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Abstract 
In this paper, we present “Embryo”, a fully decentralized 
service management framework inspired by morphogenesis and 
capable of installing components and modifying the topology 
of a peer-to-peer (P2P) interaction overlay network so as to 
meet the needs of the majority of all participating peers. Co-
operation is an emergent property of the self-organisation 
process, which is underpinned by purely “selfish” decision-
making based on incomplete information gathered through 
gossiping (local messaging). We provide a detailed description 
of the local reasoning loop governing the behavior of individual 
peers, as well as Monte Carlo simulation results that 
demonstrate the system’s ability to converge to a stable state in 
which most peers have direct access to all the components they 
require via one of their first neighbors.  

Introduction 
The last few years have seen a huge number of papers on 

so-called “complex networks” in both natural (e.g. social, 
ecological, genetic) and artificial (e.g. power grid, 
communication) systems [1]. The main reason for the 
“vitality” of the field is arguably that many scientists have 
come to realise that the combination of graph theory and 
complexity science could provide them with powerful tools, 
provided that the specific problem they are trying to solve is 
translated into a set of vertices/nodes connected by 
edges/links. To a large extent, whether the nodes are genes, 
species or routers and the links chemical reactions, predator-
prey interactions or fibre optic cables can be considered as 
irrelevant when the system is described as a complex network, 
which makes the associated investigation techniques very 
widely useful indeed. 

It has been argued however that the dynamical properties of 
complex networks have been somewhat neglected and that 
maybe too much emphasis was being put on descriptive 
analysis (e.g. the search for power laws [2]). It is a fact that 
the mechanisms leading to the emergence of the various 
network structures have not always been studied in 
appropriate detail, and that some fundamental aspects of 
network growth, evolution and decay have yet to be explored. 
To some extent, the influence of dynamic node properties on 
network genesis is the focus of this paper.  

Understanding the “history” of networked systems (i.e. of 
how they came to exhibit a particular structure) is of particular 
significance in the case of overlays, i.e. virtual or logical 
networks superimposed on (and usually not paralleling) the 
underlying physical infrastructure. Indeed, being “immaterial” 

entities, overlays can reorganise themselves very quickly and 
easily, potentially resulting in macroscopic topological 
changes occurring over a short period of time. Since in many 
cases, rewiring in overlays is based exclusively on locally 
available information and only involves P2P interactions, 
understanding how a given structure can emerge requires 
careful examination of the local rules governing decision 
making and/or information sharing. If the objective is to build 
an overlay network to serve a particular purpose, then the 
problem becomes to engineer those rules so as to generate and 
maintain a desirable configuration.  

Some remarkable work has recently been done in this area 
by Jelasity and Babaoglu [3]. These authors propose a fully 
decentralised, gossip-based rewiring method (christened “T-
Man”) to organise a vast set of nodes so that each one of them 
rapidly “migrates” to the correct place in the whole (initially 
random) web of relationships. In T-Man, the “correct place” is 
entirely determined from the start by some static, node-
specific information (which can be assimilated to a unique ID 
in an addressing system). There are many situations however 
in which the local property that the self-organising process is 
concerned with will simply not be a constant, due to 
individual elements changing all or part of their characteristics 
at the same time that the web of interactions is being 
reconfigured. 

This problem is very similar to that found in morphogenesis 
(biological development), where individual stem-cells 
simultaneously differentiate (i.e. specialise) and move in space 
(equivalent to rewiring in a network) until cells of the right 
type occupy the right location in the developing organism. 
Indications are that the type of each cell is not assigned from 
the onset, but that differentiation is the result of signalling: in 
effect, neighbours influence each other’s “choice” through a 
dynamic web of positive and negative feedbacks, the structure 
of which varies due to physical relocation of individual cells 
[4]. 

We used this aspect of the developmental process as a 
source of inspiration because we find it to share many 
characteristics with co-operative peer-to-peer (P2P) service 
provision, a type of application that is very different from 
content-sharing, as it is typically characterised by lower 
diversity (there are fewer different service components than 
there are unique files in a typical file-sharing community) and 
more subtle interaction patterns (peer activity isn’t limited to 
propagating queries and uploading/downloading content). 
Note that biologically inspired approaches have been applied 
to content distribution by other authors (see e.g. [5]), but that 
this problem is outside the scope of our paper. 
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In P2P service provision, components are distributed across 
a collection of processing nodes, each of them hosting only a 
sub-set of all services locally and relying on different nodes to 
satisfy other needs, via remote access. In terms of the 
developmental biology metaphor, deciding which service to 
host is equivalent to differentiation (with the same complex, 
non-deterministic nature, due to the quality of a choice being 
primarily a function of other units’ decisions), while 
identifying and selecting suitable providers through rewiring 
of the overlay network is somewhat similar to physical 
migration. 

Motivation and related work 
The service management framework presented in this paper 

is motivated by the need for autonomic (self-managing) 
solutions that support future service component-based 
systems. Two areas where such autonomic solutions are 
required include Web Services and Pervasive Computing. 

Web Services [6, 7] encapsulate both a technology and an 
industry trend towards distributed, component-based business 
solutions, where an application is realised by linking many 
individual services together into complicated workflows and 
higher-level composite services. 

Related to the Web Services domain is the Open Grid 
Services Architecture (OGSA) architecture that is being 
developed by the Global Grid Forum (GGF). The aspiration of 
this work is to support the distributed interaction and 
interoperability of large numbers of component services in 
order to meet the needs of users, especially in the eCommerce 
and eScience domains [8]. Some of the technical challenges 
arising in realising such solutions are highlighted in Ian 
Foster’s seminal paper “The Physiology of the Grid” [9]. 

Pervasive Computing is similarly a combination of an 
overarching vision [9], industry trends and supporting 
underpinning technologies, and is of sufficient importance to 
merit its own journal [11]. The vision here is that of huge 
numbers of communicating devices embedded into the 
physical fabric of everyday life, all of which need to be 
marshaled to provide services effectively and efficiently. An 
interesting example of an adaptive approach to realising a 
service provision framework in a pervasive computing context 
is given in [12, 13]. 

Taken together, these technology trends provide huge 
opportunities, but they also exacerbate problems which 
already plague ICT systems, namely the complexity of such 
systems arising from huge numbers of interacting component 
parts and the cost of deploying and managing the behaviour of 
such systems. IBM have probably captured the challenges 
most clearly and succinctly by launching the Autonomic 
Computing initiative and associated challenges [14]. 

Given that future applications and services will almost 
certainly be realised by coordinating the actions of relatively 
fine-grained component services, the question arises as to how 
this might be achieved. Clearly the component services need 
to be encouraged to cooperate together to provide higher-level 
services, and given the envisaged scale and complexity, much 
of this cooperation needs to be inherent, or “engineered into”, 
the underlying system as self-organising principles. This paper 
presents a solution that is a step along that path. 

The need for self-managing approaches for Web Services 
has been acknowledged by the Open Grid Services 
Architecture (OGSA) in their stated objectives for “self-
management services” and “service level managers” but it is 
recognised that this work is at an early stage and is currently 
more aspirational than actual [8]. The approach currently 
being taken is clearly motivated by that advocated by IBM as 
the “autonomic management” control loop [15] - in essence 
this relies on a “generic control loop pattern” comprising 
monitoring, analysis, projection and action phases [8]. While 
this pattern will clearly form an important element in many 
autonomic systems, in this paper we advocate autonomic 
approaches that are more “inherent” in the design and 
behaviour of the system as a whole. This has the additional 
benefit of producing a more lightweight architecture. 

In fact our approach is much more closely allied with the 
techniques and algorithms arising from a rather different 
community whose research is sometimes labelled as “self*” 
and often draws upon highly interdisciplinary concepts and 
models, such as biologically inspired autonomic solutions [16, 
17]. Of particular interest to us is the work of Babaoglu who 
has drawn heavily on biological inspiration to realise a 
number of highly effective self-organised solutions to P2P 
data storage and routing, such as T-Man [3]. This and related 
work provides decentralised solutions and algorithms that are 
capable of maintaining reliable “overlay networks” over 
which service can be delivered, even when many component 
nodes may be individually unreliable [18]. 

This paper builds on solutions such as those advocated by 
T-Man, using similar self-organising principles to maintain an 
overlay network, but also allows individual nodes (service 
providers/consumers) to dynamically change their “type” in 
response to perceived demand in a fashion that provides useful 
autonomic features that support desirable system-level 
behaviour. While much of the existing research has focussed 
on data sharing over P2P overlay networks [19, 20], our focus 
is rather on the provision of a richer set of services via an 
overlay network that helps coordinate the cooperative 
behaviour of many individual service components. In this 
sense it is more closely related to the Chameleon system for 
self-organised and decentralised P2P web services [21]. 

Finally, we should stress that ultimate aspirations of both 
the Self* and Web Service research communities are in fact 
quite closely aligned. In practice we expect the real benefit 
will be most effectively realised when solutions such as those 
presented in this paper begin to be combined with those 
arising from initiatives such as the Open Grid Services 
Architecture in a truly interdisciplinary fashion. 

Basic Principles 
Like T-Man, Embryo uses exclusively gossiping to 

propagate information throughout the network and individual 
nodes can choose to swap neighbours based on whatever they 
learn about their counterparts through this process. Unlike in 
T-Man, they do not select neighbours based on a static 
identifier, but by trying to establish a set of symbiotic 
relationships with partners whose “specialty” complements 
their own at the time when the link is created. Because 
individual nodes can subsequently choose to stop hosting a 
given service and start hosting another (i.e. change type), their 
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relationships can become unsuitable which will eventually 
initiate a rewiring process. These dynamics, resulting from 
multiple nodes changing type and neighbourhood links 
concurrently, are very analogous to those found in 
morphogenetic systems.  

For simplicity, even though these limitations would 
probably not apply as strictly in any real co-operative P2P 
system, Embryo cells are assumed to host only one service at 
a time (i.e. they cannot simultaneously perform several 
functions) and to have a fixed maximum degree (i.e. they 
cannot create additional links, meaning that establishing a new 
connection requires terminating another one). We also make 
the implicit assumption that link cost and/or capacity is 
homogeneous throughout the system, and so that rewiring of 
the overlay doesn’t in any way affect performance (i.e. two 
nodes hosting the same service are equally capable of 
providing that service to any other peer).. 

The local reasoning loop is similar to the one we used in 
previous work [22]. Whenever a node requires a service that it 
is not hosting itself, it first determines if it already knows a 
provider. If it does, it just sends a request to this particular 
neighbour. If it doesn’t (or if the known provider fails to 
provide the service due to having changed type since the link 
was established) the originator of the request tries to identify 
an alternative provider. Unlike in our previous work however, 
this is not done by broadcasting a request, but by searching a 
locally kept stack of “adverts”. 

Adverts form the basis for the gossiping system of Embryo. 
Basically, every time that a node fails to identify a suitable 
provider, it prepares an advert specifying its own 
identification, which service is needed and which one it can 
provide in return (i.e. its present type). Adverts are 
periodically exchanged between neighbours, and propagated 
for a fixed amount of time (as in many P2P systems, this 
“time-to-live” mechanism is used to stop traffic from 
increasing indefinitely, by ensuring that outdated requests are 
discarded). Before forwarding adverts, every node keeps a 
local copy, building itself a partial but expanding and 
regularly updated picture of the offer and demand throughout 
the system (the adverts stack). 

When searching for a provider, a node sequentially 
examines the adverts (most recently received first), looking 
for one that contains a requests for its own current type and 
offers the service that it needs in return. If such an advert is 
found, the node contacts its poster and a handshake procedure 
is initiated, which will only succeed if: 

• Both nodes still have symmetrical needs (i.e. the poster 
hasn’t changed type or found another provider since the advert 
was created). 

• Both nodes have a spare (i.e. currently unallocated) or 
useless (i.e. connected to a peer that doesn’t provide a 
necessary service) link. 

If it does, the new co-operative link is created. 
If a node consistently fails to identify a provider for a 

particular service, it may choose to take the radical action of 
discontinuing the service that it is currently hosting and 
replace it with the one for which it has not been able to find a 
“collaborator”. This obviously creates a crisis for the node and 
for its neighbours, as it instantly makes all existing symbiotic 
links obsolete (since the node that has just changed type will 
no longer be capable of providing the service for which they 

were established, making the relationship useless for its 
partners). The underlying assumption is that this crisis can and 
will be resolved by a cascade of other modifications (of the 
overlay’s topology and/or of individual nodes’ specialty), and 
that the change of type will contribute to increase availability 
of the incriminated service. 

The key difference between Embryo and T-Man is 
therefore that in the former, the self-organisation process 
involves both rewiring and modification of local properties. In 
other words: a node can migrate towards a location in the 
network where its current type is needed, change type in an 
attempt to turn itself into a kind of unit more appropriate to its 
current location, or even combine both procedures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Illustration of how “rewiring” and “differentiation” 
processes can lead to the same target configuration (A) and 
potentially problematic initial conditions (B and C). 

 
Figure 1a illustrates, in a particularly trivial case, how the 

two processes can produce the same result. If the system was 
managed exclusively via T-Man “rewiring”, it could only 
follow the left-hand path, whilst if it was relying on 
differentiation only, as in our own previous work [23, 24], it 
could only follow the right-hand path. The advantage of being 
able to combine both methods as in Embryo is made clear by 
the fact that, had the initial configuration been the one shown 
in fig. 1b, it would have been impossible to reach the target by 
rewiring only. Similarly, if it had been 1c, type change alone 
would have been insufficient. 

Only with Embryo is it guaranteed that the exact target 
configuration can be reached from any of the initial 
configurations shown on fig. 1, and it is clear that the further 
the initial conditions are from the desired system state 
(topologically and/or in terms of node type distribution), the 
more potentially useful it is to be able to combine rewiring 
and differentiation. 

Detailed algorithm 
Our simulated implementation is based on a P2P 

architecture in which every node is expected to provide and 
request services to/from its counterparts. As a result, all units 
are currently governed by the same decision rules, even 
though it is relatively straightforward to introduce variants in 
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which parameter values (or the rules themselves) would be 
specific to an individual and reflect its unique constraints 
and/or requirements. 

Decision making 
In the present state of Embryo, every node is assumed to 

perform only one function at a time, i.e. it cannot 
simultaneously host/provide more than one set of services 
(assimilated to belonging to a specific “node type”). As a 
result, acquiring the ability to perform a new function requires 
changing type (which implies losing the ability to perform the 
previous one). However, this simplification was introduced 
for clarity only and is not a fundamental limitation of the 
proposed algorithm (qualitatively similar collective decision 
dynamics could be obtained even if every node was capable of 
performing several functions, i.e. belonging simultaneously to 
multiple types). 

The functions to which a node needs access are assumed to 
be completely identified locally (i.e. every participant 
“knows” its own needs). Whenever it requires a function 
performed, the node behaves as follows: 
• If it already knows (i.e. is connected through the overlay 

to) a provider, i.e. another node belonging to the right 
“type”, it sends a service request. 

• If it knows no provider (or if the provider fails to answer 
the request for whatever reason), it looks through its 
locally kept list of adverts to identify a suitable candidate 
and initiate contact (see “messaging”). 

• If it doesn’t find a compatible advert or if the handshake 
fails (for whatever reason, see “messaging” for details) it 
has 2 options: 

o prepare a new “advert” to offer a partnership (see 
“messaging”) 

o turn itself into the requested type and become its 
own provider. 

The last action is the basis of the specialization process. 
The decision by the node to turn itself into the requested type 
is probabilistic and is based on its perception of the 
corresponding function’s availability. The probability P of 
changing type obeys: 

P = 1-1/(1+(x/xc)α)  (1) 

where x is the number of failed requests for that particular 
service, decremented (incremented) by one at each successful 
(unsuccessful) attempt, and re-initialised to zero if the node 
turns itself into the corresponding type, and xc and ! are 
parameters. The choice of function is arbitrary and another 
could have been used instead (preliminary results only suggest 
that it should be a sigmoid, which confirms intuition for those 
familiar with similarly self-organising systems found in 
nature). For the purpose of the proof-of-concept simulations, 
we used ! = 2 and xc = 4N (where N is the number of types). 

We have also experimented with variants in which the 
probability that a node changes type also decreases with the 
number of such “metamorphoses” that it has undergone 
already. For that purpose, we used the following 
transformation from P into P*: 

P* = P e−βyN    (2) 

where y is the number of previous type changes, N is the total 
number of types and " is a (positive) parameter. However, to 
facilitate interpretation of the results, this modification was 
de-activated in the version used for the simulations. 

Messaging 
Embryo relies on gossiping along co-operative links in the 

overlay network to propagate information about system state. 
Every node keeps a local list of the so called “adverts” that 
have reached it, indexed first by the function that they offer, 
second by their “age” (newest on top). An advert contains 4 
distinct pieces of information: 
• The type of the sender at the time when the advert was 

generated (i.e. the service/function on offer) 
• The type/function requested in exchange (i.e. the service 

needed by the sender at the time when the advert was 
generated) 

• The unique ID of the sender (e.g. an IP address or 
computer name) 

• A timestamp 
At irregular intervals (probabilistic decision), a node opens 

its “inbox”, where new incoming messages are stored between 
inspections. It is a rule that, when opening an advert message, 
the recipient immediately checks whether the local list already 
contains an entry from the same provenance. If it does and the 
new advert’s timestamp designates it as more recent (which 
isn’t necessarily the case, as a newer advert could have arrived 
first if following a different gossiping route), it replaces the 
older one. As a result, there can never be more than one entry 
per node (sender) in the local list of adverts. 

Whenever a node receives an advert that modifies its own 
local list (i.e. new provenance or new offer/request from an 
already identified source), it also creates a copy in its 
“outbox”. The content of the outbox is forwarded to the 
node’s neighbours (in the co-operative overlay network), also 
at irregular intervals (probabilistic decision). Constraints can 
be imposed on the number of messages that can be sent to 
every neighbour in order to accommodate link capacity. Also, 
a time limit can be added so that possibly “outdated” adverts 
do not unnecessarily clog the network. 

When in need of a service for which it either knows no 
provider or has failed to contact it, a node will look through its 
locally maintained list of adverts. If it finds one with the right 
characteristics, i.e. if: 
• The service on offer is the one that has just been identified 

as being currently unavailable (i.e. the one that triggered 
consultation of the adverts list) 

• The service requested in exchange matches its own type 
(i.e. it can honour its part of the deal) 

then the node makes an attempt at contacting the sender of 
that particular advert. 

Assuming that this attempt is successful, a handshake 
procedure follows whereby both nodes examine the 
opportunity of forging a new cooperative relationship. This 
will succeed only if: 
• The sender of the advert hasn’t changed type since it was 

sent (and so is still capable of providing the service 
advertised). 

• It still hasn’t identified another provider for the service 
hosted by the initiator of the handshake. 
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Other factors would probably need to be taken into 
consideration in a real implementation (e.g. QoS level, service 
charge…) but these are not modelled in the proof-of-concept 
simulation. Note that, according to this procedure, a node will 
never maintain more than N-1 links at a time (i.e. the number 
of services that it cannot provide to itself), but see the 
discussion about “volunteering” in conclusions and future 
work. 

If the handshake fails (i.e. communication with the sender 
was successfully established but one or both of the nodes 
rejected creating a co-operative link), then the adverts is 
identified as obsolete and cleared from the local list 
maintained by the initiator of the negotiation. In this case, the 
requesting node resumes its search through the list of adverts 
offering the desired service until either it reaches the last 
advert in the list (newest first) or finds a suitable provider (i.e. 
handshake succeeds). The failure to establish a workable 
partnership has two possible causes: 
• A service imbalance (i.e. there isn’t any node hosting the 

required service that needs access to the function 
corresponding to the type of the node trying to initiate a 
new co-operative link), in which case the best corrective 
action to take is to change type. 

• The local information about availability is inaccurate (out-
of-date or somehow corrupted) or incomplete, in which 
case the best corrective action is to (re-)advertise the 
desired co-operative relationship, so that potential 
candidates that are either unknown or wrongly identified 

as unsuitable (i.e. assumed to host a different service or 
not to be “interested” in the initiator’s type/offer) become 
aware of the opportunity. 

The decision to follow either course of action is made based 
on exp. (1), whereby the probability of choosing the 
“metamorphosis” option increases with the number of failed 
attempts (which can be interpreted as an indication that 
service imbalance, not lack of information, is indeed the cause 
of the repeated inability to forge a partnership). 

Results 
We used Monte Carlo simulation to gather evidence about 

the overall efficiency (speed, scalability, robustness…) of 
Embryo. We do not have space here to present all of our data, 
so we will focus on showing how system behaviour is affected 
by the value of the two main parameters, i.e. population size 
and number of services (N). 

All results are for 100 independent realisations. The 
simulation stops when all peers are either “fully satisfied” (i.e. 
they have one first neighbour of every type different from 
their own) or belong to a disconnected sub-graph that cannot 
reach steady state (size <N). Cases in which this condition 
was not met before reaching an arbitrary time limit were only 
encountered in networks of less than 64 peers in the N = 17 
scenario and were discarded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Evolution of four key variables as a function of population size for N = 9 types or services. (A) Time to steady state. (B) 
Peak traffic. (C) Number of successful handshakes per node. (D) Number of metamorphoses per node. Error bars indicate standard 
deviation
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Note that since our objective is to demonstrate the 
fundamental properties of the algorithm and present generic 
trends revealed by the simulation, units are arbitrary (e.g. 
“time” is simply the number of simulation steps, “traffic” is 
the number of adverts being propagated per time-step). For 
the same reason, we focus on average values, though we also 
provide the standard deviation as an indication of variability. 
A more detailed statistical analysis would only be justified if 
the data consisted in experimental measurements, or if we 
had simulated system operation at a considerably lower level 
(e.g. by emulating realistic communication protocols 
featuring the equivalent of latency, packet loss etc.). 

Figure 2 shows the evolution of some key variables, 
namely the time to reach steady state (A), the peak traffic 
(B), the number of successful handshakes (C) and the 
number of metamorphoses (D) for N = 9 services and a 
variable number of peers. Clearly, the time to reach steady 
state is a logarithmic function of the population size, while 
the peak traffic (maximum number of adverts being 
propagated per time unit) grows linearly with the value of 
that same parameter. The number of successful handshakes 
per peer (corresponding to rewiring of the overlay) only 
increases very slowly with population size, while the number 
of metamorphoses (corresponding to type change) appears to 
obey an inverse power law. 

These trends all emphasize Embryo’s scalability with 
respect to population size. In particular, the drop in the 

average number of metamorphoses per peer (likely to be the 
most “costly” operation) seems to indicate that our algorithm 
would actually perform better in large systems than in small 
ones. 

As for the influence of the number of services, we ran a 
number of tests with N = 17. The results are shown in figure 
3. We discarded the results for 32 peers as this proved to be a 
pathological case, with less than 50% of simulation runs 
converging before reaching the time limit. We attribute this 
fact to the comparatively low population size / number of 
services ratio (which implies that the only steady state 
involves one fully connected graph of 17 peers). Otherwise, 
the information shown on fig. 3 is identical to the one shown 
on fig. 2. 

Overall, scalability with respect to the number of services 
is confirmed, though the noise level is comparatively high for 
the time to reach stable state (fig. 3a). For intermediate to 
large population sizes, the time to converge doesn’t appear to 
increase much compared with the N = 9 scenario, which is in 
accordance with the logarithmic trend. As for peak traffic it 
appears almost unaffected by the number of services. 
Interestingly, though higher in absolute terms, the number of 
successful handshakes per peer (fig. 3c) now decreases with 
population size, which again tends to indicate that 
performance actually increases as the system becomes larger. 

.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Evolution of four key variables as a function of population size for N = 17 types or services. (A) Time to steady state. (B) 
Peak traffic. (C) Number of successful handshakes per node. (D) Number of metamorphoses per node. Error bars indicate standard 
deviation. 
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Conclusions and future work 
All our results seem to designate Embryo as a suitable 

design philosophy to build an efficient and reliable P2P 
service provision infrastructure, especially in large and 
unpredictable resource-sharing communities. We argue that 
this makes our algorithm a strong candidate for autonomic 
deployment and maintenance of ICT systems at the interface 
between Service-Oriented Architecture (SOA) and Grid 
computing. This however would require taking into account 
some additional characteristics that, for the sake of clarity 
and completeness, were not included in the present study.  

For example, the procedure for establishing a relationship 
described in this paper implies reciprocity/symmetry, in the 
sense that a co-operative link is only established if each 
partner decides that it is in its own best interest to choose the 
other as a provider for a required service. On the contrary, a 
node can change type (which renders all of its co-operative 
relationships immediately obsolete) or terminate a link 
without consulting (or even notifying) its counterpart(s). This 
simultaneously offers a guarantee against cheating (since any 
node can unilaterally decide to withdraw from a relationship 
that it judges unsatisfactory) and makes it obvious that 
“selfishness” is not an obstacle to the self-organisation 
process. 

We have however experimented with a modified version 
of the decision and messaging infrastructure in which the 
initiator of the handshake procedure may accept to perform a 
function for another node even if it has no personal interest 
in doing so (we call this procedure “volunteering”). In this 
version, we assume that a node is able to provide a service to 
more peers than it has needs (i.e. it has more links than the 
minimum necessary to meet all of its own requirements). 
Preliminary findings suggest that such “volunteering” can be 
highly beneficial to the community as it appears to speed up 
the self-organisation process and leave fewer or no nodes 
“excluded” from the final (stable) overlay. 

Finally, in biological development, the “preferred 
neighbourhood” varies from one cell type to the other, 
leading to the formation of functional organ and tissues, 
which are basically specialised structures made of a an 
aggregation of cells belonging to a small sub-set of all 
possible types. Interestingly, this is also the case in P2P 
service provision, as not all peers need access to all services, 
and so the “homogeneous full coverage” scenario described 
in this paper is obviously a simplification. The more complex 
collective dynamics likely to emerge in an extended version 
of Embryo taking into account these various other aspects 
will be the subject of future work. 
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