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ABSTRACT

As one of the most successful approaches for recommenda-
tion, matrix factorization based Collaborative Filtering (CF)
technique has received considerable attentions over the past
years. In this paper, we propose an orthogonal matrix factor-
ization model with graph regularization to preserve the con-
sistency of the local structure both in user and item spaces,
respectively. Instead of traditional alternating optimization
method, a greedy sequential one is introduced to optimize a
pair of coupled factor vector and its corresponding loading
vector simultaneously each time, thus the original optimiza-
tion problem is converted into the well-studied Multivariate
Eigen Problem (MEP). Furthermore, multiple pairs of cou-
pled eigen-vectors can be obtained in sequence. To guar-
antee nonrecurring of repetition of solutions, a novel dual-
deflation technique is developed to incorporate into the se-
quential optimization. Experimental results on MovieLen-
s and Each Movie data sets demonstrate that the proposed
method is much more competitive compared with the state of
the art matrix factorization based collaborative filtering meth-
ods.

Index Terms— Recommendation, Collaborative filter-
ing, Matrix factorization, Multivariate eigenvalue problem,
Dual-deflation, Graph model

1. INTRODUCTION

The explosive growth of the information on the web and the
emergence of e-commerce have led to urgent demand for
personalized recommender systems, providing user-oriented
suggestions of fitting users’ taste to help them in selecting
items from an overwhelming set of choices. Knowing pref-
erences of users for some items, the key issue of building a
recommender system is to accurately recommend other items
which they will like. To achieve this goal, content-based ap-
proach [1] and collaborative filtering method [2] are of two
highly influential technologies.

Content-based approaches originate from the field of in-
formation retrieval (IR), which rely on profiling the content of
the items (such as product information/descriptions, category,

title, and author) [1]. The profiles can be used by algorithms
to connect user’s interests and item’s descriptions when gen-
erating recommendations. However, it is usually laborious to
collect the necessary information about items, and similarly it
is often difficult to motivate users to share their personal data
to help create the database for the basis of profiling.

On the other hand, the alternative approach, termed col-
laborative filtering (CF) [2], is usually more feasible by mak-
ing use of only past user activities (for example, transaction
history or user satisfaction expressed in ratings). Collabo-
rative filtering (CF) allows the known preferences of previ-
ous users to be propagated to the unknown preferences for
other users, thus personalized recommendations or predica-
tions for products or services to potential customers can be
made. An example of successful putting a collaborative fil-
tering system into use is Amazon.com, where new books are
recommended to users based on what they have previously
bought as well as their similarity to other users. The underly-
ing assumption of CF is that the active user will prefer those
items which the similar user prefers. Since 2006, the well-
known Netflix Prize competition has greatly promoted much
recent progress in the field of collaborative filtering. Current-
ly, many approaches have been proposed for CF problems,
such as memory based methods [3] [4] and model based al-
gorithms [5] [6].

Methods based on matrix factorization (MF) [7], or called
latent factor models, are the most representative model-based
collaborative filtering methods. As the Netflix Prize com-
petition has demonstrated, Matrix Factorization (MF) based
approaches have proven to be efficient for rating-based rec-
ommendation systems. In its basic form, matrix factorization
characterizes both items and users by vectors of factors in-
ferred from item rating patterns. One of the earliest popular
MF models is latent semantic indexing (LSI) [8], which us-
es singular value decomposition (SVD) to map the content
of documents into a lower-dimensional latent semantic space.
Some other typical MF based collaborative filtering methods
include Regularized Matrix Factorization (RMF), Probabilis-
tic Matrix Factorization (PMF) [9], and Maximum Margin
Matrix Factorization (MMMF) [10], et al..



Although based on good mathematical foundation, the
above mentioned matrix factorization models fail to take the
structure property of data themselves into consideration. To
overcome this limitation, an orthogonal graph- regularized
matrix factorization (OGRMF) model for recommendation
was proposed in this paper to preserve the consistency of
local data structure. The difference of our OGRMF model
from some other previous graph-regularized matrix factoriza-
tion models, like [11] [12] [13], lies in an orthogonality con-
straint is imposed on the loading and factor matrixes, which
will be in favor of eliminating the relevance among variables
in the latent subspace. Instead of traditional alternative opti-
mization method, a felicitous greedy sequential optimization
was introduced, which finally boils down to the well-studied
Multivariate Eigen Problem (MEP). In addition, a novel dual-
deflation was presented to combine with MEP, thus multiple
coupled distinct eigen-vectors can be obtained in sequence.

2. GRAPH REGULARIZED MATRIX
FACTORIZATION MODEL

Let’s begin with introducing some useful notations. Through-
out the paper, we use capital letter to denote matrix and low-
ercase to denote vector. Given a matrix A = [ai,j ] ∈ Rl×p,
ai· and a·j represent the ith row vector and the jth column
vector of matrix A, respectively. We denote by Tr(·) the trace
of a square matrix, and ∥ · ∥F represents the Fresenius norm

defined as ∥A∥F =

√∑
i,j

a2i,j .

The essence of matrix factorization models is to map both
users and items to a joint latent factor space of lower di-
mensionality , thus the user-item interactions are modeled
as inner products in that space. Given the user-item rating
matrix X = [xi,j ] ∈ Rm×n with m users and n items,
xi· = [xi,1, xi,2, · · · , xi,n] denotes the ith user’s ratings on
n items, and x·j = [x1,j , x2,j , · · · , xm,j ] the ratings given by
m users on the jth item. For the rating matrix X , its fac-
torization refers to seek two mutually coupled matrices U =
[u·1, u·2, · · · , u·k] ∈ Rm×k and V = [v·1, v·2, · · · , v·k] ∈
Rn×k to approximate itself, i.e., X̂ = U ·V T and X̂ is the ap-
proximation of rating matrix X . Typically, k is much smaller
than min (m,n), which means X̂ is a low-rank approxima-
tion of matrix X .

As one kind of representative matrix factorization models,
Regularized Matrix Factorization (RMF) model is given by:

minF(U,V ) = L(X, X̂)︸ ︷︷ ︸
Factorization term

+α
[
∥U∥2F + ∥V ∥2F

]︸ ︷︷ ︸
Regularization term

(1)

where L(X, X̂) = ∥X − U · V T ∥2F is defined as the factor-
ization term, showing the approximation degree of X̂ to X ,
and α is a balancing constant to trade-off the factorization ter-
m and regularization term. Note that the regularization term

is to restrict the domains of U and V from being over-fitting,
so that the resulting model has a good generalization perfor-
mance.

In this work, instead of forcing the Fresenius norm based
regularization as in Eq.1, an orthogonal graph-regularized
matrix factorization (OGRMF) model is proposed to preserve
the consistency of the local structure in both user and item s-
paces, respectively. Specifically, the OGRMF is modeled as
follows:

minF(U,V ) = L(X, X̂) +α · 1
2

 m∑
i=1

m∑
j=1

wu
i,j ∥ui· − uj·∥2F

+
n∑

p=1

n∑
q=1

wv
p,q ∥v·p − v·q∥2F

]
(2)

s.t. UT · U = I, V T · V = I

where Wu =
[
wu

i,j

]
∈ Rm×m and W v =

[
wv

p,q

]
∈ Rn×n

are the well defined edge weight matrices of user graph and
item graph, respectively. The aim of imposing orthogonality
constraint on loading and factor matrixes is to reduce the rel-
evance among variables in the latent user and item subspaces.

Particularly, the edge weight wu
i,j in the user space is de-

fined by:

wu
i,j =

sim(xi·, xj·),
if xi· ∈ Nknn(xj·)

or xj· ∈ Nknn(xi·)
0, else

(3)

where Nknn(xi·) denotes the set of knn nearest neighbors of
user xi· , and sim(xi·, xj·) reflects the similarity between xi·
and xj· in user space (cosine distance is used unless special
specification). The similar definition is for wv

p,q.
Furthermore, simplifying Eq.2 yields:

minF(U,V ) = L(X, X̂) +α
[
Tr(UTLu · U + V TLvV )

]
s.t. UT · U = I, V T · V = I (4)

where Lu = Du − Wu and Lv = Dv − W v are two graph
Laplacian matrices in User and Item space, respectively; Du

and Dv are two diagonal matrices with dui =
∑

j w
u
i,j and

dvp =
∑

q w
v
p,q .

3. SOLVING THE OPTIMIZATION FOR OGRMF
MODEL

3.1. Greedy sequential optimization

From Eq.4, it is straightforward to notice that the objective
function F(U,V ) in the OGRMF model is not jointly convex
with respect to U and V . But if keeping one of them free
while fixing the other, then the objective function is convex
for the remained free one. Hence, U and V can be updated
alternatively, which is also known as alternative optimization



method, and has been widely applied to optimize MF model.
But for OGRMF model, the alternative optimization method
will not work due to the orthogonality constrains on U and V .

In this work, we propose a more efficient sequential
scheme to optimize a pair of coupled factor vector and its
corresponding loading vector simultaneously each time, thus
the original optimization problem is converted into the well-
studied Multivariate Eigen Problem (MEP). Furthermore,
multiple pairs of coupled eigen-vectors can be obtained in a
greedy sequential way.

Now, for d = 1, 2, · · · , k, suppose that Ud−1 =[
u·1, u·2, · · · , u·(d−1)

]
∈ Rm×(d−1) with UT

d−1 · Ud−1 =

I [d−1] and Vd−1 =
[
v·1, v·2, · · · , v·(d−1)

]
∈ Rn×(d−1) with

V T
d−1 · Vd−1 = I [d−1] have been obtained at present, where

I [d−1] denotes a d − 1 × d − 1 identity matrix. Substituting
Ud = [Ud−1 u·d] for U and Vd = [Vd−1 v·d] for V of
objective function F(U,V ) in Eq. 4 will give rise to:

F(U,V )=∥X−Ud · V T
d ∥2F+α·Tr

[
UT
d ·Lu·Ud+V T

d · Lv ·Vd

]
=Tr

[
−2v·d · uT

·d·X+ α·
(
uT
·d·Lu·u·d + vT·d·Lv ·v·d

)]
+

d−1∑
i=1

Tr
[
−2v·i·uT

·i ·X+α·
(
uT
·i ·Lu·u·i+vT·i ·Lv ·v·i

)]
+C1

(5)
where C1 = Tr

[
XT ·X + Vd · UT

d · Ud · V T
d

]
is a con-

stant. To make the illustration more clear, let f(u·i,v·i) =

Tr
[
2v·i·uT

·i ·X−α·
(
uT
·i ·Lu·u·i+vT·i ·Lv ·v·i

)]
, Eq.5 becomes:

F(U,V ) = −f(u·d,v·d) −
d−1∑
i=1

f(u·i,v·i) + C1 (6)

Given the obtained Ud−1 =
[
u·1, u·2, · · · , u·(d−1)

]
∈

Rm×(d−1) and Vd−1 =
[
v·1, v·2, · · · , v·(d−1)

]
∈ Rn×(d−1),

it is explicit that the second term C2 =
d−1∑
i=1

f(u·i,v·i) of Eq. 6

is also a constant. Thus, minimizing F(U,V ) equals to maxi-
mizing f(u·d,v·d) , which leads to the following maximization
problem with respect to the coupled factor and loading vec-
tors u·d and v·d:

max f(u·d,v·d) = Tr
[
2v·d · uT

·d ·X
]

− α
[
uT
·d · Lu · u·d + vT·d · Lv · v·d

]
(7)

s.t. uT
·d · u·d = 1, vT·d · v·d = 1

For convenience of making difference between f(u·d,v·d)

and F(U,V ) , we name hereafter f(u·d,v·d) by the individual ob-
jective function compared with the ensemble objective func-
tion F(U,V ). Introducing Lagrange multiplier λd

u and λd
v , and

further differentiating Eq. 7 w.r.t u·d and v·d , we have:
∂f(u·d,v·d)

∂u·d
= X · v·d − α · Lu · u·d − λd

u · u·d
∂f(u·d,v·d)

∂v·d
= XT · u·d − α · Lv · v·d − λd

v · v·d
(8)

Setting Eq.8 to zero and by some mathematical manipu-
lation, the following coupled Eq.9 about u·d and v·d will be
obtained:[

M11 M12

M21 M22

] [
u·d
v·d

]
=

[
λd
u · I[m] 0

0 λd
v · I[n]

][
u·d
v·d

]
(9)

where M =

[
M11 M12

M21 M22

]
is a block matrix with M11 =

−α · Lu, M12 = X , M21 = XT , and M22 = −α · Lv.
Noticeably, u·d and v·d can be taken as the dth pair of cou-
pled leading eigen-vectors with their corresponding eigenval-
ues λd

u and λd
v .

3.2. Multivariate eigenvalue problem

So far, we can find that obtaining the solutions of u·d and
v·d to Eq.9 just equals to the well-studied Multivariate Eigen
Problem (MEP) which derives its origin from a particular
maximum correlation problem. Some distinctive traits of
MEP were discussed in [14]. Currently, some algorithms
have been developed for solving the MEP mentioned above,
including Horst method, Power method and Gauss-Seidel
method, et al. Since Gauss-Seidel method takes good con-
vergence performance, it was adopted for solving the MEP
with Eq.9. The detail of Gauss-Seidel method is elaborated in
Algorithm 1.

Algorithm 1: Gauss-Seidel method for the MEP
(GSMEP)

1. Input: the block matrix M , the obtained orthogo-
nal matrixes Ud−1 and Vd−1, and the maximum iteration
number Iter
2. Randomly initialize p

(0)
1 ∈ Rm×1 and p

(0)
2 ∈ Rn×1

3. for k = 1, ..., Iter // Repeat until convergence
4. for i = 1, 2 // q1 and q2 are calculated in parallel

5. q
(k)
i :=

∑i−1
j=1 Mi,j · p(k+1)

j +
∑2

j=i Mi,j · p(k)j

6. if i==1
7. q

(k)
i = q

(k)
i − Ud−1 · UT

d−1 · q
(k)
i

8. else
9. q

(k)
i = q

(k)
i − Vd−1 · V T

d−1 · q
(k)
i

10. end if
11. λ

(k)
i := ∥q(k)i ∥2

12. p
(k+1)
i :=

q
(k)
i

λ
(k)
i

13. end for
14. end for
15. λu = λ

(Iter)
1 , λv = λ

(Iter)
2

16. u = p
(Iter+1)
1 , v = p

(Iter+1)
2

17. Output u and v



3.3. Dual-deflation

Recall that, for a standard eigenvalue problem of a basis ma-
trix, the multiple distinct eigen-vectors and their correspond-
ing eigen-values are generally obtained using some kinds of
iteration methods, e.g. power method. To keep each of eigen-
vectors unique against others, the deflation on the above ba-
sis matrix should be implemented prior to seeking subsequent
eigen-vector and its corresponding eigen-value [15].

As we can see from Algorithm 1, GSMEP can merely ob-
tain a pair of coupled eigen-vectors and their corresponding
eigen-values. If we apply directly GSMEP to seek multiple
eigen-vectors, say the multiple eigen-vectors u’s, the repe-
titions of them can’t be avoided; in other word, some kind
of deflation should also be implemented as solving standard
eigen-value problem. Considering the fact that Eq.9 is indeed
a coupled linear system, it is clear that the traditional defla-
tion methods will not work on it. As a result, a novel dual-
deflation scheme is proposed in this paper. Specifically, for
the proposed dual-deflation, we have the following Proposi-
tion 1.

Proposition 1. Let {u·i, v·i} and
{
λi
u, λ

i
v

}
, i = 1, ..., d , be

the multiple pairs of concurrent leading eigen-vectors and
corresponding eigen-values for the coupled linear system
Eq.9 . If we deflate the block basis matrix M according to
Eq.10 in Algorithm 2, the eigen-values {λi

u, λ
i
v}i=1,··· ,d−1

will be deflated to zeros while keeping {λd
u, λ

d
v} unchanged,

that is, we have :

[
Md

11 Md
12

Md
21 Md

22

][
u·i

v·i

]
=



[
0

0

][
u·i
v·i

]
, i < d

[
λi
u·I [m] 0
0 λi

v ·I [n]
][

u·i
v·i

]
, i = d

For the detail proof of Proposition 1 please refers to Ap-
pendix.

Algorithm 2: The dual-deflation method (DDM)
1. Input: the block matrix M , the obtained orthog-
onal matrices Ud−1 =

[
u·1, ..., u·(d−1)

]
and Vd−1 =[

v·1, ..., v·(d−1)

]
2. Update M by the following way:

3.


Md

11=M11−Ud−1· UT
d−1·M11·Ud−1· UT

d−1

Md
12=M12−Ud−1· UT

d−1·M12·Vd−1· V T
d−1

Md
21=M21−Vd−1· V T

d−1·M21·Ud−1· UT
d−1

Md
22=M22−Vd−1· V T

d−1·M22·Vd−1· V T
d−1

(10)

4. Output Md =

[
Md

11 Md
21

Md
21 Md

22

]

3.4. Summarization of solving OGRMF model

Following the above discussions, the overall procedure for
solving OGRMF model is summarized in Algorithm 3.

Algorithm 3: Solving the optimization for OGRMF
model)
1. Input: the block matrix M , the available Ud−1 and
Vd−1, and the maximum iteration number Iter
2. for d = 1, ...k
3. if d == 1
4. [u·d, v·d] = GSMEP(M,Ud−1, Vd−1, Iter)

5. Ud = [u·d] , Vd = [v·d]
6. else
7. Md = DDM(M,Ud−1, Vd−1)

8. [u·d, v·d] = GSMEP(Md, Ud−1, Vd−1, Iter)

9. end if
10. Ud = [Ud−1 u·d]
11. Vd = [Vd−1 v·d]
12. end for
13. U = Uk, V = Vk

14. Output U and V .

4. EXPERIMENTAL RESULT AND ANALYSIS

4.1. Data sets and experimental setting

In our experiments, we evaluate the performance of the
proposed OGRMF model on two popularly referred movie
datasets: MovieLens and EachMovie. MovieLens consists of
100,000 movie ratings (1-5) from 943 users on 1682 movies.
EachMovie dataset provides 2.6 million ratings (1-6) with
74,424 users and 1,648 movies. Considering the cold start
problem, we discarded items which have less than 5 ratings
by users for both data sets and chose a subset of the users for
EachMovie.

Table 1 lists the details of the data sets used in the ex-
periment. Particularly, binaryzation into -1 and +1 on all the
ratings are preprocessed to show more common choices be-
tween agree/disagree or good/bad from users. We randomly
select 80% users as the training set, and the rest as the test
set. The available records of each test user are split into an
observed set and a held-out set. The former is used to pre-
dict the held out one. For each user, 10 interested items are
held out. To evaluate the top-N recommendation, we use the
standard F1 metric with equal weight to both of recall and
precision measures.

Table 1: Descriptions of the data sets
Data Sets # users # items # ratings

MovieLens 943 1349 99287
EachMovie 1000 1037 74111



Firstly, we compared the performance of the proposed O-
GRMF model with neighbor-based, SVD and RMF methods
for recommendation. Table 2 lists the F1 performances ob-
tained using different CF algorithms on MovieLens and Each-
Movie. Note that the reported results in Table 2 are based
on the optimal parameters for each of methods. The results
show that the OGRMF model achieves the best performance
by F1, which reaches 0.50% improvement over SVD method
on MovieLens and 0.34% higher on EachMovie.

Table 2: Performance Comparisons
Dataset Neighbor-based SVD RMF OGRMF

MoviwLens 0.2182 0.2360 0.1928 0.2410
EachMovei 0.3698 0.3714 0.3700 0.3748

4.2. Impact of key coefficients

For the proposed OGRMF model, there are 3 key coeffi-
cients, the trade-off parameter α , the number userKnn of
nearest neighbors in user space, and the number itemKnn
of nearest neighbors in item space (See Eq.3). Fig. 1 and
Fig.2 show the impacts of them on the recommendation per-
formance. Particularly, good results can be obtained when
α = 4, userKnn = 15, and itemKnn = 10 .

Fig. 1: Trade-off parameter α vs. Recommendation perfor-
mance

Fig. 2: userKnn and itemKnn vs. recommendation perfor-
mance

4.3. Convergence analysis

We use the MovieLens dataset to make the convergence anal-
ysis of the proposed sequential optimization method. Fig.3
gives the relationship of the optimal individual objective func-
tion value f(u·d,v·d) (see Eq.7 ) with the iteration times, from

which we can find that the value reaches a stable state by
around 7-8 iteration times in average. Furthermore, we also
show the variation tendency of the optimal ensemble objective
function value F(U,V ) in Fig.4, suggesting the dimensionality
k of the latent factor space is around 20.

Fig. 3: Convergence Analysis

Fig. 4: Variation of F(U,V ) with different latent dimensional-
ity redDim

5. CONCLUSIONS

To preserve the consistency of local structure in both user and
item spaces, an orthogonal graph- regularized matrix factor-
ization (OGRMF) model and its application for recommen-
dation was proposed. To solve the optimization problem with
OGRMF model, a greedy sequential optimization method was
introduced , which finally equals to a coupled linear system
. Hence, the well-studied Multivariate Eigen Problem (MEP)
can be applied. In addition, a novel dual-deflation was pro-
posed on the coupled linear system, thus multiple distinct
eigen-vectors can be obtained in sequence.
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Appendix
Proposition 1. Let {u·i, v·i} and

{
λi
u, λ

i
v

}
, i = 1, ..., d

, be the multiple pairs of concurrent leading eigen-vectors
and corresponding eigen-values for the coupled linear sys-
tem Eq.9 . If we deflate the block basis matrix M according

to Eq.10 in Algorithm 2, the eigen-values {λi
u, λ

i
v}i=1,··· ,d−1

will be deflated to zeros while keeping {λd
u, λ

d
v} unchanged,

that is, we have :

[
Md

11 Md
12

Md
21 Md

22

][
u·i

v·i

]
=


[

0
0

][
u·i
v·i

]
, i < d[

λi
u·I [m] 0
0 λi

v ·I [n]
][

u·i
v·i

]
, i = d

Proof. Assume {λi
u, λ

i
v} and {u·i, v·i} , i = 1, · · · , d , are

the solutions to the coupled linear system given by Eq.9. Us-

ing the deflated basis matrix Md =

[
Md

11 Md
21

Md
21 Md

22

]
as in

Eq.10 to substitute for M =

[
M11 M21

M21 M22

]
in Eq.9, the

left hand side of Eq.9 becomes:

Md
11·u·i +Md

12·v·i
=

[
M11·u·i − Ud−1·UT

d−1·M11·Ud−1·UT
d−1·u·i

]
+[

M12·v·i − Ud−1·UT
d−1·M12·Vd−1·V T

d−1 · v·i
]
(11a)

Md
21·u·i +Md

22·v·i
=

[
M21·u·i − Vd−1·V T

d−1·M21·Ud−1·UT
d−1·u·i

]
+[

M22·v·i − Vd−1·V T
d−1·M22·Vd−1·V T

d−1 · v·i
]
(11b)

When i = 1, · · · , d − 1 and considering UT
d−1 · Ud−1 =

I [d−1] and V T
d−1 · Vd−1 = I [d−1], Eq.11a can be rewritten as:

Md
11·u·i +Md

12·v·i
=

[
M11·u·i − Ud−1·UT

d−1·M11·u·i
]
+[

M12·v·i − Ud−1·UT
d−1·M0

12·v·i
]

= [M11·u·i +M12·v·i]−
Ud−1·UT

d−1·[M11·u·i +M12· v·i]

=
[
I [m]−Ud−1·UT

d−1

]
·[M11·u·i +M12·v·i]

=
[
I [m]−Ud−1·UT

d−1

]
·λi

u· u·i

= λi
u· u·i − λi

u· Ud−1·UT
d−1·u·i

= λi
u· u·i − λi

u· u·i

= 0·u·i

(12)

By similar mathematical manipulation, Eq.11b becomes:

Md
21·u·i +Md

22·v·i = λi
v · v·i − λi

v · v·i = 0·v·i (13)

But when i = d, λd
u and λd

v will remain to be unchanged
since Eq.11 will be:

Md
11·u·i +Md

12·v·i= M11·u·d +M12·v·d = λd
u·u·d

Md
21·u·i +Md

22·v·i=M21·u·d +M22·v·d=λd
v ·v·d

(14)
This completes the proof.


