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Abstract

The compositional nature of human language is a remark-
able adaptation that solves the problem of generalizing our
communications to novel experiences. The Iterated Learning
Model of agent interaction has proven to be a useful tool for
exploring the emergence of this phenomenon of generaliza-
tion. Recently, a Bayesian interpretation of this model has
been proposed and analyzed in the literature. The work here
combines the Bayesian approach with the traditional goal of
iterated learning, the emergence of compositional commu-
nication. Two methods of measuring language likelihood
are investigated, one based on agent comprehension and the
other on production scope. Calculating likelihood based on
agent comprehension is shown to result in the emergence of
significantly better generalization. The beneficial effect of
a description-length based prior probability is also demon-
strated.

Introduction
The ability to generalize our knowledge to novel experiences
is a fundamental capability of the human mind. Nowhere
has this faculty had more impact than on how we commu-
nicate. Our languages have developed to be massively com-
positional. As children, we learn a set of components and
rules for combining those components in a way that allows
us to express an infinite number of utterances. Likewise, we
can understand those utterances by breaking them down into
their components and rules. Thus the compositional nature
of our languages has given us tremendous ability to general-
ize our communications.

In this paper, we look at how this compositional na-
ture emerges through communicative interactions between
agents that are finite-state transducers. In order to model
these interactions, we use the Iterated Learning Model
(ILM) of Kirby and colleagues (Kirby, 2001; Smith et al.,
2003). ILM originated as way to model this kind of lan-
guage emergence and evolution, but has since been used as
a more general model of knowledge change in domains with
a teacher and a learner (Kalish et al., 2007).

Iterated learning can involve many agents, but in its purest
form involves a single teacher and a single learner. Ini-
tially, the teacher agent imparts some of its knowledge to

a learner. Since the teacher is not revealing all of its knowl-
edge, the learner must fill in the blanks according to some in-
ference algorithm. Typically, the inference algorithm looks
at the knowledge the learner already has and infers from
that. The learner then becomes a teacher and instructs a new
learner in the same fashion and this continues for many it-
erations. Eventually this process of knowledge transfer and
self-organization converges to an equilibrium in a manner
similar to the transfer and self-organization of genetic infor-
mation in an artificial life simulation.

Language evolution models usually operate with a space
of idealized meanings that agents need to communicate to
each other. These meanings take the form of vectors of fea-
tures, each having some range of values. The agents then
turn these meanings into some form of signal, creating a
meaning-signal mapping. In iterated learning models, the
agents can be broadly defined to fall into two categories.

The first type of agent we will call grammatical inducers.
These grammatical inducers keep track of any correlations
between features in the meaning space and the received sig-
nals. These correlations are kept track of with a context-free
grammar, neural network, or matrix. The agents induce a
signal for a novel meaning by making use of any noticed cor-
relations between the features of the meaning and portions
of earlier signals. Those correlations are typically combined
with a randomly generated signal portion that represents the
rest of the uncorrelated features to create a final signal for
the novel meaning. The success of these agents is judged
by how compositional their signals are after a number of
generations. Originally this was measured through subjec-
tive analysis of the signals (Batali, 1998), but more recently
is often measured by expressivity (Kirby, 2007; Brighton,
2005). Expressivity is defined as the number of meanings
that can be distinctly expressed.

The second type of agent is the more recent Bayesian
agent that was analyzed in detail by Griffiths and Kalish
(2005, 2007). Griffiths recognized that the learner in ILM
is essentially using a form of Bayesian inference to infer the
language from the teacher’s instruction. The learner con-
siders many hypotheses about the language before picking
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the one that it feels is most probable. The probability of a
hypothesis is calculated based on how closely a hypothesis
matches the data from the teacher, the likelihood, and by the
agent’s inductive biases, the prior. This relationship allows
iterated learning to be formulated as a mathematical process
that can be rigorously analyzed. One of the results of Grif-
fiths’ analysis is that over generations of iterated learning
the posterior probability distribution converges to the prior
probability distribution. Essentially, the languages the in-
ductive biases favor are the languages that will emerge over
the course of the process.

The convergence of the Bayesian agent form of ILM has
been rigorously analyzed (Rafferty et al., 2009; Ferdinand
and Zuidema, 2009). However, these studies have used arbi-
trary priors and were not looking for evidence of composi-
tionality in agent signals. The work here combines the goals
of the grammatical inducers with the method of the Bayesian
inducers. To do this we need to characterize what informa-
tion our prior is to use and how to calculate likelihood.

Bayesian inference, Equation (1), has long been known
to be related to the mathematical model selection criterion
of Rissanen (1978) called the Minimum Description Length
Principle (MDL) and the closely related Minimum Mes-
sage Length (MML) measurement of Wallace and Boulton
(1968). A detailed discussion of this relationship is in Vi-
tanyi and Li (2000), but we will discuss the nature of the
correspondence here.

P (Model|Data) =
P (Data|Model)P (Model)

P (Data)
(1)

Both MDL and MML measure the success of a mathe-
matical model of data. A successful model is one that is
simple and compactly expresses the data. By combining
a measure of the size of the model and a measure of the
size of the data as encoded by the model the total informa-
tion load can be quantified. The essence of the relationship
with Bayesian inference is that the amount of information
can be viewed as the amount of Shannon entropy. A higher
information load corresponds to a model with lower poste-
rior probability, P (Model|Data). The relationship extends
to the two primary components of Bayesian inference, the
likelihood and the prior. The likelihood, P (Data|Model),
corresponds to the size of the data as encoded by the model
and the prior, P (Model), corresponds to the complexity of
the model.

The selective pressures of minimizing description length
on a model are not very different from the selective pres-
sures on a language. Language is a model that uses syntax
to represent semantics. A successful language is one that can
express everything we want to talk about but is also simple
to learn and use. This correspondence provides us with a
way to formulate the Bayesian inference components of our
agents. The likelihood needs to measure how successful we

are at expressing ourselves and the prior needs to measure
how simple our manner of expression is.

This is not the first time MDL is used as a way to en-
courage to the emergence of generalization without directly
selecting for it. Schrementi and Gasser (2010) used it as
a fitness metric for a genetic algorithm. Brighton (2005,
2003, 2002) used description length as a hypothesis selec-
tion measure in an iterated learning model that used a mod-
ified form of transducers called finite-state unification trans-
ducers. Brighton’s work was not specifically Bayesian and
stayed close to the original formulation of the likelihood in
MDL; that likelihood was the size of the data as encoded by
the model. The focus of the work here is to investigate like-
lihood as a measure of the probability that a signal can be
decoded to its original meaning. We investigate two meth-
ods of formulating likelihood as a probability, one based on
expressivity and the other comprehension.

Iterated Learning Framework
Our implementation of the iterated learning model uses
agents that are simple finite-state transducers. These trans-
ducers sequentially process input strings and encode them
into output strings. Each edge between states in the trans-
ducer reads in an input character and writes an output char-
acter. This encoding process provides a simple way to model
linguistic production, the translation of meaning into signal.

Notably, the same transducer can be used for the other
half of a linguistic interaction, comprehension, by reversing
what is read and what is written for each edge. This inverted
transducer will be able to translate the output strings back
into the original input strings, with an important caveat. The
inversion process can introduce ambiguity in the transducer
that didn’t exist before. A state that has two edges leaving it
that output the same character will after inversion have two
edges leaving it that read the same character. This ambi-
guity results in a non-deterministic transducer that can have
multiple paths that read the same input string.

The algorithm starts with a state-minimal finite-state au-
tomaton that recognizes the entire set of input training
strings. A transducer recognizes a string if it finishes in
an end state after reading the string. A state-minimal trans-
ducer is one that has been compressed to have the fewest
states needed to recognize the input set and only the input
set. Each edge in the automaton is then randomly assigned to
write one of the output characters. This transducer is the first
teacher in the iterated learning process. The learner starts
out as an empty transducer, with just a start state and an end
state.

The learning process begins with the teacher going
through a random selection of the input training strings and
producing an input-output pair. The learner adds each of
these input-output pairs to its transducer, such that there is
a path from the start state to the end state that reads the in-
put string and writes the output string. Any remaining input
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training strings are added to the learner but not paired with
any output. The learner’s transducer is then compressed to
be state-minimal. This results in a learner that has the same
transducer structure as the teacher but some of the edges may
not write anything.

The edges that have no output form the basis for the in-
vention part of the iterated learning model. Invention refers
to the process of inferring outputs for inputs which were not
presented to the agents as input-output pairs by their teacher.
Our invention method uses Bayesian inference to select the
output characters for the edges that lack them. The set of
sets of possible outputs to fill in the blanks forms a search
space whose size is determined by the number of blanks,
n, and the size of the output character space. For each of
the experiments in this paper, there are two possible output
characters, resulting in a space of 2n.

Each set of output characters in the search space is a
hypothesis of the optimal language. This hypothesis cou-
pled with the learned transducer completely specifies all the
input-output mappings of the agent for the training strings.
The transducer can now be further compressed following a
compression criterion from Brighton (2002). The criterion
is that any two states can be combined if the change doesn’t
affect the input-output mappings of the training strings. We
have added two additional criteria. The first is that the two
states don’t have conflicting output edges, e.g. two edges
reading the same character but writing a different character,
which prevents production ambiguity. The second is that the
two states to be combined must also be at the same depth
from the initial state, in order to prevent cycles and to allow
the compression to be done iteratively.

The further compressed transducer now recognizes and
encodes additional strings beyond those that it was trained
on. In essence, this compression allow the transducer to gen-
eralize its knowledge about the training set to a wider range
of input strings. Each hypothesis results in a transducer that
can be compressed in this way to different degrees. The size
of this compressed transducer will form the basis of our cal-
culation of the prior probability of a hypothesis. Addition-
ally, we can now measure how well a given language, as
specified by the transducer, generalizes to novel test strings.

The posterior probability of each hypothesis in the search
space is calculated according to our formulation of its prior
probability and likelihood, the specifics of which are dis-
cussed in the next section. The set of output characters with
the highest posterior probability is selected by the learner to
fill in its blanks. In case of a tie, the set that is closer to
the teacher’s edge outputs is chosen. After the learner com-
pletes this inference process, it is ready to become a teacher.
A new learner agent is created and the cycle repeats with the
old learner as the new teacher. This process continues for a
set number of generations.

Bayesian Inference Formulation
Bayesian inference has two primary components, the prior
probability of a hypothesis, and the likelihood of the hy-
pothesis given the data. There is also a third component,
the marginal probability of the data. However, this compo-
nent is constant and in the interest of simplification we will
drop it in our calculations.

Our investigation of methods of calculating likelihood
looks at three different measures. The first is a control like-
lihood that is always one, Equation (2). The second is a like-
lihood measure based on expressivity. Expressivity makes a
plausible likelihood measure because the more distinct sig-
nals a hypothesized transducer is able to make the more
likely that its signals can be decoded back into the correct
meaning. Our measurement of expressivity looks at the list
of output strings produced for the training input strings and
simply divides the number of different strings by the total
number of strings, Equation (3).

The third likelihood calculation is based on comprehen-
sion; how likely a transducer is able to decode, when re-
versed, its encodings of the training set. A hypothesis that
results in a transducer that has this internal consistency is
considered more likely. Essentially, an agent checks whether
a hypothesized language allows the agent to talk to itself
as in Mirolli and Parisi (2006). The likelihood for a given
input-output mapping is calculated by counting the number
of paths through the reversed transducer that read the out-
put characters and write the correct input characters divided
by the total number of paths that read the output charac-
ters. The likelihood is never zero because there is always at
least one path that will write the correct characters. The fi-
nal likelihood for the hypothesis is the average over all of the
input-output mappings drawn from the input training strings.
Equation (4) shows this calculation, with R being the set of
training strings and |R| the size of the training set. Each
input training string is equally likely, so the average is not
weighted.

P (H|D) = 1 (2)

P (H|D) =
DifferentOutputs

TotalOutputs
(3)

P (H|D) =

∑
s∈R

SuccessfulDecodingPathss

TotalDecodingPathss

|R|
(4)

DL(Transducer) = NEdges ∗ (2 ∗ dlog2(NStates)e) (5)

Our prior calculation weights hypotheses by how much
the resulting transducer can be compressed. The size of the
transducer is measured as description length in bits by cal-
culating the cost of storing each edge based on the num-
ber of states, Equation (5). The compressed size, DLc, is
compared to the size of the transducer before compression,
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DLu. Equation (6) shows the formula that calculates the
prior such that the more a transducer is able to be com-
pressed the higher the probability. DLu + 1 is used in the
calculation to ensure that the prior is never zero. A second
control prior that is always one is also used, Equation (7).

P (H) =
(DLu + 1)−DLc

DLu + 1
(6)

P (H) = 1 (7)

Results
We demonstrate the results of two experiments that inves-
tigate the generalization performance of the likelihood and
prior measures. For each experiment, the input and output
alphabets are both of size two. The length of every input
string is 8 and consequently the length of every output string
is 8. Each experiment has a training set of a specified size
and the test set is all 256 strings of length 8, so the training
set is a subset of the test set. Generalization performance
is measured using the expressivity metric across the entire
test set, rather than just the training set as it is used in the
learning process.

Experiment One
The first experiment uses a training set of 16 input strings
with one of the strings randomly chosen each generation to
not have its corresponding output conveyed to the learner.
This results in average of 3.3 blanks, with a standard devia-
tion of 2.2, to be inferred by the learner out of total of 53.74
edges on average. The results shown here are the average
expressivity across 50 trials each with a different randomly
chosen training set. The experiment runs for 200 generations
of teacher-learner interactions.

Figure 1 shows a plot of the expressivity over time, with
standard deviation bars, using the description-length prior
and each of the three likelihood measures: flat, expressivity-
based and comprehension-based. We see that all three mea-
sures start with similar levels of expressivity but the com-
prehension measure quickly jumps ahead of the other two
measures. It continues this rapid ascent before plateauing
at slightly over 90% expressivity. The expressivity-based
measure also ascends but much more slowly and settles in
slightly above 26%. This isn’t bad considering that the train-
ing set is only 6.25% of the test set, but it falls well short of
success of the comprehension-based measure. The flat mea-
sure establishes a baseline that ends around 15%.

Figure 2 compares the expressivity when using the
description-length prior versus the flat prior under the
comprehension-based likelihood. The description-length
prior results in clear improvement in expressivity. But, the
flat prior turns in a respectable performance that ends at al-
most 70%.

Experiment One shows that agents that try to maximize
comprehension are much better at generalizing than agents
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Figure 1: Likelihoods, 16 Training Strings

that try to maximize expressivity. The results from the anal-
ysis of the priors indicate that seeking to maximize com-
pression in addition to maximizing comprehension results in
even better generalization. The verdict on expressivity as a
likelihood measure doesn’t look good, but we want to make
sure that the small training set isn’t setting up expressivity
to fail.
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Figure 2: Priors, 16 Training Strings

Experiment Two
The second experiment uses a training set of 64 input strings,
four times larger than the first experiment. Again, one of the
strings is randomly chosen each generation to not have its
corresponding output conveyed to the learner. The results
shown here are the average expressivity across 50 trials each
with a different randomly chosen training set.
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Figure 3: Likelihoods, 64 Training Strings
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Figure 4: Priors, 64 Training Strings

Figure 3 shows the plot of the three likelihood measures.
The comprehension-based measure is at the top ending again
at slightly over 90%. The expressivity-based measure gets a
boost from the larger training size and reaches slightly be-
low 50%. The flat likelihood doesn’t do much better than
before settling in at around 20%. Once again, maximizing
comprehension results in significantly better generalization
than trying to maximize expressivity.

The analysis of the priors, using the comprehension-based
likelihood, for Experiment Two is in Figure 4. Interestingly,
we see that the that there isn’t a significant benefit to maxi-
mizing compression with the larger training set. The training
set is now large enough that seeking to maximize likelihood
is sufficient to achieve high expressivity.

Conclusions
The capability to generalize is the hallmark of a composi-
tional system. The Bayesian agents’ ability to generalize
their encodings to novel strings means that their communi-
cations are compositional. From the low expressivity at the
start we can see that the compositionality emerges during
training.

The success of the comprehension-based likelihood mea-
sure over the expressivity-based one demonstrates the value
of including comprehension in the process. It is not suffi-
cient to concentrate just on production and how many sig-
nals an agent can make. The pressure of being forced to ac-
tually decode those signals back into meanings is necessary
to drive the emergence of a generalizable grammar.

The benefit of the description-length prior reaffirms the
value of simplicity-based metrics like MDL. The added
pressure to compress the grammar allowed the agents to ex-
press a large majority of the test set even with a very small
training set. However, the prior’s value decreases as the
agents access more information. Large training sets mean
that prior knowledge is no longer necessary to master the
test set.

The iterated learning model again proves to be a powerful
method of modeling the emergence of compositional gram-
mars. The Bayesian version provides us with new ways of
analyzing the process with the clear delineation of the role
of the prior and the likelihood. The experiments here show
that choosing a successful likelihood measure is not as sim-
ple as it might seem. A metric like expressivity seems like a
good candidate but turns out to be rather poor. Likewise, the
prior should be carefully chosen; a good prior can make the
difference when knowledge is scarce. Finding two that work
together, in this case the likelihood’s pressure to be compre-
hensible and the prior’s pressure to be simple, is the key to
successful Bayesian inference and might be the key to our
ability to generalize as well.
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