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Abstract

An observation process is a fundamental implicit component
of the simulation based studies on artificial-evolutionary sys-
tems (AES) by which time-varying entities are identified and
their behavior is observed to uncover higher-level “emergent”
phenomena. In this paper, we analyze algorithmic feasibil-
ity of implementing an observation process and consequent
automated discovery of the entities and the evolutionary pro-
cesses in arbitrary AES models. We characterize the bounds
for the worst case computational complexity for the process
of discovery of possible presence of entity and population
level reproduction with epigenetic development in the child
entities involving mutations and heredity in presence of nat-
ural selection. In particular, we prove that if entities in an
AES simulation are structurally distinguishable, the problem
of observability of evolutionary processes is only polynomi-
ally harder w.r.t. the entity recognition. The complexity
bounds are presented in parameterized form so that for any
given AES model, if parameter estimates are known, corre-
sponding bounds can be derived.

Background
Studies on Artificial Evolutionary Systems (AES) are recent
attempts to complement real-life theories to study the prin-
ciples underlying the complex phenomena of life without
directly working with the real-life organisms. For exam-
ple, AES studies can complement theoretical biology by un-
covering potential evolutionary dynamics (Ostrowski et al.,
2007; Lenski et al., 2003).

Observations play a fundamental role in AES research, in
particular, for those AES studies, which focus on the prob-
lem of the “emergence” of life-like behavior. However, the
mechanisms and analysis often employed in AES studies to
discover the emergent entities and their life-like behavior re-
main useful only to the specific models and do not always
have the generic perspective. Therefore an important aspect
where AES studies demand increasing focus is to study ob-
servational processes and mechanisms used in AES studies
in their own right resulting into a framework for automated
discovery of life-forms and their dynamics in simulated en-
vironments. With AES studies involving mostly digitized
universes and their simulations, it is actually desirable to ex-
plore by algorithmic means potentially varied possibilities

which these simulations hold yet usually require such de-
tailed observations that it may not always be feasible to carry
out for human observers alone. Such an automated discov-
ery of life-forms and the evolving dynamics may bring much
promise in AES studies as compared to what could possibly
be achieved only with manually controlled observations.

An example of such an automated discovery of life forms
is discussed in (Sayama, 1998). In order to observe the liv-
ing loops in his Cellular Automata (CA) model, another
“Observer CA” system is designed and embedded within
the simulator software. The observer CA is capable of per-
forming the complex image processing operations on the CA
configuration given to it as an input by the simulator CA
to automatically identify the living loops of different types.
Also recently (Stone et al., 2009) have discussed the inte-
gration of artificial life simulations with interactive games-
based techniques to study simulation complexity for the be-
havioral representation of species in fragile or long-vanished
landscapes and ecosystems.

However, because of its implicit nature and the multitude
of AES models, a precise characterization of the observation
process is generally a difficult problem. Importantly it needs
to be defined independent of the low-level micro dynam-
ics any specific AES model to permit the study of higher-
level observationally “emergent” phenomena. Initial work
on systematically studying the observational processes in-
dependent of the underlying AES models appeared in Henz
and Misra (2007); Misra (2009). In (Henz and Misra, 2007)
an observation process is characterized as an abstraction on
the model universe for establishing the necessary elements
and the level of evolutionary behavior in that model. Based
upon this formal characterization, in Misra (2009), it was
proved that the task of entity recognition in a simulation,
is a NP-hard problem and therefore cannot be completed in
polynomial number of steps. In this paper we extend this re-
sult further and present computational complexity theoretic
analysis for the problem of algorithmic discovery of evolu-
tionary phenomena in AES studies. The presented analy-
sis on observing evolutionary behavior reveals important in-
sights on how computation intensive an automated discovery
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of life-like phenomena could be.
Related Work To the author’s knowledge, there is not

much work focusing on the algorithmic feasibility analy-
sis of generic models for AES studies. However, interest-
ingly, for few specific AES models, there exist parallel re-
sults. For example, Melkikh (2008) considered the compu-
tational analogue of the problem of the origin of species in
a genome space under DNA Computing framework (Paun
et al. (2006)) and has shown that in absence of a priori infor-
mation about the possible species of organisms, the under-
lying computational problem is NP-hard. Similarly, Centler
et al. (2008) prove that the problem of computing a reactive
chemical organization is NP-hard.

Notations: Set notations: \ (set difference), P (power set),
 (partial function). Logical operators: ∧ (and), ¬ (not),⇒
(implication), ⇔ (if and only if), ∃ (existential quantifier),
and ∀ (universal quantifier). Programing pseudo code nota-
tion: if . . . then . . .. N+ is the set of positive integers. For
a vector x = (a1, a2, . . . , ar), ith element (ai) will be de-
noted as x[i]. Also basic notions from multiset theory (Singh
et al., 2007) (e.g.,

⊎
(multiset join)) and the theory of com-

putational complexity (Papadimitriou, 1994; Cormen et al.,
2001) (e.g., ‘big-Oh’ notation - O1) would be used in the
formal exposition of the derived results.

The Formal Structure of the Framework
In this section we will briefly review the axiomatic frame-
work presented in Henz and Misra (2007); Misra (2009).
In the ensuing discussion, we will use “AES model”
and “model”, “Observation process” and “Observer” inter-
changeably to add convenience in presentation. Axioms are
used to specify conditions which need to be satisfied in or-
der to draw valid inferences e.g., recognition of entities and
their causal relationships.

Observation Process and the Model Universe

Axiom 1 (The Axiom of Observable Life). Life-like phe-
nomena in a AES model exists only if it can be observed
using its simulations.

In other words, existence of life-like behavior can only be
proved with respect to an observation process and associated
simulations.

Definition 1 (Observation Process). An observation pro-
cess is an algorithmic transformation from the under-
lying AES simulation model to observer abstractions

1Asymptotic order notation, O, is used to measure the bounds
on computational complexity for algorithms and problems. If
f(n) = O(g(n)), then f is said to be upper bounded by g for
all the values of the input of size n after certain point. Two useful
asymptotic properties ofO are: If f1(n) = O(g1(n)) and f2(n) =
O(g2(n)), then f1(n) + f2(n) = O(max{g1(n), g2(n)}) and
f1(n) ∗ f2(n) = O(g1(n) ∗ g2(n)).

(Absind, Absdep), where Absind is the set of process in-
dependent abstractions and Absdep is the set of process de-
pendent abstractions.

Definition 2 (States). Σ: set of observed states of the model
across simulations.

Definition 3 (Observed Run). T : Σ  P(N+): An ob-
served sequence of states ordered with respect to the tempo-
ral progression of the model during its simulation.

N+ acts as a set of indexes for the states in the sequence.
Since a state may appear multiple times in a simulation, sub-
sets ofN+ are used to denote that. Each such sequence rep-
resents one observed run of the model. We let ΣT denote
the set of unique states appearing in a specific run T .

Entity Recognition
Definition 4 (Entity Set). Es: Multiset of entities observed
and uniquely identified by the observer in a state s of the
model for a given run T . ET =

⊎
s∈ΣT

Es is the multiset
of entities observed and uniquely identified by the observer
across the states in a given run T .

“Tagging” can be used as a mechanism for identifying in-
dividual entities whenever there exist multiple entities in the
same state which are otherwise indistinguishable.

Axiom 2 (Axiom of Unique Identification of Entities). An
entity must be uniquely identified in a given observed run T .

Axiom 3 (Axiom of Unique Identification in States). If two
states are identical, i.e., consist of the identical multisets of
atomic observable structures, then an observer must identify
the same multisets of entities in these states irrespective of
their temporal ordering in the observed run T .

Axiom 4 (Axiom of non-Ignorance). It must not be true that
an observer omits identification of an entity in a state s but
in a different state s′ identifies it as consisting of the same
atomic elements which were also available in s.

Definition 5 (Character Space). An observer should define
a set of all possible mutually independent (or orthogonal)
and measurable characteristics for possible entities in the
model as a multi dimensional character space Υ = Char1×
Char2 × . . . × Chard, where each of Char i is the set of
values for ith characteristic.

Corresponding to each entity e ∈ ET there is a point in
Υ, say (v1, v2, . . . vd), where vi ∈ Char i.

Observable characteristics need not to be limited to syn-
tactic level or structural properties and may also include se-
mantic properties, which are observable patterns of behav-
iors abstracted over a range of states.

Definition 6 (Distance Measure). An observer defines a
computable clustering distance measure D : ET × ET →
Diff , where Diff is the set of values to characterize the ob-
servable “differences” between entities in E.
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Definition 7 (Mutation Bound). Based upon the choice of
D, an observer selects δmut ∈ Diff as a vector such that
each element in δmut specifies an observer-defined threshold
on the recognizable mutational changes for corresponding
characteristic.

It is important to note that the choice of δmut critically af-
fects further inferences. For example, a choice of very large
values would result in the lack of identification of variability
in characteristics among entities. On the other hand, with
relatively smaller values for δmut, it is difficult to recognize
persistence of an entity across states under changes.

Next, a Recognition relation is defined to establish the
persistence of entities across states in the presence of mu-
tational changes:
Definition 8 (Recognition Relation). An observation pro-
cess establishes recognition of entities across states of the
model with (or without) mutations by defining a partial func-
tion Rδmut : ET  ET , satisfying following axioms:
Axiom 5. Entities to be recognized as the same should be
observed in successive states.
Axiom 6. No two different entities in one state can be rec-
ognized as the same in the next state.
Axiom 7. If an entity e mutates and in the next state is iden-
tified as e′, observer might be able to recognize e and e′

as the same only if these changes (between e and e′) are
bounded by δmut.

In order to infer meaningful relationship among entities,
to be used as a basis for inferring macro level phenomena
in the model, an observer needs to first identify “causal”
relationships among entities independent of the underlying
‘physical laws’ or ‘micro level dynamics’ of the model.

Definition 9 (Causality). C ⊆
⊎
s∈ΣT

Es × Es+1. C estab-

lishes the observed causality among the entities appearing in
the successive states of a run T .

Since causality is largely an observer and model depen-
dent, it is further refined by defining additional axioms for
specific cases, for example, for the case of reproductive
causality to infer reproductive relationships among entities
(See Axiom 8).

Observing Evolution
In the following discussion we will define components in
Absdep for observing the fundamental evolutionary compo-
nents: reproduction with mutations and epigenetic develop-
ments, heredity, and natural selection.

Reproduction An observation process establishes repro-
duction by defining causal descendance relationships among
the entities across states, whereby parent and the child enti-
ties are recognized by the observer as being sufficiently sim-
ilar and “causally” connected across the states. Formally, we
add a new Axiom for the causal relation C defined before:

Axiom 8 (Reproductive Causality). If an entity e in state
s is causally connected to entity e′ in the next state s + 1,
then there must not be any other entity e′′ in state s, which
is recognized by the observer as (mutating to) e′.

In essence, this formulation of causality is an abstract
specification which demands observers to identify the en-
tities which have been observed to be causal sources for the
appearance of a new entity.

Similar to δmut, as discussed before, it is important to
specify the limits under which an observer can identify
whether an entity is a descendant of another entity even
though they might not be identical. This limit on observable
reproductive mutations is essential while working with mod-
els where epigenetic development in the entities can be ob-
served (Mahner and Bunge, 1997). This is because in such
models including examples from real life, “child” entity and
the “parent” entities may not have identical characteristics
the beginning and therefore an observation process needs to
wait until whole epigenetic developmental process gets un-
folded and only then compare the entities for similarities in
their characteristics.

Definition 10 (Reproductive Mutation Bound). Based
upon the choice of D, the observer selects δrep mut ∈
Diff , which will be used to bound reproductive mutational
changes for proper recognition.

δrep mut assists an observer to establish whether a particu-
lar entity could be treated as a “descendant” of another entity
or not. It is important to note that the choice of δrep mut also
critically affects further inferences. For example, small val-
ues for δrep mut might make it harder to establish reproduc-
tive relationships among entities and for such an observer
every new entity would seem to be appearing de novo in the
model. On the other hand choice of very large values would
result in the lack of identification of variability in character-
istics and thus make it difficult to infer natural selection.

An auxiliary relation ∆ is used to determine that the
differences due to reproductive mutations are bounded by
δrep mut.

Definition 11. ∆ ⊆ ET × ET s.t. ∀e, e′ ∈ ET . if (e, e′)
is in ∆ then their differences for each single characteristic
chari must be bounded by δrep mut[i] and e should not be
recognized as mutating to e′.

Based on the thus established notion of “causal” relation-
ships between entities and ∆, we define AncestorOf re-
lation, which connects entities for which an observer can
establish descendance relationship across generations.

Definition 12. AncestorOf = (C ∪ Rδmut)
+ ∩ ∆

In this definition the transitive closure of (C ∪ Rδmut)
captures the observed causality (C) across multiple states
even in cases when “parent” entities might undergo mu-
tational changes (Rδmut) before “child” entities complete
their “epigenetic” maturation with possible reproductive
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mutations. Intersection with ∆ ensures that causally re-
lated parent and child entities are not too different from each
other, that is, reproductive mutational changes are under ob-
servable limit.

Using AncestorOf relation, we now can consider the
cases of entity level reproduction and Fecundity:

Case 1: Entity Level Reproduction We consider the case
where instances of individual entities can be observed as re-
producing. For a given simulation T of the model, an ob-
server defines the following Parent∆ relation:

Definition 13. Parent∆ = {(p, c) ∈ AncestorOf | 6 ∃e ∈
ET . [(p, e) ∈ AncestorOf ∧(e, c) ∈ AncestorOf ]}

The condition in defining Parent∆ is used to ensure that
p is the immediate parent of c and thus there is no intermedi-
ate ancestor e between p and c. Using Parent∆ relation, in
order for the observer to establish reproduction in the model,
the following axiom should be satisfied:

Axiom 9 (Reproduction). There should exist at least one
instance of reproduction in a simulation T of the model i.e.,
Parent∆ 6= ∅.

Since for every (p, c) ∈ Parent∆, some other (p′, c′) ∈
AncestorOf where p (and/or c) has been observed to
change to p′ (c′) may also be present in the Parent∆, there-
fore, let Parentmin

∆ consist of temporally least parent-child
pairs (p, c) from Parent∆.

Case 2: Population Level Reproduction - Fecundity
Owing to the carrying capacity of the environment, which
limits the maximum possible size of a population, for natu-
ral selection it is the population level collective reproductive
behavior (fecundity), which is significant. Therefore in or-
der to ensure that there is no perpetual decline in the size of
the population, following axiom should hold:

Axiom 10 (Fecundity). There exist statistically significant
number of different generations of reproducing entities in
temporal ordering G1, G2, . . . , GL such that for every gen-
eration of reproducing entities, there exists a generation of
its descendant entities such that the size of descendant gen-
eration is equal or more than the current generation.

Heredity yet another precondition for evolution, can in
general be observed on two different levels: Syntactic level
and Semantic level. On syntactic level, entity level inheri-
tance is implied by the structural proximity between parents
and their progenies ranging over several generations. For
syntactic inheritance to persist, design of the model needs
to ensure that environment, which controls the reaction se-
mantics of entities, remains approximately constant over a
course of time so that structural similarities also result into
continued reproductive behavior. On the other hand, the se-
mantic inheritance is implied in terms of semantic related-
ness between entities, whereby progenies and their parental

entities exhibit similarities in their behaviors (e.g., reproduc-
tion) under near identical set of environments. This in turn
would require an observer to abstract the behavioral (e.g., re-
productive) semantics from the observable reactions among
entities in the model, which in turn might require non-trivial
inferences in absence of the knowledge of the actual design
of the model.

Heredity usually requires further mechanisms to reduce
possible undoing of current mutations in future generations
owing to new mutations. Therefore, in order to establish in-
heritance in AES models, sufficiently many generations of
reproducing entities need to be observed to determine that
the number of parent-child pairs where certain characteris-
tics (both syntactic and semantic) were inherited by child
entities without further mutations is significantly larger than
those cases where mutations altered the characteristics in the
child entities. We can express it as the following axiom:

Axiom 11 (Heredity). Let Ω be a statistically large ob-
served subsequence of a run T , then there exists a charac-
teristic Chari such that the set of entities in Ω, where this
characteristics were inherited without (further) mutation is
statistically significant.

Natural Selection Following the idea from (Bell, 2008,
page 19) that on evolutionary scale rate of reproduction is
the only attribute selected directly and characteristics affect-
ing the rate of reproduction are selected only indirectly, we
consider natural selection as a statistical inference on av-
erage reproductive success of a population of reproducing
entities over an evolutionary time scale. Towards that we
define following necessary and sufficient axioms as gener-
ally discussed in the literature (Stearns and Hoekstra, 2000):

Axiom 12 (Observation on Evolutionary Time Scale). An
Observer must observe statistically significant population
of different reproducing entities, say Λmin, for statistically
large number of states in a run T .

Axiom 13 (Sorting). Entities in Λmin should be different
with respect to characteristics in Υ and there should exist
differential rate of reproduction among these reproducing
entities. Rate of reproduction ror(e) for an entity e is the
number of child entities it reproduces before undergoing any
mutations beyond observable limit.

Axiom 14 (Heritable Variation). There must exist vari-
ation in the inherited mutations in the population of Λmin

implying that a significant fraction of the population of all
reproducing entities should have at least one unique char-
acteristics.

Axiom 15 (Correlation). There must be non zero corre-
lation between heritable variation and differential rate of
reproduction.

Yet another important constraint from the evolutionary
perspective is that reproduction in a model should not en-
tirely cease because of the (harmful) mutations. Though this
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constraint is implicitly captured in the axioms 12 and 13,
we can still restate it below primarily since this weaker ver-
sion may enables us to directly argue for the reasons of the
absence of evolutionary behavior in a model:

Axiom 16 (Preservation of Reproduction under Muta-
tions). Some mutations do preserve reproduction. In other
words, if there exist reproductive entities in a state s, either
some mutants of these entities or their children should con-
tinue reproducing further.

Software Architecture for an Observation Process
An implementation of the observation process discussed so

far essentially demands deciding the level of abstraction on
which observations need to be carried out with respect to the
underlying AES model. Once it is decided by the designer
of the model, either of the following two approaches can be
considered for the software design:

Source Code Interleaving/Embedding The specified ob-
servational processes can be executed by interleaving the
programs for the observations and corresponding interfer-
ences within the source code of the AES model simula-
tion design itself. Advantage of such interleaving is that
the implemented observation process can reuse some of
the computational resources (e.g., memory) of the AES
model.

Interactive Observations An observation process could
also otherwise be programmed as a separate process it-
self together with the actual AES model simulation pro-
cess. These two processes could communicate with each
other asynchronously by exchanging the messages con-
taining the required information on the state changes by
the model simulation process, which then can be used by
the observation process independently for drawing the in-
ferences. This keeps the design of both the processes in-
dependent of each other, however unlike the earlier op-
tion, the observation process requires to have separate re-
sources for itself. Nonetheless, by virtue of the indepen-
dence between these two processes, simulation cum ob-
servation can be carried out in a distributed environment,
which can be useful in case of certain AES studies requir-
ing large amount of computational resources to uncover
rare and complex phenomena or detailed dynamics not
possible to execute on a single machine owing to main
memory limitations or CPU speeds.

Computational Complexity
In the next few (sub)sections, we will estimate upper bounds
on the worst case time complexity for the problem of es-
tablishing axioms dealing with evolutionary components in
the framework for arbitrary AES models. For a discussion
on the very choice of worst case computational complexity
measure, we request reader to refer to the next Section.

Estimates for space complexity, though equally impor-
tant, will not be addressed. Primary reason for that is that
space (memory) requirement is often dependent upon the ac-
tual model at hand, the syntactic nature of the entities as de-
termined by an observation process, and is often linear w.r.t.
the total number and size of states observed.

An important problem to be considered while providing
estimates on the computational complexity is that observed
state progression during simulations might not correspond to
the actual underlying reaction semantics for a specific entity.
In other words, observed states during simulations progress
according to the underlying updating rules for the model,
which determine which subset of entities would react in any
state. However, in the following analysis, we assume that all
those entities, which are enabled to react in each state, are
indeed allowed to react. In cases where it is not true, an ob-
servation process may store state subsequences of finite size
where all (or most of) the enabled entities have been ob-
served to react and then merge all the states in each of these
subsequences into single meta states, which reflect the ef-
fect that most of those entities which can react have actually
reacted.

Computational Complexity of Entity Recognition
Following basic result was proved in Misra (2009):

Theorem 1. The problem of entity recognition using struc-
tural (syntactic) constraints is NP-hard.

Assuming that all the states in a simulation are of compa-
rable size (i.e., having roughly same number of atomic ob-
servable elements), let us use O(n) as the size of any state.
Therefore, if the size of a run T is r, entity recognition us-
ing structural constraints in all the states s0, s1, . . . , sr may
require in the worst case O(r2n) steps.

In case, where entities do not have overlapping structures,
corresponding upper bound is O(rn2n) steps.

Computational Complexity of Observing
Evolutionary Components
We can now discuss some of the computational complexity
theoretic aspects of observing various components of evolu-
tion. Also we will use the following notations:
tc: expected number of time steps required to determine
membership of an entity pair in the relation C.
t∆: expected number of time steps required to determine
membership of an entity pair in the relation ∆.
tδmut

: expected number of time steps required to determine
membership of an entity pair in the relation Rδmut .
t=: expected number of time steps required to compare two
entities for equality checking.
tD: expected time steps required to compute function D to
check the equality (or inequality) of the characteristics of
two entities.

We further assume that checking the negation of a
condition takes same number of time steps as checking
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the condition itself. For example, t∆ would also be the
expected number of time steps required to determine that an
entity pair is not in the relation ∆.

Computational Complexity of Observing Entity Level
Reproduction Establishing the case for the entity level re-
production in the simplest case, where there are no epige-
netic developments in the child entities, minimally demands
identifying a single instance of a reproducing entity and its
progeny in the next state during one simulation. Suppose an
observer needs to determine that an entity p in a state s is an
instance of a reproducing entity. For this, the observer needs
to establish that under the specified definition of the causal
relation C, there exists another entity c in the state s + 1
such that (p, c) ∈ C and that the reproductive mutations in
c with respect to p are bound by δrep mut, i.e., (p, c) ∈ ∆,
and that there does not exist any other entity in the state s,
which is recognized as mutating to c. This process would at
worst takeN (s)

p = tc+t∆+|Es|tδmut steps where |Es|tδmut

factor comes owing to the fact that for each of the |Es| num-
ber of entities in the state s, we need to ascertain that it is
not mutating to c. Since for a state s, such a reproducing
instance may not be found quickly, in the worst case all the
entities in the state s might need to be assessed under these
steps. Therefore search for an reproducing instance in a state
s may take at worst

Trp =
∑
p∈Es

N (s)
p = |Es|N (s)

p = |Es|(tc + t∆ + |Es|tδmut
)

≤ 2n(tc + t∆ + 2ntδmut) = O(2n max{tc, t∆, tδmut2
n})

steps, where |Es| ≤ 2n. Since finding such a state s, where a
reproducing entity may be present itself may require search
into a potentially large state subsequence of a run, it might
take O(r) ∗ Trp = O(r2n max{tc, t∆, tδmut2

n}) steps to
establish the entity level reproduction, where r is the num-
ber of states in the state subsequence used in the search as-
suming that all the states are of comparable sizes. Therefore
we have

Proposition 1. Given the sets of entities in each state, ad-
ditional time steps required for observing entity level repro-
duction, without epigenetic development in the child entities
and mutational changes in the parent entities, in an AES is
upper bounded byO(r2n max{tc, t∆, tδmut

2n}), where r is
the number of states observed before first instance of entity
level reproduction is recognized.

The case where entities do not have overlapping struc-
tures, total number of entities in a state are restricted by the
number of atomic structures, that is, |Es| ≤ n. Therefore
we have the following corresponding corollary:

Corollary 1.1. Given the sets of entities in each state, ad-
ditional time steps required for observing entity level repro-

duction in an AES where entities do not have overlapping
structures is upper bounded byO(rnmax{tc, t∆, tδmut

n}).

Next let us consider the general case of entity level repro-
duction with epigenetic developments in child entities and
mutational changes in the parent entities. Towards that we
have the following result:

Theorem 2. Given the sets of entities in each
state, additional time steps required for establish-
ing an entity level reproduction is upper bounded by
O
(
r2n max

{
tδmut

, tc2n, t∆2n, t=r323n
})

.

The case where entities do not have overlapping
structures, we have the following corresponding bound:
O
(
rnmax

{
tδmut

, tcn, t∆n, t=r
3n3
})

Computational Complexity of Observing Fecundity In
order to establish fecundity having recognized an entity level
reproduction, the first problem for an observation process is
to determine the temporal granularities for the generations
of the reproducing entities especially when there may exist
different types of reproducing entities with different rates of
reproduction. In that case, requirement is to determine how
many entity types need to be considered. Towards this, the
observation process could initially scan a constant number
of states to collect all different kinds of reproducing enti-
ties together with their rates of reproductions. Based upon
the initial estimates on these rates of reproductions, it may
consider their least common multiple as the granularity for
a generation and ignore other new types of entities while
aiming to establish the fecundity axiom. However in case
such initial estimates do not yield sufficient support for the
fecundity and more reproducing entity types need to be con-
sidered, backtrack step is necessary. This process need to
continue till statistically significant number of states have
been observed to get support for the fecundity axiom or to
assume it to be statistically unsatisfiable in that simulation.

Let us first consider the case of single state reproduction
without any epigenetic developments. In this case, we have:

Proposition 2. Given the set of entities in each state, the
worst case computational complexity of observing fecun-
dity without epigenetic development is upper bounded by
O(L22n max{tc, t∆, tδmut , L/2

2n}) where L is the number
of generations of the reproducing entities.

Next, we consider the more general case involving epige-
netic developments in the child entities:

Theorem 3. Given the set of entities in each state, the
worst case computational complexity of observing fecundity
is upper bounded by O(Lmax{tδmut

2n, tc22n, t∆rπ22n,
t=r

4
π24n, L}), where rπ is the maximum of the lengths of

the reproduction cycles of the different types of observed re-
producing entities across these generations.

In a special case of replication (with epigenetic devel-
opment) involving no reproductive mutations in the child
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entities and no parental mutations would only demand
identification using syntactic equivalence between entities
and counting the entities belonging to various reproduc-
tive types only in last state of each generation. The worst
case complexity for such process is upper bounded by∑

1≤i≤L (|Eiλ| ∗ k ∗ t=) ≤ L∗2n ∗2n ∗ t= = O(Lt=22n),
where Eiλ is the multiset of entities in the last state of the
ith generation and k is the number of different types of re-
producing entities in each generation.

Also the case where entities do not have overlapping
structures, we have the following corresponding bound:
O
(
Lnmax{tδmut , tcn, t∆rπn, t=r

4
πn

3, L}
)
.

Computational Complexity of Observing Heredity
Theorem 4. Given the sets of recognized entities in each
state, the worst case computational complexity of observing
heredity in an AES is upper bounded by
O
(
r2n max

{
tδmut

, tc2n, t∆2n, t=r323n+1, |Υ|2td2n
})

The case where entities do not have overlapping struc-
tures, we have the following corresponding bound:
O
(
rnmax

{
tδmut , tcn, t∆n, t=r

3n3, |Υ|2tdn
})

Computational Complexity of Observing Natural Selec-
tion Given the sets of recognized entities in each state and
the relations R+

δmut
, Parentmin

∆ , Λmin, and ror from the
earlier steps, additional time steps required for establishing
axioms for natural selection are upper bounded as follows:

• The Axiom 12 of Observation on Evolutionary Time
Scale: O

(
t=r

323n
)
.

• The Axiom 13 of Sorting: O(r2n max{r2n, |Υ|}).

• The Axiom 14 of Heritable Variation:
O(r22n max{r322n, td|Υ|}).

• The Axiom 15 of Correlation: O(r|Υ|2n).

Given the upper bounds for these axioms, the following re-
sult is immediate for natural selection:

Theorem 5. Given the sets of recognized entities in each
state and the relations R+

δmut
and Parentmin

∆ , additional
time steps required for establishing natural selection in an
AES are upper bounded by

O
(
r22n max

{
t=r

22n, td|Υ|, r322n
})

Given the estimates for the upper bounds on the time steps
required for constructing the entity sets EΩ, R+

δmut
, and

Parentmin
∆ , the bound for the overall computational com-

plexity of observing natural selection can be estimated:

Corollary 5.1. Overall worst case computational complex-
ity of establishing natural selection in an AES is upper
bounded by
O
(
r2n max

{
tδmut

, tc2n, t∆2n, t=r323n+1, td|Υ|2n
})

The case where entities do not have overlapping struc-
tures, we have the following corresponding bound:
O
(
rnmax

{
tδmut

, tcn, t∆n, t=r
3n3, td|Υ|n

})
Significance of Results

Before we conclude, it is necessary to discuss why to study
these worst case computational complexity bounds? In prac-
tice, today, most of the AES studies are carried out with sig-
nificant manual involvement throughout the simulation pro-
cess and not all the AES studies are carried out to such an
extent that their fullest potential is conclusively explored.
However as the field would progress, automated exploration
of myriad of possibilities which AES simulation studies
could have would also become increasingly important. Such
automation necessarily present us with fundamental ques-
tions on the hardness and limits of such exploration.

One of well studied questions in the domain of algorithm
design and analysis is the computational complexity analy-
sis, which gives an insight on the fundamental resource re-
quirements for the problem at hand with respect to the in-
creasing input size. The precise characterization of the in-
herent resource requirements resulting from such analysis
helps an algorithm designer to devise appropriate strategies
to optimally utilize the available resources (e.g., CPU cy-
cles) and also to have an estimate of how much could be
achieved with available resources.

Among many possible complexity analysis (e.g., average
case analysis, amortized analysis etc.) the one which ap-
pears most natural and tractable for AES studies is the worst
case analysis considered in this paper. The reason is that
other than the worst case analysis, other analyses demand
either a unifying AES model or a complete characterization
of all the AES models. However, currently known and fore-
seeable AES models differ so fundamentally from each other
in terms of their syntactic structures and semantic rules that
it is extremely hard to solve either of the problems of defin-
ing a unifying AES model or complete characterization of
all possible AES models upon which such analyses could be
carried out. Also owing to these irreducible design differ-
ences, analysis for one AES model could not be generalized
in a meaningful manner for other models and thus an induc-
tive approach of building a theoretical framework starting
from specific AES case studies may not yield expected an-
swers. Therefore the only fruitful analysis, which appears
feasible is the worst case analysis, which could be performed
by rather defining a unifying framework for an observation
process independent of the underlying AES models.

Further question, which may arise to the reader is how
could these results be used in practice? To discuss this, let
us informally interpret the presented theorems:

Entity Recognition Theorem 1 could be interpreted as stat-
ing that if one has a large and complex simulation for an
AES model, it will be computationally expensive to au-
tomatically determine the kind of entities, which would



Proc. of the Alife XII Conference, Odense, Denmark, 2010 896

emerge over time without externally supplied meta infor-
mation.

Evolutionary Components On the other hand the remain-
ing theorems state that if entities are structurally distin-
guishable (i.e., the case of non overlapping structures),
once they are identified in a simulation (automatically or
otherwise), determining whether evolutionary processes
are effective on these entities can be checked in computa-
tionally less-expensive manner.

Further, the parameterized form of the results could be used
to determine resource bounds for specific AES models hav-
ing estimates for the required parameters. For example, if
in a given AES model entity recognition is feasible in poly-
nomial number of time steps and observed entities do not
have overlapping structures, in that case an automatic dis-
covery of natural selection and other evolutionary compo-
nents could also be carried out using only polynomial num-
ber of time steps. On a different note, the specified axioms
and proof steps provide practical guidance on implementing
the actual observation process, which, once designed could
as well be used as reusable component for different AES
models with minor changes.

Conclusion
The work on formal characterization of the observational
processes can be seen as an attempt to fulfill the need for
explicitly separating the design of the AES models from the
abstractions used to describe their dynamic progression and
the discovery of life-like behavior. We consider evolutionary
behavior, as one such characteristic property of life-like phe-
nomena and discuss basic components for observing evolu-
tionary behavior in AES models.

Computational complexity theoretic analysis of the en-
tity recognition as well as establishing evolutionary behav-
ior reveals that an automated discovery of life-like phenom-
ena could be computationally intensive in practice and tech-
niques from the fields of pattern recognition and machine
learning in general can be of significant use for such pur-
poses.

The presented work can be further extended by con-
sidering other macro level emergent properties including
metabolic processes (Bagley et al., 1992), structural and
reactive complexity (Adami et al., 2000), self organiza-
tion (Kauffman, 1993), autonomy and autopoisis (Zeleny,
1981). Associated computational complexity theoretic anal-
ysis can be further refined and strengthened by considering
classes of models for which most of the parameters have
precise bounds compared to the generic analysis presented
in this paper.
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