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Abstract

How do chemical reaction networks that process information
evolve? This is not only a fundamental question in the study
of the origin of life, but also in diverse fields like molecular
computing, synthetic biology, and systems biology. Here, we
study the evolution of chemical flip-flops by means of chem-
ical organisation theory. Additionally, we compare evolved
circuits with manually constructed ones. We found that evo-
lution selects for an organisational structure that is related to
function. That is, the resulting computation can be explained
as a transition between organisations. Furthermore, an evo-
lutionary process can be tracked as a change of the organi-
sational structure, which provides a fundamentally different
view than looking at the structural changes of the reaction
networks. In our experiments, 90% of evolutionary improve-
ment coincide with a change in the organisational structure.
We conclude that our approach provides a novel and useful
perspective to study evolution of chemical information pro-
cessing systems.

Introduction
In every living entity, cellular functions emerge from the as-
tonishing interplay of connected reaction processes. Three
essential types of biochemical networks can be distin-
guished: metabolic, cell signalling, and gene regulatory net-
works (Alberts et al., 2003). While metabolism consists of
coupled enzymatically catalysed reactions supplying energy,
cell signalling, and gene regulation perform information
processing of external and internal signals (Cooper et al.,
2001). Taking this information processing as a metaphor,
biochemical reaction networks (or rather mathematical mod-
els of these) can be designed to perform specific computa-
tional tasks.

While a bottom-up approach has been pursued (Guido
et al., 2006), top-down approaches, specifically evolutionary
algorithms, have gained growing interests recently in order
to design or program reaction systems. Efforts have been
undertaken to evolve simple computational units (Deckard
and Sauro, 2004), small biological networks (Koza et al.,
2001; François and Hakim, 2004; Soyer et al., 2006), ge-
netic regulatory networks (Dwight Kuo et al., 2006) or com-
ponents thereof (Paladugu et al., 2006). Most of this work,

however, has been focused on the final product, that is,
the networks evolved to reproduce a certain specified be-
haviour. Here, we rather concentrate on the process of evo-
lution. For that purpose, new methods are required that can
deal with constructive systems (Fontana and Buss, 1994),
that is, systems where new components (molecular species)
or new interactions between existing components appear so
that the network topology changes dynamically. Matsumaru
et al. (2006) used chemical organisation theory (Dittrich and
Speroni di Fenizio, 2007) in order to study the evolution-
ary dynamics of (artificial) chemical systems. In this paper,
we analyse the trajectory of evolving chemical reaction net-
works that compute. That is, in particular, networks that
function as flip-flops.

In previous work, the authors have developed a software
designed to evolve biological networks (called the SBMLe-
volver) and measured the performance impact of certain de-
sign decisions for this algorithm (Lenser et al., 2007). That
software package is adopted to evolve network models for
this study. In the following section, the theory of chemi-
cal organisation is briefly reviewed. Then, the experimental
setting to evolve a reaction network capable of flip-flop op-
eration is presented. As results, three aspects of the evolu-
tionary process are given in the Results section. In addition
to the traditional aspect of the dynamical behaviour of the
evolution, we analyse the dynamical change in terms of the
chemical organisation within the reaction networks. We also
show a reaction network evolved for the flip-flop function.

Reaction Networks and Chemical Organisations

Here, we utilized the notation of a chemical organisation de-
veloped by Dittrich and Speroni di Fenizio (2007) to anal-
yse reaction networks. Following Fontana and Buss (1994),
an organisation is defined as a set of molecular species that
is closed and self-maintaining. The hierarchy of all or-
ganisations of a reaction network represents its organisa-
tional structure, which can be used to describe the dynami-
cal (qualitative) behaviour of a reaction system as a move-
ment between organisations (Speroni di Fenizio et al., 2001).
Choosing a proper coding scheme, the organisational struc-

Artificial Life XI 2008  343 

mailto:@minet.uni-jena.de


ture can be interpreted as a repertoire of behaviour patterns
of the reaction system. For example, Dittrich and Speroni
di Fenizio (2007) have shown that only species that form an
organisation can makeup a stationary state.

The basic concepts needed here are now described more
formally: A reaction network 〈M,R〉 consists of a set of
(molecular) species M and a set of reaction rules R. A re-
action rule ρ ∈ R can be written according to the chemical
notation:

la1,ρ a1 + la2,ρ a2 + · · ·→ ra1,ρ a1 + ra2,ρ a2 + . . . (1)

The stoichiometric coefficients la,ρ and ra,ρ describe the
amount of molecular species a ∈ M in reaction ρ ∈ R on
the lefthand and righthand side, respectively. Together, the
stoichiometric coefficients define the stoichiometric matrix

S = (sa,ρ) = (ra,ρ − la,ρ). (2)

An entry sa,ρ of the stoichiometric matrix denotes the net
amount of molecules of type a produced in reaction ρ. We
also define mappings LHS(ρ) ≡ {a ∈ M : la,ρ > 0}
and RHS(ρ) ≡ {a ∈ M : ra,ρ > 0}, returning the species
with a positive coefficient on the lefthand and righthand side,
respectively. Reaction ρ can take place in A ⊆ M only
when LHS(ρ) ⊆ A.

Given a reaction network 〈M,R〉 with m = |M| species
and r = |R| reactions, the organisational structure is de-
rived with respect to the following two criteria: closure and
self-maintenance. A set of species A ⊆ M is closed, if
for all reactions ρ with LHS(ρ) ⊆ A, the products are also
contained in A, that is, RHS(ρ) ⊆ A. This closure prop-
erty ensures that there exists no reaction in A producing new
species not yet present in the organisation using only species
of that organisation. The other property is a theoretical ca-
pability of an organisation to maintain all of its members.
Since the maintenance possibly involves complex reaction
pathways, the stoichiometry of the whole reaction network
must be considered in general. A set of molecules C ⊆M is
self-maintaining, if there exists a flux vector v ∈ Rr such
that the following three conditions apply: (1) for all reac-
tions ρ that can take place in C (i.e., LHS(ρ) ⊆ C) the flux
vρ > 0; (2) for all remaining reactions ρ (i.e., LHS(ρ) ! C),
the flux vρ = 0; and (3) for all molecules a ∈ C, the produc-
tion rate (Sv)a ≥ 0. vρ denotes the element of v describing
the flux (i.e. rate) of reaction ρ. (Sv)a is the production rate
of molecule a given flux vector v.

We visualize the set of all organisations with a Hasse dia-
gram, in which organisations are arranged vertically accord-
ing to their size in terms of the number of their members
(cf. Figure 6). Two organisations are connected by a line if
the upper organisation contains all species of the lower or-
ganisation and there is no other organisation between them.
The Hasse diagram represents the hierarchical organisa-
tional structure of the reaction network under study.
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Figure 1: Circuit diagram and operation mode of flip-flop.

Method
We employ an evolutionary algorithm that instantiates a nat-
ural selection process on chemical reaction networks (Fer-
nando and Rowe, 2007). The algorithm can mutate the re-
action rules R of a reaction network with a fixed predefined
set of molecular speciesM = {a0, a1, b0, b1, c0, c1, d0, d1}.
As mutational operators, the algorithm can add or delete a
reaction, or replace a reaction with a different one, keeping
as many of the previous participants as possible. To keep
things simple, we employ a (1+1)-EA. That is, one parent
generates one offspring, while the better of the two survives.

To enable neutral mutations and thus search space explo-
ration, the offspring is kept if both have the same fitness. No
parameter fitting is done, so that a change in parameters can
only be realised through a replacement of a reaction with
the same reaction, which has a different (randomly chosen)
reaction constant. Only mass-action kinetics of first and sec-
ond order are used in the evolution.

When speaking of a flip-flop logic gate in this work, we
specifically mean an RS (Reset and Set) flip-flop, with a be-
haviour according to the truth table in Figure 1. To rep-
resent the four binary variables a, b, c and d making up
this flip-flop in a chemical format, we employ two oppos-
ing species x0 and x1 for each binary variable x, where the
presence of x0 denotes the value x = 0, and x1 denotes
x = 1 (cf. Matsumaru et al., 2007). To help maintain a
valid state inside the system, we fix four destructive reac-
tions x0+x1 → ∅ for all four species pairs xi = ai, bi, ci, di.
These reactions cannot be changed or deleted by the evolu-
tionary algorithm.

The ideal flip-flop that is the target of the artificial evolu-
tion works in the following way: The set operation (S̄, R̄) =
(0, 1) changes the state Q to 1, while the reset (S̄, Q̄) =
(1, 0) changes Q to 0. To hold the previous state, both in-
puts are set to 1. The forbidden input (S̄, Q̄) = (0, 0) is not
considered in the fitness function. In chemical form, the in-
put (S̄, R̄) = (0, 1) is represented by defining an inflow for
a0 and b1, that is, {∅ → a0, ∅ → b1} ⊆R ; and the other
two cases are treated similarly. The initial concentrations of
ci and di are set according to the previous state Qt. Taking
this together, we get six different test cases, coming from
three different operations with two initial conditions each.

For each case, we specify either the presence or the ab-
sence of each species as desired, measured in steady state
after simulating the reaction system for 1000 seconds. Nu-
merical integration is done using the SBML ODE Solver Li-
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brary (Machne et al., 2006). The classification as present or
absent is decided by a concentration threshold of 10−9 (ar-
bitrary units). For example, in the reset case, the following
steady state concentrations are considered as correct: a1 =
1, a0 = 0, b1 = 0, b0 = 1, c1 = 0, c0 = 1, d1 = 1, d0 = 0.
The fitness value is then calculated by counting the number
of wrong presence / absence measurements, with 0 being the
best possible fitness value. Once a fitness of 0 is reached, the
evolution stops.

Results
To analyse the evolution of reaction networks acting as flip-
flops, we performed 30 independent runs in order to evaluate
properties of a “typical” run. Additionally, we also looked
at one run in more detail.

Since the distinction between the three different input set-
tings is realised by enabling or disabling inflow reactions
for a1, a0, b1 and b0, we need to compute three lattices of
organisations for each analysed candidate solution, one for
each input setting.

Statistical analysis of many runs
The average fitness development (Figure 2) shows a stronger
gain in fitness at the beginning, while the convergence to-
wards zero is slower later on. Eventually, all runs reached a
fitness of zero, i.e. the networks behaved as specified in the
fitness function. Since a run stops exactly when the fitness of
the current individual is 0, the number of generations usually
differ between runs. In order to be able to average over these
runs, we had to resample the data on fitness and number
of organisations, such that a common number of measure-
ments for each run is achieved. To this end, we constructed
a timescale of “normalised evolutionary progress”, defined
by its endpoints 0.0 at the beginning of the evolution and 1.0
at the end when the final solution is found. The MATLAB
function resample, which applies an anti-aliasing lowpass
FIR filter during the resampling process, was used to create
new data points at 1001 equally space points between 0.0
and 1.0.

Looking at the number of organisations for the three dif-
ferent input cases, we can see from Figure 3 that start-
ing from around four to five organisations on average, the
numbers diverge between the set/reset operations and the
hold operation. While the number of organisations for the
set/reset organisation converges between two and three, the
hold operation yields around seven organisations on average.

By comparing the organisational structures between suc-
cessive candidate solutions, we calculated that 90% of all
fitness improvements are accompanied by a change in the
organisational structure for at least one input case. In con-
trast, only 18% of organisational changes also come with a
fitness improvement. When looking at the lineage of net-
works that led to the final solution, disregarding unsuccess-
ful candidates, we find that 35% of all mutations changed
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Figure 2: Average fitness value from beginning to end of
evolutionary runs, from 30 independent repetitions. The x-
axis denotes the normalised evolutionary progress from the
random initial solution (x = 0) to finding a solution with
fitness 0 (x = 1). For this, the different runs were resampled
to 1000 samples, as described in the text. Errorbars indicate
standard deviation.

the organisational structure for at least one input.

Detailed analysis of one run
For an in-depth analysis, we pick the first evolutionary run
that we performed for this problem. We will describe how
the fitness improvements correlate with changes in the or-
ganisational structure, and give details on one specific mu-
tational event and its consequences for the organisational
structure of the network.

Comparing the average fitness development shown in Fig-
ure 2 with the single run analysed here (Figure 4 upper part),
we can conclude that the fitness of the individual run pro-
gressed in a fairly standard way. This is especially true given
that the behaviour of the 30 runs is quite diverse, as indi-
cated by the large standard deviations. Also the length of
this run (162 generations) is in the usual region, with an av-
erage run taking 221 generations with a standard deviation
of 119. Also the number of organisations (Figure 4 lower
part) is in agreement with the average number (Figure 3),
even if the number of organisations for the set/reset opera-
tions are at the outer limits of the typical range (five and one,
respectively).

Looking at the fitness increases in the course of the evo-
lution (Figure 4 upper part) and the organisational structures
of all networks that appear during the run (not shown), it
can be observed that all but one of the eight fitness jumps
are accompanied by changes in the organisational structure
for at least one of the three input cases. However, taking the
number of organisations at any point in the evolution into
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Figure 3: Average number of organisations from 30 inde-
pendent runs of the evolution. Colors denote the (a0, b1)
input (blue), the (a1, b0) input (red), and the (a1, b1) input
(green). Errorbars indicate the standard error. Unit of x-axis
as in figure 2.

account, one can also see that not every change in organi-
sational structure leads to a fitness change, in fact, most do
not.

We now relate the fitness change in one successful muta-
tion to the change in organisational structure incurred by that
mutation. As an example, we pick the fitness jump from gen-
eration 112 to 113, which improved the fitness from seven
to four wrong presence/absence values. Looking at the reac-
tion networks before and after the mutation (Figure 5), we
see that the mutation added one reaction, which converts b0

into d1.
This additional reaction does not change the organisa-

tional structure for input cases (a0, b1) and (a1, b1) (set and
hold, not shown), but reduces the lattice of organisations
for input case (a1, b0) (reset) from five organisations to two
(Figure 6). Looking at the behaviour of both networks for all
input cases and initial configurations (i.e. all six test-cases),
one can observe that the change occurs only in input case
(a1, b0) with an initial configuration in which c1 and d0 are
present (data not shown). For this case, the steady-state be-
fore the mutation has a1, b0, and c1 present, and d0 is still
present after 1000 seconds even though its concentration is
still decreasing at that time. This yields four wrong pres-
ence/absence values, since c0 and d1 should be present and
c1 and d0 should be absent, but the total opposite is the case.
After the mutation, d1 is present and c1 and d0 are absent,
but also c0 is absent, so there is one wrong value left.

On the organisational level, the mutation removes three
organisations (Figure 6), among which is also the organisa-
tion (a1, b0, c1) responsible for the wrong behaviour of the
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Figure 4: One exemplary run. Given are fitness (upper
plot) and number of organisations for all three input cases
(lower plot). In the lower plot, the three input cases are
shown in blue ((a0, b1) input), red ((a1, b0) input), and green
((a1, b1)). Each mark (square, cross or circle) denotes a new
network structure in the evolutionary trajectory.

network. After the mutation, the dynamics take the steady-
state into organisation (a1, b0, d1), resulting in a better be-
haviour. However, it is interesting to note that both organi-
sational structures also contain organisation (a1, b0, c0, d1),
which is the “correct” one that is also used in the final solu-
tion. Even though this organisation is present, the dynamics
of both reaction systems are such that the steady-state does
not lie inside it. We had to wait for another 49 generations
for this to happen.

An evolved chemical flip-flop
An outcome of the evolutionary process described above is
analysed. The reaction network considered here has a fitness
value of 0, i.e. solves the given task. The network structure
is shown in Figure 7.
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Figure 5: The reaction network of the candidate solution
analysed in the text, after the mutation adding reaction R11.
The added reaction is shown in red.
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∅ → b0

Figure 6: Organisational structure of the networks from Fig-
ure 5 for input (a1, b0), before (whole structure) and after
addition of reaction R11 (only red part).
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Figure 7: Chemical reaction network implementing flip-flop
circuits, designed through an evolutionary process. Cooper-
ative decay reactions (a1+a0 → ∅, b1+b0 → ∅, c1+c0 → ∅,
d1 + d0 → ∅) are omitted.

There are seven reactions, labeled as rea1 to rea7 in the
figure, in addition to four reactions of cooperative decay (not
shown in the figure), a1+a0 → ∅, b1+b0 → ∅, c1+c0 → ∅,
d1 + d0 → ∅. This base reaction network is extended to in-
clude inflow reactions, representing the inputs to the flip-flop
circuit, depending on the operations. Organisational struc-
tures of the reaction system for each operational mode are
shown in Figure 8.

Analysing the organisational structure of the reaction net-
work, it becomes evident that the reaction system based on
this reaction network is surely usable for the flip-flop com-
putation. Including the two inflows ∅ → a1 and ∅ → b0 in
the reaction network, as shown in Figure 8 A, only one set
of species {a1, b0, c0, d1} satisfies the conditions to be the
organisation. It implies that only this species combination
can be found in the dynamical reaction system in equilib-
rium states. Therefore, the reset operation can be realized in
the evolved reaction system. The network with the inflows
of ∅ → a0 and ∅ → b1 contains five organisations as shown
in Figure 8 B, and one of those {a0, b1, c1, d0} corresponds
to the set operation.

Changing inflow reactions to ∅ → a1 and ∅ → b1

achieves the hold operation. In terms of the organisations,
as shown in Figure 8 C, the two organisations orgHR=
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Figure 8: Organisational structure in the reaction network
shown in Figure 7.

{a1, b1, c0, d1} and orgHS= {a1, b1, c1, d0} in the reaction
network with those inflows reflect the bistability of the flip-
flop circuit. Depending on the state at the previous time step,
the hold operation results in a different state, namely the pre-
vious one. When the reaction system has been in the state
after the set operation, (i.e., orgS), the hold operation brings
the system to the state of orgHS, keeping the output species
unchanged as c1 and d0. Holding the information that the
system has been reset can be achieved by moving the sys-
tem state from orgR to orgHR.

The last operation of setting both inputs to be zero (a =
b = 0) is forbidden for the flip-flop circuit. If adding
two inflows of ∅ → a0 and ∅ → b0 to the base reac-
tion network, one set of species becomes the organisation:
{a1, a0, b0, c1, c0, d1, d0}. Only b1 is not involved to form
the organisational structure.

If no inflow reaction is present, there are 42 organisations
in the base reaction network. The smallest organisation is
the empty set ∅. The sets containing four species forms the
largest organisations, and there are four organisations of that
size. The organisations with the size of four in Figure 8
are also found to be the organisation without inflows, except
the organisation labeled as orgR. In fact, all organisations in
Figure 8 except orgR are also organisations without inflows.

Dynamical Behaviour
To validate the organisational analysis of the reaction net-
work, a dynamical reaction system is constructed and sim-
ulated with Copasi (Hoops et al., 2006), a biochemical re-
action system simulator. Agreeing to the fitness calculation
of the evolutionary design process, mass action kinetics is
assumed for every reaction, if applicable. The ordinary dif-

ferential equations (ODEs) for the input species read:

˙[a1] = k1[a0][c0] + k4[c1][c0] + k6[c1][d1]
−da[a1][a0] + Ia1(1− [a1]) (3)

˙[a0] = −k5[a0][c0] + k6[c1][d1]
−da[a1][a0] + Ia0(1− [a0]) (4)

˙[b1] = −db[b1][b0] + Ib1(1− [b1]) (5)
˙[b0] = −k2[b0]− k7[b0]
−db[b1][b0] + Ib0(1− [b0]) (6)

where a kinetic parameter for a reaction rea id is denoted
as krea id. Kinetic parameters for the cooperative decay re-
actions are represented by d, and the subscript specifies the
pair. For example, the decay rate of the cooperative decay
reaction a0 + a1 → ∅ is denoted as da.

Inflow reactions representing the operation of reset, set,
and hold are controlled by the four parameters: Ia1 , Ia0 ,
Ib1 , and Ib0 . These parameters are binary variables, accept-
ing only 0 or 1. For example, when the chemical flip-flop is
set, Ia0 and Ib1 are set to one and the other pair of parameters
Ia1 = Ib0 = 0 is set to zero. Inflows are assumed to be con-
stant fluxes. Furthermore, the inflows are linked to normal
decay reactions such as a1 → ∅ in order to avoid endless in-
crease of the input species concentration. The resulting term
of the ODE is Ia1(1− [a1]), for example.

The ODEs for the output species read:

˙[c1] = k3[d1][d0]− k6[d1][c1]
−dc[c1][c0]− Ib0 [c1] (7)

˙[c0] = −k1[a0][c0] + k7[b0]
−dc[c1][c0]− Ib0 [c0] (8)

˙[d1] = k2[b0]− k3[d1][d0]− k6[d1][c1] + k7[b0]
−dd[d1][d0]− Ib0 [d1] (9)

˙[d0] = −k3[d1][d0] + k5[a0][c0]
−dd[d1][d0]− Ib0 [d0] (10)

Kinetic parameter values are also provided as the outcome
of the evolutionary design, but we manually adjusted the
values so that the operations can be continuously repeated.
When the fitness of the reaction system was calculated dur-
ing the evolution process, three of the operations were eval-
uated separately and the reaction system was reinitialized
for each case. This re-initialization step between operations
is prevented so that the end state of the previous operation
becomes the initial state of the next operation. For that pur-
pose, the outflows of the input species are added as described
above in order to restrict the increase of the concentration.
For the output species, the outflows are also added as shown
above, activated only when the inflow of b0 is present. This
modification is also to restrict the increase of the concen-
trations of the output species, specially, when the system is
reset.
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Figure 9: Dynamical simulation of chemical flip-flop de-
signed by evolution. Parameters are set as follows: da =
db = 0.1, k4 = 2.33941, k6 = 2.83745, k1 = 4.44231,
k5 = 3.62963, k7 = 4.82838, k3 = 1.0, k2 = 0.1,
dc = 0.001, dd = 1.0. Additionally, for each operation
of reset, set, and hold, inflow reactions are activated. For the
set operation, the parameters are set such that Ia0 = Ib1 = 0
and Ia1 = Ib0 = 1 to activate inflows of a1 and b0 species
and to deactivate the others. The reset operation is initi-
ated by setting Ia0 = Ib1 = 1 and Ia1 = Ib0 = 0. The
hold operation is achieved with the parameter settings of
Ia1 = Ib1 = 1 and Ia0 = Ib0 = 0.

The last modification is the kinetic parameter of the re-
action rea1, k1, from 4.44231 to 0.5. The rational of this
adjustment is: under the input condition “set”, the system is
observed to converge to the organisation of {a0, b1, d1}, in-
stead of orgS. This behaviour results from the fast extinction
of species c0 so that the generation of d0 by rea5 is insuffi-
cient. Slowing down the reaction speed of rea1, species c0

stays in the system longer and produces d0 enough to neu-
tralize d1.

Conclusion
We found that most fitness improvements come together
with change in organisational structure (90%), showing that
organisation analysis indeed yields insight into the evolu-
tionary process. On the other hand, most organisational
changes are fitness-neutral (82%), indicating that a lot of the
information given in the lattice of organisations does not di-

rectly relate to the measured function of the networks. We
have also seen mutations where the replacement of a reac-
tion with the same type of reaction led to a fitness increase
caused purely by the changing of a kinetic parameter, as well
as changes of network structure not reflected in the organi-
sations (but improving fitness). All this implies that while
organisational analysis can give us many indications regard-
ing the function of a reaction network, sometimes it does not
tell the whole story of the network’s dynamics.

We have also seen that the number of organisations for the
set and reset states is substantially smaller than the number
for the hold state, in analogy to the hand-constructed flip-
flop by Matsumaru et al. (2007). In comparison to their so-
lution, the evolved networks show a larger number of organi-
sations for each input case. To realize the flip-flop behaviour
in the reaction system, the minimum number of organisa-
tions in the reaction network is one for the set and reset op-
eration and three for the hold operation. The hand-designed
flip-flop implementation shown by Matsumaru et al. (2007)
has two organisations for set and reset, respectively, and
three for hold. In comparison, the evolved networks have
more organisations, on average between two and three each
for set and reset, and seven for hold. This implies that even
though the function of the flip-flop networks is reflected in
their organisational structure, this structure contains more
information than only the operational modes specified in the
fitness function.

As an interesting extension to this work, one could use or-
ganisational analysis to direct the evolution of reaction net-
works. By first designing the perfect organisational structure
and then evolving networks with this structure, it would be
possible to study whether these networks have the desired
functionality. A key step in this direction is certainly the de-
sign of an appropriate fitness function based on a network’s
lattice of organisations.

In an additional investigation on top of the results shown
here, one should look at the effect of different mutational
operators on network structure, fitness and organisational
structure. This will lead to helpful insights on how the mu-
tations affect the lattice of organisations, and also on how
specific organisational changes are related to changes in the
fitness function.

In our opinion, the most important lesson to be learned
from this work is that the evolutionary process investigated
here produces reaction networks with an organisational
structure that reflects their flip-flop functionality. Even
though our choice of representation format of the binary in-
formation in chemical form may favour this, we believe that
this phenomenon is mainly caused by the structure of the
fitness function, i.e. by the task that is required of the net-
works. It will be very interesting in future to investigate this
with other representation formats.
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