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Abstract

This paper proposes a new approach of implementing low-level OS components, especially device drivers. We
introduce the notion of concurrent objects into device driver programming. A device driver for every hardware
device is implemented as independent concurrent objects. A device driver object has a single thread of control, so
that mutual exclusion operations such as spl and semaphores are not necessary. Mechanisms of synchronization,
scheduling objects, and interrupt mask handling are clearly separated from actual device control programs, and these
are implemented by the system for device driver objects. Both an interrupt and a service request to a device driver
object will be delivered as a message, so programmers need not to distinguish these two types of invocation requests.
Therefore, programmers can concentrate on writing the actual device control codes without writing auxiliary codes
for synchronization, and the codes will be executed much safer. We show our implementation on Apertos object-
oriented operating system, and its preliminary evaluation results. Evaluation results demonstrate our approach can
be implemented cost-effective.

1 Introduction

In these days, demands on highly distributed and heterogoneous computing are increasing. This is driven by the
trends of building Information Super Highway. Particularly, VOD (Video on Demand) services using continuous-
media servers and settop-boxes interconnected by networks will be available in the near future. Settop-boxes and
other embedded equipments such as VCR’s, TV’s, PDAs, and game machines have characteristics such as limitation
of system resources, real-time constraints, and at the same time distribution and heterogeneity. Although existing
embedded applications are implemented on top of some embedded operating systems, such operating systems can
hardly support the high abstractions, like distribution. Thus, we claim that future embedded operating systems
should provide:

� dynamic creation/destruction of low-level system components,

� update and bugfixes of the entire system without stopping the system, and

� programming and execution models optimal for various applications’ demands such as distribution, persis-
tence, location transparency, heterogeneity, and atomicity which are applicable to low-level system codes
through high-level application codes.

Recently, mobile computers with PCMCIA interfaces and some network controllers support the hot-swap facility,
so that the system should provide mechanisms to dynamilcally install/remove low-level system components from
secondary storage or networks. This enables us to make a room for applications unless low-level system compo-
nents are installed. This also helps us to their runtime update and bugfixes. In this paper, the discussion mainly
goes to device driver programming because of its importance.

In many existing operating systems, device drivers are implemented inside their kernel, and cannot be replaced.
Also, it is difficult to implement (and debug) device drivers, because:

�Keio University, Department of Computer Science, Tokoro Laboratory. 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa 223 JAPAN.
e-mail: itojun@mt.cs.keio.ac.jp

ySony Computer Science Laboratory. Takanawa Muse Buliding, 3-14-13, Higashi-Gotanda, Shinagawa, Tokyo 141 JAPAN. e-mail:
ykt@csl.sony.co.jp

1



� codes for device control, scheduling, and mutual exclusion are mixed up;

� the unit of mutual exclusion is unclear; and

� operations for scheduler and mutual exclusion are complicated, so that irregular usage of these operations
causes the system hang-up.

We believe that the dynamic change of device drivers can only be achieved by implementing them completely
independent. If they are mutually dependent, the change of a driver will affect the others and may cause troubles,
i.e., system hang-up. Therefore, we need a more elaborate programming model to make device drivers independent,
and make their implementation easy.

In this paper, we propose the following two design strategies in device driver programming:

� a concurrent object: a single-threaded modeule is a unit of execution.

� separation of concerns: codes for synchronization, scheduling, and interrupt mask control are separated from
device control codes.

Using these design strategies, each device driver is completely independent, and programmers can concentrate their
attention on device control programming. The mechanisms necessary to support these strategies are implemented
in the Apertos operating system, and preliminary evaluation is shown in the later section of this paper.

2 Device Drivers as Concurrent Objects

We implement a device driver as a concurrent object[Yonezawa and Tokoro 87]. In this paper, a concurrent object
is defined in such a way that it is an object having memory region for data, methods (or codes), and a single virtual
processor (or a thread). A concurrent object has the following features:

� A method is invoked as an effect of message passing.

� An object is a unit of atomic execution, i.e., at most one method is executed at one time.

The first item helps us to treat an interrupt as message passing to a specific device driver object. Programmers need
not to distinguish between them. A message sent by interrupt can be viewed as an asynchronous message with
highest priority. The second item helps us to automatically create a mutual exclusive region, and make the region
explicit to programmers, i.e., a concurrent object.

Introducing concurrent objects creates a problem of ordering two methods in the same object. That is, some
device driver methods have to be invoked as an effect of the previous method execution. For example, reading
data from a disk can be divided into two methods: one is requesting read operation and the other is receiving an
acknowledgement of a finish operation. The latter method should be executed after the first method execution. In
UNIX, functions sleep and wakeup are used for this purpose.

Since a pair of sleep/wakeup is error prone, we have decided not to allow such hard-coding of these op-
erations, and we introduce continuations as an abstraction of scheduling operations. Here, a continuation is an
object, and it is managed by the system1. A continuation forwards an asynchronous message to the object that the
rest of its computation is represented by the continuation in order to invoke a specified method of the object. A
continuation is created and destructed using an API provided by the system. Here is an example. Figure 1(a) shows
a typical code fragment for functions xxintr and xxread in UNIX. These can be replaced with continuations
as shown in Figure 1(b). NewCont() on line 12 creates a continuation which means ReadCont() have to be
executed after completion of the Read() method. After creating a new continuation, method Read() is termi-
nated in this example (line 12). Then, Send() on line 5 sends an asynchronous message to that continuation, and
ReadCont() is invoked, as an effect of an interrupt. Operations on a continuation are executed safely than a pair
of sleep/wakeup, because there is no way to put an erroneous code in device drivers.

3 Separation of Concerns and the Apertos Operating System

Separation of concerns is a programming strategy which thinks about two concerns separately: ideal abstraction
and mapping to efficient implementation[Yokote et al. 94]. Programmers want to concentrate programming of a
given problem. Here, assume we have a black-box on top of which applications are constructed using the API

1We say a continuation is a metaobject in the sense that it is an object representing the rest of object’s computation at its meta-level.
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1 xxintr()
2 {
3 read from device;
4 wakeup(x);
5 }
6
7 xxread()
8 {
9 if (notready)

10 sleep(x);
11 return the result;
12 }

(a) UNIX style

Continuation
represents the rest
of the computation

NewCont

resume

1 XX::Interrupt()
2 {
3 read from device;
4 /*wakeup the continuation*/
5 Send(cont, null);
6 }
7
8 XX::Read()
9 {
10 if (notready) {
11 /*create a continuation*/
12 cont = NewCont(ReadCont);
13 Exit();
14 }
15 return the result;
16 }
17
18 XX:ReadCont()
19 {
20 /*reactivated*/
21 return the result;
22 }

(b) our style using continuation

Figure 1: Coding styles of the synchronization operation.

provided by that black-box. This is sometimes happy for application programmers because applications are free
from the underlying implementation, so that they are portable. In traditional operating systems, for example, a
process is an abstraction of the underlying implementation of scheduling, allocation to a physical processor, etc. In
some cases, however, the black-box creates troubles of violating applications’ demands such as performance and
memory requirements. This implies programmers have to write codes optimal for their applications, but the codes
are sometimes duplication of the ones implemented in the black-box. Also, programmers may inspect the internals
of the black-box and modify them in order to meet applications’ demands. This makes programs unsafe and less
portable.

Apertos operating system[Yokote 92] provides systematic support of separation of concerns using the ob-
ject/metaobject separation technology. In Apertos, every computational resource is defined as concurrent object.
User applications, schedulers, network protocol handlers, device drivers, and other components organizing the
system are implemented as independent concurrent objects. Therefore, concurrent objects are given an ideal ab-
straction and interface (API) to write applications, which we call base-level interface. Also, the internals of the
black-box is exposed through another interface, which we call meta-level interface, and they are implemented by
concurrent objects (or metaobjects). In this sense, we call the black-box a metaspace. Since a metaspace has the
knowledge of characteristics and statistics of base-level objects’ behavior, run-time optimization can be done by
the metaspace. Also, a metaspace rejecting unsafe requests from base-level objects makes the system safe.

In case of device driver programming, programmers want to concentrate writing codes for device control.
The implementation details of message passing, mutual exclusion, and scheduling should be hidden from codes
written by programmers. In Apertos, device drivers are written using the base-level interface and implemented
as concurrent objects. Metaobjects and a metaspace are introduced to provide device driver objects with optimal
execution environment implementing the operations such as message passing, mutual exclusion, and scheduling.
In traditional operating systems where these operations are hard-coded into device drivers, only a small mistakes
causes disastrous conditions, i.e., system hang-up. Our approach can avoid such disastrous conditions, because
programs using the base-level interface have no chance to write the operations.

In Apertos, a metaspace is realized by an metaobject called a reflector. A reflector accepts the requests from
the objects residing on the metaspace implemented by the reflector, and it processes requests in cooperation with
other metaobjects. Since a reflector is also an object, there are a metaspace for a reflector. In this sense, giving
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an object causes metaspaces to construct their metahierarchy. An object can switch its metaspace, by invoking
base-level interface Migrate. Since every metaspace supports it, every object can change the behavior and its
representation, by moving from a metaspace to another.

Apertos implements four primitive operations. These are a primitive invoking a service provided by a metas-
pace (M), a primitive returning the result from the metaspace to an object (R), a primitive registering interrupt
message delivery (CBind), and a primitive removing the registration made by CBind (CUnbind). Apertos also
implements a very small micro-kernel called MetaCore, which is located per CPU basis. No memory allocation
or virtual memory management is done by MetaCore. These are done by the low-level objects outside of the
MetaCore, and they are replaceable. MetaCore is the only non-replaceable entity in the Apertos system.

4 The Design of the Metaspace for Device Drivers

We introduce the metaspace for device driver objects, which is called mDrive. The scheduling operations and
mechanism for guaranteeing objects’ atomicity are clearly separated from device driver objects. mDrive provides
the following interface to the device driver objects:

Inter-object communication: Synchronous message communication (RPC style, Call), asynchronous message
communication (one-way, Send), and replying a result to the message sender (Reply) are provided.

Scheduler operations via continuations: Creating continuation (NewContinuation) and deleting continua-
tion (DeleteContinuation) are available as described in Section 2. Also, a method is terminated with-
out returning a result to the message sender (Exit).

Memory management: Memory region is allocated (Grow) and freed (Shrink).

Switching metaspace: Metaspace is switched using Migrate as described in Section 3.

4.1 Realtime constraints ofmDrive

Device drivers are usually time critical/dependent. If method execution of a device driver cannot meet its realtime
constraints, disastrous conditions may occur. At the same time, it is difficult for guaranteeing realtime connstraints
to be statically analyzed, because an interrupt is completely a sporadic event. To guarantee to meet the realtime
constraints, the following restrictions should be applied to the design ofmDrive:

� All the above operations should be predictable.
Operations such as memory allocation and continuation creation should complete its execution in the exact
time period. Also, memory pages should be pin-downed to the physical memory space to avoid unnecessery
access delay caused by paging.

� Device driver objects onmDrive should not issue synchronous message send (i.e., Call) to the target object
which is not supported bymDrive.
We do not allow synchronous calls to the outside of mDrive. Otherwise, completion of device driver exe-
cution cannot be bounded, since a device driver object can potentially make a synchronous call to the target
object that is not aware of its execution time period. Thus, we have designedmDrive to disallow such calls.

4.2 Execution overhead

Our approach might have the severe execution overhead, because invoking independent device driver objects may
need full context-switch. In the current implementation, however, the overhead is very low, and it can be reduced
by introducing run-time optimization including context-switch avoidance when it is needed and safe to do so.

In Apertos, every aspect of an object such as protection, activity, and persistence can be defined by designing a
new metaspace. For example, a user application can be given its own address space, arbitrary number of execution
thread scheduled with a preemptive scheduler, and persistence transparency. Likewise, a low-level object of an
operating system can share its address space with other objects, provide the single execution thread scheduled by
a non-preemptive scheduler, and has no persistence.

We have designedmDrive so that the processor context-switch is the only operation needed to switch the ex-
ecution from a device driver object to another. Switching an address space is not necessary. Every processor
context-switch is done without trap instruction[Yokote 93] and its cost is low. Preliminary evaluation of our im-
plementation is presented in the next section.
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metaCore

mDrive
reflector mDrive

Without Interrupt Mask Inheritance

Atomicity Broken!

metaCore

mDrive
reflector mDrive

With Interrupt Mask Inheritance

Obj1 Obj2 Obj1 Obj2

IntA IntA

Figure 2: Interrupt mask inheritance between two objects.

4.3 Interrupt mask control

How interrupt masks be controlled to guarantee atomicity of a device driver object? In Figure 2, if device driver
object Obj1 receives interrupt IntA, IntA should be masked while one of the methods of Obj1 is executing. Also,
IntA should be masked while a method of object Obj2 is invoked by Obj1 via synchronous call (Call). If IntA
is not masked, two methods of Obj1 will be executed simulaneously when IntA occurs, and Obj1 will become
inconsistent state. Therefore, an interrupt mask for execution of Obj1 should make IntA masked. Also, Obj2
should inherit the interrupt mask from Obj1 while its method execution. Such interrupt mask control is managed
by mDrive, so the programmers can be ignorant of the interrupt mask control.

4.4 Dynamic creation and deletion of device drivers

Apertos provides transparent persistent object storage[Tenma et al. 92] and the transparent class system. These are
implemented by metaspaces, and switching metaspace means the change of an object’s representation and behavior.
Thus, switching the metaspace for a device driver object with another metaspace supporting persistence makes the
object freeze or activate into/from secondary storage. Otherwise, we can create a new device driver object by its
class system, i.e., by switching a metaspace creating a new object with metaspacemDrive.

5 Preliminary Evaluations

m

Drive has been implemented on i486-based PC-AT compatible machines. The basic cost of Apertos primitives is
summarized in Table 12. Table 2 shows the cost of the operations related to execution of device driver objects. The

Table 1: Execution cost of Apertos primitives. (in �sec)

primitive on i486
M 21.1
M(w/o trap) 13.0
R 22.6
R(w/o trap) 8.8
CBind 4.1
CUnbind 3.5

Current version of the mDrive does not utilize optimization techniques such as context-switch avoidance. Figure
3 shows the execution flow of the null interrupt handler.

2Evaluation results were obtained on Sony PCX-500V(Intel i486DX2, 66MHz, with 16MB physical memory)
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Table 2: Costs of mDrive services, and interrupt operations. (in �sec)

operation on i486
Call-Reply roundtrip on mDrive 207.8
Interrupt message delivery 25.0
Null interrupt handler execution 44.2
Send metacall overhead 108.6

executing method

interrupting method

MetaCore

hardware
interrupt

25usec

44usec
time

Figure 3: Execution flow of null interrupt handler.

The results of Table 2 enable us to estimate the cost incurred by an execution path of a typical interrupt handler
when an interrupt occurs. A typical interrupt handler has the following operations:

1. transfering data to/from a hardware device, and

2. sending data to other objects as a message, or re-activates a continuation.

The cost involved in the first operation is difficult to estimate because it depends on a hardware device. The cost
of the second operation takes 108.6�sec. (see Table 2). It includes the cost of invoking primitives M and R once
each. By adding the cost of null interrupt handler execution, we can estimate the minimal execution time needed to
execute a typical interrupt handler, which is 153�sec per interrupt. Figure 4 shows the execution flow of a typical
interrupt handler.

executing method

MetaCore

hardware
interrupt

25usec

mDrive

108usec

153usec(estimated)

Send metaoperation

Send metacall

primitive M
to issue
Send metacall

primitive R
to pass the
result of
metaoperation

metacall
finished

time

method of interrupt handler

finalize
interrupt
handler

data transfer
from device

Figure 4: Execution flow of the typical interrupt handler.

We have designedmDrive not to hook interruptive messages which are sent from MetaCore to the device driver
objects, to minimize the delay while invoking an interrupt handler. If we designed mDrive to hook interruptive
messages (it might be easier to manage the state of the objects, if we hooked it), two more invocations of Apertos
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primitives would be necessary while handling interruptive messages. In such an implementation, the null interrupt
handler execution path will be 75�sec (calculated from the results in Table 1 and 2).

The micro-benchmark evaluation of primitive operations shows that the time consumed by loading/saving reg-
isters dominates their cost. In the current implementation, the biggest potion of the time taken to execute mDrive
operations is consumed by a hierarchical naming server[Fujinami and Yokote 92]. These costs can be minimized,
by modifying register loading/saving methods and implementing a new naming server with realtime guarantee of
its execution.

6 Related Work

Sony’s NEWS-OS 4.0[Sony Corporation92] supports dynamic loading of device drivers using command devat-
tach. NEWS-OS 6.0[Sony Corporation94] (SVR4.2 variants) also supports the same functionality. LKM (Load-
able Kernel Module) implemented on SunOS[Sun Microsystems91] and NetBSD[NetBSD project94] enables ker-
nel modules to be dynamically loaded using command modload. In these systems, a module loaded into the
kernel is actually relocated and linked into the kernel memory space. Entry points to the module will be attached
by modifying kernel memory space directly. Programmers have to invoke function calls for scheduler and mu-
tual exclusion such as spl, sleep, and wakeup. Thus, programming style/discipline of the modules have to be
highly documented, otherwise such mechanisms are error prone. Also, each device driver is mutually dependent
through interrupt mask control and scheduler operations. If a newly loaded kernel module conflicts with others, it
causes a disastrous situation. To make matters worse, the mechanism for loading kernel module is too dangerous.

Chorus[Rozier et al. 88] and Mach[Tevanian and Rashid 87] introduce user-level device drivers. In case of
Chorus, [Armand 91] describes their device driver implementation as separate actors. Though a device driver actor
communicates with other components using ports and messages, UNIX-style mutual exclusion manipulation is still
needed to implement a device driver actor. Also, they did not mentioned problems on the time-bound guarantees
and memory management policies for a device driver actor. Mach[Forin et al. 91] divides a device driver into two
parts: hardware dependent and independent. It implements a device driver as an independent task. Mach device
driver implementation needs special kernel codes for dispatching a thread which handles the interrupt. Also, a
device driver task can potentially invoke any Mach kernel calls, therefore there is no fail-safeness. Both papers
persist in implementing “user-level” device drivers. We claim that the most important point is how their execution
can be guaranteed to be safe, with consideration of realtimeness, virtual memory management latency, etc.

Micro-computer operating systems used for embedded systems, such as OS-9 and MS-DOS, also have a mecha-
nism to dynamically load a device driver. Though they do not address the above issues, their execution mechanisms
are in ad-hoc basis, and they do not provide high abstractions such as distribution transparence to programmers.

7 Conclusion

In this paper, we have presented our new approach in device driver programming. We have clearly separated actual
device control codes from other management codes such as scheduler operations, mutual exclusion, and commu-
nication between device drivers. We have implemented a device driver as single-threaded concurrent objects, and
successfully reduced the frustrations of device driver writers. Preliminary evaluation has shown that our approach
can be implemented sufficiently cost-effective.

We are continuing our research and will demonstrate how much competitive our approach than others in the
final paper. Further, we have to address the following issues:

� More deep consideration to realtimeness, which includes message delivery time guarantee, elaborate realtime
scheduler suitable for the Apertos meta-architecture and realtime naming manager.

� Reduction of execution cost which introduces new optimization techniques.

� Comparison of the execution cost versus other implementation of the device drivers including BSD UNIX,
Mach, Chorus.

� Design of object protocols for hot-swap awareness. To implement hot-swap aware device drivers, we also
have to implement the interrupt handler for interrupts from a PCMCIA controller, like PCMCIA card services
and socket services implemented on MS-DOS[JEIDA and PCMCIA 93].
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