ia
ng

le
s

#
co

lli
si

on
ra

ys

#
tr

ia
ng

le
s

do
w

nl
oa

de
d

#
po

t.
co

ll.
tr

ia
ng

le
s

#
tr

i-
tr

i
te

st
s

#
po

si
tiv

e
te

st
s

Defo bunnies 12k 0.2k 0.4k 0.2k 0.4k 0.1k
Defo horses 32k 21k 13k 4.3k 9.0k 3.7k

Art. creatures 320k 0.3k 1.0k 0.4k 1.5k 0.2k
Rigid bunnies 500k 2.8k 12k 4.4k 7.7k 1.5k
Rigid dragon 800k 7.7k 54k 7.5k 6.6k 1.5k

Table 4.1: Triangle counts of the collision scenes.

Representative timings for collision detection in the example scenes are listed in
Table 4.2. All timings are given in milliseconds. The first column shows the amount
of time spent by the GPU for object sampling, ray merging, and primitive separation.
The time required for reducing the sparse texture and downloading the packed texture
to the CPU is given next, followed by the time required for CPU processing. Finally,
the overall performance is specified in frames per second (fps).

140 CHAPTER 4. COLLISION DETECTION

Scene GPU Reduce CPU overall

Defo bunnies 3 ms 1 ms 1 ms 5 ms / 200 fps
Defo horses 5 ms 4 ms 24 ms 33 ms / 30 fps

Art. creatures 17 ms 6 ms 1 ms 24 ms / 42 fps
Rigid bunnies 56 ms 18 ms 21 ms 95 ms / 11 fps
Rigid dragon 53 ms 32 ms 139 ms 224 ms / 4.4 fps

Table 4.2: Timing statistics for collision detection (NVIDIA 7800 GTX).

In comparison to previous work on GPU-based collision detection between CPU
objects, the examples we have shown indicate comparable performance. It can be ob-
served, however, that our algorithm has the tendency to generate a larger set of poten-
tially colliding primitives on the GPU, which then has to be processed on the CPU.
Due to the fact that we sample the scene along parallel rays through each pixel, we
might also miss collisions if the size of polygons is below the pixel size. On the other
hand, such inaccuracies can only occur if all interfering primitives under one pixel are
missed. If at least one of them is detected all intersecting primitives will be detected
in the upcoming stage of the collision detection process. By “fattening” the objects
similar to the method proposed in [GLM04] this problem can be solved entirely, but it
comes at the expense of an increasing number of false positives.

An advantageous feature of our method is that only a very simple data structure is
required to determine potentially colliding primitive pairs. Besides GPU-friendly ge-
ometry representations that are used for depth-peeling, such as vertex arrays or display
lists, an indexed face set and a shared vertex array is needed. Updates of the geometry
only require the vertex array to be updated accordingly.

As can be seen in the rigid bunny scene, depth-peeling can become the performance
bottleneck if the depth complexity of the scene is increasing. On the other hand, this
limitation only becomes severe if very large objects with high depth complexity have
to be tested, because we can use GPU-resident geometry representations for rendering.
In typical real-time scenarios, e.g., virtual surgery simulators or computer games, such
scenes are not very likely to occur. It is also worth noting that collision detection
between many rigid bodies can be improved by means of any appropriate broad-phase
strategy. It is, however, one of our major research goals in the future to reduce the
relative load of depth-peeling in the current scenarios. A promising strategy relies on
the exploitation of multiple render targets including separate depth buffers on upcoming
hardware.

In contrast to previous collision detection algorithms, our method can handle ge-

4.6. RESULTS 141

ometry arbitrarily modified on the GPU. This is demonstrated by our second example
above. In this case the GPU sends the modified geometry of all potentially colliding
polygons to the CPU, thus taking advantage of the texture reduction we have presented.
If additional geometry is created on the GPU, e.g., by using geometry shaders, only
slight modifications to our algorithm are required. In particular, as the entire geometry
has to be stored in one container, i.e., a texture map that can be accessed in step 3 of
the collision detection algorithm, this container has to be generated in an intermediate
rendering pass. All stages of the collision detection can then be executed as described.
In case that the colliding geometry is not known to the CPU, computing an adequate
collision response is of course a more complicated task.

In the case of deformable bodies, the proposed pipeline can be exploited very effi-
ciently to determine collisions on the high-resolution render surface bound to the simu-
lation mesh. Since the deformed geometry of the surface is stored on the GPU anyway,
the collision pipeline fits nicely into the overall approach. Only for potentially colliding
triangles (whose indices are read back to the CPU), the CPU first has to displace the
triangle from its reference position to account for the actual deformation. Then, the
intersection tests can be performed as described.

4.6.3 Non-Closed Polygonal Objects

Our collision detection algorithm has been developed for closed polygonal objects.
However, collision detection is also required in environments where GPU objects, de-
formable objects, and rigid bodies interact with each other. Moreover, these scenes
often include non-closed objects, such as the ground, walls, or cloth patches. To be
able to deal with such environments, we present an extension of our algorithm that al-
lows for the handling of non-closed objects. This extension comes at the expense of an
increasing number of false positives to be downloaded to the CPU. Therefore, if used
to detect collisions between open 2D manifolds only, we do not expect the method to
perform superior compared to CPU collision detection algorithms that have been opti-
mized for the handling of such meshes.

In general, an arbitrary open polygonal object can be closed by constructing a tight
enclosing hull around it. We avoid this construction by slightly changing the way the
collision rays are determined in the object sampling stage: a potentially colliding ray
is detected if two consecutive fragments are in close depth proximity. In general, due
to this modification a greater number of collision rays, i.e., false positives, is produced,
resulting in increasing bandwidth requirements as well as a higher load on the CPU to
finally detect the intersecting triangle pairs. The result of the proposed modification is

142 CHAPTER 4. COLLISION DETECTION

Figure 4.16: (Self-) Collisions between non-closed dynamic and rigid objects.

demonstrated in Figure 4.16, where a cloth patch self-interferes when colliding with a
sphere object. The cloth patch consists of 2k triangles. Up to 2k triangle-triangle tests
have to be performed on the CPU, and up to 300 intersecting triangle pairs have been
detected. The maximum time spent for collision detection and response in one single
time step of the animation sequence (the cloth patch falling down on the sphere) was
12 ms. The average time per-frame was only 5 ms.

Chapter 5

The Deformable Bodies System

This chapter focuses on the interplay of the three parts described so far—CPU sim-
ulation engine, GPU render engine, and GPU-CPU hybrid collision engine—in one
single simulation support system. We give a short overview of the steps performed in
the pre-processing stage to setup a simulation environment, followed by an overview
of the runtime computations. In Section 5.2, we show the temporal dependencies of
the system components, and how these components can effectively be distributed onto
multiple CPU cores or compute nodes. Finally, we give some results obtained with this
system.

5.1 Overview

The simulation support system consists of three parallel processes. The simulation
engine is implemented on the CPU, and it computes the displacements of an elastic
solid under external forces. The render engine is implemented on the GPU. It receives
computed displacements and updates the geometry of an associated surface or volume
model accordingly. While the simulation engine consecutively deforms the underlying
finite element grid, i.e., the simulation geometry, the render engine subsequently dis-
places the geometry of the render object, i.e., the render geometry, which is attached
to the simulation geometry via a weighting function. A clear conceptual separation be-
tween the simulation geometry and the render geometry enables the flexible variation
of the used geometries, i.e., regular grids, point sets, or volumetric render grids. Due to
this separation, a third process—the collision engine—is necessary. It has to perform

143

144 CHAPTER 5. THE DEFORMABLE BODIES SYSTEM

Update

Transfer
displacements

Simulation EngineSimulation Engine

Render EngineRender Engine

Barycentric
interpolation

Simulation MeshSimulation Mesh

Render MeshRender Mesh

Collision EngineCollision Engine

GPU

CPU

Ray SamplerRay Sampler
Primitive SeparatorPrimitive Separator

Triangle IntersectionTriangle Intersection

Repulsion Forces

Figure 5.1: Interplay of the simulation, render, and collision engine.

the collision detection on the render mesh (utilizing the GPU) and resolve the colli-
sions by displacing the simulation mesh accordingly (utilizing the CPU). Therefore,
the collision engine is implemented as a GPU-CPU hybrid approach. The interplay and
communication of the system parts is shown in Figure 5.1.

The particular system design has several additional properties that accommodate its
use in a number of applications:

• By decoupling the resolution of the simulation geometry from the resolution of
the render object, one can flexibly trade simulation or rendering quality for speed.

• The use of two separate grids, of which the render grid is attached to the simu-
lation grid via barycentric weights, enables approximate deformation of objects
that are made of far more elements than the simulation engine can handle.

• To update the render geometry, only the displaced simulation vertices have to be
transferred. Bandwidth requirements can thus be reduced.

Running the proposed system involves a number of pre-processing steps as well
as model driven computations at runtime. In the following we describe the different
modules the system is comprised from a high-level view.

5.1. OVERVIEW 145

5.1.1 Generating Models

Starting with an initial object representation, a tetrahedral hierarchy that constitutes the
basis for the multigrid method is generated. If such a hierarchy is already given, it can
be used directly. Dedicated data structures to render the deformed high-resolution ren-
der surface are created and initialized on the GPU. The model generation is performed
in the following steps:

1. Construct a 3D finite element mesh, either by using a triangle mesh and a tetra-
hedral mesh generation package such as TetGen [Si04], NETGEN [Sch97], or by
using an adaptive subdivision scheme for tetrahedral elements [GG00].

2. Assign material properties such as stiffness and density to finite elements depend-
ing on material characteristics using pre-computed transfer functions [KD98] or
segmentation results.

3. Where deformations are not allowed, fix vertices of the finite element model.

4. Generate a finite element mesh hierarchy including geometric correspondences
between the meshes.

Generate a triangle mesh hierarchy, e.g., by using a mesh decimation package
[GH97], and generate a finite element mesh for each hierarchy level as described.
Alternatively, use the meshes generated by the element subdivision scheme.

5. Construct a triangular render geometry. This can be the surface of the finest res-
olution finite element mesh, a simplified or detailed version of this mesh, or a
completely different mesh.

6. Bind the render mesh vertices to vertices of the finite element mesh.

7. Store vertices of the highest resolution finite element model into a 2D texture
map. Upload both the 2D texture and the render geometry including per-vertex
indices into that texture and associated weights to the GPU.

5.1.2 Runtime Computations

At runtime, the following steps are performed by the simulation support system:

1. Based on external forces, compute the displacements of finite element vertices
using the multigrid solver.

146 CHAPTER 5. THE DEFORMABLE BODIES SYSTEM

2. Store the displacement vectors in a 2D texture map and upload this texture to the
GPU.

3. Displace the render surface on the GPU and render this surface.

4. Perform collision detection on the displaced render surface.

5. If interference is detected, calculate repulsion forces and transfer these forces to
the simulation mesh using the stored weights and indices.

5.1.3 Changing Parameters at Runtime

At runtime, some parameters can be updated relatively fast. Among these, stiffness
parameters and fixed vertices are the most important. As described in Section 2.3.8
and 2.3.10, both updates can be performed on the original sparse matrix data structure;
to fixate vertices, some entries of the matrix are set to zero; to update stiffness values,
the whole matrix is reassembled from the element matrices. In the linear setting using
the Cauchy strain, both updates require to rebuild the multigrid hierarchy. Although
we have developed fast algorithms for this task in Section 2.5.4, for a model consisting
of 50,000 elements this still requires about 100 ms. If the stiffness matrix has to be
reassembled, too, another 250 ms are required approximately.

In the simulation of the corotated Cauchy strain the stiffness matrix and the multi-
grid hierarchy have to be rebuilt anyway in every frame. Therefore, in this setting the
updates come at no additional costs. In the nonlinear setting as described, the fixation
of vertices can be performed at runtime by zeroing the entries of the non-linear equa-
tion system analogously. However, updating the stiffness values is not supported yet,
since this update requires to reassemble the system of non-linear equations using the
symbolic polynomial data structures.

5.2 Parallelization

Due to the separation of the system in three parts—the simulation engine, the render
engine, and the collision engine—the concurrency of these engines has to be analyzed.
In this section, we first describe how multiple threads can be used to interleave the
calculations performed by these engines using a shared memory architecture. Then, we
present a parallelization on multiple nodes, each of which only has access to its local
memory. The message passing interface (MPI) is used for both communication as well
as synchronization in this case.

5.2. PARALLELIZATION 147

5.2.1 Multiple Threads

The system is parallelized using POSIX® threads to instantiate a separate simulation
and rendering thread. This is necessary because the execution of rendering commands
on the GPU may block the application process whereas only the calling thread is
blocked in a multi-threaded environment. The spawning process allocates memory that
is shared by both threads to write and to read computed displacements. Both threads
are synchronized via conditional variables, which allow synchronization based upon
the actual value of data. By exploiting dual core architectures, idle times of the threads
can be reduced noticeably.

The collision detection stages are distributed to both threads using additional syn-

St

Rt-1

St+1 St+2

Rt+1

Time

Simulation thread

Render thread

......

Rt

Thread interplay (no collisions)

St

Rt-1

St+1

Rt

St+2

Rt+1

Time

......
Simulation thread

Render thread

Ct

Ct

Ct+1

Ct+1

Thread interplay (collisions)

St

Rt-1

St+1

Rt

St+2

Rt+1

Time

......

Simulation thread

Collision thread Ct

Ct

Ct+1

Ct+1Render thread

St+3

Ct+2

Ct+2 Rt+2

Thread interplay (separate collision thread)

Figure 5.2: The temporal interplay of the system threads (S = simulation, R = rendering,
C = collision) is shown. If a separate collision thread is spawned, CPU and GPU idle times
can be reduced significantly. On the other hand, repulsion forces of the collision response are
only considered in the time step after the next.

148 CHAPTER 5. THE DEFORMABLE BODIES SYSTEM

chronization mechanisms. This guarantees that the GPU is only used by one thread at
any time. The simulation thread is suspended until the results of the collision detection
are transferred from the GPU to the CPU. Then, the thread resumes its work by first
determining the colliding pairs and calculating repulsion forces that are considered in
the next simulation step. However, both CPU cores are not used to their full capacity in
this approach (see Figure 5.2).

To exploit the full potential of the cores, a third collision thread that handles the
CPU calculations of the collision algorithm can be spawned. However, due to the
interleaving of these threads, the repulsion forces are considered by the simulation step
after the next, thus decreasing the accuracy of the collision response noticeably. The
temporal execution of the threads is also illustrated in Figure 5.2 based on the most
relevant parts of the system.

Simulation Concurrency

Depending on the kind of simulation (linear, corotated, non-linear) that is performed,
there is an opportunity to parallelize computations within the simulation engine, too. In
the corotated setting, multiple threads performing matrix reassembly, multigrid update,
and multigrid solution can be efficiently used as shown in Section 2.7. The temporal
interplay of these threads is shown in Figure 5.3. In the non-linear setting, an arbitrary
number of threads can be used to evaluate both the Jacobian matrix and the system of
equations given the current displacement field u. All of these additional computing
threads are synchronized with the main simulation thread in every frame. Matrix vector
products as well as Jacobi (instead of Gauss-Seidel) relaxation could be parallelized in
principle, too. However, this would result in rather small parallel blocks introducing a
noticeable communication overhead. For that reason we have not considered this option
in this work.

At

St-1

At+1

St

At+2

St+1

Time

......
Reassemble thread

Multigrid thread Ut-1

At+3

St+2Ut Ut+1 Ut+2

Figure 5.3: Interplay of the simulation threads in the corotated setting. Since the time for matrix
assembly (A) is more than 50% of the overall time (see Table 2.9), one thread for multigrid
update (U) and multigrid solution (S) is sufficient.

5.2. PARALLELIZATION 149

5.2.2 Multiple Nodes

We also consider how the system can be distributed on several compute nodes that do
not share memory. The nodes communicate via the message-passing interface (MPI)
[For03] implemented on an InfiniBand® network. For example, to support stereo ren-
dering or tiled displays at full performance rate, the system can optionally be run on
multiple render nodes. Each render node holds its own render geometry on the local
GPU and updates it according to the received displacement field. This field is dis-
tributed to all render nodes by the MPI broadcast functionality.

We have tested the system with four render nodes connected via an InfiniBand®
network. Due to the fast and low-latency connections, the communication overhead in
the current scenario is negligible. The simulation runs on a separate node providing
two to four CPUs for the additional simulation threads. The collision engine can be run
on an additional node. It updates the render geometry according to the render nodes
and performs object sampling, ray merging, and primitive separation on the graphics

...

Transfer displacements

Settings

Se
tti
ng
sRep

ulsi
on

 fo
rc

es
Simulation

Node

CPU

CPU

Collision
Node

GPU

CPU

Render
Node

GPU

Render
Node

GPU

Control
Node

CPU

Figure 5.4: System distribution on multiple compute nodes. The simulation node runs on
multiple CPU cores with shared memory. Displacements are transferred to an arbitrary number
of render nodes, each of which stores its own copy of the render geometry in local GPU memory.
A separate collision node is used to perform collision detection with the GPU-CPU hybrid
approach. The whole application is controlled by a separate node, which handles the graphical
user interfaces and distributes the settings to all nodes. All nodes are synchronized at the end of
each simulation step using an MPI barrier command.

150 CHAPTER 5. THE DEFORMABLE BODIES SYSTEM

hardware. The intersection tests are performed on the local CPU after potentially col-
liding primitives have been downloaded. Finally, calculated repulsion forces are sent
to the simulation node. The system can be controlled by a separate node handling the
graphical user interface. However, this node does not necessarily run on a detached
hardware. The interplay of all components is shown in Figure 5.4.

5.3 Results

Most of the algorithms and methods presented in this thesis have been integrated into
one single tool—the tum.3D defo application. Note that the GPU simulation based
on the mass-spring approaches is not included in this application. The interplay of
the components has been thoroughly discussed previously. A screenshot of the user
interface is given in Figure 5.5.

On the simulation side, linear and corotated Cauchy strain as well as non-linear
Green strain are supported. Material parameters, boundary conditions such as vertex
fixation and the time integration scheme to be used can be selected via the graphical
user interface. Objects can be deformed by picking arbitrary parts of these objects with
the mouse—or optionally by using a haptic input device. In both cases, a ray-object
intersection test is performed at the screenspace position of the cursor to determine

Figure 5.5: Screenshot of the tum.3D defo application.

5.3. RESULTS 151

the finite element which is picked by the user. On the rendering side, all the options
described in Chapter 3 are integrated into the system and can be selected from the
menus.

Force Fields

A number of static and dynamic force fields have been integrated into the system to
achieve specific simulation effects. Figure 5.6 shows an example where a height field
composed of triangular elements is deformed using wave-like force fields to simulate
earth quakes. Although this simple approach is of course not a serious earth quake
simulation, the effect looks plausible and can be computed very quickly. The mesh
consists of roughly 60k triangular elements and the simulation still runs at 20 time steps
per second. Source or sink vector fields can be used to achieve intuitive deformations.
In Figure 5.7, a balloon image is blown up or shrunk, respectively. In Figure 5.8 an
additional example of the use of specific force fields is demonstrated. By applying
a radial symmetric force field, implants can be simulated at low computational costs,
thereby assisting the surgeon in the selection of the best implant parameters, implant
position, and operative access for the patient.

In Figure 2.27, other kinds of force fields such as wind have been shown. In com-
bination with the collision detection approach, realistic simulation of cloth is achieved
(see Figure 4.16 at the end of Chapter 4). However, the presented simulation model is

Figure 5.6: Deforming the Mount St. Helens terrain to achieve an earthquake effect for gaming
environments. In the top-right image, the displacement field for one time step of the animation
is visualized.

152 CHAPTER 5. THE DEFORMABLE BODIES SYSTEM

(a) (b) (c)

Figure 5.7: A balloon image (a) can be blown up by inserting a source vector field (b) or shrunk
by inserting a sink vector field (c).

Figure 5.8: Breast augmentation as one potential application of the proposed multigrid simu-
lation framework: Gravity, different material properties as well as additional forces induced by
implants can be simulated interactively.

not very well suited for the physics of cloth, since folds and wrinkles cannot be simu-
lated natively. In fact, there exist many specialized papers that focus on cloth simulation
[BW98, BMF03, GHDS03, EKS03]. Although we have not included the proposed so-
called bending forces in our tum.3D defo engine, the mentioned approaches could still
benefit from the multigrid framework.

High Performance

The example of the deformable dragon model in Figure 5.9 demonstrates the effective-
ness of the interplay of the CPU simulation engine and GPU render engine. Due to
the interleaving of both system components, the overall frame rate drops down only
slightly from 16.7 fps (simulation only) to 16.5 fps when a high-resolution render mesh
consisting of 800k triangles is displaced according to the 67k tetrahedra simulation

5.3. RESULTS 153

Figure 5.9: The deformation of the dragon model demonstrates the effectiveness of the interplay
of the simulation and render engine. While a 67k tetrahedral mesh is simulated on the CPU,
800k triangles are displaced accordingly on the GPU without affecting the overall performance.

Figure 5.10: Stress visualization of a bending beam under gravity. Both the simulation mesh
and the render mesh consist of 24k tetrahedral elements.

mesh. If this mesh is displaced on the CPU as in traditional approaches, the overall
frame rate drops down to 12 fps on an Intel Core™ 2 Duo system equipped with an
NVIDIA 8800 GTX graphics card.

The coupling with our volume rendering engine enables online observation of in-
ternal material properties. In Figure 5.10 the internal stress of a bridge (fixed on the
left-hand side) under gravity is shown. Furthermore, the deformation of regular 3D vol-
umes has been demonstrated in Figure 3.14 and 3.19 in Chapter 3. The effectiveness
and efficiency of the collision detection approach in combination with the render engine
has already been thoroughly discussed in Chapter 4 (see Figure 4.13 for an example).

Chapter 6

Conclusion

In this thesis, I have presented an implicit multigrid framework for interactive and
physics-based simulation of deformable volumetric bodies, which is open to a vari-
ety of different strain measures. I demonstrated how this framework has been extended
by a wide range of modified material laws, which also allow for intuitive non-physical
deformations. The proposed multigrid solver effectively benefits from coarse grid cor-
rection in that it produces numerically stable results yet minimizing the number of iter-
ations to be performed until convergence. The proposed multigrid solver allows for the
simulation of homogeneous materials as well as heterogeneous materials, i.e., materials
exhibiting varying stiffness and density, without sacrificing speed or quality.

I have further demonstrated, that the 1-step stream acceleration approach for sparse
matrices efficiently updates the multigrid hierarchy based on the Galerkin property.
This technique yields a generic multigrid framework, since only sparse (optionally
symmetric) matrices and appropriate restriction/interpolation operators are required.
Therefore, the proposed algorithms can greatly accelerate other applications, too. As
a consequence, the multigrid framework has the potential to be integrated into many
real-time scenarios such as surgical simulators or virtual environments. In particular,
I demonstrated the capabilities of the proposed methods in the context of soft tissue
deformation and medical applications. It has been validated that highly accurate results
can be achieved at interactive rates.

It has been demonstrated that the GPU can outperform the CPU when simulating
simple physical models such as mass-spring systems. Furthermore, I have identified
the problems of GPU simulation if high numerical accuracy is required. However,

155

156 CHAPTER 6. CONCLUSION

this judgment might be weakened in the future due to improved graphics architectures
providing double precision and improved support for scattered write operations.

I have developed a method to improve the rendering of deformable objects. By
exploiting the capabilities of modern graphics architectures, high-resolution meshes can
be displaced according to the underlying simulation mesh. Due to the elaborate system
design, simulation rates are usually not affected by the rendering. Then, I presented a
generic and scalable rendering pipeline for tetrahedral grids. The pipeline is designed
to facilitate its use on recent and upcoming graphics hardware and to accommodate
the rendering of large and deformable grids. In particular, it has been shown that the
proposed concept supports upcoming features on programmable graphics hardware and
thus has the potential to achieve significant performance gains in the near future.

A novel collision detection algorithm that is particularly designed for recent and
future graphics hardware has been presented. It exploits the intrinsic strength of GPUs
to scan-convert large sets of polygons and to shade billions of fragments at interactive
rates. The suggested design makes the method suitable for applications where geome-
try is deformed or even created on the GPU. In a number of different examples these
statements have been verified.

I believe that the suggested algorithm is influential for future research in the field of
collision detection. For the first time it has been shown that collision detection between
objects that are modified or created on the GPU can successfully be accomplished.
With Direct3D 10 compliant hardware and geometry shaders being available, this fea-
ture will be required in many different applications. In contrast to previous GPU-based
algorithms for collision detection, all objects can remain in their renderable represen-
tation and do not have to be converted into another format. The burden of frequently
updating hierarchical data structures is removed from the application program.

Finally, I have demonstrated the effectiveness and efficiency of the interplay of the
simulation, rendering, and collision engine. I further demonstrated how force fields
applied to the simulation can be used as a powerful modeling tool.

6.1 Future Work

The presented results allow for further improvements. On the side of the numeri-
cal simulation, I want to mention that the applied numerical operations, e.g., matrix-
vector products, can be further improved by applying hardware-specific optimization
techniques such as SSE optimizations. Moreover, performance improvements can be
achieved by optimizing the memory access patterns of sparse matrix-vector products.

6.1. FUTURE WORK 157

In particular, the Cuthill-McKee algorithm [CM69] reduces the bandwidth of a sparse
matrix by reordering the rows and columns (the respective vertices of the finite element
mesh). Especially on CPUs with small second level cache, I expect faster simulation
rates if matrices with reduced bandwidth are used.

The multigrid framework requires to have a hierarchy of grids to operate on. Typ-
ically, a data acquisition process, e.g. using a laser or CT scanner, cannot guarantee
to generate watertight surface meshes at the very end. Thus, a post-processing step is
necessary to construct meshes that can be used by packages such as TetGen [Si04] or
NETGEN [Sch97]. Furthermore, simplified meshes have to be generated to construct
a hierarchy of volumetric grids. In future, I will investigate how the mesh generation
process can be simplified by suggestions of Molino et al. [MBTF03]. There, models are
generated by deforming a body-centered cubic (BCC) lattice to match the given surface
mesh. For the initial BCC lattice, a nested grid hierarchy can be obtained easily. Dur-
ing the matching process, the coarser grids can be deformed according to the finest grid
yielding a grid hierarchy for the object of interest. Fortunately, since the grids deform
only close to the surface, the resulting hierarchies are still widely nested at the same
time well approximating the object’s boundaries. Due to the nestedness, the multigrid
framework would benefit significantly from these meshes in terms of performance.

The GPU render engine can be further improved by applying higher-order interpo-
lation to bind the render mesh to the simulation grid. Due to the excellent performance
rates that have been achieved with linear functions, interpolation functions with an
increased support can still be evaluated at highly interactive rates on the GPU. The
higher-order interpolation yields better deformations of the render mesh, especially if
the render mesh features much more details than the simulation mesh can resolve. In
particular, in case of higher-order finite elements, the respective shape functions can be
utilized to bind the render mesh. Furthermore, a vertex of the render mesh might not
only be bound to just one finite element but to a larger number of elements.

Besides the verification of my current results for the tetrahedral grid rendering
pipeline on future Direct3D 10 graphics hardware, I will investigate the integration
of acceleration techniques for volume ray-casting into the current approach. In partic-
ular, early ray termination as proposed for texture-based volume ray casting [KW03a]
seems to be a promising acceleration strategy that perfectly fits into the dedicated ren-
dering pipeline. Furthermore, the rendering pipeline can be improved by the following
observation: Elements, that intersect several shells have to be rendered multiple times.
By determining these elements in advance and by making use of the stream output
stage (see Figure 3.1), multiple computations of the element assembly and primitive

158 CHAPTER 6. CONCLUSION

construction stage can effectively be avoided, because these elements can be directly
rendered from their previously saved state.

The improvement of the collision response calculations is an interesting point for
future research. The proposed repulsion forces can be easily integrated into real-time
environments. However, they cannot guarantee to properly resolve collisions in the next
time step. Therefore, more advanced response strategies should be integrated into the
GPU-CPU hybrid pipeline. In that context it is of special interest, which parts of the
collision response can eventually be accelerated by a GPU implementation, or which
information the GPU can additionally provide to potentially simplify the collision re-
sponse calculations on the CPU.

Concerning medical applications, especially the validation of the simulation can be
further considered. By comparing the vascular structure of the simulated liver with the
real-world CT scan of the liver deformed by specific weights, the accuracy of the simu-
lation with respect to interior structures has to be further validated. In Figure 6.1 (a), a
reference scan of a liver is shown. Due to the radiopaque material, the vascular structure
becomes clearly visible. In Figure 6.1 (b) the liver is deformed by a specific weight, and
the internal structures have deformed, too. In the future I want to investigate whether
the vascular structures in the simulation match the measured ones. Moreover, besides
largely homogeneous materials, also inhomogeneous organs have to be considered. In
this case, however, accurate measurements of the material parameters of the different
tissue types the organ is composed of have to be performed in advance.

Surgical training environments allowing for the simulation of complex deforma-

(a) (b)

Figure 6.1: Validation of the soft tissue deformation by means of volumetric organic data sets.
(a) The reference scan clearly shows the vascular structures in the interior. (b) The data set
is deformed using a specific weight. Vascular structures in the simulated deformation of the
reference scan should match the vascular structures of the measured deformed liver.

6.1. FUTURE WORK 159

tions of soft-tissue models are more and more frequently employed in practice due to
recent advances in real-time simulation of elastic soft-tissue. One of the challenges in
such simulators is to provide the surgeon not only a view of the outer model bound-
ary but also a detailed view of the interior structures and their deformation due to the
applied operation. During surgeon training, one important aspect is to track the tissue
stress induced by an intervention. If tissue is stressed too much, this often implies ad-
ditional risks for the patient during a real surgical intervention. I want to investigate
how the efficient algorithms developed in this thesis can be effectively applied in these
environments.

For an exemplary application, I plan to apply the system to female breast recon-
struction and augmentation. Major parts of the breast consist of homogeneous mate-
rial, and thus this organ can be approximated adequately with rather coarse tetrahedral
meshes (about 50,000 tetrahedra) simulating linear elasticity. Moreover, female breast
augmentation is a huge market, and therefore simulation-supported systems are likely
to pay off in the clinical practice. It is planned to generate so-called breast templates,
which are finite-element models of the breast, where different stiffness values are as-
signed to each tetrahedral element based on the type of the underlying tissue (muscle,
skin, adipose tissue). The model can be adapted to a specific patient by deforming it
according to the patient’s surface information. Then, one can simulate gravity and dif-
ferent kinds of implants through artificial force fields, which are carefully adapted to
reflect the kind of implant (anatomic vs. round) and its volume. In combination with
the stress visualization technique described, the surgeon can ensure that tissue close to
the implant is not stressed too much. Moreover, the surgeon can potentially minimize
post-operative complications (e.g., swelling, bleeding) by optimizing the surgical ap-
proach regarding implant parameters, implant position, and operative access taking the
material properties of the different breast soft tissue types into account.

Bibliography

[ACOL00] Marc Alexa, Daniel Cohen-Or, and David Levin, As-rigid-as-possible shape interpola-
tion, Proceedings of SIGGRAPH (New York, NY, USA), ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 157–164.

[AKS05] Burak Aksoylu, Andrei Khodakovsky, and Peter Schröder, Multilevel solvers for unstruc-
tured surface meshes, SIAM Journal on Scientific Computing 26 (2005), no. 4, 1146–
1165.

[BA04] Eddy Boxerman and Uri Ascher, Decomposing cloth, Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2004, pp. 153–161.

[Bat02] Klaus-Jürgen Bathe, Finite element procedures, Prentice Hall, 2002.

[BBE+04] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang, PETSc
users manual, Tech. Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory,
2004.

[BBK05] Mario Botsch, David Bommes, and Leif Kobbelt, Efficient linear system solvers for
mesh processing, Lecture Notes in Computer Science: Mathematics of Surfaces XI 3604
(2005), 62–83.

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson, Robust treatment of collisions, con-
tact and friction for cloth animation, Proceedings of SIGGRAPH, 2002, pp. 594–603.

[BFGS03] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder, Sparse matrix solvers on the
GPU: Conjugate gradients and multigrid, Proceedings of SIGGRAPH, 2003, pp. 917–
924.

[BFH04] Ian Buck, Kayvon Fatahalian, and Pat Hanrahan, GPUBench: Evaluating GPU per-
formance for numerical and scientific applications, Proceedings of ACM Workshop on
General-Purpose Computing on Graphics Processors, 2004.

[BG05] Rudolph Balaz and Sam Glassenberg, DirectX and Windows Vista Presentations,
http://msdn.microsoft.com/directx/archives/pdc2005/, 2005.

[BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick, A multigrid tutorial,
second edition, SIAM, 2000.

161

162 BIBLIOGRAPHY

[BK05] Mario Botsch and Leif Kobbelt, Real-time shape editing using radial basis functions,
Proceedings of Eurographics, 2005, pp. 611–621.

[BM05] Rob H. Bisseling and Wouter Meesen, Communication balancing in parallel sparse
matrix-vector multiplication, Electronic Transactions on Numerical Analysis 21 (2005),
47–65.

[BMF03] Robert Bridson, Sebastian Marino, and Ronald Fedkiw, Simulation of clothing with folds
and wrinkles, Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 2003, pp. 28–36.

[BNC96] Morten Bro-Nielsen and Stephane Cotin, Real-time volumetric deformable models for
surgery simulation using finite elements and condensation, Proceedings of Eurographics,
1996, pp. 57–66.

[BPWG07] Mario Botsch, Mark Pauly, Martin Wicke, and Markus Gross, Adaptive space deforma-
tions based on rigid cells, Proceedings of Eurographics, 2007.

[Bra77] Archi Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of
Computation 31 (1977), no. 138, 333–390.

[Bra01] Dietrich Braess, Finite elements: Theory, fast solvers, and applications in solid mechan-
ics, Cambridge Univ. Press, 2001.

[BS87] Randolph E. Bank and R. Kent Smith, General sparse elimination requires no permanent
integer storage, SIAM Journal on Scientific and Statistical Computing 8 (1987), no. 4,
574–584.

[BW98] David Baraff and Andrew Witkin, Large steps in cloth simulation, Proceedings of SIG-
GRAPH, 1998, pp. 43–54.

[BW99] A. J. C. Bik and H. A. G. Wijshoff, Automatic nonzero structure analysis, SIAM J. Com-
put. 28 (1999), 1576–1587.

[BW02] George Baciu and Wingo Sai-Keung Wong, Hardware-assisted self-collision for de-
formable surfaces, Proceedings of the ACM symposium on Virtual reality software and
technology, 2002, pp. 129–136.

[CBPS06] Steven P. Callahan, Louis Bavoil, Valerio Pascucci, and Claudio T. Silva, Progressive
volume rendering of large unstructured grids, IEEE Transactions on Visualization and
Computer Graphics 12 (2006), no. 5, 1307–1314.

[CDA99] Stephane Cotin, Herve Delingette, and Nicholas Ayache, Real-time elastic deformations
of soft tissues for surgery simulation, IEEE Transactions on Visualization and Computer
Graphics, 1999, pp. 62–73.

[CFL28] Richard Courant, Kurt Friedrichs, and Hans Lewy, Über die partiellen Differenzengle-
ichungen der mathematischen Physik, Mathematische Annalen 100 (1928), no. 1, 32–74.

[CFL67] Richard Courant, Kurt O. Friedrichs, and Hans Lewy, On the partial difference equations
of mathematical physics, IBM Journal (1967), 215–234.

BIBLIOGRAPHY 163

[CGC+02a] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović, Interactive
skeleton-driven dynamic deformations, Proceedings of SIGGRAPH, 2002, pp. 586–593.

[CGC+02b] , A multiresolution framework for dynamic deformations, Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2002, pp. 41–47.

[CICS05] Steven P. Callahan, Milan Ikits, João L. D. Comba, and Claudio T. Silva, Hardware-
assisted visibility sorting for unstructured volume rendering, IEEE Transactions on Visu-
alization and Computer Graphics 11 (2005), no. 3, 285–295.

[CKM+99] João Comba, James T. Klosowsky, Nelson Max, Joseph S. B. Mitchell, Claudio T. Silva,
and Peter L. Williams, Fast polyhedral cell sorting for interactive rendering of unstruc-
tured grids, Proceedings of Eurographics, 1999, pp. 369–376.

[CLMP95] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav Ponamgi, I-COLLIDE:
An interactive and exact collision detection system for large-scale environments, Proceed-
ings of the symposium on Interactive 3D graphics, 1995, pp. 189–196.

[CM69] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, Pro-
ceedings of the 1969 24th national conference (New York, NY, USA), ACM Press, 1969,
pp. 157–172.

[CMSS95] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno, On the optimization of projective
volume rendering, Proceedings of EG Workshop, Scientific Visualization in Scientific
Computing, 1995, pp. 58–71.

[Cro77] Franklin C. Crow, Shadow algorithms for computer graphics, Proceedings of SIG-
GRAPH, 1977, pp. 242–248.

[CS05] Daniel S. Coming and Oliver G. Staadt, Kinetic sweep and prune for collision detection,
Proceedings of 2nd Workshop On Virtual Reality Interaction and Physical Simulation,
2005, pp. 81–90.

[DDBC99] Gilles Debunne, Mathieu Desbrun, Alan Barr, and Marie-Paule Cani, Interactive multires-
olution animation of deformable models, Eurographics Workshop on Computer Anima-
tion and Simulation, 1999, pp. 133–144.

[DDCB01] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr, Dynamic real-
time deformations using space & time adaptive sampling, Proceedings of SIGGRAPH,
2001, pp. 31–36.

[DK91] Akio Doi and Akio Koide, An efficient method of triangulating equi-valued surfaces by
using tetrahedral cells, IEICE Transactions on Information and Systems E74-D (1991),
no. 1, 214–224.

[DKT98] Tony DeRose, Michael Kass, and Tien Truong, Subdivision surfaces in character anima-
tion, Proceedings of SIGGRAPH, 1998, pp. 85–94.

[DSB99] Mathieu Desbrun, Peter Schröder, and Alan Barr, Interactive animation of structured de-
formable objects, Proceedings of Graphics Interface, 1999, pp. 1–8.

164 BIBLIOGRAPHY

[EGSS82] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale sparse matrix
package, International Journal of Numerical Methods for Engineering (1982), 1145–1151.

[EKS03] Olaf Etzmuß, Michael Keckeisen, and Wolfgang Straßer, A fast finite element solution for
cloth modelling, Proceedings of Pacific Conference on Computer Graphics and Applica-
tions, 2003, p. 244.

[Eve01] Cass Everitt, Interactive order-independent transparency, Tech. report, NVIDIA Corpo-
ration, 2001.

[FGL03] Arnulph Fuhrmann, Clemens Groß, and Volker Luckas, Interactive animation of cloth
including self collision detection, Proceedings of WSCG, 2003, pp. 141–148.

[For03] The MPI Forum, MPI: A message-passing interface standard, http://www.mpi-
forum.org/docs/docs.html, 2003.

[GBK05] Michael Guthe, Ákos Balázs, and Reinhard Klein, GPU-based trimming and tessellation
of NURBS and T-Spline surfaces, ACM Transactions Graphics 24 (2005), no. 3, 1016–
1023.

[GEK+07] Joachim Georgii, Maximilian Eder, Laszlo Kovacs, Armin Schneider, Martin Dobritz,
and Rüdiger Westermann, Advanced volume rendering for surgical training environments,
International Journal of Computer Assisted Radiology and Surgery 2 (2007), no. 1, S285.

[Gel98] Allen Van Gelder, Approximate simulation of elastic membranes by triangulated spring
meshes, Journal of Graphics Tools 3 (1998), no. 2, 21–42.

[GEW05] Joachim Georgii, Florian Echtler, and Rüdiger Westermann, Interactive Simulation of De-
formable Bodies on GPUs, Proceedings of Simulation and Visualisation, 2005, pp. 247–
258.

[GFG04] Philip Gerasimov, Randima Fernando, and Simon Green, Whitepaper: Shader Model
3.0 Using Vertex Textures, http://developer.nvidia.com/object/using vertex textures.html,
2004.

[GG00] Gunther Greiner and Roberto Grosso, Hierarchical tetrahedral-octahedral subdivision for
volume visualization, The Visual Computer 16 (2000), no. 6, 357–369.

[GGK06] Alexander Greß, Michael Guthe, and Reinhard Klein, GPU-based collision detection for
deformable parameterized surfaces, Computer Graphics Forum 25 (2006), no. 3, 497–
506.

[GH97] Michael Garland and Paul S. Heckbert, Surface simplification using quadric error met-
rics, Proceedings of SIGGRAPH (New York, NY, USA), ACM Press/Addison-Wesley
Publishing Co., 1997, pp. 209–216.

[GH06] Simon Green and Mark Harris, Physics simulation on NVIDIA GPUs,
http://developer.nvidia.com/object/havok-fx-gdc-2006.html, 2006.

BIBLIOGRAPHY 165

[GHDS03] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder, Discrete shells,
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2003, pp. 62–67.

[Gie92] Christopher Giertsen, Volume visualization of sparse irregular meshes, IEEE Computer
Graphics and Applications 12 (1992), no. 2, 40–48.

[GKJ+05] Naga K. Govindaraju, David Knott, Nitin Jain, Ilknur Kabul, Rasmus Tamstorf, Rus-
sell Gayle, Ming C. Lin, and Dinesh Manocha, Interactive collision detection between
deformable models using chromatic decomposition, ACM Transaction on Graphics 24
(2005), no. 3, 991–999.

[GKMV03] Sudipto Guha, Shankar Krishnan, Kamesh Munagala, and Suresh Venkatasubramanian,
Application of the two-sided depth test to CSG rendering, Proceedings of the symposium
on Interactive 3D graphics, 2003, pp. 177–180.

[GKS02] Eitan Grinspun, Petr Krysl, and Peter Schröder, CHARMS: a simple framework for adap-
tive simulation, Proceeding of SIGGRAPH, 2002, pp. 281–290.

[GKW07] Joachim Georgii, Jens Krüger, and Rüdiger Westermann, Interactive GPU-based collision
detection, Proceedings of IADIS Computer Graphics and Visualization, 2007, pp. 3–10.

[GLM96] Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha, OBBTree: a hierarchical structure
for rapid interference detection, Proceedings of SIGGRAPH, 1996, pp. 171–180.

[GLM04] Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha, Fast and reliable collision
culling using graphics hardware, Proceedings of the ACM symposium on Virtual reality
software and technology, 2004, pp. 2–9.

[GLM05] , Quick-CULLIDE: Fast Inter- and Intra-Object Collision Culling Using Graphics
Hardware, Proceedings of IEEE Virtual Reality Conference, 2005, pp. 59–66.

[GM97] Sarah F. Gibson and Brian Mirtich, A survey of deformable models in computer graphics,
Technical Report TR-97-19, Mitsubishi, 1997.

[GRLM03] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh Manocha, CUL-
LIDE: interactive collision detection between complex models in large environments us-
ing graphics hardware, Proceedings of the ACM SIGGRAPH/Eurographics conference
on Graphics hardware, 2003, pp. 25–32.

[GSK+06] Joachim Georgii, Jens Schneider, Jens Krüger, Rüdiger Westermann, Maximilian Eder,
and Laszlo Kovacs, Advanced volume rendering techniques for medical applications, 5.
Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie
(CURAC), 2006, pp. 146–147.

[Gus78] Fred G. Gustavson, Two fast algorithms for sparse matrices: Multiplication and permuted
transposition, ACM Trans. Math. Softw. 4 (1978), no. 3, 250–269.

[GW05a] Joachim Georgii and Rüdiger Westermann, A Multigrid Framework for Real-Time Sim-
ulation of Deformable Volumes, Proceedings of the 2nd Workshop On Virtual Reality
Interaction and Physical Simulation, 2005, pp. 50–57.

166 BIBLIOGRAPHY

[GW05b] , Interactive Simulation and Rendering of Heterogeneous Deformable Bodies,
Proceedings of Vision, Modeling and Visualization, 2005, pp. 383–390.

[GW05c] , Mass-Spring Systems on the GPU, Simulation Modelling Practice and Theory
13 (2005), 693–702.

[GW06a] , A Multigrid Framework for Real-Time Simulation of Deformable Bodies, Com-
puter & Graphics 30 (2006), 408–415.

[GW06b] Joachim Georgii and Rüdiger Westermann, A generic and scalable pipeline for GPU tetra-
hedral grid rendering, Proceedings of IEEE Visualization, 2006, pp. 1345–1352.

[GWF04] Joachim Georgii, Rüdiger Westermann, and Hubertus Feussner, Physically accurate real-
time simulation of deformable bodies for surgical training and therapy planning, 3.
Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie
(CURAC), 2004.

[Hac85] Wolfgang Hackbusch, Multi-grid methods and applications, Springer Series in Computa-
tional Mathematics, Springer, 1985.

[HBSL03] Mark J. Harris, Williams V. Baxter, Thorsten Scheuermann, and Anselmo Lastra,
Simulation of cloud dynamics on graphics hardware, Proceedings of ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, 2003, pp. 92–101.

[Hig86] Nicholas J. Higham, Computing the polar decomposition—with applications, SIAM Jour-
nal on Scientific and Statistical Computing 7 (1986), no. 4, 1160–1174.

[HKM95] Martin Held, James T. Klosowski, and Joseph S. B. Mitchell, Evaluation of collision
detection methods for virtual reality fly-throughs, Proceedings of the Seventh Canadian
Conference on Computational Geometry, 1995, pp. 205–210.

[HR05] John Hable and Jarek Rossignac, Blister: GPU-based rendering of boolean combinations
of free-form triangulated shapes, Proceedings of SIGGRAPH, 2005, pp. 1024–1031.

[HS90] Nicholas J. Higham and Robert S. Schreiber, Fast polar decomposition of an arbitrary
matrix, SIAM J. Sci. Stat. Comput. 11 (1990), no. 4, 648–655.

[HS04] Michael Hauth and Wolfgang Straßer, Corotational simulation of deformable solids, Pro-
ceedings of WSCG, 2004, pp. 137–145.

[HSO03] Kris K. Hauser, Chen Shen, and James F. O’Brien, Interactive deformation using modal
analysis with constraints, Proceedings of Graphics Interface, 2003, pp. 247–256.

[HTG04] Bruno Heidelberger, Matthias Teschner, and Markus Gross, Detection of collisions and
self-collisions using image-space techniques, Proceedings of WSCG, 2004, pp. 145–152.

[Hub95] Philip M. Hubbard, Collision detection for interactive graphics applications, IEEE Trans-
actions on Visualization and Computer Graphics 1 (1995), no. 3, 218–230.

[Hub96] , Approximating polyhedra with spheres for time-critical collision detection, ACM
Transactions on Graphics 15 (1996), no. 3, 179–210.

BIBLIOGRAPHY 167

[JP99] Doug L. James and Dinesh K. Pai, ArtDefo: accurate real time deformable objects, Pro-
ceedings of SIGGRAPH, 1999, pp. 65–72.

[JP02] , DyRT: dynamic response textures for real time deformation simulation with
graphics hardware, Proceedings of SIGGRAPH, 2002, pp. 582–585.

[JP04] , BD-tree: output-sensitive collision detection for reduced deformable models,
ACM Transactions on Graphics 23 (2004), no. 3, 393–398.

[KD98] Gordon Kindlmann and James W. Durkin, Semi-automatic generation of transfer func-
tions for direct volume rendering, Proceedings of the IEEE Symposium on Volume Visu-
alization, 1998, pp. 79–86.

[KHM+98] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, and Karel
Zikan, Efficient collision detection using bounding volume hierarchies of k-DOPs, IEEE
Transactions on Visualization and Computer Graphics 4 (1998), no. 1, 21–36.

[KLNR03] Michael S. Karasick, Derek Lieber, Lee R. Nackman, and V. T. Rajan, Visualization of
three-dimensional delaunay meshes, Algorithmica 19 (2003), no. 1-2, 114–128.

[KP03] Dave Knott and Dinesh K. Pai, CInDeR: Collision and interference detection in real-time
using graphics hardware, Proceedings of Graphics Interface, 2003, pp. 73–80.

[KQE04] Martin Kraus, Wei Qiao, and David S. Ebert, Projecting tetrahedra without rendering
artifacts, Proceedings of IEEE Visualization, IEEE Computer Society, 2004, pp. 27–34.

[Krü06] Jens Krüger, A GPU Framework for Interactive Simulation and Rendering of Fluid Ef-
fects, Ph.D. thesis, Technische Universität München, 2006.

[KSE04] Thomas Klein, Simon Stegmaier, and Thomas Ertl, Hardware-accelerated reconstruc-
tion of polygonal isosurface representations on unstructured grids, Proceedings of Pacific
Graphics, 2004, pp. 186–195.

[KW03a] Jens Krüger and Rüdiger Westermann, Acceleration techniques for GPU-based volume
rendering, Proceedings of IEEE Visualization, 2003, pp. 38–45.

[KW03b] Jens Krüger and Rüdiger Westermann, Linear algebra operators for GPU implementation
of numerical algorithms, ACM Transactions on Graphics 22 (2003), no. 3, 908–916.

[KW05] Peter Kipfer and Rüdiger Westermann, GPU construction and transparent rendering of
iso-surfaces, Proceedings of Vision, Modeling and Visualization, 2005, pp. 241–248.

[LAM05] Thomas Larsson and Tomas Akenine-Möller, A dynamic bounding volume hierarchy for
generalized collision detection, Proceedings of 2nd Workshop On Virtual Reality Interac-
tion and Physical Simulation, 2005, pp. 91–100.

[LC87] William E. Lorensen and Harvey E. Cline, Marching Cubes: A High Resolution 3D Sur-
face Construction Algorithm, Proceedings of SIGGRAPH, 1987, pp. 163–169.

[LCN99] Jean-Christophe Lombardo, Marie-Paule Cani, and Fabrice Neyret, Real-time collision
detection for virtual surgery, Proceedings of the Computer Animation, 1999, pp. 82–91.

168 BIBLIOGRAPHY

[LG98] Ming C. Lin and Stefan Gottschalk, Collision detection between geometric models: A
survey, Proceedings of IMA Conference on Mathematics of Surfaces, 1998, pp. 37–56.

[LM04] Ming C. Lin and Dinesh Manocha, Collision and proximity queries, Handbook of Discrete
and Computational Geometry, 2nd Ed. (J. E. Goodman and J. O’Rourke, eds.), Chapman
and Hall/CRC Press, New York, 2004, pp. 787–807.

[LPFH01] Jerome Lengyel, Emil Praun, Adam Finkelstein, and Hugues Hoppe, Real-time fur over
arbitrary surfaces, Proceedings of the Symposium on Interactive 3D graphics, 2001,
pp. 227–232.

[LSW99] C. Lennerz, E. Schömer, and T. Warken, A framework for collision detection and response,
Proceedings of 11th European Simulation Symposium, 1999, pp. 309–314.

[LTW95] Yuencheng Lee, Demetri Terzopoulos, and Keith Walters, Realistic modeling for facial
animation, Proceedings of SIGGRAPH, 1995, pp. 55–62.

[MBTF03] Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fedkiw, A crystalline, red green
strategy for meshing highly deformable objects with tetrahedra, Proceedings of the 12th
International Meshing Roundtable, 2003, pp. 103–114.

[MC95] Brian Mirtich and John Canny, Impulse-based simulation of rigid bodies, Proceedings of
the symposium on Interactive 3D graphics, 1995, pp. 181–188.

[McN83] J. M. McNamee, A sparse matrix package - part II: Special cases, ACM Transactions on
Mathematical Software (1983), 344–345.

[MDM+02] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cutler,
Stable real-time deformations, Proceedings of ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, 2002, pp. 49–54.

[MG04] Matthias Müller and Markus Gross, Interactive virtual materials, Proceedings of Graphics
Interface, 2004, pp. 239–246.

[MGAK03] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard, Cg: A system
for programming graphics hardware in a C-like language, Proceedings of SIGGRAPH,
2003, pp. 896–907.

[Mic02] Microsoft, DirectX9 SDK, http://www.microsoft.com/DirectX, 2002.

[MKE03] Johannes Mezger, Stefan Kimmerle, and Olaf Etzmuß, Hierarchical techniques in colli-
sion detection for cloth animation, Proceedings of WSCG, 2003, pp. 322–329.

[MKN+04] Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus Gross, and Marc
Alexa, Point based animation of elastic, plastic and melting objects, Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2004, pp. 141–
151.

[ML03] Cesar Mendoza and Christian Laugier, Simulating soft tissue cutting using finite ele-
ment models, Proceedings of IEEE International Conference on Robotics and Automation,
2003, pp. 1109–1114.

BIBLIOGRAPHY 169

[MOK95] Karol Myszkowski, Oleg G. Okunev, and Tosiyasu L. Kunii, Fast collision detection
between complex solids using rasterizing graphics hardware, The Visual Computer 11
(1995), no. 9, 497–511.

[Möl97] Tomas Möller, A fast triangle-triangle intersection test, Journal of Graphics Tools 2
(1997), no. 2, 25–30.

[NMK+05] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson,
Physically based deformable models in computer graphics, Proceedings of Eurographics,
2005, pp. 71–94.

[Ope04] OpenGL, Pixelbuffer objects, http://www.opengl.org/registry/specs/ARB/pixel buffer
object.txt, 2004.

[Pas04] Valerio Pascucci, Isosurface computation made simple: Hardware acceleration, adaptive
refinement and tetrahedral stripping, Proceedings of IEEE TCVG Symposium on Visual-
ization, 2004, pp. 293–300.

[PB81] Stephen M. Platt and Norman I. Badler, Animating facial expressions, Proceedings of
SIGGRAPH (New York, NY, USA), ACM Press, 1981, pp. 245–252.

[PBMH02] Timothy Purcell, Ian Buck, William R. Mark, and Pat Hanrahan, Ray tracing on pro-
grammable graphics hardware, ACM Transactions on Graphics 21 (2002), no. 3, 703–
712.

[PDA00] Guillaume Picinbono, Herve Delingette, and Nicholas Ayache, Real-time large displace-
ment elasticity for surgery simulation: Non-linear tensor-mass model, Proceedings of
MICCAI, 2000, pp. 643–652.

[PDA01] , Non-linear and anisotropic elastic soft tissue models for medical simulation, Pro-
ceedings of IEEE International Conference on Robotics and Automation, 2001, pp. 1370–
1375.

[PFH00] Emil Praun, Adam Finkelstein, and Hugues Hoppe, Lapped textures, Proceedings of SIG-
GRAPH, 2000, pp. 465–470.

[PG95] I. J. Palmer and R. L. Grimsdale, Collision detection for animation using sphere-trees,
Computer Graphics Forum 14 (1995), no. 2, 105–116.

[Pro95] Xavier Provot, Deformation constraints in a mass-spring model to describe rigid cloth
behavior, Proceedings of Graphics Interface, 1995, pp. 147–154.

[PV05] Ali Pinar and Virginia Vassilevska, Finding nonoverlapping substructures of a sparse
matrix, Electronic Transactions on Numerical Analysis 21 (2005), 107–124.

[RDG+04] Frank Reck, Carsten Dachsbacher, Roberto Grosso, Günther Greiner, and Marc Stam-
minger, Realtime isosurface extraction with graphics hardware, Proceedings of Euro-
graphics (Short Presentations), 2004, pp. 33–36.

[RE03] Stefan Röttger and Thomas Ertl, Cell projection of convex polyhedra, Proceedings Euro-
graphics/IEEE TVCG Workshop on Volume Graphics, 2003, pp. 103–107.

170 BIBLIOGRAPHY

[RKC02] S. Redon, A. Kheddar, and S. Coquillart, Fast continuous collision detection between rigid
bodies, Proceedings of Eurographics, 2002, pp. 279–288.

[RKE00] Stefan Röttger, Martin Kraus, and Thomas Ertl, Hardware-accelerated volume and iso-
surface rendering based on cell-projection, Proceedings of IEEE Visualization, 2000,
pp. 109–116.

[RMS92] Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider, Interactive inspection of
solids: Cross-sections and interferences, Proceedings of SIGGRAPH, 1992, pp. 353–360.

[RNO88] C. C. Rankin and B. Nour-Omid, The use of projectors to improve finite element perfor-
mance, Computer & Structures 30 (1988), 257–267.

[RNP01] Arne Radetzky, Andreas Nürnberger, and Dietrich P. Pretschner, The simulation of elastic
tissues in virtual medicine using neuro-fuzzy systems, Proceedings of Medical Imaging
(SPIE Proceedings Volume 3335), 2001, pp. 399–409.

[SBM94] Clifford Stein, Barry Becker, and Nelson Max, Sorting and hardware assisted render-
ing for volume visualization, Proceedings of ACM Symposium on Volume Visualization,
1994, pp. 83–90.

[Sch97] Joachim Schöberl, NETGEN - an advancing front 2D/3D-mesh generator based on ab-
stract rules, Computing and Visualization in Science 1 (1997), no. 1, 41–52.

[SGG+06] Avneesh Sud, Naga Govindaraju, Russell Gayle, Ilknur Kabul, and Dinesh Manocha, Fast
proximity computation among deformable models using discrete voronoi diagrams, ACM
Transaction on Graphics 25 (2006), no. 3, 1144–1153.

[SGW07] Thomas Schiwietz, Joachim Georgii, and Rüdiger Westermann, Freeform image, Proceed-
ings of Pacific Graphics, 2007.

[Si04] Hang Si, TetGen, a quality tetrahedral mesh generator and three-dimensional delaunay
triangulator, v1.3 user’s manual, Tech. Report 9, Weierstrass Institute for Applied Analy-
sis and Stochastics, Berlin, 2004.

[SJP05] Le-Jeng Shiue, Ian Jones, and Jörg Peters, A realtime GPU subdivision kernel, ACM
Transactions on Graphics 24 (2005), no. 3, 1010–1015.

[SKTK95] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino, A simple and efficient method for
accurate collision detection among deformable polyhedral objects in arbitrary motion,
Proceedings of the IEEE Virtual Reality Annual International Symposium, 1995, p. 136.

[SM97] Claudio T. Silva and Joseph S. B. Mitchell, The Lazy Sweep Ray Casting Algorithm for
Rendering Irregular Grids, IEEE Transactions on Visualization and Computer Graphics
4 (1997), no. 2, 142–157.

[SMK96] Claudio T. Silva, Joseph S. B. Mitchell, and Arie E. Kaufman, Fast Rendering of Irregular
Grids, Proceedings of ACM Symposium on Volume Visualization, 1996, pp. 15–23.

BIBLIOGRAPHY 171

[SMW98] Claudio T. Silva, Joseph S. B. Mitchell, and Peter L. Williams, An exact interactive time
visibility ordering algorithm for polyhedral cell complexes, Proceedings of the IEEE sym-
posium on Volume Visualization, 1998, pp. 87–94.

[ST90] Peter Shirley and Allan Tuchman, A polygonal approximation to direct scalar volume
rendering, ACM SIGGRAPH Computer Graphics 24 (1990), no. 5, 63–70.

[SYBF06] Lin Shi, Yizhou Yu, Nathan Bell, and Wei-Wen Feng, A fast multigrid algorithm for mesh
deformation, ACM Trans. Graph. 25 (2006), no. 3, 1108–1117.

[TBNF03] Joseph Teran, Silvia Blemker, Victor Ng Thow Hing, and Ronald Fedkiw, Finite
volume methods for the simulation of skeletal muscle, Proceedings of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2003, pp. 68–74.

[TCR03] Sivan Toledo, Doron Chen, and Vladimir Rotkin, Taucs: A library of sparse linear solvers,
http://www.tau.ac.il/∼stoledo/taucs, 2003.

[TE05] Eduardo Tejada and Thomas Ertl, Large Steps in GPU-based Deformable Bodies Simula-
tion, Simulation Practice and Theory. Special Issue on Programmable Graphics Hardware
13 (2005), no. 9, 703–715.

[TF88] Demetri Terzopoulos and Kurt Fleischer, Modeling inelastic deformation: Viscoelasticity,
plasticity, fracture, Proceedings of SIGGRAPH, 1988, pp. 269–278.

[THMG04] Matthias Teschner, Bruno Heidelberger, Matthias Müller, and Markus Gross, A versatile
and robust model for geometrically complex deformable solids, Proceedings of Computer
Graphics International, 2004, pp. 312–319.

[TKH+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann,
M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, and P. Volino, Collision detec-
tion for deformable objects, Computer Graphics Forum 24 (2005), no. 1, 61–81.

[Tom02] Kano Tomohide, Dynamic fur using smartshaders, http://ati.amd.com/developer/
indexsc.html, 2002.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer, Elastically deformable
models, Proceedings of SIGGRAPH, 1987, pp. 205–214.

[TW88] Demetri Terzopoulos and Andrew Witkin, Physically based models with rigid and de-
formable components, IEEE Computer Graphics & Applications 8 (1988), no. 6, 41–51.

[vdB97] Gino van den Bergen, Efficient collision detection of complex deformable models using
AABB trees, Journal of Graphics Tools 2 (1997), no. 4, 1–14.

[VT00] Pascal Volino and Nadia Magnenat Thalmann, Accurate collision response on polygonal
meshes, Proceedings of the Computer Animation, 2000, p. 154.

[WBG07] Martin Wicke, Mario Botsch, and Markus Gross, A finite element method on convex poly-
hedra, Proceedings of Eurographics, 2007.

172 BIBLIOGRAPHY

[WDGT01] Xunlei Wu, Michael S. Downes, Tolga Goktekin, and Frank Tendick, Adaptive nonlin-
ear finite elements for deformable body simulation using dynamic progressive meshes,
Proceedings of Eurographics, 2001, pp. 349–358.

[WE97] Rüdiger Westermann and Thomas Ertl, The VSBUFFER: Visibility Ordering unstructured
Volume Primitives by Polygon Drawing, Proceedings of IEEE Visualization, 1997, pp. 35–
43.

[WE98] Rüdiger Westermann and Thomas Ertl, Efficiently using graphics hardware in volume
rendering applications, Proceedings of SIGGRAPH, 1998, pp. 169–177.

[WE01] Manfred Weiler and Thomas Ertl, Hardware-software-balanced resampling for the in-
teractive visualization of unstructured grids, Proceedings of IEEE Visualization, 2001,
pp. 199–206.

[Wes01] Rüdiger Westermann, The rendering of unstructured grids revisited, Proceedings of the
EG/IEEE TCVG Symposium on Visualization, 2001.

[WFKH07] Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles D Hansen, Interactive Isosurface
Ray Tracing of Time-Varying Tetrahedral Volumes, IEEE Transactions on Visualization
and Computer Graphics (2007).

[WGTG96] Jane Wilhelms, Allen Van Gelder, Paul Tarantino, and Jonathan Gibbs, Hierarchical and
parallelizable direct volume rendering for irregular and multiple grids, Proceedings of
IEEE Visualization, 1996, pp. 57–63.

[Wil92] Peter L. Williams, Visibility Ordering Meshed Polyhedra, ACM Transactions on Graphics
11 (1992), no. 2, 103–126.

[Wil98] Ed Wilson, Dynamic analysis by numerical integration: Normally, for earthquake loading
direct numerical integration is very slow, Tech. report, CSI: Computer & Structures, Inc.,
1998.

[WKE02] Manfred Weiler, Martin Kraus, and Thomas Ertl, Hardware-based view-independent cell
projection, Proceedings of the IEEE Symposium on Volume Visualization and Graphics,
2002, pp. 13–22.

[WKME03a] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl, Hardware-based ray cast-
ing for tetrahedral meshes, Procceedings of IEEE Visualization, 2003, pp. 333–340.

[WKME03b] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl, Hardware-based view-
independent cell projection, IEEE Transactions on Visualization and Computer Graphics
9 (2003), no. 2, 163–175.

[WMFC02] Brian Wylie, Kenneth Moreland, Lee Ann Fisk, and Patricia Crossno, Tetrahedral projec-
tion using vertex shaders, Proceedings of the IEEE symposium on Volume visualization
and Graphics, 2002, pp. 7–12.

[WMS98] Peter L. Williams, Nelson L. Max, and Clifford M. Stein, A high accuracy volume ren-
derer for unstructured data, IEEE Transactions on Visualization and Computer Graphics
4 (1998), no. 1, 37–54.

BIBLIOGRAPHY 173

[WT04] Xunlei Wu and Frank Tendick, Multigrid integration for interactive deformable body sim-
ulation, Proceedings of International Symposium on Medical Simulation, 2004, pp. 92–
104.

[YJH+01] Wen-Chun Yeh, Yung-Ming Jeng, Hey-Chi Hsu, Po-Ling Kuo, Meng-Lin Li, Pei-Ming
Yang, Po Huang Lee, and Pai-Chi Li, Young’s modulus measurements of human liver
and correlation with pathological findings, Proceedings of IEEE Ultrasonics Symposium,
2001, pp. 1233–1236.

[YRL+96] Roni Yagel, David M. Reed, Asish Law, Po-Wen Shih, and Naeem Shareef, Hardware
assisted volume rendering of unstructured grids by incremental slicing, Proceedings of
the Symposium on Volume Visualization, 1996, pp. 55–62.

[YZ05] Raphael Yuster and Uri Zwick, Fast sparse matrix multiplication, ACM Trans. Algorithms
1 (2005), no. 1, 2–13.

[ZC99] Yan Zhuang and John Canny, Real-time simulation of physically realistic global deforma-
tion, Proceedings of IEEE Visualization, 1999, pp. 270–273.

[ZTTS06] Gernot Ziegler, Art Tevs, Christian Theobalt, and Hans-Peter Seidel, On-the-fly point
clouds through histogram pyramids, Proceedings of Vision, Modeling and Visualization,
2006, pp. 137–144.

