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Abstract 
The Evolution Grid, or EvoGrid is a computer simulation 
framework for distributed artificial chemistry (AC) supporting 
computational origins of life (COoL) research. The EvoGrid 
consists of a number of small experiments running on short 
time scales pruned by aggressive tree-branching searches 
supported by random parametric re-seeding and temporal back-
tracking. The EvoGrid is designed to converge upon the 
observation of “cameo” simulations of key pre-biotic or simple 
biological structures or behaviors. These cameo simulations can 
then inform and feed larger AC simulations operating over 
biologically relevant time scales. In addition, the framework is 
designed to plug into a heterogeneous set of engines ranging 
from high fidelity molecular dynamics (MD) to more abstract 
AC techniques on the same set of data. The EvoGrid also 
provides shared web-based simulation management services 
and uniform, open standards for execution, storage and data 
analysis. We conclude by describing the first prototype 
implementation of the EvoGrid, early results, next steps and 
open questions in this and other COoL endeavors.  

Introduction 
In their seminal paper Open Problems in Artificial Life 
(Bedau et al., 2000) the authors set a challenge in the second 
open problem to “achieve the transition to life in an artificial 
chemistry in silico” (p. 364) while also identifying that 
“[b]etter algorithms and understanding may well accelerate 
progress… [and] combinations of… simulations… would be 
more powerful than any single simulation approach” (p. 367-
68). The authors also point out that while the digital medium 
is very different from molecular biology, it “has considerable 
scope to vary the type of ‘physics’ underlying the evolutionary 
process” and that this would permit us to “unlock the full 
potential of evolution in digital media” (p. 369).  
 
All of this potential awaits further progress in the 
computational challenges of high fidelity (i.e. accurate and 
predictive) artificial chemistries. Current state-of-the-art 
artificial chemistries (AC) (Dittrich, et al., 2001) including 
molecular dynamics (MD) projects utilize large centralized 
general-purpose computer clusters or, more recently, purpose 
built hardware, such as Anton, an MD supercomputer (Shaw, 

et al., 2009). Simulating tens of thousands of atoms for days 
to weeks on a commodity cluster will produce a number of 
nanoseconds of real-time equivalent chemistry. Optimized 
software running on Anton promises milliseconds of real-time 
equivalent ACs in weeks of computation (Shaw, et al., 2008).  
 
To meet these challenges, proposals to unify efforts into larger 
computational origins of life (COoL) endeavors have been 
brought forth. Shenhav and Lancet (2004) propose utilizing 
the Graded Autocatalysis Replication Domain (GARD) 
statistical chemistry framework (Segre and Lancet, 1999, 
2000). These authors have developed a hybrid scheme 
merging MD with stochastic chemistry. In GARD many short 
MD computations would be conducted to compute rate 
parameters or constraints for subsequent stochastic 
simulations. Thus, a federation of simulations and services 
was conceived which would also involve interplay with in 
vitro experiments. It is this vision for unifying efforts in 
COoL that has inspired our own work to build a framework 
for distributing and searching a large number of small 
chemistry simulation experiments. 
 
As stated by Shenhav and Lancet, “the prebiotic milieu could 
best be characterized by a dense network of weak interactions 
among relatively small molecules” (p. 182). Simulating such a 
soup represents yet another scale of complexity beyond the 
targets set by even the builders of Anton. While the 
simulating of the full pathway to life in silico seems like a 
journey of a thousand miles, the first few steps can be taken 
and may become less daunting when helped along by some 
innovative algorithmic and architectural short cuts. 
 
A fundamental property of large scale (in time duration and 
population of objects) simulations is that for the most part 
they use a homogeneous approach to optimize computation. 
On the opposite end of the spectrum we propose to run a large 
number of small simulations. Such an approach would in 
theory support a heterogeneous network of simulation 
techniques which vary physics, levels of abstraction and could 
even employ selection methods and replication of results 
inspired by the process of evolution. This is the approach 
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taken by the authors in developing the Evolution Grid (or 
EvoGrid), to be discussed next. 

EvoGrid Search Function 
 
The basic concept behind the EvoGrid is what we are terming 
cameo simulations. Cameo simulations are comprised of no 
more than a few hundred or thousand particles representing 
atoms and small molecules running over short time scales and 
in multiple instances. The existence of those instances is 
governed by a search tree function which permits variations of 
initial conditions and the branching of multiple, parallel 
simulations. Variation of parameters and branching are under 
control of an analysis step which looks for interesting 
structures or behaviors within each cameo simulation frame. 
Frames deemed less interesting may be terminated so as to 
permit other branches to be explored to a greater extent. This 
approach is inspired by the class of genetic algorithms (GA) 
combined with hill climbing algorithms widely used in 
Artificial Intelligence (Russell and Norvig, 2003). It is a form 
of importance sampling (Kalos and Whitlock, 2008), and its 
relationship to Maxwell’s Demon requires careful scrutiny 
(Maruyama et al., 2009). 

 
Figure 1: Illustration of the hill climbing search tree method 
employed by the EvoGrid 
 
Figure 1 illustrates this method for a Control (A) which 
depicts a typical linear time sequence simulation and Test (B) 
which depicts the arising of simulation branches in this case 
due to selection for the phenomenon of more densely 
interconnected points. This illustration depicts another 
optimization called temporal back-tracking. If the simulation 

states of each frame can be stored through time, then a failed 
branch may be rolled back to the point at which “interesting” 
frames were still occurring. With a random seed applied, a 
new branch is started. This branch may yield a complex 
phenomenon forgone in the failed branch. In the example 
illustrated abstractly by C, that phenomenon might be a ring 
structure, as shown in the frame with the check mark. In this 
way, improbable occurrences may be guided across valleys of 
highly probable failure. 

Genes of Emergence 
 
Efforts to bridge nonliving and living matter and develop 
protocells from scratch (Rasmussen et al., 2003) will rely on 
bottom-up self assembly with commensurate self organization 
of classes of molecules. The development of repeatable self 
assembly experiments in silico (Rajagopalan, 2001) could 
serve as an important aid to in vitro protocell research. Self 
assembly in simulation may be purposefully designed into the 
experiment or may be an emergent phenomenon discovered 
by a directed search through multiple trial simulations. The 
initial conditions for a simulation could be equated to the 
coding sequences of a genetic algorithm (GA), and the 
simulation outputs seen as its expressed phenotype. The 
EvoGrid’s search for self-assembly and other phenomena in 
cameo simulations is therefore a search for what we might 
term “genes of emergence” (GoE). 
 
GoEs may be derived from within many different types of 
simulation, not just in the computationally intensive MD 
world. More abstract simulation modalities may yield shorter 
pathways to the production of important emergent phenomena 
than through computationally complex ACs (Barbalet et al., 
2009). One could then see that the EvoGrid represents a 
“discovery system” operating on a continuum of techniques 
which might include: the execution of simulation modules 
that code for abstract universes yielding interesting results, to 
be then swapped out for a simple AC within which we would 
hope to reproduce the results, and finally, carrying the GoEs 
one step further into high fidelity MD, then which could 
inform validation through full scale in vitro experimentation. 
 

Figure 2: Illustration of the concept of cameo simulations feeding a 
larger composite simulation. 
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Figure 2 graphically illustrates the first two stages of this 
continuum. In the first stage, hill-climbing search functions 
(represented here as trees) process through a number of small 
cameo AC simulations. The end-point simulations, shown 
here as S1, S2 and S3, each meet some criteria for generating 
a structure or behavior of relevance to a larger composite 
simulation Sc. In the second stage, Sc is constructed from a 
mixture of content from each of the "feeder" cameo 
simulations and is driven by an amalgamation of the 
individual simulation experimental parameters A, B and C. 
The hope is that this amalgamation in simulation Sc, running 
with a much larger content store and over biologically 
significant time scales, would generate a rich mixture of 
phenomena, such as the formation of membranes, emergence 
of replicators, or the observation of autocatalytic reaction 
pathways. It is this enriched simulation environment which 
could be the basis for more ambitious computational origin of 
life endeavors. In another twist, an interesting phenomenon 
observed in Sc could be captured, its parameters and local 
contents extracted and cameo simulations run to characterize 
and fine tune the phenomenon more closely, enabling another 
ratchet in the emergent power of the larger simulation. 

EvoGrid Design and Operation 
 

Figure 3: High level design and data flow of the EvoGrid 
 
As depicted in Figure 3, the modular design of the EvoGrid 
encapsulates an MD simulation engine, in this case 
GROMACS (Van der Spoel, 2005), which we found to have 
good performance and was suitable to run as a plug-in 
component. GROMACS could be swapped out for other 
suitable simulation systems or the EvoGrid would support 
these systems running in parallel on the same data set. This 
architecture is designed to meet the challenge posed by Bedau 
et al. (2000) in which combinations of different simulation 
approaches might be a pathway to significant progress. 
 
 

Figure 4: Lower level sequencing of data types through the EvoGrid 
 
Other abstracted components depicted include an Analysis 
Server and an Analysis Client. Both of these components 
process inputs and outputs to the Simulation Cluster using the 
compact JSON format. The Simulation Manager running via 
HTTP/Web services sequences the simulation of and the 
analysis of individual frames (Figure 4). MD simulations 
typically have heavy compute loads in executing the time-
steps for each force interaction of artificial atoms. In the 
EvoGrid, tens of thousands of frames are being executed and 
replicated through new branches. This generates terabytes of 
stored states for analysis. This could eventually call for a fully 
distributed simulation network, such as provided by the 
BOINC network (Anderson, 2004). BOINC supports many 
computationally intensive scientific applications, such as 
Folding@home (Pande et al., 2003). However, at this time we 
are relying on the centralized analysis server. 

EvoGrid Prototype Runs and Results 
 
A prototype of the EvoGrid architecture was built in 2009. 
Frames of 1,000 simulated atoms were run for 1,000 time 
steps within the GROMACS module with a uniform heat bath 
applied. 
 
Initial conditions for GROMACS were: 

• Density in particles per Angstrom: 0.01 - 0.1 
• Temperature in Kelvin: 200 – 300, used for initial 

velocity and temperature bath 
• Bond outer threshold in Angstrom: 0.1 - 1.0, distance, 

used for bond creation 
 
The atoms ranged between three and ten randomly generated 
types. All their parameters (mass, charge, force interaction 
with other types, radius and volume) were selected from a 
uniformly distributed random range.  
 
Forces between atom types included: 
Pre-computed components of the Lennard-Jones force 
function: 

• c6      0.0 - 0.1 
• c12     0.0 - 0.00001 
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Covalently bonded (pre-computed components of the 
harmonic bond force function): 

• rA      0.0 - 2.0 
• krA     0.0 - 2.0 
• rB      0.0 - 2.0 
• krB     0.0 - 2.0 

 
As an initial test case on a single instance of GROMACS 
when a bond was created, the Lennard-Jones forces would 
cease applying, and no new forces were applied. This was 
done to minimize real world constraints prior to having access 
to a computer cluster supporting covalent bond computations. 
The main focus of this prototype was to be able to test the 
architecture, not faithfully simulate the chemistry. 
 
The position and velocity data was dumped every 1000 cycles 
and a naïve bonding applied to all atoms or atom-molecule or 
molecule-molecule objects. After a thousand of these dumps, 
this collected history was processed by the analysis server. 
Table 1 represents the scoring for frame number 144,204, the 
final frame in our trial run. The analysis was set up to look for 
the formation of “larger” virtual molecules, which in our 
simplistic interpretation meant a simple count of the greatest 
number of bonds between any two atoms. Employing Monte 
Carlo methodologies, the maximum search score reached in 
the trial was a simple sum of the entries in Table 1. 
 
Measured values Final simulation scores 
Average molecular size 2.2303 
Maximum average molecular size 4.47307 
Average maximum molecular size 9.355 
Maximum individual molecular size 17 
Final maximum search score 33.0584 
Table 1: Scoring produced by prototype analysis server for final 
simulation frame 
 

Figure 5: Scoring of experiments in “control” mode (random 
regeneration with no search tree function) 
 
Figure 5 shows the “control” case (A) from figure 1 in which 
a random initial frame is simply run with a randomly seeded 
restarting of GROMACS for a duration of one thousand 
internal simulation steps (atom-atom interactions) with a 
thousand state dumps without the search function applied. As 
we can see, while there were some highly scored frames (red 
line), there is no maintained trend. Please note that the 

missing lines indicate cases where our software generated 
impossible simulation configurations and the execution was 
halted. This illustrated an area for improvement of how we 
were operating the GROMACS engine. 
 

Figure 6: “Test” run showing trend toward higher “fitness” utilizing 
the search tree function 
 
In Figure 6, the “test” case (B) from Figure 1 applies the 
search function, which clearly takes the initially high value 
produced by the same starting frame generated for the control 
case and improves on it over time. The strength of the search 
function is that subsequently generated frames eventually 
climb to a higher score-generating capacity (“fitness”) over 
randomly generated control case frames. The search function 
will restart with lower performing simulations if all the 
potentially better options are exhausted. As seen in Figure 6, 
this causes a period where the evaluated simulation fitness 
(blue line) remains less than the best observed fitness (orange 
line). In this manner, the search function is operating as a 
Stochastic Hill Climbing algorithm in that the system has the 
ability to find its way out of traps set by local maxima. 

EvoGrid Next Steps: Questions for the 
Computational Origins of Life 

This very preliminary work poses far more questions than 
provides answers. However, as an early exemplar of 
computational origins of life (COoL) endeavors, the EvoGrid 
prototype and its proposed development path could serve as a 
roadmap to more fully functional platforms of the future. This 
roadmap also summons some broader issues, which might be 
considered a good start to a list of open problems in 
computational origins of life. 
 
The greatest limitation in the EvoGrid prototype is our use of 
a naïve model of chemistry including the abstractness of our 
atom types, bond formation and the resulting “molecular 
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structures”. Bonds are formed by simple proximity 
calculations using the positions, velocities and other data for 
objects exported from GROMACS. This situation may be 
improved by using the MOPAC7 library (Stewart, 2008) 
employed by GROMACS for covalent bond formation and the 
representation of other molecular affinities such as those 
produced by electrostatic and van der Waals forces: 
 

1. Related to this first limitation is the need to go beyond 
the initial proof of concept prototype which is 
restricted to abstract atoms assembling into molecules. 
Our next steps must involve molecules assembling into 
larger structures that have the potential to exhibit 
properties of evolution. When this capability is 
prepared, a “real” set of experiments for testing the 
capabilities of the EvoGrid architecture should be 
attempted. Some proposed experiments include 
support for MD or coarse-grained simulation of lipid 
bilayer assembly reproducing the work of Fellerman 
(2009) using LAMMPS (Plimpton, 1995). Another 
good early test case would be to reproduce a simplified 
version of the groundbreaking experimental work by 
Bartel and Szostak (1993) in the isolation of new 
ribozymes from a large pool of random sequences. 

 
2. The storage of frame states will be implemented in the 

near future. Temporal back-tracking is now being 
improved which will enhance the selective power of 
the search tree function. In addition, the computing 
resources of CALIT2 at the University of California at 
San Diego have been offered to the project, giving us 
critical storage and multiprocessor clusters for the next 
testing of the framework. A full work-up of computing 
and storage resources required by this architecture 
operating at different levels of simulation would be of 
value. Axes on a plot of EvoGrid computational 
complexity might include: number of particles and 
types of interactions handled for volume and time 
frame simulated, and desired level of fidelity to 
chemistry. 

 
3. Another significant test of this concept would be the 

integration of simulation platforms other than 
GROMACS within the EvoGrid architecture to 
support heterogeneous simulations. For example, 
numerous engines, along the continuum of artificial 
chemistries from the highly abstract to the highly 
faithful to chemistry, are candidates to be integrated. 
In no particular order, candidate platforms are: The 
Organic Builder (Hutton, 2009), Avida (Adami and 
Brown, 1994), GARD (Segre and Lancet, 1999), 
NAMD (Philips et al., 2005), Desmond from Shaw et 
al (2008), and possible tie-ins to GPU-based hardware 
platforms (Anderson, 2008).  

 
4. Bedau et al (2000) call for creating frameworks for 

synthesizing dynamical hierarchies at all scales. The 
heterogeneous nature of EvoGrid simulations would 
allow for coarse-graining procedures to focus 
simulation from lower levels to higher ones, saving 
computing resources by shutting off the less critical, 

more detailed simulations below. An example of this 
would be to switch to coarse grained simulation of an 
entire lipid vesicle, ceasing simulation of individual 
vesicle wall molecules. Conversely, fine grained 
simulations could be turned on for locally important 
details, such as diffusion of molecules through vesicle 
membranes. As exciting as this all sounds, a decade in 
the world of 3D simulation platforms has taught the 
authors of this paper that interfacing different software 
engines and representations of simulation space is 
extremely difficult. Running the same simulation 
space at multiple scales employing multiscale physics 
(e.g. from MD to dissipative particle dynamics, and 
beyond to smooth particle hydrodynamics) is also a 
very challenging problem that awaits future research. 

 
5. A general theory of so-called cameo simulations needs 

to be developed to understand the minimum number of 
interacting objects and physical simulation properties 
required in these simulations for the emergence of 
“interesting” phenomena pertinent to life’s building 
blocks. Our hypothesis that the GoEs in cameo 
simulations would apply to larger simulations also 
needs to be tested in the context of more ambitious 
COoL efforts capable of supporting artificial evolution 
thereby giving credence to the “Evo” in EvoGrid. 

 
6. The EvoGrid cannot escape the meta-problem of all 

designed simulation environments: if we set up and 
simulate a system acting in the ways we accept as 
probable, then that system is much less likely to act in 
improbable and potentially informative ways, as 
results are always constrained by the abstractions and 
assumptions used. Another way of stating this very 
central conundrum is that as long as we do not know 
how chemical molecules might be able to exhibit 
emergence of important characteristics such as 
replication we will not be able to design the fitness 
functions to actually select for these molecules or their 
precursors. The fitness-function generation problem is 
as yet unsolved. However, the EvoGrid framework is 
being built to: 1) allow each potential experimenter 
to code in their own definition of fitness, accumulating 
knowledge applicable to the problem in an iterative 
fashion; and 2) support a more exotic solution in 
which the search functions themselves ‘evolve’ or 
‘emerge’ alongside the simulation being searched. 
Actually building the second option would first require 
a much more extensive treatment from the field of 
information theory. 

 
7. There are the deeper considerations that reach back to 

Langton who coined the term “artificial life” (Langton, 
1986) and envisaged an investigation of life as it could 
be. COoL systems need not be constrained to models 
of the emergence of life on Earth. More abstract 
simulations may shine a light on life as it might be out 
in the universe (Gordon and Hoover, 2007), as a tool 
for use in the search for extraterrestrial intelligence 
(SETI) (Damer, 2010), or as a technogenesis within 
computing or robotic worlds. 
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8. A critic of theories of chemical evolution, cosmologist 

Sir Fred Hoyle used the statement about a ready-to-fly 
747 aircraft being assembled by a tornado passing 
through a junk yard of parts (Hoyle 1984) to ridicule 
the idea of spontaneous generation of life at its origin. 
This idea today fuels creationist claims for irreducible 
complexity as one of their strongest arguments for the 
existence of a Creator. Like it or not, this flavor of 
debate will find its way to practitioners of COoL 
efforts. Gordon (2008), Damer (2008) and Barbalet 
and Daigle (2008) take this theme head on within a 
compendium of dialogues between creationists and 
scientists.  

 
9. A corollary to Gordon’s prediction (Gordon, 2008, p. 

359) that Alife enthusiasts have an opportunity to 
solve the “Origin of Artificial Life” problem well 
before the chemists will solve the “Origin of Life” 
problem, is the very question of “what defines 
something as being life?”. In the case of an in silico 
genesis we would ask “when will we know something 
is artificially alive?” Given latitude to speculate about 
these grand questions from such lofty heights of 
ignorance, it will be no surprise if emerging COoL 
endeavors attract a wide and vocal variety of converts 
and critics alike. 

 
10. In the end the key question must be asked is: of what 

relevance is digital simulation to real chemistry or 
biology? Any given computational system might be 
able to show fascinating emergent phenomena but 
such discoveries might well stay trapped in silico and 
never transition over to inform experimentation in 
vitro. This would indeed be a shame and as such 
should motivate builders of systems like the EvoGrid 
to keep their eye on the ultimate prize: the transfer of 
concepts developed digitally into chemical 
experimentation. The inevitable marrying of these two 
media will produce one of the most powerful new 
tools for science and technology in the 21st Century. 

Conclusion 
 
A hybrid synthesis has been proposed between large scale 
high fidelity molecular dynamics simulations and distributed 
cameo simulations acting as an aggressive discovery system 
for the genes of emergence for some of life’s building blocks. 
The EvoGrid is a framework under construction to support 
such distributed cameo simulations. Early results from a 
prototype implementation indicate that our search tree with 
temporal back-tracking optimization is performing as 
predicted as a stochastic hill climbing system. The EvoGrid 
software architecture has been shown to operate successfully 
with a large number of small, naïve chemical simulations run 
with the support of an industry standard MD engine. A listing 
of the current system’s shortcomings and a roadmap for future 
development of the EvoGrid was presented. The authors 
concluded with a look at a few of the open questions 

applicable to the emerging field of computational origins of 
life (COoL) which is dedicated to “achieve the transition to 
life in an artificial chemistry in silico” (Bedau, et al. 2000). 
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