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Abstract

We study the effects of conformist transmission on the evo-
lutionary dynamics of the Prisoner’s Dilemma, the Snowdrift
and the Stag Hunt games in both well-mixed and spatially
structured populations. The addition of conformism intro-
duces a transformation of the payoff matrix that favours the
stability of pure equilibria and reduces the basin of attraction
of risk dominant equilibria. When both conformism and local
interactions are present, the system can exhibit higher levels
of cooperation than those obtained in the absence of either of
the two mechanisms.

Introduction and Related Work
Evolutionary game theory (Hofbauer and Sigmund, 1998;
Gintis, 2000) is the theory of evolutionary dynamics when
selection is frequency-dependent, i.e. when the success of
an individual is conditioned not only by the strategy he or
she follows but also by the strategies followed by other indi-
viduals in the population. Although originally developed as
an application of game theory to the study of genetic evolu-
tion (Maynard Smith, 1982), evolutionary game theory has
also been used to investigate cultural evolutionary processes,
that is the way ideas or beliefs spread through a population
of individuals capable of imitation.
In cultural evolutionary game-theoretic models, ideas are

transmitted via biased imitation. Most of these models posit
that the only important psychological bias underlying imi-
tation is prestige or payoff-based bias, dened as the pre-
disposition to imitate successful individuals. Assuming a
very large and well-mixed population, payoff-based biased
transmission can be shown to generate a famous differential
equation, named the replicator dynamics (Taylor and Jonker,
1978; Gintis, 2000). In the context of evolutionary game the-
ory, the equilibrium points and other characteristics of the
dynamics of different games are studied in order to better
understand the evolutionary processes involved.
The Prisoner’s Dilemma (PD), Snowdrift1 (SD) and the

Stag Hunt (SH) are among the most studied two-person,

1Also known as Hawks-Doves or Chicken.

symmetric games in the literature. They are used for in-
vestigating under which circumstances altruistic traits can
become xed in a population of “selsh” individuals. In
social dilemmas of cooperation, individuals’ behaviours are
of two types: cooperative and non-cooperative. Coopera-
tors are willing to engage in cooperative tasks, while non-
cooperators (usually called defectors) prefer not to. The suc-
cess resulting from the interaction of cooperators and defec-
tors is given by the payoff matrix:

C D
C R S
D T P

where C denotes cooperators andD denotes defectors. R is
the reward for mutual cooperation, P is the punishment for
mutual defection, T is the temptation to defect and S is the
sucker’s payoff.
In all three social dilemmas, mutual cooperation is

favoured over both mutual defection (R > P ) and an equal
probability of unilateral cooperation and defection (2R >
T + S). The three dilemmas however differ in their or-
dering of payoffs. In the PD, T > R > P > S; in SD,
T > R > S > P , and in the SH, R > T > P > S.
The evolution of cooperation can be studied by looking

at the stable equilibria of the replicator dynamics for each
of these games. In the PD, the only stable equilibrium oc-
curs when the population is entirely comprised of defectors.
In the SD game cooperators and defectors coexist in equi-
librium. In the SH there are two equilibria: when all indi-
viduals cooperate and when all individuals defect. This last
equilibrium is however risk dominant, i.e. it has the largest
basin of attraction.
The replicator dynamics is a rough approximation of ac-

tual cultural evolutionary dynamics as it assumes that popu-
lations are very large and well-mixed, and that payoff-based
bias is the sole psychological mechanism guiding cultural
transmission processes. More realistic models of cultural
evolutionary processes correct at least one of these assump-
tions and arrive at different results from those predicted by
the standard replicator dynamics.
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Evolutionary graph-theoretical models (Lieberman et al.,
2005; Szabo and Fath, 2007), for instance, go beyond the
assumption of large, well-mixed populations by restricting
interaction and imitation to near neighbours in a graph rep-
resenting spatial locality or a social network. In many cases,
this graph structure has been shown to promote cooperation
beyond the limits of the replicator dynamics in a well-mixed
population (Nowak and May, 1992; Nowak et al., 1994;
Skyrms, 2003; Santos and Pacheco, 2005).
Other researchers have augmented cultural evolution

models by including different psychological biases that,
together with payoff-based bias, could inuence the way
people imitate. In particular, conformism or conformist
bias (Boyd and Richerson, 1985), which is the propensity
for preferentially imitating common behaviours, has been
suggested to be an important component of our social learn-
ing psychology (Asch, 1951; Coultas, 2004).2 When con-
formist transmission is introduced in cultural evolutionmod-
els, the result (in the case of large, well-mixed populations)
is a modied replicator dynamics that can lead to different
equilibrium points and different dynamics from those pre-
dicted by the standard replicator dynamics (Henrich, 2001;
Skyrms, 2005). By making use of such equation, Hen-
rich and Boyd (2001) have shown how even limited levels
of conformism are able to stabilise cooperative behaviour in
a public goods game if punishment is also included in the
model. In related work, Skyrms (2005) has explored the
effect of conformist bias in a number of symmetric two-by-
two games. Analyses in that work were however restricted
to some specic numerical cases and no general conclusions
were formally drawn.
The aim of this paper is to study the effects of conformist

transmission on the evolution of cooperation when consider-
ing two-person symmetric games such as the PD, SD and the
SH. We propose an evolutionary graph-theoretical model in
which cultural transmission is guided by both payoff-based
and conformist biases, and study it both analytically and by
means of simulation.
The paper is organised as follows. The next section gives

the agent-based level specications of the model. It is then
shown how to recover the modied replicator dynamics in
the limiting case of a large and well-mixed population, and
the equation is studied by means of equilibrium analysis.
This is followed by a simulation study of the particular case
of a population organised into a regular 2D lattice. Finally,
conclusions are drawn.

2From an evolutionary psychology perspective, conformist bias
could have evolved because it is adaptive in the face of costly infor-
mation. Boyd and Richerson (1985) and Henrich and Boyd (1998)
have theoretically shown that conformist transmission is adaptive
in spatially and/or temporally varying habitats since it provides a
simple heuristic rule that increases the probability of acquiring lo-
cally adaptive beliefs and behaviours.

The Model
Our model considers a population of n individuals, where
the i-th individual is represented by the vertex vi of an undi-
rected graphG(V, E) with vi ∈ V ∀i. The open neighbour-
hood of i, N(i), is the set of all individuals j such that there
is an edge eij ∈ E. The number of neighbours of individual
i is thus the degree ki of vertex vi. The closed neighbour-
hoodN [i] is the set of i’s neighbours plus i itself.
Each individual is characterised by its cultural trait or

strategy si ∈ {A, B}. Social interaction is modelled by
means of a two-person, symmetric game with a payoff ma-
trixM given by3:

A B
A a b
B c d

Each time step t, individuals simultaneously engage in so-
cial interactions. As a result of these interactions, individual
i collects an average payoff given by:

ui(t) =
1
ki

∑

j∈N(i)

M (si(t), sj(t)) .

After interactions are completed, individual i randomly
chooses one of its neighbours j ∈ N(i) as its model for cul-
tural transmission. Imitation is assumed to be conformist-
biased with probability α and payoff-biased with probabil-
ity 1 − α. Parameter α thus weighs the importance of con-
formism relative to payoff-biased transmission.
The adoption of individual j’s strategy by the focal indi-

vidual i depends on j’s cultural tness wij . Cultural tness
(the direct analogue to biological tness in genetic evolu-
tion) is a measure of the attractiveness or the transmissibil-
ity of a model’s strategy. If transmission is payoff-biased, j’s
cultural tness is given by the difference of average payoffs
between j and i:

wij(t) = uj(t) − ui(t).

If transmission is conformist, j’s cultural tness is given
by

wij(t) = qij(t) −
1
2
,

where qij is the proportion of agents inN [i] having the same
strategy as j. Notice that wij is positive whenever uj > ui

(payoff-biased transmission) or j follows the strategy fol-
lowed by the majority of i’s neighbours (conformist trans-
mission).
Agent i copies j’s strategy with a probability proportional

to wij . Formally:

Pr (si(t + 1) = sj(t)) = f (wij) ,

3Without loss of generality, payoffs are assumed to be non-
negative values.
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where f is assumed to be a monotonically increasing func-
tion, in order for models with high cultural tness to prop-
agate their strategies more often than models with low cul-
tural tness. Three alternative denitions of f are consid-
ered in this paper, each one specifying a different imitation
rule: (i) imitate-if-better (IIB); (ii) replicator dynamics 1
(RD1); and (iii) replicator dynamics 2 (RD2).4
The IIB rule is given by:

fIIB(wij) =
{

0 if wij ≤ 0
1 if wij > 0 ,

whereas RD1 and RD2 are respectively dened by:

fRD1(wij) =
{

0 if wij ≤ 0
βwij if wij > 0 ,

and
fRD2(wij) =

1
2

(1 + βwij) .

Parameter β normalises wij such that 0 ≤
Pr (si(t + 1) = sj(t)) ≤ 1. Thus, β = 2 in the case
of conformist transmission and

β =
1

max {a, b, c, d} − min {a, b, c, d} (1)

in the case of payoff-biased transmission. Fig. 1 depicts f
for each imitation rule.
The three imitation rules described above have been tradi-

tionally used in the literature, either directly in evolutionary
graph-theoretical models (e.g. RD1 by Hauert and Doebeli
(2004) and Santos and Pacheco (2005)) or in order to de-
rive population-level analytical models (e.g. RD2 by Hen-
rich (2001) and Boyd and Richerson (2002)).
From the previous denitions it is possible to derive

Pr (si(t + 1) = A), which is the probability of individual
i following strategy A at time step t + 1 after having cho-
sen a neighbour j as a model. Individual i’s strategy will
become or remain A whenever: a) A is the current strategy
of both i and j ; b) i’s current strategy is A, j’s current strat-
egy is B, but i does not imitate j; or c) i’s current strategy
is B, j’s current strategy is A, and i imitates j. The formal
equation is shown in Fig. 2.

Exact analysis for the case of large, well-mixed
populations

General games
Here we analyse the limiting case of a complete graph with
large n, which is equivalent to having the large, well-mixed
population that is traditionally assumed in standard evolu-
tionary game theory.

4We give RD1 and RD2 these names because both imitation
rules can be shown to recover the replicator dynamics in the well-
mixed, 100% payoff-biased transmission case (Gintis, 2000; McEl-
reath and Boyd, 2007).
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Figure 1: Imitation rules. IIB is shown in black, RD1 (β =
0.2) in blue and RD2 (β = 0.2) in red.

Let pt denote the frequency of individuals with strategy
A at time step t. For a complete graph with n → ∞, ki =
n − 1 ≈ n ∀i, and

ui(t) =
{

uA(t) if si(t) = A
uB(t) if si(t) = B

∀i, where uA(t) and uB(t) are the average payoffs collected
by individuals with strategiesA andB at time step t, respec-
tively given by

uA(t) = apt + b(1 − pt), (2)

and
uB(t) = cpt + d(1 − pt). (3)

Additionally, since N [i] = V ∀i:

qi,j(t) =
{

pt if sj(t) = A
1 − pt if sj(t) = B

∀i, j.

Using these relations and RD2 as imitation rule, the equa-
tion of Fig. 2 can be shown to reduce to:

∆p = pt(1 − pt){(1 − α)β [uA(t) − uB(t)]
+α(2pt − 1)}, (4)

where ∆p = pt+1 − pt is the change in the proportion
of individuals with behaviour A between time steps t and
t + 1. The recursion of Eq. 4 is a modied replicator dy-
namics that had been already derived in related work on
cultural transmission processes including both payoff-biased
and conformist imitation (Henrich and Boyd, 2001; Henrich,
2001; Carpenter, 2004; Skyrms, 2005).
Let us rst analyse the particular case when cultural trans-

mission is payoff-biased only. Making α = 0, Eq. 4 reduces
to:

∆p = pt(1 − pt)β {uA(t) − uB(t)} ,
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Pr (si(t + 1) = A) = Pr (si(t) = A, sj(t) = A) (1)
+Pr (si(t) = A, sj(t) = B)

{

(1 − α) [1 − f (uj(t) − ui(t))] + α
[

1 − f
(

qij(t) − 1
2

)]}

+Pr (si(t) = B, sj(t) = A)
{

(1 − α) [f (uj(t) − ui(t))] + α
[

f
(

qij(t) − 1
2

)]}

Figure 2: Probability of individual i having strategy A at time step t + 1 after cultural transmission from model j

which is the discrete-time equivalent of the standard replica-
tor dynamics (Taylor and Jonker, 1978; Hofbauer and Sig-
mund, 1998; Gintis, 2000). Substituting Eq. 2 and 3 in the
last expression and doing little algebra:

∆p = pt(1 − pt)β {(a − b − c + d)pt + b − d} . (5)

Equilibria of this equation can be found by looking at the
values of pt that make ∆p = 0. The two pure equilibria
are given by pt = 0 and pt = 1. In the following, these
equilibria will be respectively called all-B and all-A. A third
internal equilibrium, in which players with strategies A and
B are present in the population, may exist. When this is
the case, the proportion of individuals with strategy A in
equilibrium is given by

p∗ =
d − b

(a − c) + (d − b)
.

In general, the equilibrium p is stable5 whenever
∣

∣

∣

∣

∣

dpt+1

dpt

∣

∣

∣

∣

pt=p

∣

∣

∣

∣

∣

< 1.

From this, it can be easily shown that

• all-B is stable when b < d,

• all-A is stable when a > c, and

• p∗ is stable when both a < c and b > d.

Depending on the ranking of the entries of the payoff matrix,
four different possibilities6 for the imitation dynamics can
thus be distinguished (Nowak, 2006):

1. a > c ∧ b > d: only all-A is stable (A dominatesB).

2. a < c ∧ b < d: only all-B is stable (B dominatesA).

3. a > c ∧ b < d: both all-A and all-B are stable (A and
B are bistable). In this case, the internal unstable equilib-
rium p∗ determines the sizes of the basins of attraction of
the two pure equilibria. The equilibrium with the largest
basin of attraction is called risk dominant. In particular
5The condition is necessary and sufcient for hyperbolic equi-

libria only. All-B (resp. all-A) is non-hyperbolic when b = d
(resp. a = c).

6Actually, there is a fth possibiity: A and B are neutral when
a = c and b = d. In this case there is no evolution since ∆p = 0
∀pt.

a) all-A is risk dominant if d − b < a − c, and
b) all-B is risk dominant if d − b > a − c.

4. a < c ∧ b > d: pure equilibria are unstable and the
internal equilibrium is stable (A and B coexist).

How this picture changes when cultural transmission has
also a conformist component (α > 0)? In order to answer
to this question, an equilibrium analysis similar to the one
done in the case α = 0 can be performed here for α )= 0. A
second possibility is to rewrite Eq. 4 as

∆p = pt(1 − pt){[(1 − α)β(a − b − c + d) + 2α] pt

+(1 − α)β(b − d) − α},

and perform the following variable substitutions

a′ = (1 − α)βa + α,

b′ = (1 − α)βb,

c′ = (1 − α)βc,

d′ = (1 − α)βd + α,

to obtain:

∆p = pt(1 − pt) {(a′ − b′ − c′ + d′)pt + b′ − d′} . (6)

Notice (see Eq. 5) that this recursion is equivalent to the
discrete replicator dynamics of a population game with the
following payoff matrixM ′:

A B
A a′ b′

B c′ d′

Hence, in the framework of the replicator dynamics, the
addition of conformism to the cultural evolutionary process
is equivalent to a transformation of the payoff matrix of the
underlying game. Observe that α = 0 recovers the original
game and α = 1 completely transforms the original game
into a pure coordination game with the following payoff ma-
trix:

A B
A 1 0
B 0 1

The addition of conformism to imitation dynamics can
have considerable effects in the nature of equilibria of the
modelled cultural evolutionary process (Boyd and Richer-
son, 1985; Henrich and Boyd, 2001; Henrich, 2001; Skyrms,
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2005). In particular, since the entries ofM are non-negative
and 0 ≤ α ≤ 1,

a < c ⇒/ a′ < c′

b > d ⇒/ b′ > d′,

whichmeans that a) originally unstable pure equilibria could
become stable and b) an originally stable internal equilib-
rium could become unstable. Furthermore, if A and B co-
exist, the proportion of individuals with strategy A in equi-
librium is now given by

p′∗ =
(1 − α)β(d − b) + α

(1 − α)β {(a − c) + (d − b)} + 2α
.

Not everything changes in the dynamics of the gamewhen
conformism is introduced. In particular,

a > c ⇒ a′ > c′,

b < d ⇒ b′ < d′,

which means that originally stable pure equilibria will con-
tinue to be stable in the transformed game. Moreover,

d − b < a − c ⇒ d′ − b′ < a′ − c′,

d − b > a − c ⇒ d′ − b′ > a′ − c′,

which means that, ifA andB are bistable, the risk dominant
equilibrium of the transformed game will be the same as the
one of the original game.
The new conditions for stability are

1. All-B is stable if

α >
β(b − d)

1 + β(b − d)
(7)

2. All-A is stable if

α >
β(c − a)

1 + β(c − a)
(8)

3. The internal equilibrium, when it exists, is stable if nei-
ther Eq. 7 nor Eq. 8 holds.

Social dilemmas
Let us now focus on the effect of conformist biases in games
reecting social dilemmas, such as the PD, SD and the SH.
In order to simplify the analysis for these games, it is cus-
tomary to rescale their payoff matrices so that they depend
on a single parameter. For the PD, we follow Nowak and
May (1992) and make T = b,R = 1, P = ε ≈ 0 and S = 0,
where 1 < b < 2 characterises the advantage of defectors
against cooperators. For the SD game, we follow Hauert
and Doebeli (2004) and make T = γ > 1, R = γ − 1/2,
S = γ − 1 and P = 0, such that the cost-to-benet ratio
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Figure 3: Effect of conformist bias in the PD (left) and the
SD game (right).

of mutual cooperation is given by r = 1/(2γ − 1), with
0 ≤ r ≤ 1. For the SH we make T = P = 1, R = g and
S = 0, with 1 < g < 2. With these settings, β = 1/b for
the PD, β = 1/γ for SD and β = 1/g for the SH in the case
of payoff-based biased imitation (see Eq. 1).
As it has been previously analysed, the effect of con-

formist transmission may be interpreted as a transformation
in the payoff matrix that can alter the original ordering of its
entries. This in turn can drastically change the nature of the
game played. In the PD with conformism, the all-C equi-
librium (unstable in the original game) can become stable if
R′ > T ′. This holds when

α >
b − 1
2b − 1

.

The resulting ordering of the payoffs (R′ > T ′ > P ′ >
S′), and the fact that all-D is always the risk-dominant equi-
librium, effectively converts the game into a SH (see Fig. 3).
In the case of the SD game, the ordering of the entries of

the transformed payoff matrixM ′ can be different from that
of the original matrixM if R′ > T ′ (all-C becomes stable),
P ′ > S′ (all-D becomes stable) or both conditions hold. For
the rescaled version of this game, R′ > T ′ whenever

α >
r

1 + 2r
,

and P ′ > S′ when
α >

1 − r

2
.

There are thus 4 different possibilities for the SD game
with conformist transmission (see Fig. 3):

1. T ′ > R′ > S′ > P ′ (the game is still a SD),

2. R′ > T ′ > S′ > P ′ (C dominatesD),

3. T ′ > R′ > P ′ > S′ (the game becomes a PD), and

4. R′ > T ′ > P ′ > S′ (the game becomes a SH). In
this last case the game is a proper SH (C and D are
bistable and all-D is the risk-dominant equilibrium) when
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r > 0.5. When r < 0.5, all-C is both payoff and risk
dominant.

Finally, in the case of the SH the ordering of the payoffs is
not importantly affected, but the unstable equilibriummoves
towards p = 1/2, thus reducing the basin of attraction of all-
D, i.e. the riskiness of all-C.
Broadly speaking, conformist transmission can promote

cooperation in the PD by turning it into a SH, and in the
SH by diminishing the basin of attraction of all-D. In the
SD game, results are dependent on the cost-to-benet ratio
of mutual cooperation. For r < 0.5, cooperation is gener-
ally favoured: all-C can become the only stable equilibrium
(when R′ > T ′ > S′ > P ′), or the risk dominant equilib-
rium (when R′ > T ′ > P ′ > S′). For r > 0.5 the opposite
happens, with all-D possibly becoming the only stable equi-
librium (when T ′ > R′ > P ′ > S′) or the risk-dominant
equilibrium (when R′ > T ′ > P ′ > S′).
Although conformist transmission opens the possibility of

a cooperative equilibrium in the PD and diminishes the risk-
iness of engaging in cooperative actions in the SH, popula-
tions with an initial majority of defectors are always doomed
to a non-cooperative equilibrium in these two games. In the
SD case, defection prevails for r > 0.5, and this for any
amount of conformism. In this sense, conformist transmis-
sion alone is unable to sustain cooperation in both PD and
SH, and it promotes cooperation for the SD game only when
r < 0.5. For cooperation to be sustained, other mecha-
nisms are necessary to be present along with conformism.
Punishment has been suggested as one such possible mech-
anism (Henrich and Boyd, 2001). In the next section, we
explore another mechanism: graph reciprocity.

Simulation results for the case of
medium-sized, spatially structured

populations
Here, the evolutionary dynamics of the three social dilem-
mas discussed above are studied by means of computer sim-
ulations for the case of medium-sized populations (1024 in-
dividuals) organised into a 32 × 32 square lattice with peri-
odic boundary conditions. For the three games, the rescaled
versions presented in the last section were used7.
Square lattices were implemented using both Moore and

von Neumann neighbourhoods with ranges equal to 1. Sim-
ulations were conducted using each of the three imitation
rules previously dened (IIB, RD1, RD2), varying val-
ues of the game parameters (b in the PD, r in SD and
g in the SH) and different amounts of conformism (α ∈
{0.0, 0.125, 0.25, 0.375, 0.5}). Agents were updated syn-
chronously.
For each simulated condition, 50 runs were executed.

Each simulation was initialised with 50% cooperators and

7We effectively set P = ε = 0 in the PD.

terminated whenever the population converged to any of the
two absorbing states (all-C, all-D) or after 3000 simulation
steps. In this last case, the equilibrium proportions of coop-
erators were calculated by averaging over the last 1000 time
steps of each run, well after transients have passed.
Fig. 4 shows the average level of cooperation in equilib-

rium for the Moore neighbourhood case. Results for the von
Neumann neighbourhood case are qualitatively similar and
are not reproduced here for reasons of space. In the gures
corresponding to the SD game, the dashed lines represent
the equilibrium fraction of cooperators predicted by Eq. 6
(the well-mixed case).
Fig. 4 shows how cultural transmission including a con-

formist component consistently promotes higher levels of
cooperation than payoff-based biased transmission alone for
both the PD and the SH. Moreover, the larger the amount of
conformism, the larger the proportion of cooperators at equi-
librium, as it can be seen from the nice ordering of the curves
for different values of α. For the SD game, the addition of
conformist bias results in higher frequencies of cooperators
for small r but also in lower frequencies of cooperators for
large r. Thus, the general observations made for the effects
of conformist transmission on the well-mixed case continue
to hold for the case of spatially structured populations, i.e.
that conformism promotes cooperation in the PD and the SH
for the whole range of their game parameters, and that it pro-
motes cooperation in the SD game for r < 0.5while inhibit-
ing cooperation for r > 0.5.
Regarding the effects of embedding the population in a

lattice, our results conrm those already classic in evolu-
tionary game theory: spatial structure promotes cooperation
in the PD (Nowak and May, 1992; Nowak et al., 1994) and
the SH (Skyrms, 2003), but can inhibit cooperation in the
SD game (Hauert and Doebeli, 2004). In general, for the SD
game, cooperators in a lattice do better than their counter-
parts in a well-mixed population for a) α < 0.25 and small
r, and b) α > 0.25 and large r.
Notice that these qualitative results do not depend on the

specic imitation rule being used. However, quantitative re-
sults do depend on the specicities of these rules. For in-
stance, the higher stochasticity of the RD2 with respect to
the other two imitation rules seems to hinder the evolution
of cooperation in the PD and SH games, where only moder-
ate levels of cooperation can be sustained, and only for very
small b or very large g.

Conclusions
We have augmented traditional evolutionary graph-theoretic
models with conformist transmission (the tendency to imi-
tate common behaviours) and studied the effects of this ex-
tension on the evolutionary dynamics of social dilemmas.
From a replicator dynamics perspective, the addition of con-
formism is equivalent to a simple transformation of the pay-
off matrix favouring the stability of pure equilibria. In par-

Artificial Life XI 2008  463 



1.1 1.2 1.3 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

1.1 1.2 1.3 1.4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

b

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

1.1 1.2 1.3 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

0.2 0.4 0.6 0.8
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

r

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

1.2 1.4 1.6 1.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

g

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

1.2 1.4 1.6 1.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

g

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

1.2 1.4 1.6 1.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

g

Fr
eq

ue
nc

y 
of

 c
oo

pe
ra

tio
n

Figure 4: Average values of the equilibrium proportion of cooperators as a function of the game parameter for the PD (rst
row), the SD game (second row) and the SH (third row). Results are given for IIB (rst column), RD1 (second column) and RD2
(third column) imitation rules and different amounts of conformism: α = 0.0 (black), α = 0.125 (blue), α = 0.25 (green),
α = 0.375 (magenta) and α = 0.5 (red). For the SD game, the corresponding proportions of cooperators in well-mixed
populations for each value α are also reported (dashed lines).
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ticular, a Prisoner’s Dilemma can become a Stag Hunt, and
a Snowdrift can become a Stag Hunt, a Prisoner’s Dilemma
or a game in which cooperation dominates defection. In the
Stag Hunt case, where both pure equilibria are already sta-
ble, conformist transmission moves the unstable equilibrium
towards p = 1/2, thus reducing the basin of attraction of
the non-cooperative equilibrium. Although unable to sustain
cooperation by its own when cooperators are not the major-
ity at the beginning of the evolutionary process, conformist
transmission enhances cooperation when other mechanisms,
such as spatial locality, are also present in the model, at least
for the PD and the SH cases. For the spatial SD, conformism
can also be shown to promote higher levels of cooperative
behaviour, but only for small cost-to-benet ratios.
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