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Abstract

The Evolution Grid, or EvoGrid is a computer simulatio
framework for distributed artificial chemistry (AC) sugting
computational origins of life (COoL) research. Theo&vid
consists of a number of small experiments running omt sho
time scales pruned by aggressive tree-branching ssarch
supported by random parametric re-seeding and tempac#t
tracking. The EvoGrid is designed to converge upba
observation of “cameo” simulations of key pre-biaticsimple
biological structures or behaviors. These cameo stinnkcan
then inform and feed larger AC simulations operating over
biologically relevant time scales. In addition, fr@mework is
designed to plug into a heterogeneous set of engargging
from high fidelity molecular dynamics (MD) to moresatact
AC techniques on the same set of data. The EvoGsd a
provides shared web-based simulation management service
and uniform, open standards for execution, storagk data
analysis. We conclude by describing the first prototype
implementation of the EvoGrid, early results, nexpstand
open questions in this and other COoL endeavors.

I ntroduction

In their seminal paper Open Problems in Atrtificiafe
(Bedau et al., 2000) the authors set a challengkersecond
open problem to “achieve the transition to lifeaim artificial
chemistry in silico” (p. 364) while also identifying that
“[bletter algorithms and understanding may well elecate
progress... [and] combinations of... simulations... wobkl
more powerful than any single simulation approaggh”367-
68). The authors also point out that while the tdignedium
is very different from molecular biology, it “hasmsiderable
scope to vary the type of ‘physics’ underlying gvelutionary
process” and that this would permit us to “unloble tfull
potential of evolution in digital media” (p. 369).

All of this potential awaits further progress in eth
computational challenges of high fidelity (i.e. a@te and
predictive) artificial chemistries. Current statetioe-art
artificial chemistries (AC) (Dittrich, et al., 20Pincluding
molecular dynamics (MD) projects utilize large cafized
general-purpose computer clusters or, more receptispose
built hardware, such as Anton, an MD supercomp{8aaw,

et al., 2009). Simulating tens of thousands of atdon days
to weeks on a commodity cluster will produce a nembf
nanoseconds of real-time equivalent chemistry. rOip&d
software running on Anton promises millisecondseaf-time
equivalent ACs in weeks of computation (Shaw, £t24108).

To meet these challenges, proposals to unify affatb larger
computational origins of life (COoL) endeavors haween
brought forth. Shenhav and Lancet (2004) propodizing

the Graded Autocatalysis Replication Domain (GARD)
statistical chemistry framework (Segre and Landf99,
2000). These authors have developed a hybrid scheme
merging MD with stochastic chemistry. In GARD mashort

MD computations would be conducted to compute rate
parameters or constraints for subsequent stochastic
simulations. Thus, a federation of simulations aedvices
was conceived which would also involve interplaythwin

vitro experiments. It is this vision for unifying effertin
COol that has inspired our own work to build a feamork

for distributing and searching a large number ofalém
chemistry simulation experiments.

As stated by Shenhav and Lancet, “the prebiotiéemitould
best be characterized by a dense network of weakaitions
among relatively small molecules” (p. 182). Simingtsuch a
soup represents yet another scale of complexityrzkythe
targets set by even the builders of Anton. While th
simulating of the full pathway to lifen silico seems like a
journey of a thousand miles, the first few steps ba taken
and may become less daunting when helped alongime s
innovative algorithmic and architectural short cuts

A fundamental property of large scale (in time diora and
population of objects) simulations is that for tmest part
they use a homogeneous approach to optimize cotiguta
On the opposite end of the spectrum we proposert@iarge
number of small simulations. Such an approach wonld
theory support a heterogeneous network of simulatio
techniques which vary physics, levels of abstractind could
even employ selection methods and replication cults
inspired by the process of evolution. This is thmpraach
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taken by the authors in developing the EvolutiondQor
EvoGrid), to be discussed next.

EvoGrid Search Function

The basic concept behind the EvoGrid is what wetearaing
cameo simulationsCameo simulations are comprised of no
more than a few hundred or thousand particles septeng
atoms and small molecules running over short ticades and
in multiple instances. The existence of those m#a is
governed by a search tree function which permitgtians of
initial conditions and the branching of multiplearplliel
simulations. Variation of parameters and branclirggunder
control of an analysis step which looks for intéres
structures or behaviors within each cameo simuidtiame
Frames deemed less interesting may be terminateak g0
permit other branches to be explored to a greatmne This
approach is inspired by the class of genetic algms (GA)
combined with hill climbing algorithms widely useih
Artificial Intelligence (Russell and Norvig, 2003).is a form
of importance sampling (Kalos and Whitlock, 200&)d its
relationship to Maxwell's Demon requires carefulusmy
(Maruyama et al., 2009).
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Figure 1: lllustration of the hill climbing search dremethod
employed by the EvoGrid

Figure 1 illustrates this method for a Control (Which
depicts a typical linear time sequence simulatiod &est (B)
which depicts the arising of simulation brancheshis case

due to selection for the phenomenon of more densely

interconnected points. This illustration depicts otluer
optimization called temporal back-tracking. If thienulation

states of each frame can be stored through tines, @hfailed
branch may be rolled back to the point at whichefiasting”
frames were still occurring. With a random seedliadp a
new branch is started. This branch may yield a dexp
phenomenon forgone in the failed branch. In thempta
illustrated abstractly by C, that phenomenon mighta ring
structure, as shown in the frame with the checkkmiarthis
way, improbable occurrences may be guided acrdieysaf
highly probable failure.

Genes of Emergence

Efforts to bridge nonliving and living matter anc\wetlop
protocells from scratch (Rasmussen et al., 2008)rely on
bottom-up self assembly with commensurate selfrargdion
of classes of molecules. The development of repeatself
assembly experiment® silico (Rajagopalan, 2001) could
serve as an important aid ito vitro protocell research. Self
assembly in simulation may be purposefully desiginéal the
experiment or may be an emergent phenomenon disebve
by a directed search through multiple trial simolas. The
initial conditions for a simulation could be equit® the
coding sequences of a genetic algorithm (GA), ahd t
simulation outputs seen as its expressed phenotfpe.
EvoGrid's search for self-assembly and other phesramin
cameo simulations is therefore a search for whatight
term “genes of emergence” (GoE).

GoEs may be derived from within many different typeaf
simulation, not just in the computationally interesiMD
world. More abstract simulation modalities may gishorter
pathways to the production of important emergemnomena
than through computationally complex ACs (Barbaetal.,
2009). One could then see that the EvoGrid reptesan
“discovery system” operating on a continuum of tégbes
which might include: the execution of simulation dntes
that code for abstract universes yielding intengstesults, to
be then swapped out for a simple AC within whichwiauld
hope to reproduce the results, and finally, cagyime GoEs
one step further into high fidelity MD, then whiatould
inform validation through full scale vitro experimentation.
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Figure 2: lllustration of the concept of cameo sirtiales feeding a
larger composite simulation.
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Figure 2 graphically illustrates the first two stagof this
continuum. In the first stage, hill-climbing searftinctions
(represented here as trees) process through a nainbmall
cameo AC simulations. The end-point simulationsovah
here as S1, S2 and S3, each meet some criterigef@rating
a structure or behavior of relevance to a largenmmusite
simulation Sc. In the second stage, Sc is conguiom a
mixture of content from each of the "feeder" cameo
simulations and is driven by an amalgamation of the
individual simulation experimental parameters A,aBd C.
The hope is that this amalgamation in simulationr8oning
with a much larger content store and over bioldbica
significant time scales, would generate a rich orixt of
phenomena, such as the formation of membranes gene
of replicators, or the observation of autocatalytaction
pathways. It is this enriched simulation environmesich
could be the basis for more ambitious computationigin of
life endeavors. In another twist, an interestingnmdmenon
observed in Sc could be captured, its parameteds|@al
contents extracted and cameo simulations run teactexize
and fine tune the phenomenon more closely, enabliregher
ratchet in the emergent power of the larger sinat

EvoGrid Design and Operation
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Figure 3: High level design and data flow of the ExdG

As depicted in Figure 3, the modular design of BveGrid
encapsulates an MD simulation engine, in this case
GROMACS (Van der Spoel, 2005), which we found teeha
good performance and was suitable to run as a iplug-
component. GROMACS could be swapped out for other
suitable simulation systems or the EvoGrid woulghpsrt
these systems running in parallel on the same skttaThis
architecture is designed to meet the challengedpbgdedau

et al. (2000) in which combinations of differentnsilation
approaches might be a pathway to significant psxgre
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Figure 4: Lower level sequencing of data types thinahe EvoGrid

Other abstracted components depicted include arlygina
Server and an Analysis Client. Both of these corepts
process inputs and outputs to the Simulation Clustang the
compact JSON format. The Simulation Manager runniiag
HTTP/Web services sequences the simulation of dred t
analysis of individual frames (Figure 4). MD simiidas
typically have heavy compute loads in executing tinge-
steps for each force interaction of artificial atonin the
EvoGrid, tens of thousands of frames are beinggrecand
replicated through new branches. This generatebyss of
stored states for analysis. This could eventuallyfor a fully
distributed simulation network, such as provided the
BOINC network (Anderson, 2004). BOINC supports many
computationally intensive scientific applicationsuch as
Folding@home (Pande et al., 2003). However, attitns we
are relying on the centralized analysis server.

EvoGrid Prototype Runs and Results

A prototype of the EvoGrid architecture was built 2009.
Frames of 1,000 simulated atoms were run for 1,00
steps within the GROMACS module with a uniform hieath
applied.

Initial conditions for GROMACS were:
« Density in particles per Angstrom: 0.01 - 0.1
e Temperature in Kelvin: 200 — 300, used for initial
velocity and temperature bath
e Bond outer threshold in Angstrom: 0.1 - 1.0, dis&n
used for bond creation

The atoms ranged between three and ten randombrafed
types. All their parameters (mass, charge, forderaation
with other types, radius and volume) were seledteth a
uniformly distributed random range.

Forces between atom types included:

Pre-computed components of the Lennard-Jones force

function:
e 6
o« cl2

0.0-0.1
0.0 - 0.00001
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Covalently bonded (pre-computed components of
harmonic bond force function):

e rA 00-20
« krA 0.0-20
e B 00-20
« kB 0.0-20

As an initial test case on a single instance of GRCS
when a bond was created, the Lennard-Jones foroesdw
cease applying, and no new forces were applieds Was
done to minimize real world constraints prior toing access
to a computer cluster supporting covalent bond adatmns.
The main focus of this prototype was to be ablaeki the
architecture, not faithfully simulate the chemistry

The position and velocity data was dumped evenplf@les
and a naive bonding applied to all atoms or atorteocute or
molecule-molecule objects. After a thousand of éhéismps,
this collected history was processed by the armlgsrver.
Table 1 represents the scoring for frame number2D44 the
final frame in our trial run. The analysis was sptto look for
the formation of “larger” virtual molecules, whicim our
simplistic interpretation meant a simple count lvé greatest
number of bonds between any two atoms. Employingti&lo
Carlo methodologies, the maximum search score ezhah
the trial was a simple sum of the entries in Tdble

Measured values Final simulation scores

Average molecular size 2.2303
Maximum average molecular size 4.47307
Average maximum molecular size 9.355

Maximum individual molecular size 17

Final maximum search score 33.0584

Table 1: Scoring produced by prototype analysis sefoe final
simulation frame
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Figure 5: Scoring of experiments in “control” mode (@am
regeneration with no search tree function)

Figure 5 shows the “control” case (A) from figuréniwhich
a random initial frame is simply run with a randgrskeded
restarting of GROMACS for a duration of one thousan
internal simulation steps (atom-atom interactiongjh a
thousand state dumps without the search functiptieap As
we can see, while there were some highly scoradesa(red
line), there is no maintained trend. Please not the

the missing lines indicate cases where our softwareeigeed

impossible simulation configurations and the execuiwvas
halted. This illustrated an area for improvementhofv we
were operating the GROMACS engine.

45

40

0

Figure 6: “Test” run showing trend toward higher “fitaesitilizing
the search tree function

In Figure 6, the “test” case (B) from Figure 1 applthe

search function, which clearly takes the initiatligh value

produced by the same starting frame generatedhécantrol

case and improves on it over time. The strengtthefsearch
function is that subsequently generated frames taadn

climb to a higher score-generating capacity (“f#si® over

randomly generated control case frames. The sdarction

will restart with lower performing simulations ifllathe

potentially better options are exhausted. As saefigure 6,

this causes a period where the evaluated simuldiinass

(blue line) remains less than the best observedd# (orange
line). In this manner, the search function is ofiegaas a
Stochastic Hill Climbing algorithm in that the sgst has the
ability to find its way out of traps set by locahrima.

EvoGrid Next Steps: Questionsfor the
Computational Originsof Life

This very preliminary work poses far more questidhan
provides answers. However, as an early exemplar of
computational origins of life (COoL) endeavors, #eoGrid
prototype and its proposed development path coerdesas a
roadmap to more fully functional platforms of thaure. This
roadmap also summons some broader issues, whidit beg
considered a good start to a list open problems in
computational origins of life

The greatest limitation in the EvoGrid prototypeoisr use of
a naive model of chemistry including the abstrastnef our
atom types, bond formation and the resulting “molac
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structures”.

Bonds are formed by simple proximity

calculations using the positions, velocities argeotdata for
objects exported from GROMACS. This situation may b
improved by using the MOPAC7 library (Stewart, 2p08
employed by GROMACS for covalent bond formation #mel
representation of other molecular affinities such those
produced by electrostatic and van der Waals forces:

1.

Related to this first limitation is the need tolgeyond
the initial proof of concept prototype which is
restricted to abstract atoms assembling into médscu
Our next steps must involve molecules assemblitgg in
larger structures that have the potential to exhibi
properties of evolution. When this capability is
prepared, a “real” set of experiments for testihg t
capabilities of the EvoGrid architecture should be
attempted. Some proposed experiments include
support for MD or coarse-grained simulation of dipi
bilayer assembly reproducing the work of Fellerman
(2009) using LAMMPS (Plimpton, 1995). Another
good early test case would be to reproduce a diexpli
version of the groundbreaking experimental work by
Bartel and Szostak (1993) in the isolation of new
ribozymes from a large pool of random sequences.

The storage of frame states will be implementethén
near future. Temporal back-tracking is now being
improved which will enhance the selective power of
the search tree function. In addition, the commutin
resources of CALIT2 at the University of Califorraa
San Diego have been offered to the project, giviag
critical storage and multiprocessor clusters fer rilext
testing of the framework. A full work-up of compugj
and storage resources required by this architecture
operating at different levels of simulation would bf
value. Axes on a plot of EvoGrid computational
complexity might include: number of particles and
types of interactions handled for volume and time
frame simulated, and desired level of fidelity to
chemistry.

Another significant test of this concept would be t
integration of simulation platforms other than
GROMACS within the EvoGrid architecture to
support heterogeneous simulations. For example,
numerous engines, along the continuum of artificial
chemistries from the highly abstract to the highly
faithful to chemistry, are candidates to be integga

In no particular order, candidate platforms aree Th
Organic Builder (Hutton, 2009), Avida (Adami and
Brown, 1994), GARD (Segre and Lancet, 1999),
NAMD (Philips et al., 2005), Desmond from Shaw et
al (2008), and possible tie-ins to GPU-based harelwa
platforms (Anderson, 2008).

Bedau et al (2000) call for creating frameworks for
synthesizing dynamical hierarchies at all scaldsee T
heterogeneous nature of EvoGrid simulations would
allow for coarse-graining procedures to focus
simulation from lower levels to higher ones, saving
computing resources by shutting off the less @itic

more detailed simulations below. An example of this
would be to switch to coarse grained simulatioraof
entire lipid vesicle, ceasing simulation of indival
vesicle wall molecules. Conversely, fine grained
simulations could be turned on for locally impottan
details, such as diffusion of molecules throughcles
membranes. As exciting as this all sounds, a decade
the world of 3D simulation platforms has taught the
authors of this paper that interfacing differerftware
engines and representations of simulation space is
extremely difficult. Running the same simulation
space at multiple scales employing multiscale msysi
(e.g. from MD to dissipative particle dynamics, and
beyond to smooth particle hydrodynamics) is also a
very challenging problem that awaits future researc

A general theory of so-called cameo simulationgeee
to be developed to understand the minimum number of
interacting objects and physical simulation prapert
required in these simulations for the emergence of
“interesting” phenomena pertinent to life’'s buildgin
blocks. Our hypothesis that the GoEs in cameo
simulations would apply to larger simulations also
needs to be tested in the context of more ambitious
COol efforts capable of supporting artificial eviidun
thereby giving credence to the “Evo” in EvoGrid.

The EvoGrid cannot escape the meta-problem of all
designed simulation environments: if we set up and
simulate a system acting in the ways we accept as
probable, then that system is much less likelyctoira
improbable and potentially informative ways, as
results are always constrained by the abstractmas
assumptions used. Another way of stating this very
central conundrum is that as long as we do not know
how chemical molecules might be able to exhibit
emergence of important characteristics such as
replication we will not be able to design the fiee
functions to actually select for these moleculetheir
precursors. The fitness-function generation probiem
as yet unsolved. However, the EvoGrid framework is
being built to: 1) allow each potential experimente
to code in their own definition of fitness, accuating
knowledge applicable to the problem in an iterative
fashion; and 2) support a more exotic solution in
which the search functions themselves ‘evolve’ or
‘emerge’ alongside the simulation being searched.
Actually building the second option would first tece

a much more extensive treatment from the field of
information theory.

There are the deeper considerations that reachtback
Langton who coined the term “artificial life” (Latan,
1986) and envisaged an investigatiorifef as it could

be COoL systems need not be constrained to models
of the emergence of life on Earth. More abstract
simulations may shine a light dife as it might beout

in the universe (Gordon and Hoover, 2007), as & too
for use in the search for extraterrestrial intelfige
(SETI) (Damer, 2010), or as technogenesisvithin
computing or robotic worlds.
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8. A critic of theories of chemical evolution, cosmgit
Sir Fred Hoyle used the statement about a readly-to-
747 aircraft being assembled by a tornado passing
through a junk yard of parts (Hoyle 1984) to ridecu
the idea of spontaneous generation of life atrigir
This idea today fuels creationist claims for irreidhle
complexity as one of their strongest argumentster
existence of a Creator. Like it or not, this flavoir
debate will find its way to practitioners of COoL
efforts. Gordon (2008), Damer (2008) and Barbalet
and Daigle (2008) take this theme head on within a
compendium of dialogues between creationists and
scientists.

9. A corollary to Gordon’s prediction (Gordon, 2008, p
359) that Alife enthusiasts have an opportunity to
solve the “Origin of Artificial Life” problem well
before the chemists will solve the “Origin of Life”
problem, is the very question of “what defines
something as being life?”. In the case ofiarsilico
genesisve would ask “when will we know something
is artificially alive?” Given latitude to speculasdout
these grand questions from such lofty heights of
ignorance, it will be no surprise if emerging COoL
endeavors attract a wide and vocal variety of cdeve
and critics alike.

10. In the end the key question must be asked is: aftwh

relevance is digital simulation to real chemistny o

biology? Any given computational system might be

able to show fascinating emergent phenomena but
such discoveries might well stay trappadsilico and
never transition over to inform experimentatiam
vitro. This would indeed be a shame and as such
should motivate builders of systems like the EvdGri
to keep their eye on the ultimate prize: the transf
concepts developed digitally into chemical

experimentation. The inevitable marrying of these t

media will produce one of the most powerful new

tools for science and technology in thé' Zentury.

Conclusion

A hybrid synthesis has been proposed between Iscgée
high fidelity molecular dynamics simulations andtdbuted
cameo simulations acting as an aggressive discasyetem
for thegenes of emergender some of life’s building blocks.
The EvoGrid is a framework under construction tgpsrt
such distributed cameo simulations. Early resulamf a
prototype implementation indicate that our searge twith
temporal back-tracking optimization is performings a
predicted as a stochastic hill climbing system. BwGrid
software architecture has been shown to operateessiully
with a large number of small, naive chemical sirtiokes run
with the support of an industry standard MD engidisting
of the current system’s shortcomings and a roadiorafuture

applicable to the emerging field of computationagios of
life (COoL) which is dedicated to “achieve the s#ion to
life in an artificial chemistryn silico” (Bedau, et al. 2000).
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