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ABSTRACT 

 

The neighborhood structure can significantly impact the 

effectiveness of image search, and fulfilling the reversibility 

of neighborhood may improve the image search quality. 

This paper proposes an effective and efficient scheme for 

reconstructing the symmetry relationship of k-nearest 

neighborhood (KNN). In particular, we design a verifying 

function to learn the prior knowledge of neighborhood 

reversibility among images. By exploiting the prior 

knowledge, the image search system will give higher rank to 

those images that satisfy the reversibility of KNN 

relationship with the query. In addition, we systematically 

investigate the sensitivity of neighborhood size on image 

search quality and propose an adaptive selection scheme for 

improving robustness of neighborhood reversibility learning 

methods. The extensive experimental results show that the 

proposed scheme remarkably improves the image search 

quality and give a comparable but more stable performance 

to the state-of-the-art method for various image datasets. 

Index Terms—Neighborhood, Reversibility, Image, 

Search, Cross-Media 

 

1. INTRODUCTION 

 

Image search is an important but still challenging research 

area, which addresses the problem of searching for images 

similar to the query. In recent years, lots of works have been 

done for handling some challenging issues such as the 

appearance variations in illumination, scale, viewpoint, 

orientation [1, 2]. As a kind of effective methods, local 

descriptors based schemes are designed on the basis of local 

descriptor matching of images [3]. However, while this kind 

of methods is quite effective for handling some difficult 

appearance variations due to their robustness, it leads to 

high computational complexity. To simplify the search 

process, more recent works employ the bag-of-words (BoW) 

framework [4] to facilitate large-scale image search, in 

which local descriptors are individually quantized to visual 

words against a learned visual vocabulary. Since visual 

words are only approximate representation of local 

descriptors, BoW-based framework will inevitably decrease 

the image search quality due to the quantization errors. 

Therefore, some works have been done to address the issue. 

One kind of methods is to introduce complementary 

information such as binary embedding code [5] to 

supplement information loss caused by quantization. An 

alternative approach is to employ soft-assignment strategy 

[6] or spatial information to alleviate the effect of 

quantization errors. For example, query expansion with 

spatial information is reported in [7-10], and weak 

geometric consistency [5] is exploited for reranking the 

initial search list via spatial verification. 

In addition to image representation, many works also 

pay attention to similarity measurement among images, such 

as Euclidean distance, cosine distance [4], TF-IDF scoring 

[11]. In [12], a new distance measure was proposed by 

exploiting probabilistic relationship between visual words 

so as to improve matching quality. Furthermore, descriptor 

projection learning [13] and hierarchical methods [11] are 

reported for improving the effectiveness and efficiency of 

image matching. However, while lots of similarity 

measurement methods are reported in previous works, most 

of them take only unidirectional neighborhood relationship 

into account when calculating the similarity between two 

images. That is, only the neighborhood structure from query 

image to database images is considered, i.e., neighborhood 

non-reversibility. For example, if image A is one of B’s 

KNN, it is possible that B is not A’s KNN, which results in 

unbalanced neighborhood measure and false matches [14, 

15].  

In this paper, we focus mainly on the reversibility of 

neighborhood relationships by explicitly learning the 

reversibility property among images. We propose an 

effective and efficient scheme for reconstructing the 

reversibility relationship of KNN. With the designed 

reversibility verifying function, the prior knowledge of 

neighborhood reversibility among images is learned in an 

offline manner and then is employed to improve the initial 

search results obtained by using any distance measures. In 

addition, the effect of neighborhood size is fully 

investigated on various image datasets, and an adaptive 

selection scheme of neighborhood size is proposed to 

improve the robustness of reversibility verifying process. 

Experimental results show that the proposed scheme can 

remarkably improve the whole image search quality.  

 

2. PRELIMINARIES 



 

The following introduces the preliminary techniques of 

image search and analysis of reversibility relationship, 

which include three main components: (1) Build an initial 

image search system based on the Bag-of-Words framework; 

(2) Introduce and analyze the key observation on 

reversibility; (3) Analyze the sensitivity of neighborhood 

size. Each component will be detailed in the following 

subsections. 

 

2.1 BoW-based image search framework  

 

Before we discuss the reversibility of the neighborhood, we 

need to construct an initial image search system based on 

some standard distances. In this work, we construct an 

image search system based on the BoW framework. The key 

idea is to learn a visual vocabulary by quantizing the 

training local descriptors. Then each image is represented 

by a visual word vector. Employing some standard distance 

measure, we can perform image search process by 

calculating the distances between the visual word vector of 

query image and the visual word vectors of database images. 

In our experiments, the hierarchical k-means [11] algorithm 

is used to learn the visual vocabulary, where two-level 

structure is employed and 100K visual words are learned. 

For distance measure, we employ the commonly used cosine 

distance [4]. 

 

2.2 Reversibility of neighborhood relationship 

 

The real-world image search process shows that some top-

ranked results that are of unidirectional neighborhood 

relationship with query are generally irrelevant, while the 

returned images with bidirectional neighborhood 

relationship are true relevant with query. This observation 

was also reported in [15]. 

As argued in [15], it is possible to improve the accuracy 

of image search by modifying the neighborhood structure. 

To this end, a contextual dissimilarity measure (CDM) is 

reported in [14, 15] to improve the symmetry of the 

neighborhood by updating the distances such that the 

average distance of a vector to its neighborhood is almost 

constant, which significantly improves the whole image 

search quality. As an alternative, the reversibility 

information can also be involved into the similarity 

calculation process by explicitly verifying the reversibility 

property between query and each returned image. The 

verifying process is performed by conducting additional 

search process using the returned images as queries. 

 

2.3 Sensitivity analysis of the neighborhood size 

 
As discussed above, the prior knowledge of neighborhood 

reversibility can be involved into the image search process 

by two strategies, i.e., improving the symmetry of KNN 

relationships or explicitly verifying reversibility. For the 

first strategy, we need to set the number of nearest 

neighbors for each image before updating distance matrix 

[14, 15]. Likewise, the length of returned short list (i.e, the 

number of nearest neighbors) for each image should also be 

set before verifying the reversibility of neighborhood. That 

is, the neighborhood size is a key factor that can affect the 

image search quality for both strategies. However, less 

effort has been done for systematically investigating the 

sensitivity of neighborhood size to neighborhood 

reversibility learning, especially on various image datasets. 

For example, CDM algorithm in [14, 15] only analyzes the 

effect of the neighborhood size k on the N-S dataset, which 

is only specific for the dataset.  In order to discover some 

general rules, we carefully investigate the effect of 

neighborhood size on different neighborhood reversibility 

learning strategies with various image datasets. Here, two 

commonly used image datasets are employed, i.e., Holidays 

dataset [5] and Oxford dataset [9]. As to be shown in 

experimental part, the neighborhood size k indeed has a 

great impact on the performance of the algorithms, and the 

optimal size is quite different with various image datasets.  

After carefully analyzing two image datasets, we find 

that the main difference lies in the average number of true 

relevant images of queries. There are average 2.98 true 

relevant images for each query in the Holidays dataset, 

while the Oxford dataset corresponds to average 51.4 true 

relevant images for each query. This observation indicates 

that the best k is probably related to the number of relevant 

images. As to be shown in experiment part, the optimal k 

should be big enough so that most of true relevant neighbors 

can be involved to learn the neighborhood reversibility. 

This motivates us to develop an adaptive strategy for 

choosing the neighborhood size k so as to handle various 

image datasets. 

 

3. ADAPTIVE REVERSIBILITY VERIFYING  

 

As stated in [15], explicitly verifying reversibility requires 

to conduct more additional image search processes, i.e., per 

returned image a short list, leading to more computational 

cost and memory usage at the online stage. In this section, 

we propose two reversibility verifying schemes, i.e., hard 

verifying and soft verifying, which can smartly avoid 

performing additional queries by storing a single value for 

each image at the offline stage. In addition, we also propose 

an adaptive strategy to automatically select the 

neighborhood size k for each image so as to improve the 

robustness of neighborhood reversibility learning methods.  

 

3.1 Hard reversibility verifying 

 

If A is one of B’s KNNs and B is one of A’s KNNs, we call 

that A and B are KNN-reversible. The key idea of 

reversibility verifying is to directly verify if query and 



returned images are KNN-reversible. The ones that are 

KNN-reversible with query are directly put into the top of 

the returned list.  In order to judge if one returned image is 

KNN-reversible with the query, we store the k-th distance 

values for each image at offline preprocessing stage and 

then employ the distance to facilitate reversibility verifying. 

This method includes offline preprocessing stage and online 

search stage as follows: 

Offline preprocessing stage: Each image in dataset is 

treated as a query to perform a search process across the 

whole dataset, and the distance between the image and its  

k-th nearest neighbor is calculated and stored. The k-th 

distance Ti of any image wi can be denoted as follows: 

( , ),i i ikT D w w  (1)  

where wik denotes the k-th nearest neighbor of wi. D(. , .) 

denotes the distance measure of two images. Compared to 

the visual word vectors and inverted file of vocabulary, the 

storage overhead for k-th distance values is negligible. 

Online search stage: After performing a search process for 

any query q, we can obtain the distance values between the 

query and its KNN neighbors. If the distance between q and 

one of its KNN neighbors wi is lower than Ti, q and wi must 

be KNN-reversible with each other. Then the image wi will 

be directly put into the top of result list. In this way, much 

more additional search processes are avoided. 

 

3.2 Soft reversibility verifying 

 

For the hard reversibility verifying scheme, top-k returned 

images (i.e., KNNs) are first extracted from the initial 

returned list and then reranked according to the reversibility 

verifying information. After that, a new result list is built by 

substituting the top-k returned images in initial list with the 

reranked ones. That is, those images that don’t meet the 

KNN-reversible property are still retained in the top-k 

results, while they may be put to the rear of the k-length list.  

In this way, the improvement of image search quality is 

limited, which heavily depends on the number of true 

relevant images of query.  For example, if the number of 

true relevant images is far higher than k, it is more possible 

that most of top-k images are true relevant images and their 

proportion is high. In this case, the hard scheme will fail 

since search quality changes nothing no matter how you 

rerank the list. To address this issue, we propose a soft 

reversibility verifying scheme. Instead of reranking only the 

top-k returned results, the proposed scheme can rerank the 

whole initial returned list by assigning a reversibility weight 

to each returned image via the proposed reversibility 

verifying function. This scheme also includes offline and 

online stages.  

Offline preprocessing stage:  Similar to hard reversibility 

verifying, we need to calculate and store a k-th distance 

value for each image. Therefore, this stage is the same with 

the hard reversibility verifying scheme. Our main 

contribution lies in the online stage. 

Online search stage: After the initial result list for the 

query q is returned by some standard distance measure, we 

calculate a reversibility weight for each returned image wi 

using the following reversibility verifying function: 
2
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where D(q, wi) is the distance between query q and image wi, 

Ti is k-th distance obtained for image wi at offline stage. 

f(q,wi,Ti) conveys the degree of reversibility.  If f(q,wi,Ti) is 

lower than 1, it means that q and wi are KNN-reversible 

with high probability, and vice versa.  

By introducing the reversibility weight into image 

search process, we can update the original distance measure 

as follows:  

*( , ) ( , ) ( , , ),i i i iD q w D q w f q w T   (3) 

where D*(q,wi) is the updated distance measure. As 

indicated in the equation, if q and wi are possibly KNN-

reversible, f(q,wi,Ti) will make the original distance much 

smaller, resulting in higher rank for wi  in the returned lists. 

Likewise, the irrelevant images in the top-k list can be 

moved out since their updated distances are bigger than 

their original ones. Experimental results confirm that soft 

scheme can result in better performance than the hard one. 

The difference between our schemes and the strategy of 

verifying the reversible property mentioned in [15] is that 

our scheme verifies the reversible property by the prior 

knowledge acquired at the offline stage. Hence, little 

computation is added to the online search procedure.  

 

3.3 Adaptive selection of neighborhood size 

 

In Section 2.3, we have systematically discussed the 

sensitivity of neighborhood size k on learning the reversible 

property. The optimal neighborhood size k is quite different 

for various datasets. To alleviate the effect of sensitivity and 

provide a more stable performance improvement, we design 

an adaptive strategy to automatically select the appropriately 

optimal neighborhood size k for each image at the offline 

preprocessing stage.  

Instead of directly setting a fixed neighborhood size k 

for all images, we separately select a ki and calculate ki-th 

distance for a specific returned image wi. Given an initial 

returned result list when treating wi as query, we firstly 

calculate a mean distance Dim of top-M results in the list as 

follows: 

1
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where WiM denotes the M nearest neighbors of image wi in 

the dataset. Dim conveys the approximate distance between 

wi and its true relevant images. In fact, it is based on an 



underlying assumption that a few top-ranked results are true 

relevant to the query. The assumption is commonly used in 

pseudo-relevance feedback algorithms [1].  

Based on the approximate distance Dim, we define a 

difference function for any rank position kx in the initial 

result list: 

1
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where wikx denotes image wi’s kx-th nearest neighbor, and 

D(wi, wikx) is the distance between wi and its kx-th nearest 

neighbor. Note that k1 is a benchmark value which is not 

more than kx. To simplify the computation, we limit kx to the 

set {k1,…kx,…,kn},  in which kx is greater than kx-1, and k1 is 

the benchmark value.  

As indicated, the value of Pix becomes bigger as kx is 

increasing. Obviously the probability that wikx is a true 

relevant image of wi becomes lower when Pix is getting 

bigger. Therefore, an optimal kx should be the biggest value 

that can guarantee a high probability that wikx is true relevant 

image of wi. To this end, a threshold value ε is set to select 

the optimal kx. In our scheme, if Pix is going up to ε at a 

certain kx when increasing kx from k1 to kn, kx-1 is selected as 

the optimal neighborhood size of wi. The value of ε is 

selected empirically in our experiments, which is not 

sensitive to various image datasets.  

 

4. EXPERIMENTS 

 

4.1 Experimental setup 

 

We use the Oxford Buildings dataset available from [16] 

and Holidays dataset available from [17] as our test datasets 

to evaluate our scheme. The Oxford dataset consists of 5062 

images and 55 query images. The Holidays dataset consists 

of 1491 photos and 500 query photos of different objects 

and landscapes. For both image datasets, the SIFT features 

[3] are extracted with the Hessian-affine detector for each 

image. In addition, a subset from Flickr60K that is available 

in [17] is employed to train our visual word vocabulary. In 

our experiment, the size of vocabulary is fixed to 100K. In 

fact, similar conclusion can be drawn with other sizes of 

vocabularies. 
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Fig. 1. Comparison of various verifying schemes on 

Holidays dataset. 
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Fig. 2. Comparison of various verifying schemes on 

Oxford dataset. 

 

For evaluation criteria, the mean average precision 

(MAP) is employed to evaluate the image search quality as 

done in [6, 9], which can evaluate the overall search 

performance of multiple queries. 

 

4.2 Evaluation on various verifying schemes  

 

In this subsection, various verifying schemes are tested on 

two very different image datasets and various neighborhood 

sizes. The experimental results are demonstrated in Figure 1 

and 2. Note that the performances of both baseline and 

adaptive verifying scheme keep constant since no 

neighborhood size needs to be selected for these two 

schemes. Here, we plot them at the same figure to facilitate 

the comparison. We can clearly observe that all the 

verifying schemes significantly outperform the baseline. 

This means that image search could benefit from the 

reversibility information of neighborhood. As expected, 

both soft reversibility verifying schemes and adaptive 

verifying scheme are remarkably better than the hard one on 

both image datasets. That is, the soft verifying scheme 

indeed addresses the problem in hard verifying scheme. In 

addition, we can also observe that the adaptive scheme 

achieves the best or comparable performance to the soft 

verifying scheme. This means that our proposed adaptive 

strategy is very effective for automatically selecting optimal 

neighborhood size. To intuitively illustrate the improvement, 

we provide two search examples on both Holidays and 

Oxford datasets respectively. The results are illustrated in 

Figure 3. The first line shows the results returned by the 

baseline. The second line shows the results returned by 

applying the soft reversibility verifying scheme. It is clear 

that the soft reversibility verifying scheme successfully 

removes some irrelevant images and adds more relevant 

images to the top-ranked results. 

 

4.3 Sensibility evaluation 



 

 

Fig. 3. Illustration of search examples before and after introducing soft verifying scheme. 
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Fig. 4. Impact of k on Holidays dataset. Fig. 5. Impact of k on Oxford dataset. 
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Fig. 6. Comparison of CDM and CDM+adaptive 

verifying scheme on Holidays dataset. 

Fig. 7. Comparison of CDM and CDM+adaptive 

verifying scheme on Oxford dataset. 

 

In this subsection, we conduct several experiments to 

evaluate the sensibility of neighborhood size on different 

neighborhood reversibility learning schemes. Since the hard 

reversibility verifying scheme is far inferior to both soft one 

and other existing schemes, we only test the soft 

reversibility verifying scheme and a state-of-the-art scheme 

(i.e., CDM). Figure 4 and 5 demonstrate the experimental 

results. As shown, the neighborhood size k has a significant 

effect on the performance of image search, and the optimal 

k even for the same scheme is quite different on various 

image datasets. For example, CDM gives its best 

performance on Holidays dataset when neighborhood size k 

is set to 20, while 500 is the optimal one on Oxford dataset. 

In brief, both neighborhood reversibility learning schemes 

are sensitive to neighborhood size, and there is no fixed k 

that can make neighborhood reversibility learning schemes 

work well on various image datasets. 

 

4.4 Comparison of various methods  

 

As stated above, CDM and reversibility verifying schemes 

are two kinds of solutions for learning neighborhood 

reversibility, both of them are sensitive to the neighborhood 

size. By introducing the adaptive strategy to reversibility 

verifying, we can greatly alleviate the issue. In this 

subsection, we attempt to combine the two kinds of 

solutions and provide a comparable and more stable 



performance to the state-of-the-art methods. In our 

experiments, CDM scheme is combined with the proposed 

adaptive reversibility verifying scheme, in which the 

outputted result list from CDM scheme is treated as the 

input of adaptive reversibility verifying scheme. The 

experimental results on two image datasets are illustrated in 

Figure 6 and 7 respectively.  As shown, after introducing 

the proposed adaptive scheme, the performance of CDM is 

comparable but more stable to the original CDM even with 

various neighborhood sizes. For the Holidays dataset, the 

MAP always slightly changes between 0.6 and 0.65 no 

matter which k is selected for CDM. For the Oxford dataset, 

the MAP almost stays around 0.4. This means that the 

proposed adaptive scheme indeed alleviates the sensibility 

of neighborhood size on CDM scheme. 

 

5. CONCLUSION 

 

This paper introduces a simple but effective scheme to learn 

the reversibility information of neighborhood for improving 

the image search quality. In particular, a reversibility 

verifying function is designed to calculate the reversibility 

weight, and then a soft reversibility verifying scheme is 

proposed by involving the weight to the verifying process. 

In addition, an adaptive strategy is proposed to deal with the 

problem of sensitivity on neighborhood size. The 

experimental results show that introducing the proposed 

scheme to image search system can significantly improve 

image search quality. And combining the adaptive scheme 

with the state-of-the-art CDM approach can greatly alleviate 

the sensitivity of neighborhood size of CDM and provide 

more stable but comparable performance on various image 

datasets. 

 

6. ACKNOWLEDGEMENTS 

 

This work was supported in part by the 973 Program (No. 

2012CB316400), PCSIRT (No.IRT201206), the National 

Science Foundation of China (No.61202241, No.61210006, 

and No.61025013), the Fundamental Research Funds for the 

Central Universities (No.2013JBM024), and the Open 

Project Program of the National Laboratory of Pattern 

Recognition (NLPR). 

 

7. REFERENCES 

 

[1] S. Wei, Y. Zhao, Z. Zhu, and N. Liu, “Multimodal 

fusion for video search reranking,” IEEE Transactions 

on Knowledge and Data Engineering, vol. 22, no. 8, pp. 

1191-1199, 2010.  

[2] S. Wei, Y. Zhao, C. Zhu, C. Xu, and Z. Zhu, “Frame 

fusion for video copy detection,” IEEE Transactions on  

Circuits and Systems for Video Technology, vol. 21, no. 

1, pp. 15-28, 2011. 

[3] D. Lowe, “Distinctive image features from scale-

invariant keypoints,” International Journal of 

Computer Vision,  vol. 60, no. 2, pp. 91-110, 2004. 

[4] J. Sivic and A. Zisserman, “Video Google: A text 

retrieval approach to object matching in videos,” in 

IEEE International Conference on Computer Vision, 

2003. 

[5] H. Jégou, M. Douze, and C. Schmid, “Hamming 

embedding and weak geometric consistency for large 

scale image search,” in European conference on 

computer vision, 2008. 

[6] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. 

Zisserman, “Lost in quantization: Improving particular 

object retrieval in large scale image databases,” in IEEE 

Conference on Computer Vision and Pattern 

Recognition,  2008. 

[7] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. 

Zisserman, “Total recall: Automatic query expansion 

with a generative feature model for object retrieval,” in 

IEEE International Conference on Computer Vision, 

2007. 

[8] O. Chum, A. Mikulik, M. Perdoch, and J. Matas, “Total 

recall II: Query expansion revisited,” in IEEE 

Conference on Computer Vision and Pattern 

Recognition, 2011. 

[9]  J. Philbin, O. Chum, M. Isard, J. Sivic, and A. 

Zisserman, “Object retrieval with large vocabularies 

and fast spatial matching,” in IEEE Conference on 

Computer Vision and Pattern Recognition, 2007. 

[10] R. Arandjelovic and A. Zisserman, “Three things 

everyone should know to improve object retrieval,” in 

IEEE Conference on Computer Vision and Pattern 

Recognition, 2012. 

[11] D. Nistér and H. Stewénius, “Scalable recognition with 

a vocabulary tree,” in IEEE Conference on Computer 

Vision and Pattern Recognition, 2006. 

[12] A. Mikulik, M. Perdoch, O. Chum, and J. Matas, 

“Learning a fine vocabulary,” in European Conference 

on Computer Vision, 2010. 

[13] J. Philbin, M. Isard, J. Sivic, and A. Zisserman, 

“Descriptor learning for efficient retrieval,” European 

Conference on Computer Vision, 2010. 

[14] H. Jégou, H. Harzallah, and C. Schmid, “A contextual 

dissimilarity measure for accurate and efficient image 

search,” in IEEE Conference on Computer Vision and 

Pattern Recognition, 2007. 

[15] H. Jégou, C. Schmid, H. Harzallah, and J. Verbeek, 

“Accurate image search using the contextual 

dissimilarity measure,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 32, no.1, pp. 2-

11, 2010. 

[16] http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/ 

[17] http://lear.inrialpes.fr/~jegou/data.php 

 


