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Abstract

In order to produce diversity in virtual creatures to populate
virtual worlds, different techniques exist. Some of these use
blocks or sticks. In this morphological approach, blocks and
sticks can be considered as organs, which means body parts
able to perform different functions. Another approach, artifi-
cial embryogenesis, consists in developing organisms from a
single cell. In this paper, we propose a bridge between these
two approaches : a model that will create creatures with a
particular morphology and which is organized in organs. The
creature development will start from a single cell. In this pa-
per, we propose a unique model able to produce organisms
that perform a specific function and to produce organisms
with a user-defined morphology.

Introduction
Several models exist for creating artificial creatures. These
models use different levels of abstraction to produce crea-
tures of various shapes and sizes. Whereas the morphologi-
cal approach produces relatively large creatures as in (Sims,
1994; Lassabe et al., 2007), embryogenic models produce
creatures composed of hundreds of cells starting from a
unique cell (Chavoya and Duthen, 2007; Dellaert and Beer,
1994; Stewart et al., 2005).

This paper details our model of cellular development,
Cell2Organ (Cussat-Blanc et al., 2007). For the purpose of
creating complete creatures composed of different organs,
we propose a model able to produce organisms that per-
form specific functions. These organisms respect the bio-
logical definition of an organ. In other words, they are a
“specialized cell regrouping that performs specific function
or a group of functions”. Our model contains an environ-
ment with a simple artificial chemistry (Rasmussen et al.,
2003; Dittrich et al., 2001; Hutton, 2007; Ono and Ikegami,
1999) and cells that perform different actions. Cells are able
to self-replicating and to specialize themselves to optimize
specific actions instead of others. Moreover, we show that
Cell2Organ can also produce simple creature shapes. The
final aim of our project is to develop a complete creature
starting from a unique cell.

This paper is organized in four sections. Section 2
presents related works about artificial creatures develop-
ment, presenting artificial morphogenesis, cellular automata
and already existing works about artificial embryogene-
sis. Section 3 presents our model of cellular development,
Cell2Organ, starting with a description of the environment
functioning and the mechanisms used by our artificial cell
to interact with the environment. Section 4 presents differ-
ent experiments using this model. The possibilities of the
model are shown by the development of two types of organ-
isms : a primitive organ able to move substrate in the en-
vironment and two creatures with particular morphologies.
These experiments point to the possibility of simulating, in a
simplified way, different approaches to organism growth. In
the final section, we conclude by outlining different possible
development paths for this model.

Related works
Artificial morphogenesis
Several projects have tried to generate artificial creatures
well adapted to their environment. For example, in his fa-
mous works, Karl Sims (Sims, 1994) uses blocks with differ-
ent properties such as size, shape, contact sensor positions or
block layout. Komosinski also creates Framsticks creatures
(Komosinski and Ulatowski, 1999) using an equivalent ar-
chitecture: sticks replace blocks but creature functioning is
comparable to Karl Sims’ work: he uses a neural network to
coordinate creature movements. Nicolas Lassabe improved
Sims’ work by using a more complex environment (Lassabe
et al., 2007). Lassabe’s creatures are able to climb a stairway
or to practice skateboarding.

The aforementioned creatures use high-level components
to create their morphology and their behavioral controller.
A more biological-inspired approach was introduced by
Dawkins in (Dawkins, 1986). Using simple rules to draw
continuous segments, he developed a model able to create
small graphic creatures. The addition of behaviors in these
simple life forms allows the creation of a complex 2-D vir-
tual world (Ventrella, 1998) where small filiform creatures
co-evolve in an environment composed of energy sources.

Artificial Life XI 2008  134 

mailto:yves.dutheng@irit.fr


Figure 1: Scheme of the GRN action in cell duplication.

Each creature has a vital energy level and must survive in
the environment, looking for food produced by the death of
other creatures. This model produces a complete ecosystem
with its own food chain. Creatures are also able to repro-
duce among themselves to create new life forms. EvolGL
(Garcia Carbajal et al., 2004) is another 3D pond life project
where creatures have different classes, such as herbivorous,
carnivorous or omnivorous, which allows the emergence of
survival strategies.

Using lower level components, cellular automata use
neighborhood rules to evolve a cell matrix. The rules give
the t+1 state of each cell according to the cell neighbor’s t
state. Using this method, John H. Conway (Gardner, 1970)
creates interesting patterns such as gliders, pulsars, etc.

Artificial Embryogenesis
One of the first works on artificial embryogenesis was that of
Hugo de Garis (de Garis, 1999). Using a cellular automaton,
he developed 2D shapes. The cellular automata rules were
evolved with a genetic algorithm. The aim was to generate
desired shapes like letters.

Another important goal of artificial embryogenesis is cell
specialization. Different works on cell specialization al-
ready exist. In most cases, they use a Genetic Regulatory
Network (GRN), just as in nature.

In nature, the organism’s cells can have different func-
tions, all of which are specified in the organism’s genome
and regulated by a Gene Regulatory Network (GRN)
(Davidson, 2006). Cells get input signals from the environ-
ment thanks to receptor proteins. The GRN, described in the
organism’s genome, uses these signals to activate or inhibit
the transcription of different genes in the messenger RNA,
the future cell’s DNA protein template. The expression of
these genes will specify the cell’s functions. Figure 1 shows
(in a simplified way) the functioning of the GRN.

This nature inspired model was designed by Banzhaf in
(Banzhaf, 2003). In this work, each gene beginning is
marked by a starting pattern, named “promoter”. Before

the coding of the gene itself, enhancer and inhibitor sites al-
low the regulation of its behavior. In (Chavoya and Duthen,
2007), Chavoya and Duthen introduced another model in
which the gene regulation system is encoded at the begin-
ning of the genome. It consists of a series of inhibitor
sites, enhancer sites and regulatory proteins. The produc-
tion of each regulatory protein is conditioned by the in-
hibitor/enhancer sites. The concentration of this protein de-
termines the cell function’s activation or inhibition : if the
concentration level is over a certain threshold, the gene is
activated and so are the corresponding functions.

A different approach is the Random Boolean Network
(RBN) first presented by Kauffman (Kauffman, 1969) and
reused by Dellaert (Dellaert and Beer, 1994). A RBN is a
network where each node has a boolean state: activate or
inactivate. The nodes are interconnected by boolean func-
tions, represented by edges in the net. The state of a node
at time t + 1 depends on its particular boolean function ap-
plied to the values of its inputs at time t. The mapping to
the gene regulatory network is simple: each node of the net
corresponds to a gene and each boolean function represents
the activity regulation of the gene. The cell function will be
determined during the interpretation of the genome.

Eggenberger Hotz (Eggenberger Hotz, 2004) imagines a
concept able to produce a simple creature with a user defined
shape able to move in an environment just using a GRN.
Cells rhythmically emit molecules that modify the adhesion
properties between cells and between cells and the environ-
ment. He develops a simple simulator and produces a T-
shape that grows and move in the environment.

The aim of our work is to make a bridge between arti-
ficial morphogeny and artificial embryogenesis to produce
virtual creatures. We decide to use the hypothesis that blocks
and sticks can be considered as organs, that is to say body
parts of the creature able to carry one or more specific func-
tions. Using developmental techniques of creature growth,
we could create these organs starting from a single cell. In
this way, the cell must be able to specialize itself into a cell
more adapted to the environment. The cell organization in
tissues (that is in cell groups that have the same function)
and then the tissue organization will allow the creation of
organs. After creating a library of organs, we will just have
to assemble them to create a creature adapted to the environ-
ment with a morphological approach. This paper presents
the embryogenic approach of the problem, and especially
the creature shape development. The next section details the
model, starting with the environment and, then, showing the
cell mechanisms.

Cell2Organ : a cellular developmental model
The environment
To reduce the simulation computation time, we implement
the environment as a 2-D toric grid. This choice allows an
important decrease in the simulation’s complexity.
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The environment contains different substrates. They
spread in the grid, minimizing the variation of substrate
quantities between two neighbor crosses of the grid. This
spreading is enacted in two stages, as illustrated by Figure 2

• First, the substrate spreads to the 4 cardinal points.

• Then, if the substrate quantity is sufficient, the substrate
spreads to the diagonal crosses.

Figure 2: Example of spreading substrate in the environ-
ment.

Our model integrates a highly simplified model of arti-
ficial chemistry. Many works exist on artificial chemistry
(Dittrich et al., 2001; Rasmussen et al., 2003). In these
works, the artificial chemistry is highly developed and al-
lows a good simulation of cell mechanisms. For example
in (Ono and Ikegami, 1999), the cell division and the cell
membrane formation and maintaining are highly realistic.
However, the complexity of such a model is very great and
does not support a high number of cells. In our model, the
properties of artificial chemistry defined in (Dittrich et al.,
2001) have been simplified.

Our molecules, named substrates, have different prop-
erties like diffusion speed or color, and can interact with
other substrates. This interaction between substrates can be
viewed as a typical chemical reaction: using different sub-
strates, the transformation will create new substrates, emit-
ting or consuming energy. For example, the transformation
2A + B → C (+50) denotes that, using 2 units of sub-
strate A and 1 unit of B, a unit of C is created, emitting 50
units of energy. To reduce the complexity at the maximum,
the environment contains a list of available substrate trans-
formations. The substrate reactions can only be triggered
by cells. Then, in the previous example, from a biological
point of view, C can viewed as waste from a cell which has
the ability to convert A and B into energy.

To modify this environment, cells interact with the envi-
ronment. They have different abilities and must perform a
global action defined by the user. This action can be very di-
verse: harvest substrate, modify environment, create shapes
or simply survive as long as possible. The next section de-
scribes cell functioning.

The cells
Cells evolve in the environment, more precisely on the envi-
ronment diffusion grid. Each cell contains sensors and has

different abilities (or actions). An action selection system
allows the cell to select the best action to perform at any mo-
ment of the simulation. Finally, a representation of a GRN
is inside the cell to allow specialization during duplication.
Figure 3 is a global representation of our artificial cells.

Figure 3: Scheme of a cell in an artificial environment. It
contains substrates (hexagons) and corresponding sensors
(circles)

Sensors Each cell contains different density sensors posi-
tioned at each cell corner. Sensors allow the cell to measure
the amounts of substrates available in the cell’s Von Neu-
mann neighborhood. For each substrate in the environment,
a corresponding sensor exists. Only this corresponding sen-
sor can compute the density of the substrate. The list of
available sensors and their position in the cell is described in
the genetic code.

For example, in Figure 3, the cell has sensors for B and
D substrates in the left corner. The results of the measure of
the corresponding substrate densities are :

• 2 units for B substrate because of the presence of 2 units
of B substrates in the left cross of the cell,

• 1 unit for D substrate.

Actions To interact with the environment, cells can per-
form different actions:

• The substrate transformation allows the cell to trigger a
substrate reaction as previously described. To start, all
the needed substrates on the left part of the equation must
be present in the cell, that is, the needed substrates must
be in the same intersection as the cell. In result of the
reaction, the vital energy is increased or decreased (de-
pending of the reaction properties), the needed substrates
are destroyed and the new substrate is created.

• The cell can absorb or reject substrates in the environ-
ment. These actions allow the cell to move substrates

Artificial Life XI 2008  136 



from one place to another. These actions, particularly the
first , are important to trigger a substrate transformation.

• The duplication action allows the cell to create a new cell.
We give details about this action in the next section.

• Survive is an action that allows the cell to wait for a signal
from the environment to do something.

• Apoptosis allows the cell to autodestruct. This action can
be useful to free a place for a more specialized cell for
example.

The previous list is not final. Our model must be able to
allow us to add new actions easily. Like sensors, all actions
are not available for the cell: the genetic code will give the
available action list.

Cells contain an action selection system. This system is
inspired by classifier systems (Holland and Reitman, 1978).
It uses data given by sensors to select the best action to per-
form. The selection system can be viewed as a rule database,
where each rule is composed of three parts:

• The precondition describes when the action can be trig-
gered. It is composed of a list of sensor value intervals
that describe the best substrate densities in the neighbor-
hood to trigger the action.

• The action gives the action that must be performed if the
corresponding precondition is respected.

• The priority that allows the selection of only one action if
more than one can be performed. The higher the coeffi-
cient, the more probable is the selection of the rule.

Action selection rules can be, for example :

(SensorA = 1) and (3 < SensorC < 7) and

(SensorB = 0) → (ActionA) (23)
(SensorC = 3) → (ActionB) (17)

→ (ActionC) (13)

In this example, ActionA will be performed if and only if
SensorA value is equal to 1 unit, SensorB does not detect
the presence of its associate substrate and SensorC value
is more than 3 units and less than 7. ActionC does not
contain a precondition. It means that this action can always
be performed. The priority coefficients sort actions in the
order ActionA > ActionB > ActionC if different actions
are possible.

In the list of possible actions, the cell can duplicate itself.
We will now examine this action in detail.

Duplication The duplication is an action that can be per-
formed by the cell if the next conditions are respected:

• The cell must have at least one free neighbor cross to cre-
ate the new cell.

• The cell must have enough vital energy to perform the
duplication. The vital energy level need is defined during
the specification of the environment.

• A list of conditions can be added during the modelization
of the environment. For example, some substrates can be
needed to create a new cell.

The new cell created after duplication is completely in-
dependent and interacts with the environment. During du-
plication, the cell can be specialized to optimize a group of
actions instead of others actions. In nature, this specializa-
tion is carried out by the GRN. In our model, we imagine
a mechanism that plays the part of a GRN. Each action has
an efficiency coefficient that corresponds to the action op-
timization level : the higher the coefficient, the lower the
cost of vital energy. Moreover, if the coefficient is null, the
action is not yet available for the cell. Finally, the sum of ef-
ficiency coefficients must remain constant during the simu-
lation. In other words, if an action is optimized increasing its
efficiency coefficient during duplication, another efficiency
coefficient (or a group of them) has to be decreased.

The cell is specialized by varying the efficiency coeffi-
cients during duplication. A network built as follow gives
the rules of these variations:

• the network’s nodes represent cell actions with their effi-
ciency coefficients,

• the network’s edges are weighted. The edge’s weight (a
real number in the interval [0,1]) represents the efficiency
coefficient quantity that will be transferred during the du-
plication.

Figure 4 is an example of our GRN. (A, 35%), (B, 25%),
(C, 17%), (D, 23%) are cell actions with their associated ef-
ficiency coefficient. The edge between 2 actions represents
the amount of efficiency coefficient that will be transferred
during duplication. For example, the weighted edge between
A and B means that after one duplication, 30 percents of the
A action efficiency coefficient will be transferred to the B
action. After four duplications, we can see that the actions
B and C respectively have been optimized to the detriment
of the actions A and D. According to this simple example,
we can say that the cell function of the organism has been
specialized during the duplication process.

We have implemented this model in Java using a multi-
threaded architecture: cells are coded as independent
threads. Cells can communicate using the environment and
substrate exchanges. We made such a choice because of
the development of massive parallel computer architectures
such as multi-processor machines, increasingly connected in
computation grid. This parellelization allows an increase in
the number of tasks executed at the same time.

Our model must be able to generate two types of artificial
creatures: organs and user defined shapes. The next exper-
iments show that it is possible to accomplish this. The first
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Figure 4: Modelization of an example of the Gene Regula-
tory Network. A, B, C and D are 4 actions with their effi-
ciency coefficient. The transfer coefficients are given by the
arrows.

experiment consists in developing a system able to move
substrates in the environment whereas the second one cre-
ates simple shapes like starfish or jellyfish.

To find the creature the most adapted to a specific prob-
lem, we use a genetic algorithm. Each creature is coded with
a genome composed of three different chromosomes:

• The list of available actions, a subset of the environment
possible actions. This list allows the cell to activate or
inhibit some actions.

• The action selection system that contains a list of rule to
apply actions.

• The gene regulation network that allows cell specification
during duplication.

The creature is tested in its environment that returns the
score at the end of the simulation. To increase the genetic
algorithm power, we use a computational grid parallelized
genetic algorithm. This parallelization allows the computa-
tion of hundreds of creatures at the same time.

Experiments
Developing a transfer system
The first experimentation consists in developing a simple or-
gan : a transfer system. In other words, the cell structure

must be able to transport substrate from one point to an-
other. To do that, we imagine an environment composed of
2 substrates:

• The red is the substrate that must be moved by the organ-
ism. This substrate has the specificity not to spread in the
environment, in order not to impact on the organism work.

• A gray that will be used by the cell as fuel and duplication
material.

The cell can perform the following actions:

• duplicate (needs one gray substrate and vital energy),

• absorb or reject substrate (consume vital energy),

• transform one gray substrate in vital energy.

We place 10 red substrate units into a specific cross of
the grid (at the top left of the environment) and diffuse gray
substrate all over the environment. The creature’s score is
given by the squared sum of the red substrate distance to
the goal point (at the bottom right of the environment). The
parameters of the genetic algorithm are:

• selection: 7 tournament competition with elitism,

• mutation rate: 5%; crossover rate: 65%,

• substitution: worst individuals,

• population size: 500 individuals,

Figure 6 shows the convergence curve of the genetic algo-
rithm. It shows the variation of the minimum, the average
and the maximum fitness of the population for each gener-
ation. The genetic algorithm’s aim is to maximize fitness,
which is the creature score. A relevant organism appears
quickly. After 3 generations, the organism is able to move
the red substrates but not in the right direction. After 10
generations, it is able to move closer to the goal point. The
genetic algorithm converges after 22 generations (the aver-
age fitness is close to the best).

Figure 5 shows the development of the best organism1.
We can see that only the cells on the way from the initial
point to the end point are created. Moreover, the organism
uses absorption and rejection actions to transfer the substrate
gradually. Cells that overtake the final point die quickly so
as not to interact in the transfer. During the convergence of
the genetic algorithm, it is interesting to observe the evolu-
tion of the organism strategy towards the best solution. The
first step is to learn to survive in the environment, absorbing
gray substrate and transforming it in vital energy. The next
step is to learn to duplicate in the right direction. Intermedi-
ate solution organisms are able to transport the red substrate

1Videos of all presented creatures in this paper are available on
the website http://www.irit.fr/∼Sylvain.Cussat-Blanc
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Figure 5: Our artificial transfer system. (a) Beginning of the simulation. (b) The creature develops itself to create the structure
and begin the substrate transfert. (c) The creature transfers the substrate from the initial state (circle on top left) to the final state
(circle on bottom right).

Figure 6: Smooth curve of the minimum, average and max-
imum organism fitness. The genetic algorithm must mini-
mize the sum of the squared distance from the red substrate
to the goal point.

from the initial point near to the goal. The organism also
develops itself throughout the environment, scattering some
units of the substrate in the environment. As shown in Fig-
ure 5, this organism deploys itself only on the best trajectory,
decreasing the substrate scattering probability.

Creating simple shapes
In this experiment, we want to generate simple creatures
with a user-designed morphology. The goal of such an ex-
periment is to simulate the growth of more complex crea-
tures, like those of Sims (Sims, 1994).

5 different substrates are needed to generate these shapes:

• Water gives energy to cells by transformation (Water →
(+30)). This substrate diffuses in the environment.

• Four different morphogen substrates, here named NW,
NE, SW and SE, show four division directions to cells.

These substrates do not diffuse in the environment so as
not to interact with the simulation. The designer of the
creature positions them in the environment.

4 different actions are associated to these substrates:

• duplication consumes energy and one unit of Water,

• water transformation allows the cell to trigger a transfor-
mation of one substrate of Water into vital energy,

• water absorption allows the cell to pick up water from the
environment,

• apoptosis allows the cell to autodestruct if it wishes (for
example if the cell is not in the desired shape).

To obtain the required creature morphology, the genetic
algorithm fitness is calculated after a chosen simulation time
and is given by the next simple formula :

• if the cell is inside the desired shape, the fitness value is
increased by 2 units,

• if the cell is outside the desired shape, the fitness value is
decreased by 1 unit.

The first simple morphology we try to develop using this
environment is a starfish1. To do that, we place morphogens
in the environment to lead the cell divisions. Figure 7 gives
the result of the genetic algorithm. We can observe that the
desired shape is obtained. It is interesting to study the action
selection system rules produced by the genetic algorithm:

(SensorNE = 1) → (DuplicateNE) (6)
(SensorNW = 1) → (DuplicateNW ) (5)
(SensorSE = 1) → (DuplicateSE) (4)
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Figure 7: The starfish growth. (a) Beginning of the simulation. (b) The starfish develops itself following the morphogens. (c)
The starfish stops its growth when the desired shape is obtained.

Figure 8: The jellyfish growth. (a) Beginning of the simulation. (b) The jellyfish develops itself following the morphogens. (c)
The jellyfish stops its growth when the desired shape is obtained.

(SensorSW = 1) → (DuplicateSW ) (3)
→ (TransformWater) (2)

(SensorWater = 1) → (AborbWater) (1)
→ (DoNothing) (0)

This selection system shows that the genetic algorithm
correctly uses the information given by the environment to
follow the growth scheme given by the user. Moreover, du-
plications are always prior in relation to other actions to ac-
cumulate vital energy without using it. The last remark we
can make about these rules is that the organism never uses
apoptosis during growth. The organism assumes that mor-
phogens give the correct growth direction.

Observing these rules, we notice that it could be possible
to produce all desired creatures with the same genome. In-
deed, the rules discovered by the organism allow it to follow
any morphogen configuration. To verify the hypothesis, we

decided to develop another simple creature: a jellyfish. To
do that, we keep exactly the same environment architecture,
with the same substrates and the same possible actions, and
we only change the morphogen distribution in the environ-
ment. Using the starfish genome, we launch the simulation
and we obtain the creature1 shown by Figure 8.

Conclusion and future works
We propose a model of cellular development. This model
is based on a marked simplification of natural development.
We ignore the physics rules and the atomic and molecular
interactions to focus on the cell abilities. Using a genetic
algorithm and specific environment, we create an organism
able to develop different organs with different functions. As
we have shown during experiments, this model can produce
various creatures with very different morphology or differ-
ent functions.

The continuation of this work presents a wide field of de-
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velopment. Developing new organs can be interested. For
example, the next one could be an organ able to harvest dif-
ferent substrates and transform them into vital energy and
dispose wastes at a specific position. Using different types of
such an organ, the wastes of one used as energetic substrate
by another, we will produce a complete creature composed
of different organs. The different organs will be connected
using the presented transfer system.

Another improvement may concern shape generation. For
the moment, we use four different morphogens to obtain
the creature morphology. We think that with only one mor-
phogen and only giving the development main line, we could
obtain the same creature and have an organ that develops it-
self correctly to produce this morphogenetic substrate. For
example, in the case of the starfish, we could have a trans-
fer system that moves the morphogenetic substrate from the
center of the environment to the five branches of the starfish.
In a second stage, the starfish will grow using the morphogen
distribution.

A remark we can make when we watch the starfish growth
is that all the branches do not grow at the same speed. The
same fact can be noticed in jellyfish growth, where the bell-
shape grows too fast in comparison with tentacle develop-
ment. An idea to control shape development is to calculate
fitness at different moments of the simulation. The best crea-
ture will then be the one that produces the best shape at each
checkpoint.

After few experimentations, the model also seems to be
able of self-repairing (Miller, 2004). Killing some cells of
the starfish in different parts (center, middle of an arm or a
complete arm), the starfish create new cells in these wholes.
This self-repairing property must be confirmed by more ex-
periments but are encouraging.

A final development path is the abstraction of this model.
Starting from a unique cell, we grow shapes like the starfish
or the jellyfish presented in the paper and, after a cell re-
groupement to different limbs, we want to put the creature
in a physical simulator to make it move. The creature move-
ments could be generated, for example, by a neural network,
just like in Sims’ works (Sims, 1994). We hope that this
abstraction will allow us to have a complete creature devel-
opment, from single cell to a creature able to move in its
environment.
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