
“Embryo”: an autonomic co-operative service management framework

Fabrice Saffre1 and Mark Shackleton1

1 BT Group plc, Pervasive ICT Research Centre, Adastral Park, Martlesham Heath, Ipswich IP5 3RE, United Kingdom
fabrice.saffre@bt.com

Abstract
In this paper, we present “Embryo”, a fully decentralized
service management framework inspired by morphogenesis and
capable of installing components and modifying the topology
of a peer-to-peer (P2P) interaction overlay network so as to
meet the needs of the majority of all participating peers. Co-
operation is an emergent property of the self-organisation
process, which is underpinned by purely “selfish” decision-
making based on incomplete information gathered through
gossiping (local messaging). We provide a detailed description
of the local reasoning loop governing the behavior of individual
peers, as well as Monte Carlo simulation results that
demonstrate the system’s ability to converge to a stable state in
which most peers have direct access to all the components they
require via one of their first neighbors.

Introduction
The last few years have seen a huge number of papers on

so-called “complex networks” in both natural (e.g. social,
ecological, genetic) and artificial (e.g. power grid,
communication) systems [1]. The main reason for the
“vitality” of the field is arguably that many scientists have
come to realise that the combination of graph theory and
complexity science could provide them with powerful tools,
provided that the specific problem they are trying to solve is
translated into a set of vertices/nodes connected by
edges/links. To a large extent, whether the nodes are genes,
species or routers and the links chemical reactions, predator-
prey interactions or fibre optic cables can be considered as
irrelevant when the system is described as a complex network,
which makes the associated investigation techniques very
widely useful indeed.

It has been argued however that the dynamical properties of
complex networks have been somewhat neglected and that
maybe too much emphasis was being put on descriptive
analysis (e.g. the search for power laws [2]). It is a fact that
the mechanisms leading to the emergence of the various
network structures have not always been studied in
appropriate detail, and that some fundamental aspects of
network growth, evolution and decay have yet to be explored.
To some extent, the influence of dynamic node properties on
network genesis is the focus of this paper.

Understanding the “history” of networked systems (i.e. of
how they came to exhibit a particular structure) is of particular
significance in the case of overlays, i.e. virtual or logical
networks superimposed on (and usually not paralleling) the
underlying physical infrastructure. Indeed, being “immaterial”

entities, overlays can reorganise themselves very quickly and
easily, potentially resulting in macroscopic topological
changes occurring over a short period of time. Since in many
cases, rewiring in overlays is based exclusively on locally
available information and only involves P2P interactions,
understanding how a given structure can emerge requires
careful examination of the local rules governing decision
making and/or information sharing. If the objective is to build
an overlay network to serve a particular purpose, then the
problem becomes to engineer those rules so as to generate and
maintain a desirable configuration.

Some remarkable work has recently been done in this area
by Jelasity and Babaoglu [3]. These authors propose a fully
decentralised, gossip-based rewiring method (christened “T-
Man”) to organise a vast set of nodes so that each one of them
rapidly “migrates” to the correct place in the whole (initially
random) web of relationships. In T-Man, the “correct place” is
entirely determined from the start by some static, node-
specific information (which can be assimilated to a unique ID
in an addressing system). There are many situations however
in which the local property that the self-organising process is
concerned with will simply not be a constant, due to
individual elements changing all or part of their characteristics
at the same time that the web of interactions is being
reconfigured.

This problem is very similar to that found in morphogenesis
(biological development), where individual stem-cells
simultaneously differentiate (i.e. specialise) and move in space
(equivalent to rewiring in a network) until cells of the right
type occupy the right location in the developing organism.
Indications are that the type of each cell is not assigned from
the onset, but that differentiation is the result of signalling: in
effect, neighbours influence each other’s “choice” through a
dynamic web of positive and negative feedbacks, the structure
of which varies due to physical relocation of individual cells
[4].

We used this aspect of the developmental process as a
source of inspiration because we find it to share many
characteristics with co-operative peer-to-peer (P2P) service
provision, a type of application that is very different from
content-sharing, as it is typically characterised by lower
diversity (there are fewer different service components than
there are unique files in a typical file-sharing community) and
more subtle interaction patterns (peer activity isn’t limited to
propagating queries and uploading/downloading content).
Note that biologically inspired approaches have been applied
to content distribution by other authors (see e.g. [5]), but that
this problem is outside the scope of our paper.

Artificial Life XI 2008 513

mailto:fabrice.saffre@bt.com

In P2P service provision, components are distributed across
a collection of processing nodes, each of them hosting only a
sub-set of all services locally and relying on different nodes to
satisfy other needs, via remote access. In terms of the
developmental biology metaphor, deciding which service to
host is equivalent to differentiation (with the same complex,
non-deterministic nature, due to the quality of a choice being
primarily a function of other units’ decisions), while
identifying and selecting suitable providers through rewiring
of the overlay network is somewhat similar to physical
migration.

Motivation and related work
The service management framework presented in this paper

is motivated by the need for autonomic (self-managing)
solutions that support future service component-based
systems. Two areas where such autonomic solutions are
required include Web Services and Pervasive Computing.

Web Services [6, 7] encapsulate both a technology and an
industry trend towards distributed, component-based business
solutions, where an application is realised by linking many
individual services together into complicated workflows and
higher-level composite services.

Related to the Web Services domain is the Open Grid
Services Architecture (OGSA) architecture that is being
developed by the Global Grid Forum (GGF). The aspiration of
this work is to support the distributed interaction and
interoperability of large numbers of component services in
order to meet the needs of users, especially in the eCommerce
and eScience domains [8]. Some of the technical challenges
arising in realising such solutions are highlighted in Ian
Foster’s seminal paper “The Physiology of the Grid” [9].

Pervasive Computing is similarly a combination of an
overarching vision [9], industry trends and supporting
underpinning technologies, and is of sufficient importance to
merit its own journal [11]. The vision here is that of huge
numbers of communicating devices embedded into the
physical fabric of everyday life, all of which need to be
marshaled to provide services effectively and efficiently. An
interesting example of an adaptive approach to realising a
service provision framework in a pervasive computing context
is given in [12, 13].

Taken together, these technology trends provide huge
opportunities, but they also exacerbate problems which
already plague ICT systems, namely the complexity of such
systems arising from huge numbers of interacting component
parts and the cost of deploying and managing the behaviour of
such systems. IBM have probably captured the challenges
most clearly and succinctly by launching the Autonomic
Computing initiative and associated challenges [14].

Given that future applications and services will almost
certainly be realised by coordinating the actions of relatively
fine-grained component services, the question arises as to how
this might be achieved. Clearly the component services need
to be encouraged to cooperate together to provide higher-level
services, and given the envisaged scale and complexity, much
of this cooperation needs to be inherent, or “engineered into”,
the underlying system as self-organising principles. This paper
presents a solution that is a step along that path.

The need for self-managing approaches for Web Services
has been acknowledged by the Open Grid Services
Architecture (OGSA) in their stated objectives for “self-
management services” and “service level managers” but it is
recognised that this work is at an early stage and is currently
more aspirational than actual [8]. The approach currently
being taken is clearly motivated by that advocated by IBM as
the “autonomic management” control loop [15] - in essence
this relies on a “generic control loop pattern” comprising
monitoring, analysis, projection and action phases [8]. While
this pattern will clearly form an important element in many
autonomic systems, in this paper we advocate autonomic
approaches that are more “inherent” in the design and
behaviour of the system as a whole. This has the additional
benefit of producing a more lightweight architecture.

In fact our approach is much more closely allied with the
techniques and algorithms arising from a rather different
community whose research is sometimes labelled as “self*”
and often draws upon highly interdisciplinary concepts and
models, such as biologically inspired autonomic solutions [16,
17]. Of particular interest to us is the work of Babaoglu who
has drawn heavily on biological inspiration to realise a
number of highly effective self-organised solutions to P2P
data storage and routing, such as T-Man [3]. This and related
work provides decentralised solutions and algorithms that are
capable of maintaining reliable “overlay networks” over
which service can be delivered, even when many component
nodes may be individually unreliable [18].

This paper builds on solutions such as those advocated by
T-Man, using similar self-organising principles to maintain an
overlay network, but also allows individual nodes (service
providers/consumers) to dynamically change their “type” in
response to perceived demand in a fashion that provides useful
autonomic features that support desirable system-level
behaviour. While much of the existing research has focussed
on data sharing over P2P overlay networks [19, 20], our focus
is rather on the provision of a richer set of services via an
overlay network that helps coordinate the cooperative
behaviour of many individual service components. In this
sense it is more closely related to the Chameleon system for
self-organised and decentralised P2P web services [21].

Finally, we should stress that ultimate aspirations of both
the Self* and Web Service research communities are in fact
quite closely aligned. In practice we expect the real benefit
will be most effectively realised when solutions such as those
presented in this paper begin to be combined with those
arising from initiatives such as the Open Grid Services
Architecture in a truly interdisciplinary fashion.

Basic Principles
Like T-Man, Embryo uses exclusively gossiping to

propagate information throughout the network and individual
nodes can choose to swap neighbours based on whatever they
learn about their counterparts through this process. Unlike in
T-Man, they do not select neighbours based on a static
identifier, but by trying to establish a set of symbiotic
relationships with partners whose “specialty” complements
their own at the time when the link is created. Because
individual nodes can subsequently choose to stop hosting a
given service and start hosting another (i.e. change type), their

Artificial Life XI 2008 514

relationships can become unsuitable which will eventually
initiate a rewiring process. These dynamics, resulting from
multiple nodes changing type and neighbourhood links
concurrently, are very analogous to those found in
morphogenetic systems.

For simplicity, even though these limitations would
probably not apply as strictly in any real co-operative P2P
system, Embryo cells are assumed to host only one service at
a time (i.e. they cannot simultaneously perform several
functions) and to have a fixed maximum degree (i.e. they
cannot create additional links, meaning that establishing a new
connection requires terminating another one). We also make
the implicit assumption that link cost and/or capacity is
homogeneous throughout the system, and so that rewiring of
the overlay doesn’t in any way affect performance (i.e. two
nodes hosting the same service are equally capable of
providing that service to any other peer)..

The local reasoning loop is similar to the one we used in
previous work [22]. Whenever a node requires a service that it
is not hosting itself, it first determines if it already knows a
provider. If it does, it just sends a request to this particular
neighbour. If it doesn’t (or if the known provider fails to
provide the service due to having changed type since the link
was established) the originator of the request tries to identify
an alternative provider. Unlike in our previous work however,
this is not done by broadcasting a request, but by searching a
locally kept stack of “adverts”.

Adverts form the basis for the gossiping system of Embryo.
Basically, every time that a node fails to identify a suitable
provider, it prepares an advert specifying its own
identification, which service is needed and which one it can
provide in return (i.e. its present type). Adverts are
periodically exchanged between neighbours, and propagated
for a fixed amount of time (as in many P2P systems, this
“time-to-live” mechanism is used to stop traffic from
increasing indefinitely, by ensuring that outdated requests are
discarded). Before forwarding adverts, every node keeps a
local copy, building itself a partial but expanding and
regularly updated picture of the offer and demand throughout
the system (the adverts stack).

When searching for a provider, a node sequentially
examines the adverts (most recently received first), looking
for one that contains a requests for its own current type and
offers the service that it needs in return. If such an advert is
found, the node contacts its poster and a handshake procedure
is initiated, which will only succeed if:

• Both nodes still have symmetrical needs (i.e. the poster
hasn’t changed type or found another provider since the advert
was created).

• Both nodes have a spare (i.e. currently unallocated) or
useless (i.e. connected to a peer that doesn’t provide a
necessary service) link.

If it does, the new co-operative link is created.
If a node consistently fails to identify a provider for a

particular service, it may choose to take the radical action of
discontinuing the service that it is currently hosting and
replace it with the one for which it has not been able to find a
“collaborator”. This obviously creates a crisis for the node and
for its neighbours, as it instantly makes all existing symbiotic
links obsolete (since the node that has just changed type will
no longer be capable of providing the service for which they

were established, making the relationship useless for its
partners). The underlying assumption is that this crisis can and
will be resolved by a cascade of other modifications (of the
overlay’s topology and/or of individual nodes’ specialty), and
that the change of type will contribute to increase availability
of the incriminated service.

The key difference between Embryo and T-Man is
therefore that in the former, the self-organisation process
involves both rewiring and modification of local properties. In
other words: a node can migrate towards a location in the
network where its current type is needed, change type in an
attempt to turn itself into a kind of unit more appropriate to its
current location, or even combine both procedures.

Fig. 1. Illustration of how “rewiring” and “differentiation”
processes can lead to the same target configuration (A) and
potentially problematic initial conditions (B and C).

Figure 1a illustrates, in a particularly trivial case, how the

two processes can produce the same result. If the system was
managed exclusively via T-Man “rewiring”, it could only
follow the left-hand path, whilst if it was relying on
differentiation only, as in our own previous work [23, 24], it
could only follow the right-hand path. The advantage of being
able to combine both methods as in Embryo is made clear by
the fact that, had the initial configuration been the one shown
in fig. 1b, it would have been impossible to reach the target by
rewiring only. Similarly, if it had been 1c, type change alone
would have been insufficient.

Only with Embryo is it guaranteed that the exact target
configuration can be reached from any of the initial
configurations shown on fig. 1, and it is clear that the further
the initial conditions are from the desired system state
(topologically and/or in terms of node type distribution), the
more potentially useful it is to be able to combine rewiring
and differentiation.

Detailed algorithm
Our simulated implementation is based on a P2P

architecture in which every node is expected to provide and
request services to/from its counterparts. As a result, all units
are currently governed by the same decision rules, even
though it is relatively straightforward to introduce variants in

Artificial Life XI 2008 515

which parameter values (or the rules themselves) would be
specific to an individual and reflect its unique constraints
and/or requirements.

Decision making
In the present state of Embryo, every node is assumed to

perform only one function at a time, i.e. it cannot
simultaneously host/provide more than one set of services
(assimilated to belonging to a specific “node type”). As a
result, acquiring the ability to perform a new function requires
changing type (which implies losing the ability to perform the
previous one). However, this simplification was introduced
for clarity only and is not a fundamental limitation of the
proposed algorithm (qualitatively similar collective decision
dynamics could be obtained even if every node was capable of
performing several functions, i.e. belonging simultaneously to
multiple types).

The functions to which a node needs access are assumed to
be completely identified locally (i.e. every participant
“knows” its own needs). Whenever it requires a function
performed, the node behaves as follows:
• If it already knows (i.e. is connected through the overlay

to) a provider, i.e. another node belonging to the right
“type”, it sends a service request.

• If it knows no provider (or if the provider fails to answer
the request for whatever reason), it looks through its
locally kept list of adverts to identify a suitable candidate
and initiate contact (see “messaging”).

• If it doesn’t find a compatible advert or if the handshake
fails (for whatever reason, see “messaging” for details) it
has 2 options:

o prepare a new “advert” to offer a partnership (see
“messaging”)

o turn itself into the requested type and become its
own provider.

The last action is the basis of the specialization process.
The decision by the node to turn itself into the requested type
is probabilistic and is based on its perception of the
corresponding function’s availability. The probability P of
changing type obeys:

P = 1-1/(1+(x/xc)α) (1)

where x is the number of failed requests for that particular
service, decremented (incremented) by one at each successful
(unsuccessful) attempt, and re-initialised to zero if the node
turns itself into the corresponding type, and xc and ! are
parameters. The choice of function is arbitrary and another
could have been used instead (preliminary results only suggest
that it should be a sigmoid, which confirms intuition for those
familiar with similarly self-organising systems found in
nature). For the purpose of the proof-of-concept simulations,
we used ! = 2 and xc = 4N (where N is the number of types).

We have also experimented with variants in which the
probability that a node changes type also decreases with the
number of such “metamorphoses” that it has undergone
already. For that purpose, we used the following
transformation from P into P*:

P* = P e−βyN (2)

where y is the number of previous type changes, N is the total
number of types and " is a (positive) parameter. However, to
facilitate interpretation of the results, this modification was
de-activated in the version used for the simulations.

Messaging
Embryo relies on gossiping along co-operative links in the

overlay network to propagate information about system state.
Every node keeps a local list of the so called “adverts” that
have reached it, indexed first by the function that they offer,
second by their “age” (newest on top). An advert contains 4
distinct pieces of information:
• The type of the sender at the time when the advert was

generated (i.e. the service/function on offer)
• The type/function requested in exchange (i.e. the service

needed by the sender at the time when the advert was
generated)

• The unique ID of the sender (e.g. an IP address or
computer name)

• A timestamp
At irregular intervals (probabilistic decision), a node opens

its “inbox”, where new incoming messages are stored between
inspections. It is a rule that, when opening an advert message,
the recipient immediately checks whether the local list already
contains an entry from the same provenance. If it does and the
new advert’s timestamp designates it as more recent (which
isn’t necessarily the case, as a newer advert could have arrived
first if following a different gossiping route), it replaces the
older one. As a result, there can never be more than one entry
per node (sender) in the local list of adverts.

Whenever a node receives an advert that modifies its own
local list (i.e. new provenance or new offer/request from an
already identified source), it also creates a copy in its
“outbox”. The content of the outbox is forwarded to the
node’s neighbours (in the co-operative overlay network), also
at irregular intervals (probabilistic decision). Constraints can
be imposed on the number of messages that can be sent to
every neighbour in order to accommodate link capacity. Also,
a time limit can be added so that possibly “outdated” adverts
do not unnecessarily clog the network.

When in need of a service for which it either knows no
provider or has failed to contact it, a node will look through its
locally maintained list of adverts. If it finds one with the right
characteristics, i.e. if:
• The service on offer is the one that has just been identified

as being currently unavailable (i.e. the one that triggered
consultation of the adverts list)

• The service requested in exchange matches its own type
(i.e. it can honour its part of the deal)

then the node makes an attempt at contacting the sender of
that particular advert.

Assuming that this attempt is successful, a handshake
procedure follows whereby both nodes examine the
opportunity of forging a new cooperative relationship. This
will succeed only if:
• The sender of the advert hasn’t changed type since it was

sent (and so is still capable of providing the service
advertised).

• It still hasn’t identified another provider for the service
hosted by the initiator of the handshake.

Artificial Life XI 2008 516

Other factors would probably need to be taken into
consideration in a real implementation (e.g. QoS level, service
charge…) but these are not modelled in the proof-of-concept
simulation. Note that, according to this procedure, a node will
never maintain more than N-1 links at a time (i.e. the number
of services that it cannot provide to itself), but see the
discussion about “volunteering” in conclusions and future
work.

If the handshake fails (i.e. communication with the sender
was successfully established but one or both of the nodes
rejected creating a co-operative link), then the adverts is
identified as obsolete and cleared from the local list
maintained by the initiator of the negotiation. In this case, the
requesting node resumes its search through the list of adverts
offering the desired service until either it reaches the last
advert in the list (newest first) or finds a suitable provider (i.e.
handshake succeeds). The failure to establish a workable
partnership has two possible causes:
• A service imbalance (i.e. there isn’t any node hosting the

required service that needs access to the function
corresponding to the type of the node trying to initiate a
new co-operative link), in which case the best corrective
action to take is to change type.

• The local information about availability is inaccurate (out-
of-date or somehow corrupted) or incomplete, in which
case the best corrective action is to (re-)advertise the
desired co-operative relationship, so that potential
candidates that are either unknown or wrongly identified

as unsuitable (i.e. assumed to host a different service or
not to be “interested” in the initiator’s type/offer) become
aware of the opportunity.

The decision to follow either course of action is made based
on exp. (1), whereby the probability of choosing the
“metamorphosis” option increases with the number of failed
attempts (which can be interpreted as an indication that
service imbalance, not lack of information, is indeed the cause
of the repeated inability to forge a partnership).

Results
We used Monte Carlo simulation to gather evidence about

the overall efficiency (speed, scalability, robustness…) of
Embryo. We do not have space here to present all of our data,
so we will focus on showing how system behaviour is affected
by the value of the two main parameters, i.e. population size
and number of services (N).

All results are for 100 independent realisations. The
simulation stops when all peers are either “fully satisfied” (i.e.
they have one first neighbour of every type different from
their own) or belong to a disconnected sub-graph that cannot
reach steady state (size <N). Cases in which this condition
was not met before reaching an arbitrary time limit were only
encountered in networks of less than 64 peers in the N = 17
scenario and were discarded.

Fig. 2. Evolution of four key variables as a function of population size for N = 9 types or services. (A) Time to steady state. (B)
Peak traffic. (C) Number of successful handshakes per node. (D) Number of metamorphoses per node. Error bars indicate standard
deviation

A

0

5000

10000

15000

0 32 64 96 128 160 192 224 256 288 320 352 384 416

Population size

Ti
m

e
un

til
 s

ta
bl

e

C

0

4

8

12

16

0 32 64 96 128 160 192 224 256 288

Population size

H
an

ds
ha

ke
s

D

0

1

2

3

4

5

6

0 32 64 96 128 160 192 224 256 288 320 352 384 416

Population size

M
et

am
or

ph
os

es

B

0

2000

4000

6000

8000

0 32 64 96 128 160 192 224 256 288

Population size

Pe
ak

 tr
af

fic

Artificial Life XI 2008 517

Note that since our objective is to demonstrate the
fundamental properties of the algorithm and present generic
trends revealed by the simulation, units are arbitrary (e.g.
“time” is simply the number of simulation steps, “traffic” is
the number of adverts being propagated per time-step). For
the same reason, we focus on average values, though we also
provide the standard deviation as an indication of variability.
A more detailed statistical analysis would only be justified if
the data consisted in experimental measurements, or if we
had simulated system operation at a considerably lower level
(e.g. by emulating realistic communication protocols
featuring the equivalent of latency, packet loss etc.).

Figure 2 shows the evolution of some key variables,
namely the time to reach steady state (A), the peak traffic
(B), the number of successful handshakes (C) and the
number of metamorphoses (D) for N = 9 services and a
variable number of peers. Clearly, the time to reach steady
state is a logarithmic function of the population size, while
the peak traffic (maximum number of adverts being
propagated per time unit) grows linearly with the value of
that same parameter. The number of successful handshakes
per peer (corresponding to rewiring of the overlay) only
increases very slowly with population size, while the number
of metamorphoses (corresponding to type change) appears to
obey an inverse power law.

These trends all emphasize Embryo’s scalability with
respect to population size. In particular, the drop in the

average number of metamorphoses per peer (likely to be the
most “costly” operation) seems to indicate that our algorithm
would actually perform better in large systems than in small
ones.

As for the influence of the number of services, we ran a
number of tests with N = 17. The results are shown in figure
3. We discarded the results for 32 peers as this proved to be a
pathological case, with less than 50% of simulation runs
converging before reaching the time limit. We attribute this
fact to the comparatively low population size / number of
services ratio (which implies that the only steady state
involves one fully connected graph of 17 peers). Otherwise,
the information shown on fig. 3 is identical to the one shown
on fig. 2.

Overall, scalability with respect to the number of services
is confirmed, though the noise level is comparatively high for
the time to reach stable state (fig. 3a). For intermediate to
large population sizes, the time to converge doesn’t appear to
increase much compared with the N = 9 scenario, which is in
accordance with the logarithmic trend. As for peak traffic it
appears almost unaffected by the number of services.
Interestingly, though higher in absolute terms, the number of
successful handshakes per peer (fig. 3c) now decreases with
population size, which again tends to indicate that
performance actually increases as the system becomes larger.

.

Fig. 3. Evolution of four key variables as a function of population size for N = 17 types or services. (A) Time to steady state. (B)
Peak traffic. (C) Number of successful handshakes per node. (D) Number of metamorphoses per node. Error bars indicate standard
deviation.

A

0

5000

10000

15000

20000

0 32 64 96 128 160 192 224 256 288

Population size

Ti
m

e
un

til
 s

ta
bl

e

B

0

2000

4000

6000

8000

0 32 64 96 128 160 192 224 256 288

Population size

P
ea

k
tr

af
fic

D

0

2

4

6

8

10

12

14

16

0 32 64 96 128 160 192 224 256 288

Population size

M
et

am
or

ph
os

es

C

0

10

20

30

40

50

60

0 32 64 96 128 160 192 224 256 288

Population size

Ha
nd

sh
ak

es

Artificial Life XI 2008 518

Conclusions and future work
All our results seem to designate Embryo as a suitable

design philosophy to build an efficient and reliable P2P
service provision infrastructure, especially in large and
unpredictable resource-sharing communities. We argue that
this makes our algorithm a strong candidate for autonomic
deployment and maintenance of ICT systems at the interface
between Service-Oriented Architecture (SOA) and Grid
computing. This however would require taking into account
some additional characteristics that, for the sake of clarity
and completeness, were not included in the present study.

For example, the procedure for establishing a relationship
described in this paper implies reciprocity/symmetry, in the
sense that a co-operative link is only established if each
partner decides that it is in its own best interest to choose the
other as a provider for a required service. On the contrary, a
node can change type (which renders all of its co-operative
relationships immediately obsolete) or terminate a link
without consulting (or even notifying) its counterpart(s). This
simultaneously offers a guarantee against cheating (since any
node can unilaterally decide to withdraw from a relationship
that it judges unsatisfactory) and makes it obvious that
“selfishness” is not an obstacle to the self-organisation
process.

We have however experimented with a modified version
of the decision and messaging infrastructure in which the
initiator of the handshake procedure may accept to perform a
function for another node even if it has no personal interest
in doing so (we call this procedure “volunteering”). In this
version, we assume that a node is able to provide a service to
more peers than it has needs (i.e. it has more links than the
minimum necessary to meet all of its own requirements).
Preliminary findings suggest that such “volunteering” can be
highly beneficial to the community as it appears to speed up
the self-organisation process and leave fewer or no nodes
“excluded” from the final (stable) overlay.

Finally, in biological development, the “preferred
neighbourhood” varies from one cell type to the other,
leading to the formation of functional organ and tissues,
which are basically specialised structures made of a an
aggregation of cells belonging to a small sub-set of all
possible types. Interestingly, this is also the case in P2P
service provision, as not all peers need access to all services,
and so the “homogeneous full coverage” scenario described
in this paper is obviously a simplification. The more complex
collective dynamics likely to emerge in an extended version
of Embryo taking into account these various other aspects
will be the subject of future work.

References
[1] S. H. Strogatz, “Exploring complex networks” Nature

410, 268-276 (2001).
[2] A.-L. Barabasi, R. Albert. “Emergence of scaling in

random networks” Science 286, 509-512 (1999).
[3] M. Jelasity, O. Babaoglu “T-Man: Gossip-based overlay

topology management” In: Proceedings of the 3rd

International Workshop on Engineering Self-Organising
Applications, Utrecht (2005).

[4] S. Kumar, P.J. Bentley. (eds.) “On Growth, Form and
Computers” Elsevier Academic Press, London (2003).

[5] J.-J. Suh, S. G. Quan, S.-H. Park, Y. Y. Kim, “Adaptive
File Distribution in P2P Network Using Ant Colony
Optimization for Smart Home Environment”
International Conference on Hybrid Information
Systems, Nov. 2006.

[6] Michael Stal, “Web services: beyond component-based
computing” Communications of the ACM, vol. 45, no.
10, Oct. 2002.

[7] L. F. Cabrera, C. Kurt, D. Box. “An Introduction to the
Web Services Architecture and Its Specifications”
Version 2.0, Oct. 2004.
http://msdn.microsoft.com/webservices/webservices/und
erstanding/advancedwebservices/default.aspx?pull=/libr
ary/en-us/dnwebsrv/html/introwsa.asp

[8] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,
A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R.
Subramaniam, J. Treadwell, J. Von Reich. “The Open
Grid Services Architecture, Version 1.0” Informational
Document, Global Grid Forum (GGF), January 29,
2005.
http://www.gridforum.org/documents/GWD-I-E/GFD-
I.030.pdf

[9] I. Foster, C. Kesselman, J. Nick, S. Tuecke “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration” Open
Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.
http://www.globus.org/alliance/publications/papers/ogsa
.pdf

[10] M. Weisner (1991) “The computer for the 21st century”
Scientific American, 265(3):94—104 (1991).

[11] IEEE Pervasive Computing, IEEE Computer Society,
ISSN: 1536-1268.

[12] L. McNamara, C. Mascolo, L. Capra “Trust and
Mobility Aware Service Provision for Pervasive
Computing” Workshop on Requirements and Solutions
for Pervasive Software Infrastructures (RSPSI) held at
4th International Conference on Pervasive Computing,
May 2006.

[13] L. Capra, S. Zachariadis, C. Mascolo “Q-CAD: QoS and
Context Aware Discovery Framework for Mobile
Systems” ICPS, July 2005.

[14] J. O. Kephart, D. M. Chess “The Vision of Autonomic
Computing” IEEE Computer, Jan. 2003.

[15] N. Chase “An autonomic computing roadmap” Oct 2004
http://www-128.ibm.com/developerworks/library/ac-
roadmap/

[16] A. Keller, J. P. Martin-Flatin (eds). Second IEEE
International Workshop on Self-Managed Networks,
Systems & Services (SelfMan 2006 Proceedings), June
2006, Dublin, Ireland; published by Springer Verlag as
Volume 3996 of the Lecture Notes in Computer Science
(LNCS) Series.

Artificial Life XI 2008 519

http://www-128.ibm.com/developerworks/library/ac-roadmap/
http://msdn.microsoft.com/webservices/webservices/und
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
http://www.globus.org/alliance/publications/papers/ogsa
http://www-128.ibm.com/developerworks/library/ac-roadmap/
http://www-128.ibm.com/developerworks/library/ac-roadmap/

[17] O. Babaoglu, M. Jelasity, A.Montresor, C. Fetzer,
S.Leonardi, A. van Moorsel, M van Steen “Self-Star
Properties in Complex Information Systems", Lecture
Notes in Computer Science, Hot Topics, vol. 3460,
Springer-Verlag, 2005.

[18] G. P. Jesi, A. Montresor, O. Babaoglu “Proximity-aware
Superpeer Overlay Topologies” Second IEEE
International Workshop on Self-Managed Networks,
Systems & Services (SelfMan 2006), June 2006, Dublin,
Ireland.

[19] K. Aberer, A. Datta, M. Hauswirth, "P-Grid: Dynamics
of Self-organizing Processes in Structured P2P
systems", In: Peer-to-Peer Systems and Applications,
LNCS 3485, Springer, Aug 2005.

[20] K. Aberer, L. Onana Alima, A. Ghodsi, S.
Girdzijauskas, M. Hauswirth, S. Haridi "The essence of
P2P: A reference architecture for overlay networks",
The Fifth IEEE International Conference on Peer-to-
Peer Computing, Konstanz, 31 Aug - 2 Sep 2005.

[21] C. Adam, R. Stadler “Implementation and Evaluation of
a Middleware for Self-Organizing Decentralized Web
Services” Second IEEE International Workshop on Self-
Managed Networks, Systems & Services (SelfMan
2006), June 2006, Dublin, Ireland

[22] F. Saffre, H. R. Blok, “SelfService: a Theoretical
Protocol for Autonomic Distribution of Services in P2P
Communities” In: Proceedings of the 12th IEEE
International Conference and Workshops on
Engineering of Computer-Based Systems, Greenbelt
(2005).

[23] F. Saffre, J. Halloy, J. L. Deneubourg. “The Ecology of
the Grid” In: Proceedings of the 2nd IEEE International
Conference on Autonomic Computing, Seattle (2005).

[24] F. Saffre, J. Halloy, M. Shackleton, J. L. Deneubourg.
“Self-Organised Service Orchestration through
Collective Differentiation” IEEE Trans. on Systems
Man and Cybernetics, 36(6), 1237-1246. (2007)

Artificial Life XI 2008 520

