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Abstract

Living organisms perform a broad range of different be-
haviours during their lifetime. It is important that these be
coordinated such as to perform the appropriate one at the right
time. This paper extends previous work on evolving dynami-
cal recurrent neural networks by synthesizing a single circuit
that performs two qualitatively different behaviours: orien-
tation to sensory stimuli and legged locomotion. We demon-
strate that small fully interconnected networks can solve these
two tasks without providing a priori structural modules, ex-
plicit neural learning mechanisms, or an external signal for
when to switch between them. Dynamical systems analy-
sis of the best-adapted circuit explains the agent’s ability to
switch between the two behaviours from the interactions of
the circuit’s neural dynamics, its body and environment.

Introduction
All organisms are equipped with a repertoire of distinct be-
haviours that allow for their survival and reproduction. The
nematode worm Caenorhabditis elegans, for example, with
‘only’ 302 neurons shows a remarkable ability to perform
a broad range of different behaviours (Hart, 2006; Rankin,
2004). Although our understanding of the neural basis for
most of them is still at an early stage (de Bono and Mar-
icq, 2005), it is known that overlap exists between some of
the neural circuits responsible for these behaviours (Hobert,
2003). Also, it is well known that the morphology of living
organisms is in constant change, both throughout evolution
and during the lifetime of the organism. This work investi-
gates how a single neural network that is not structurally di-
vided into separate circuits can produce different behaviours
in different bodies.

When modelling adaptive behaviours, assumptions have
to be made with regard to the structure of the organism stud-
ied in order to simplify the modelling process or the anal-
ysis of the model’s behaviour. One such assumption that
has been made in the past is that functional modularity, the
existence of several qualitatively different behaviours in the
same organism or agent, should be mirrored by structural
modularity in its neural controller. Complex systems are
thus often divided into small parts that are synthesized in

isolation. Such a divide-and-conquer approach can be very
useful for engineering robots that need to perform multiple
complex tasks, not least because it simplifies the understand-
ing of how the robot works. But it is less useful in the context
of developing the tools and language to understand biologi-
cal organisms, as these may not necessarily have evolved to
be easily decomposable.

First, we investigate whether a single neurocontroller can
exhibit qualitatively different behaviours without imposing
constraints on its structure. We use artificial evolution to
synthesize a recurrent neural network that when coupled to
two different simulated bodies, namely a one legged insect
and a two-wheeled robot with a chemical sensor, has to per-
form legged locomotion in the former and chemotaxis in the
latter case1. A successful agent has to detect which body it
inhabits and generate the appropriate behaviour. It must do
this in the absence of an external signal and without any on-
line changes in the parameters of the controller. We aim to
find the smallest network that can solve the task. Although
the structure of the network is under evolution, we do not
investigate whether the evolved networks exhibit a degree of
structural or ‘functional’2 modularity.

Second, using the mathematical tools of dynamical sys-
tems theory, we explain how the circuit in interaction with its
body and environment can generate distinct behaviours. We
characterize the autonomous dynamics of the best-evolved
circuit and how its dynamics vary with inputs. We then
study how the observed behavioural patterns are generated
through the closed-loop interaction of the neural dynam-
ics with the body and environment, for the two different
tasks. Finally, we show how the evolved agent makes use of
context-dependent feedback to shape the different transients
using the same dynamical landscape. This leads us to sug-
gest a dynamical systems perspective on adaptive behaviour
that goes beyond attractors.

1Both tasks have been studied in some depth in the Evolutionary
Robotics literature. See Methods and Related work sections.

2Watson and Pollack (2005) argue that structural descriptions
of the network are not sufficient to determine dependence or inde-
pendence in the dynamics of different subsets of the network.
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Methods
Walking task
The walking task employed follows very closely the simple
one-legged body described and analysed in (Beer and Gal-
lagher, 1992; Beer et al., 1999). Three variants of this model
have been studied in (Beer, 1995), differing in whether sen-
sory feedback is available constantly, only occasionally, or
absent. Of the corresponding controllers, namely reflex-
ive pattern generators (RPGs), central pattern generators
(CPGs), and mixed pattern generators (MPGs), we focus
on the first type only. The leg is controlled by three ef-
fectors: one specifies whether the foot has contact with the
ground while the other two control clockwise and counter-
clockwise torques for the leg’s hinge-joint with the body
(Figure 1A). The opposing torques model antagonistic mus-
cles, commonly found in animal limbs. Sensory feedback is
provided continuously by the leg’s joint angle. At the begin-
ning of each walking trial, the state of the leg (i.e. its angle
with respect to the body) is initialised at random. The agent
is then given 220 units of time to walk. The total distance
covered during the trial measures performance.

Chemotaxis task
For the chemotaxis task we also follow a methodology sim-
ilar to that employed in (Beer and Gallagher, 1992). A food
patch, placed at arbitrary locations and orientations with re-
spect to the agent, emits a chemical signal (s), whose inten-
sity falls off as a function of the distance from the center of
the patch (d): s = eλd, where λ is a constant, −0.0138. The
agent can moves freely in an environment without walls and
must find and remain in the vicinity of the food patch.

The agent has a circular body and possesses a sensor that
can detect the intensity of the chemical signal at its location
(Figure 1B). Additionally, it is equipped with two effectors
located on opposite sides of its body. These effectors3 can
apply forces that move the body forward and rotate it. In
the simplified physics of this environment, the velocity of
movement is proportional to the force applied.

During a chemotaxis trial, a food patch is placed in a ran-
dom direction from the agent, anywhere between 10 and 15
units of space apart. This is repeated after 100 units of time.
Three food patches are shown in total. Performance is given
by: fc = (di − d̄)/di, where di and d̄ are the initial and
average Euclidean distance between the agent and the food
patch, respectively.

Neural model
We use continuous-time recurrent neural networks as a
model of the agent’s internal dynamics. Each component

3Although the mechanics of the body correspond closer to a
khepera-like robot, similar physics have been used in idealised
models of the nematode worm’s movement in (Ferree and Lock-
ery, 1999). Instead of ‘wheels’, the effectors located on opposite
sides model the ventral and dorsal neck muscles of the worm.
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Figure 1: Task set-up. The same neural network circuit is
used to control two different bodies: a one-legged insect-like
walking agent (A) and a khepera-like chemotaxis agent (B).
The circuits are fully inter-connected. The effector neurons
control the antagonistic muscles and the foot for walking
and the two effectors on the opposite sides of the body for
chemotaxis. All of the neurons receive sensory perturba-
tions: from the leg angle during walking, and from the prox-
imity to the food during chemotaxis.

in the network is governed by the following state equation:

τiẏi = −yi +
N∑

j=i

wjiσ (yj + θj) + swiS(t) (1)

where y is the activation of each node; τ is its time constant;
wji is the strength of the connection from the jth to the ith

node; θ is a bias term; σ(x) = 1/(1 + e−x) is the standard
logistic activation function; and N represents the number of
nodes in the network. All nodes have access to the sensory
perturbations via a set of connection weights: swi. The sen-
sory input is normalised to run between 0 and 1 for both
tasks. This prevents a solution that switches behaviour re-
actively as a response to different sensory input ranges. The
network is fully connected (including self-connections) and
no symmetry is imposed on its weight matrix. In simula-
tion, node activations are calculated forward through time
by straightforward time-slicing using Euler integration with
a time-step of 0.1.

Evolutionary algorithm
The parameters of each circuit (i.e. biases, time-constants,
inter-neuron and sensor-neuron weights for each node) are
evolved using a version of the microbial genetic algo-
rithm (Harvey, 2001). There are N2 + 3N parameters in
total. These are encoded in a genotype as a vector of real
numbers over the range [0, 1]. Offspring of microbial tour-
naments are generated as a mutation of the winner of the
tournament (i.e. no recombination). The mutation is imple-
mented as a random displacement on every gene drawn uni-
formly from a Gaussian distribution with mean 0 and vari-
ance 0.01. Each gene is forced to be in [0, 1]: when a mu-
tation takes a gene out of this range it is reflected back. The
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offspring replace the loser of the tournament. Genes are lin-
early mapped to network parameters in the range [-10, 10]
for biases, inter-node and sensory weights and to the range
[1, 20] for time constants. The size of the population used
is 50 and we define a generation as the time it takes to gen-
erate the same number of new individuals. A minimal 1D
wrap-around geography with demes of size 10 is used, such
that only nearby individuals can compete in tournaments.
Finally, because the fitness is noisy, agents are re-evaluated
every time they participate in a tournament.

A successful circuit must maximize: (a) the distance
walked when embodied in the insect-like body and (b) the
time spent around the chemical-emitting food patch when in
the khepera-like body. A fitness evaluation consists of 2 tri-
als of the walking task and 15 trials of the chemotaxis task.
At the start of each trial the state of the neural controller and
the body is randomised. The performance on each task is
averaged over all trials and normalised in the range [0, 1].
The fitness of an individual is calculated by multiplying the
performance on both tasks.

Results

Evolutionary performance

Evolutionary searches with 3-, 4-, and 5-node circuits were
performed. We examined the ability of populations to evolve
for both tasks, and conducted control experiments in which
either task was evolved on its own. For each condition, 20
evolutionary experiments with different initial random seeds
were carried out.

First we compare networks of different size. Figure 2
shows the performance of the set of best circuits grouped
according to size on the walking (2A) and chemotaxis task
(2B). For each, two whisker plots show the performance of
circuits on the task at hand. The grey whisker boxes cor-
respond to populations evolved for only that task. White
whisker boxes correspond to populations evolved on both
tasks. Circuits of the same size perform better at generating
the appropriate behaviour when evolved for only one task
than those required to do both. This is true in all condi-
tions and is expected. Also, the difference in performance is
smaller for walking than for chemotaxis, which suggests it
is the ‘easier’ task of the two. This is also as expected.

Nevertheless, sufficiently successful circuits that per-
formed both tasks did evolve. However, is there a trade-off
between walking performance and chemotaxis in the suc-
cessful circuits? In other words, are some individuals good
at walking but poor at chemotaxis and vice versa? In Fig-
ure 2C we show chemotaxis versus walking fitness for each
of the best individuals from all evolutionary runs on the two
tasks. No obvious tradeoffs are noticeable. Instead, most
of the successful individuals at one task are also relatively
successful at the other task.
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Figure 2: Evolutionary performance. Whisker plots (25% to
75% quantiles and outliers as points) comparing the fitness
achieved by 3-, 4- and 5-node networks after having evolved
for only one task (grey) and both tasks (white) in the case
of walking [A] and chemotaxis [B]. [C] Chemotaxis versus
walking fitness on the best 3- (diamonds), 4- (stars), and 5-
node (squares) circuits evolved for both tasks.

Performance and behaviours
The best evolved agent achieved a walking fitness of 93.59%
and a chemotaxis fitness of 91.18%. This individual cor-
responds to the red square from Figure 2C. In Figure 3
we show an example trial with this circuit performing both
tasks. It is relevant to note that all neurons are active during
both tasks.

Walking The optimal walking pattern for this one-legged
model has been studied in (Beer et al., 1999). As can be
seen from Figure 3B, the evolved pattern is almost per-
fectly aligned with the optimal pattern, at least geometri-
cally. The different sections in this pattern correspond to
particular stages of the walking cycle (labelled in grey): (1)
foot up and swing, (2) foot down, (3) stance power, and
(4) stance coast. This agrees with results in (Beer et al.,
1999). Yet, we know the performance is only 93.59% of
the optimal asymptotic velocity that the walking agent can
achieve (0.627). The difference is in the timing. The best
evolved circuit has 2 units of time delay between the mo-
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Figure 3: Example trial for best evolved circuit. [A] Sensory
and neural pattern during walking and chemotaxis. Tran-
sition denoted by horizontal dashed line. [B] Walking be-
haviour in black. Angle (θ) versus angular velocity (θ̇). Op-
timal walking in thick grey. [C] Chemotaxis behaviour over
six presentations of food.

ment it sets its foot down (phase 2) and the moment it starts
to move the leg backwards (phase 3). This unnecessary foot
‘rest’ causes the degradation in performance, nevertheless
maintaining the optimal geometry of the walking pattern.
Thus, the best-evolved circuit completes the full cycle at a
slightly slower rate than the optimal. If we turn the sensory
feedback off, the circuit cannot walk. This is expected from
the RPG.

Chemotaxis Even though it has often been used as an ex-
ample in the artificial life literature, chemotaxis has not been
studied in as much depth as the one-legged insect walker.
Our agent has only one non-directional sensor. Hence the
only way to detect the chemical gradient is by moving about.
Organisms that are too small to sense the gradient along the
length of their own bodies are in a similar situation. The
only strategy available is to use subsequent sensory signals
to estimate the chemical gradient in time rather than space.

We can identify four relatively different phases in the
best-evolved agent during a chemotactic run: (1) circling
search, (2) decreased turning in direction towards the gradi-
ent, (3) straight run, (4) circling around food patch. How-
ever, this is only a simplified observer-perspective heuristic

and the phases are not always clear-cut. The full story is
provided only by a geometrical account.

For the initial problem of finding the gradient the agent
employs a heuristic that involves circling on the spot while
the distance from the food is either constant or decreasing,
and moving straight otherwise (i.e. while it is increasing).
To confirm this hypothesis, we performed a series of experi-
ments in which we allowed the agent to move while control-
ling the sensory information arbitrarily. We considered the
initial transient behaviour under two conditions: when the
sensor value is fixed or decreasing, and when it is increas-
ing at a constant rate. During the former, the agent circles
around a small region of about 2 units of space. During the
latter, the agent reduces the turning behaviour as a function
of the rate of increase of the sensor activity.

Interestingly, the chemotaxis behaviour of the best-
evolved circuit employs a strategy similar to that observed in
very simple organisms. In E. coli, for example, chemotaxis
is achieved by modifying the frequency of ‘tumbling’ (Mac-
nab and Koshland, 1972). In C. elegans, the turning be-
haviour is referred to as a ‘pirouette’ but the heuristic is sim-
ilar (Pierce-Shimomura et al., 1999).

Switching behaviours We know the agent can perform
well doing each task independently. In order to test whether
it can also switch between them during its lifetime we
change the circuit’s body without resetting the state of the
neurons and evaluate the circuit’s performance. Although
populations were not evolved to cope with this transition,
most of the successful circuits managed to switch between
tasks in both directions, including the best one analysed
here. The example shown in Figure 3A is for a successful
transition in one of the directions: from walking to chemo-
taxis. We will answer why this is possible in the last section
of the results.

Dynamics of the decoupled circuit
As a first step towards understanding the evolved be-
haviours, we consider the dynamics of the circuit when de-
coupled from the environment. We do this by examining
the asymptotic behaviour of the circuit after replacing the
time-varying sensory input with a fixed parameter, thereby
reducing it to an autonomous system.

Bifurcation diagram In Figure 4 we show the asymptotic
behaviour of the circuit as a function of the possible sen-
sory perturbations that it can receive. Solid black trajecto-
ries represent attractors, dashed black trajectories represent
saddle-nodes and grey dots correspond to limit cycles. Three
bifurcations can be observed and are shown in the figure as
colored disks. From left to right, the first bifurcation is a
saddle-node bifurcation (red disk), from which a fixed point
(a2) and the saddle node (sn) arise. Fixed point a1 is a sta-
ble spiral point for s < 0.38. This spiral is weakened and a
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stable limit cycle (lc) arises near the origin in what is likely
to be a Hopf bifurcation (green disk). The size of the cycle
first increases slowly and then comes crashing inwards until
it reverts to a stable spiral point for s > 0.77.
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Figure 4: Bifurcation diagram and example phase portraits.
[A and B] Two-dimensional slices of the 6D bifurcation
space (5 neurons + sensor). [C] Two-dimensional slices of
phase-portraits P1 through P4 for the two effector neurons,
y1 and y2. See main text for an explanation of the labels.

Phase portraits The bifurcations divide the space of qual-
itatively different dynamics available to this circuit in four.
The dashed vertical lines in Figures 4A and 4B represent
the slices of parameter space that are studied in Figure 4C,
which shows two-dimensional slices of phase-portraits P1
through P4. The portraits are shown only for neurons 4 and
5, which control forward and backward movement in both
insect and khepera bodies. P1 corresponds to the family of
phase portraits available when s < 0.28 before the first bi-
furcation occurs. As there is only attractor (a1) in the system
all trajectories are drawn to it. The paths taken to get to it
are not direct, but follow a spiral in its vicinity. Prior to this,
however, a subset of the trajectories follow a much longer
transient involving a loop near the region labelled t.

P2 corresponds to the family of phase portraits available
between the first and second bifurcations (0.28 < s < 0.38).
It comprises two stable fixed points a1 and a2, and a saddle-
node (not shown). Trajectories starting in the top-left corner
approach the newly created stable point, a2, whose basin
of attraction (not shown) is smaller than a1’s. Hence, most
trajectories approach a1. The transient towards it is, again,
not direct. In fact, as we will see, this is always the case for
this attractor. What varies is the spatial extent of the spiral
loop. When looking through the perspective of neurons 4
and 5, any trajectory bound for a1 will first navigate towards
t. In P3 the spiral attractor becomes a stable cycle. The
transient remains similar.

In P4 the cycle disappears and gives way to a stable fixed
point. Also, a2’s basin of attraction becomes larger, with
certain initial configurations ending up in a2 that previously
ended in a1. Also, the effect of the saddle-node (sn) be-
comes more obvious in this portrait. The transient loop (t)
still exists, but it is relatively closer to a1.

Finally, approximations of the turning point of the tran-
sient loop are incorporated into our bifurcation diagram as
disks labelled t in Figures 4A and 4B. As these are not real
limit sets of the system, they do not show up in our bifurca-
tion analysis. They will play, however, a fundamental role
in the agent’s autonomous behaviour. If the phase-portrait
of the system is changing sufficiently fast (due to rapidly
varying input), and if the neural state falls in the basin of at-
traction of a1, then we can predict that it will most likely be
seen around t and never actually reach a1.

Brain-body-environment coupled dynamics
Let us now consider the behaviour of the agent when cou-
pled to the environment and how it relates to the underlying
dynamical landscape described in the previous section. Fig-
ure 5 depicts the trajectories of the controller when driven
by the agent’s sensor, which is itself influenced by the cir-
cuit’s effectors and the corresponding changes to how the
agent perceives the environment. Red lines correspond to
the walking task, blue lines to chemotaxis. The trajecto-
ries are imposed over a simplified version of the circuit’s
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Figure 5: Brain-body-environment coupled dynamics for the
two different tasks: walking (red) and chemotaxis (blue).
Trajectories are imposed over the bifurcation diagram of the
non-autonomous nervous system (grey). Two slices of the
6-dimensional space are shown. The same two slices shown
for Figure 4A and 4B, respectively.

autonomous dynamics from Figures 4A and 4B, using the
same projections. While the dynamics of the two tasks are
significantly different, they share the same underlying dy-
namical landscape.

During the walking task, the dynamics of the circuit
are constantly switching between approaching attractor a1
when swinging the leg forward, and approaching attractor
a2 during the stance power and coast. However, while the
system gets close enough to a2, it ends up relatively far from
a1. In fact, the cycle that arises from the coupled system is
observed to switch between a2 and t (the longer transient
towards a1). This agrees with our prediction from the cir-
cuit’s autonomous dynamics, which suggested that it is be-
ing driven at a relatively fast rate. We test this hypothesis in
the next section. We also note that the cycles in y2 and y1

follow opposite directions, clockwise and counterclockwise,
respectively. This reflects the antagonistic muscle coopera-
tion necessary to produce the swinging of the leg.

The trajectory during chemotaxis is more subtle and is
produced solely within the basin of attraction of a1. The
circling search behaviour is produced by the longer tran-
sient towards t, in combination with the spiral shape in the
vicinity of a1. However, the state of the neural controller
doesn’t really reach a1 until the agent gets close to the food

patch, at which point the sensor gets maximally activated.
As soon as the gradient towards the food is found, the sen-
sory value increases and the phase-portrait shifts, leaving the
state of the effector neurons in a region of space where the
power of the opposing effectors are balanced, which corre-
sponds to moving straight. Interestingly, the spiral attractor
and indeed the limit cycle around a1 ensure that if the gra-
dient ceases to increase, the agent will circle on the spot
until it increases again. This agrees with our observation
of the agent’s chemotactic heuristic. Finally, once the agent
reaches the top of the gradient, the dynamics come cycling
in towards a1, which ultimately leaves the agent turning on
the spot near the food patch.

Behaviour coordination: driven circuit
How does the neural controller perform the appropriate be-
haviour at the appropriate time? What our analysis shows is
that it is not the neural controller itself that coordinates the
change of behaviours. Instead, different patterns of feedback
are created when the neural system is coupled to a different
body, and it is these patterns that ultimately produce the dis-
tinct transient behaviours. It is worth emphasizing that brain,
body and environment form a closed loop such that no sin-
gle part is the sole cause for the difference in the dynamical
patterns. The shape of the feedback is as much the result of
neural output and body dynamics as the neural activity itself
is the result of environmental feedback.

Is a particular feature of the feedback signal associated
with the change of behaviours? From the previous section,
we observed that the walking task is generated by the sys-
tem’s movement between two basins of attraction, in such a
way that it never actually settled on any one of them. This
suggests that fast switching between the two basins gener-
ates walking. During chemotaxis, on the other hand, the
dynamics stay within the basin of a1 and movement is suf-
ficiently slow to allow for it to draw close to the attractor,
settling only when sufficiently close to the food patch.

In summary, the essential feature of the feedback is its
time-scale. While the sensory feedback from the insect-
like body is relatively fast, the sensory feedback from the
khepera-like body is much slower. We test this hypothesis
by driving the neural system with fast and slow sine waves,
and compare the observed dynamics in internal space (Fig-
ure 6A) to the dynamics during walking and chemotaxis
(Figures 6B and 6C). We find that, depending on the fre-
quency, it will either: (i) jump from one attractor to the
other, which is relevant to the walking behaviour, or (ii) stay
on the central attractor, which is relevant to chemotaxis. Fi-
nally, this provides an explanation for why the evolved agent
can switch between behaviours during its lifetime. The be-
haviours don’t depend on where in neural space the state of
the system is, but on the rate at which it is being driven by
the feedback from its interactions with the environment, as
a product of the mechanics of its body.
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Figure 6: System driven by sinusoidal waves of different
frequencies. [A] Trajectories of the neural state of the sys-
tem are imposed over the circuit’s bifurcation diagram (grey,
limit cycles not shown). When the system is driven slowly
(f = 0.272, thin black trajectory), the trajectory remains
near the a1 attractor. As the system is driven faster (f =
0.136 and f = 0.068, thicker trajectories), the state of the
system starts oscillating between attractors a1 and a2, but
because of the longer transient towards a1, the oscillation
is effectively between t and a2. [B] Two-dimensional slice
through the space of neural activity during walking (red) and
chemotaxis (blue) imposed over one of the phase-portraits
(P3). [C] Neural activity for the system when driven by a
fast (f = 0.272) and slow (f = 0.068) sinusoidal wave.

Related work
Synthesizing neural controllers to generate multiple qualita-
tively different behaviours is a challenge that has been posed
by many. However, the focus has been on the role of mod-
ularity. Togelius (2004) showed how subsumption architec-
ture models could be merged with an evolutionary robotics
approach for a simulated robot on a learning task. Nolfi
(1997) investigated modularity for evolution of a garbage
collecting robot that had to cope with subtasks such as rec-
ognizing, picking up and disposing of desired objects. Al-
though the networks had a hard-wired modular architecture,
evolution was free to choose how these modules were used.
Calabretta et al. (1999) addressed the same task, but used a
system in which neural modules could evolve from a popu-
lation of non-modular networks through gene duplication.
Although both reported improved performance relative to
monolithic networks, Ziemke et al. (1999) showed that in

a more difficult version of the task, a monolithic recurrent
network outperformed all modular architectures.

Many animals can rapidly change between different
modes of locomotion. In (Ijspeert et al., 2007), the prob-
lem of designing the neural controller for switching between
swimming and walking in a salamander-like robot is pre-
sented. In (Buckley et al., 2008), an agent is evolved to do
phototaxis with the sensor in two different positions (front
and back of the body) while constraining the dynamical sys-
tem controller to use a single basin of attraction. In both
papers, however, the two behaviours share a large range of
qualities. Our work is different from theirs in that the two
tasks (chemotaxis and walking) were chosen to be as differ-
ent as possible, while sharing sensor and effectors.

Yamauchi and Beer (1994) evolved a simulated robot that
had to learn which of two environments it was placed in and
take an appropriate action such as to approach a desired po-
sition. They only succeeded after dividing the network into
separate modules with explicitly assigned roles that were
evolved separately. They then evolved a classifier network to
determine which of the modules is to control the agent. Tuci
et al. (2002) later successfully evolved a controller for a very
similar task without dedicated modules. Finally, Beer and
Gallagher (1992) evolved agents for chemotaxis and walk-
ing, but not for the same dynamical system controller.

Discussion
We have shown that small dynamical neural networks are
able to implement qualitatively different behaviours as dis-
tinct transients on a single dynamical landscape. Specifi-
cally, we evolved an agent that could perform locomotion
when coupled to a one-legged body and chemotaxis when
controlling a khepera-like robot. We demonstrate this is pos-
sible without imposing structural modules on the controller,
and without employing complicated fitness functions or evo-
lutionary shaping protocols. Neither was it necessary to in-
troduce parameter changes in the controllers or to provide a
signal for when the swap of bodies and corresponding be-
haviour was to occur. The interactions of neural controller,
body and environment alone are sufficient to create distinct
transient dynamics appropriate for solving both tasks.

The divide-and-conquer approach championed in engi-
neering would suggest that separate modules should be
evolved to produce the two tasks independently. This how-
ever wouldn’t necessarily simplify the problem, as the main
challenge would then be to design a mechanism of coordi-
nation and a sophisticated sensing machinery to detect when
to switch between the modules. More importantly however,
while modular structures and synaptic-plasticity exist in liv-
ing organisms, they were selected based on the adaptiveness
of their behaviour and not on how apprehensible their inter-
nal mechanisms are. We therefore argue that understanding
networks whose structure is not imposed from the top down
will help us develop the tools to understand how multiple
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behaviours are generated in living organisms.
Our dynamical systems account of the evolved agent in-

dicates that it is misleading to associate a behaviour with an
attractor or a basin of attraction in the decoupled internal
dynamics of the controller. In fact, there can be many be-
haviours in the same basin of attraction, as shown in (Buck-
ley et al., 2008), or single behaviours that require several
different attractors, as in the RPG shown here and in (Beer,
1995). Furthermore, as this paper demonstrates, multiple
behaviours may use an overlapping set of diverse attractors
and their basins. This provides an example of the importance
of understanding behaviours as a result of the interactions
between brains, bodies and environments, where transients
play an equal, if not more important, role than attractors.

A possible objection that could be raised about this work
is that the behaviours presented here are either too simple or
not sufficiently different from each other and that modular
and hierarchical architectures and additional learning rules
will be required for more ‘complex’ scenarios. We believe
this is an important, but mostly open question.

Finally, an important feature of recurrent neural networks
is that their history of activations allows them to respond to
otherwise identical stimuli in a context-dependent fashion.
In other words, a system with internal state, when embod-
ied and situated, is not constrained to a single sensori-motor
mapping (as was shown in our example). In von Uexkull
(1957)’s terms, such systems could be said to “bring forth
their own Umwelt”. But while the act of interpreting sen-
sory input contextually is usually attributed wholly to the
agent, the example presented here shows that “meaning-
ful” behaviour is the result of interactions in the brain-body-
environment system as a whole.
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