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Abstract

The hierarchical organisation of biological systems plays a
crucial role in the pattern formation of gene expression result-
ing from the morphogenetic processes. Being able to repro-
duce the systems dynamics at different levels of such a hier-
archy might be very useful for studying such a complex phe-
nomenon of self-organisation. In this paper we propose the
adoption of the agent-based model as an approach capable of
capture multi-level dynamics. We then realise an agent-based
model of Drosophila Melanogaster morphogenesis demon-
strating its capability of reproducing the expression pattern
of the embryo.

Introduction
Developmental biology is an interesting branch of life sci-
ence that studies the process by which organisms develop,
focussing on the genetic control of cell growth, differen-
tiation and movement. A main problem in developmental
biology is understanding the mechanisms that make the pro-
cess of vertebrates’ embryo regionalisation so robust, mak-
ing it possible that from one cell (the zygote) the organism
evolves acquiring the same morphologies each time. This
phenomenon involves at the same time the dynamics of –
at least – two levels, including both cell-to-cell communica-
tion and intracellular phenomena: they work together, and
influence each other in the formation of complex and elab-
orate patterns that are peculiar to the individual phenotype.
This happens according to the principles of downward and
upward causation, where the behaviour of the parts (down)
is determined by the behaviour of the whole (up), and the
emergent behaviour of the whole is determined by the be-
haviour of the parts (Uhrmacher et al., 2005).

Modelling embryo- and morphogenesis presents big chal-
lenges: (i) there is lack of biological understanding of how
intracellular networks affect multicellular development and
of rigourous methods for simplifying the correspondent bio-
logical complexity: this makes the definition of the model
a very hard task; (ii) there is a significant lack of multi-
level models of vertebrate development that capture spatial
and temporal cell differentiation and the consequent hetero-
geneity in these four dimensions; (iii) on the computational

framework side, there is the need of tools able to integrate
and simulate dynamics at different hierarchical levels and
spatial and temporal scales.

A central challenge in the field of developmental biol-
ogy is to understand how mechanisms at intracellular and
cellular level of the biological hierarchy interact to produce
higher level phenomena, such as precise and robust patterns
of gene expressions which clearly appear in the first stages of
morphogenesis and develop later into different organs. How
does local interaction among cells and inside cells give rise
to the emergent self-organised patterns that are observable
at the system level?

The above issues have already been addressed with differ-
ent approaches, including mathematical and computational
ones. Mathematical models, on the one side, are contin-
uous, and use differential equations—in particular, partial
differential equations describing how the concentration of
molecules varies in time and space. A main example is the
reaction-diffusion model developed by Turing, 1952 and ap-
plied to the Drosophila Melanogaster (Drosophila in short)
development by Perkins et al., 2006. The main drawback of
mathematical models is the inability of building multi-level
models that could reproduce dynamics at different levels.

Computational models, on the other side, are discrete,
and model individual entities of the system—cells, proteins,
genes. The agent-based approach is an example of such a
kind of models. Agent-based modelling (ABM) is a com-
putational approach that can be used to explicitly model a
set of entities with a complex internal behaviour and which
interact with the others and with the environment generating
an emergent behaviour representing the system dynamics.
Some work has already been done which applies ABM in
morphogenesis-like scenarios: a good review is proposed in
Thorne et al., 2008. Most of these models generate artificial
pattern – French and Japanese flags (Beurier et al., 2006) –
realising bio-inspired models of multicellular development
in order to obtain predefined spatial structures. At the best
of our knowledge, however, few results have been obtained
till now in the application of ABM for analysing real phe-
nomena of morphogenesis.
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In order to get the benefits of both approaches, hybrid
frameworks has been developed. For instance, COMPU-
CELL 3D (Cickovski et al., 2005) combines discrete meth-
ods based on cellular-automata to model cell interactions
and continuous model based on reaction-diffusion equation
to model chemical diffusion. COMPUCELL 3D looks like
a very promising framework whose main limitation is rep-
resented by the lack of a suitable model for cell internal
behaviour—gene regulatory network in particular.

In this paper we present an agent-based model of the
Drosophila embryo development, reproducing the gene reg-
ulatory network that causes the early (stripes-like) regionali-
sation of gene expression in the anteroposterior axis (Yamins
and Nagpal, 2008; Perkins et al., 2006). The embryo is
modelled as a set of agents, where each agent is a cell.
Our approach allows the gene-regulatory network to be di-
rectly modelled as the internal behaviour of an agent, whose
state reproduces the gene expression level and dynamically
changes according to functions that implement the interac-
tions among genes. It also allows the cell interacting ca-
pability mediated by morphogens to be modelled as the ex-
change of messages among agents that absorb and secrete –
from and towards the environment – the molecules that are
then able to diffuse over the environment.

The remainder of this paper is organised as follows: The
role of hierarchy in the spatial self-organisation of gene
expression during morphogenesis is first highlighted along
with the main biochemical mechanisms taking place in this
phenomenon. The agent-based approach is then presented
with the modelling abstractions it provides. The third part
describes the biological principles of Drosophila embryo de-
velopment, while the fourth part reports the ABM we have
developed and implemented. Simulation results are then dis-
cussed, followed by concluding remarks.

The Role of Hierarchy in Morphogenesis
Complex systems in general exhibit a hierarchical organisa-
tion that divide the system into levels composed by many
interacting elements whose behaviour is not rigid, and is
instead self-organised according to a continuous feedback
between levels. Hierarchy has therefore a crucial role in
the static and dynamic characteristics of the systems them-
selves. These properties are highly dependent by the prin-
ciples of downward and upward causation, where the be-
haviour of the parts (down) is determined by the behaviour
of the whole (up), and the emergent behaviour of the whole
is determined by the behaviour of the part (Uhrmacher et al.,
2005). An example is given by biological systems: an out-
standing property of all life is the tendency to form multi-
levelled structures of systems within systems. Each of these
forms a whole with respect to its parts, while at the same
time being a part of a larger whole. Biological systems
have different level of hierarchical organisation – (1) se-
quences; (2) molecules; (3) pathways (such as metabolic

or signalling); (4) networks, collections of cross-interacting
pathways; (5) cells; (6) tissues; (7) organs – and the constant
interplay among these levels gives rise to their observed be-
haviour and structure. This interplay extends from the events
that happen very slowly on a global scale right down to
the most rapid events observed on a microscopic scale. A
unique molecular event, like a mutation occurring in partic-
ularly fortuitous circumstances, can be amplified to the ex-
tent that it changes the course of evolution. In addition, all
processes at the lower level of this hierarchy are restrained
by and act in conformity to the laws of the higher level.

In this contest, an emblematic process is morphogenesis,
which takes place at the beginning of the animal life and is
responsible for the formation of the animal structure. Mor-
phogenesis phenomena includes both cell-to-cell communi-
cation and intracellular dynamics: they work together, and
influence each other in the formation of complex and elabo-
rate patterns that are peculiar to the individual phenotype.

The biology of development
Animal life begins with the fertilisation of one egg. Dur-
ing the development, this cell undergoes mitotic division and
cellular differentiation to produce many different cells. Each
cell of an organism normally owns an identical genome; the
differentiation among cells is then not due to different ge-
netic information, but to a diverse gene expression in each
cell. The set of genes expressed in a cell controls cell pro-
liferation, specialisation, interactions and movement, and it
hence corresponds to a specific cell behaviour and role in the
entire embryo development.

One possible way for creating cells diversity during em-
bryogenesis is to expose them to different environmental
conditions, normally generated by signals from other cells,
either by cell-to-cell contact, or mediated by cues that travel
in the environment.

On the side of intracellular dynamics, signalling pathways
and gene regulatory networks are the means to achieve cells
diversity. Signalling pathways are the ways through which
an external signal is converted into an information travelling
inside the cell and, in most of the cases, affecting the expres-
sion of one or more target genes. The signalling pathways
are activated as a consequence of the binding between (i) a
cue in the environment and a receptor in the cell membrane,
or (ii) two membrane proteins belonging to different cells.
The binding causes the activation of the downstream pro-
teins until a transcription factor that activates or inhibits the
expression of target genes.

During embryo-morphogenesis few pathways are active.
They work either as mutual inhibitors, or as mutual en-
hancers. The idea is that there are regions where the mu-
tual enhancers are active and interact giving rise to positive
feedbacks. Pathways active in different regions work prob-
ably as mutual inhibitors. There are then boundary regions
where we can observe a gradient of activity of the different
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sets of pathways, due to the inhibitory effect of the pathways
belonging to neighbour regions.

The Agent-based Approach
In literature, agent-based systems – in particular Multi-
Agent Systems (MAS) – are considered as an effective
paradigm for modelling, understanding, and engineering
complex systems, providing a basic set of high level abstrac-
tions that make be possible to directly capture and represent
the main aspects of such complex systems, such as interac-
tion, multiplicity and decentralisation of control, openness
and dynamism (Michel et al., 2009; Merelli et al., 2007;
Klügl et al., 2002). A MAS can be characterised by three
key abstractions: agents, societies and environment. Agents
are the basic active components of the systems, executing
pro-actively and autonomously. Societies are formed by set
of agents that interact and communicate with each other, ex-
ploiting and affecting the environment where they are sit-
uated. Such an environment plays a fundamental role, as a
context enabling, mediating and constraining agent activities
(Weyns et al., 2007).

By adopting an agent-based approach, biological systems
can be modelled as a set of interacting autonomous com-
ponents – i.e., as a set of agents –, whereas their chemical
environment can be modelled by suitable agent environment
abstractions, enabling and mediating agent interactions. In
particular, MAS provide a direct way to model: (i) the in-
dividual structures and behaviours of different entities of
the biological system as different agents (heterogeneity); (ii)
the heterogeneous – in space and time – environment struc-
ture and its dynamics; (ii) the local interactions between
biological entities/agents (locality) and their environment.
An agent-based simulation means executing the MAS and
studying its evolution through time, in particular: (i) ob-
serving individual and environment evolution; (ii) observing
global system properties as emergent properties from agent-
environment and inter-agent local interaction; (iii) perform-
ing in-silico experiments. The approach is ideal then for
studying the systemic and emergent properties that charac-
terise a biological system, which are meant to be reproduced
in virtuo. In the context of biological system, agent-based
models can therefore account for individual cell biochemi-
cal mechanisms – gene regulatory network, protein synthe-
sis, secretion and absorption, mitosis and so on – as well as
the extracellular matrix dynamic – diffusion of morphogens,
degradation and so on – and their dynamic influences on cell
behaviour.

The Drosophila Melanogaster Embryo
Development

One of the best example of pattern formation during mor-
phogenesis is given by the patterning along the anteropos-
terior axis of the fruit fly Drosophila Melanogaster. In this

section we briefly propose a model for the pattern forma-
tion in the embryo. We reproduce the interaction among
pathways inside the cell, that is responsible for its stabili-
sation into a specific genetic expression, and the cell-to-cell
interactions mediated by cues, i.e., transcription factors that
enhance or inhibit the original cell activity and cause the for-
mation of regions of cells with similar activity.

Biological background

The egg of Drosophila is about 0.5 mm long and 0.15 mm
in diameter. It is already polarised by differently localised
mRNA molecules which are called maternal effects The
early nuclear divisions are synchronous and fast (about every
8 minutes): the first nine divisions generate a set of nuclei,
most of which move from the middle of the egg towards the
surface, where they form a monolayer called syncytial blas-
toderm. After other four nuclear divisions, plasma mem-
branes grow to enclose each nucleus, converting the syn-
cytial blastoderm into a cellular blastoderm consisting of
about 6000 separate cells.

Up to the cellular blastoderm stage, development depends
largely – although not exclusively – on maternal mRNAs
and proteins that are deposited in the egg before fertilisation.
After cellularisation, cell division continues asynchronously
and at a slower rate, and the transcription increases dramati-
cally. Once cellularisation is completed the gene expression
regionalisation is already observable.

The building blocks of anterior-posterior axis patterning
are laid out during egg formation thanks to the maternal ef-
fects. Bicoid and caudal are the maternal effect genes that
are most important for patterning of anterior parts of the
embryo in this early stage. They are transcription factors
that drive the expression of gap genes such as hunchback
(Hb), Krüppel (Kr), knirps (Kni) and giant (Gt), as shown
in the diagram of Fig. 1; there, tailess (Tll) also appears as
gap genes whose regulation we do not represent here. Gap
genes together with maternal factors then regulate the ex-
pression of downstream targets, such as the pair-rule and
segment polarity genes. The segmentation genes specify 14
parasegments that are closely related to the final anatomical
segments (Alberts et al., 2002; Gilbert, 2006).

Methods

Our model consists of a set of agents that represent the cells,
as well as of a grid-like environment representing the extra-
cellular matrix. Agent internal behaviour reproduces the
gene regulatory network of the cell, while agent interaction
with the environment models the process of cell-to-cell com-
munication mediated by the signalling molecules secreted in
and absorbed by the extra-cellular matrix. Our model aims
at reproducing the expression pattern of the gap genes, be-
fore the pair-rule genes are activated.
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Figure 1: Gene regulatory network as in Perkins et al., 2006;
Gursky et al., 2004

Model of the cell
We model different cell processes: secretion-absorption dif-
fusion of chemicals from and towards the environment, cell
growth and cell internal dynamics—gene regulatory net-
work in particular.

Chemical diffusion Until cleavage cycle 13, there are
no cell membranes surrounding cell cytoplasm and nu-
cleus, and the transport of material mainly interests the nu-
clear membrane, and involves also cell membranes once
they grow. We do not distinguish between the syncytial
blastoderm and the cellular blastoderm stages, and model
the process of molecule secretion and absorption as facili-
tated diffusion—the literature lacks of information about the
transport mechanisms of such transcription factors and about
the rate of diffusion.

Gene regulatory network Gene transcription begins with
the binding at the gene promoter of one or more transcrip-
tion factors. Gene transcription might also be repressed once
transcription factors bind to other control regions called si-
lencers. This activation/inhibition is stochastic (Kaern et al.,
2005) and highly depends on the concentration of transcrip-
tion factors. For those genes whose transcription is regu-
lated by a set of other gene products we define a probability
of transcription as a sum of positive and negative contribu-
tions from the concentration of enhancers and silencers, re-
spectively. The probability of transcription of hunckback,
according to the graph of Fig. 1, is then calculated as:

Ph = f([Bicoid ]) + f([Hunchback ]) + f([Tailess])
−f([Knirps])− f([Kruppel ])

where f is a linear function with the proportionality constant
representing the strength of interaction. Then if Ph > 0 the
protein is synthesised, otherwise the gene remains silent.

No distinction has been done in the model between ante-
rior (a) and posterior (p) hunckback and giant, whose dif-
ferent expression only deals with the spatial distribution of
maternal products.

Mitosis According to Fig. 2 where we show how the num-
ber of cells varies in the first four hours of embryo devel-
opment – until the cleavage cycle 14, temporal class 8 – we
computed the rate of division as a function of time: cell di-
vision is fast and synchronous until cleavage cycle 9, then
slows down and becomes asynchronous. The rate of division
is constant in the first hours of development (9.05 min−1),
then decreases until a low value (0.2 min−1), as it appears
in Figure 3.
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Figure 2: Number of cells varying from one to 6000 in the
first 14 cleavage cycles
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Figure 3: Rate of division in the first 14 cleavage cycles

Model of the environment
The 3D-tapered structure of the embryo, as in Figure 4, is
modelled as a 2D-section of the embryo along the antero-
posterior axis (c) under the assumption that the dynamics
along the other two axis, a and b, does not influence what
happens along the c axis. The space scale is 1:3.33 accord-
ing to the real dimension of the embryo where the antero-
posterior axis is almost three times the dorso-ventral one
a. Space is not continuous but grid like, and each location
might be occupied both by a set of morphogenes and by a
cell.

The environment has its own dynamics, which mainly
consists in the diffusion of morphogenes from region with
bigger concentration to region with lower concentration,
according to the Fick’s low that the diffusive flux is pro-
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Figure 4: 3D-structure of real embryo

portional to the local concentration gradient (Smith and
Hashemi, 2005). This law is used in its discretised form.

Model implementation and simulation procedure
The model is implemented on top of Repast Simphony1, an
open-source, agent-based modelling and simulation toolkit.
It provides all the abstraction for directly modelling the
agent behaviour and the environment. It implements a multi-
threaded discrete event scheduler. In our simulations a time
step corresponds to 4 seconds of the real system simulated.
This is the smallest time-interval allowing for a good com-
promise between precision in the observation of the system
dynamic and simulation execution time.

Simulations are executed from the cleavage cycle 11,
when the zygotic expression begins. We used the experi-
mental data available online in the FlyEx database2. The
data contains quantitative wild-type concentration profiles
for the protein products of the seven genes – Bcd, Cad, Hb,
Kr, Kni, Gt, Tll – during cleavage cycles 11 up to 14A,
which constitutes the blastoderm stage of Drosophila de-
velopment. These data are used to validate the model dy-
namic. Expression data from cleavage cycle 11 are used as
initial condition—see Fig. 6. The concentration of proteins
are unitless, ranging from 0 to 255, at space point x, ranging
from 0 to 100 % of embryo length.

Model parameters are: (i) diffusion constants of morpho-
genes motion; (ii) rates of gene interactions; (iii) rates of
protein synthesis. Few data are available in literature for
inferring the diffusion constants. We took inspiration from
the work of Gregor et al., 2007 that calculates the diffusion
rate for Bicoid and we imposed the value for all the mor-
phogenes at 0.3 µm2/sec. The rates of gene interactions
and of protein synthesis are determined through a process
of automatic parameter tuning. The task is defined as an
optimisation problem over the parameter space. The opti-
misation makes use of metaheuristics – particle swarm op-
timisation – to find a parameter configuration such that the
simulated system has a behaviour comparable with the real
one (Montagna and Roli, 2009). We supported the automatic

1http://repast.sourceforge.net/index.html
2http://flyex.ams.sunysb.edu/flyex/index.jsp

parameter tuning with a process of model refinement which
slightly changed the topology of gene regulatory network,
adding some edges that we found necessary for obtaining
the real behaviour. An argumentation about the final model
is provided in the Discussion.

Figure 5: Qualitative results

Simulation results
Qualitative results charted in the 2D-grid are shown in Fig. 5
(top) for expression of hb, kni, gt, Kr at the eighth time step
of cleavage cycle 14A. The image shows for each cell of the
embryo the genes with higher expression. It clearly displays
the formation of a precise spatial pattern along the A-P axis
but it does not give any information about gene expression
level. Experimental data are also provided in Fig. 5 (bot-
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Figure 6: Experimental data at cleavage cycle 11 of genes with non-zero concentration: maternal genes Bcd, Cad, Tll and the
gap gene Hb

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200
Simulation

A−P posn. (%EL)

G
en

e 
ex

pr
es

si
on

 le
ve

l

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200
Real data

G
en

e 
ex

pr
es

si
on

 le
ve

l

 

 

kni
hb
gt
kr

Figure 7: Quantitative simulation results for the four gap genes hb, kni, gt, Kr at a simulation time equivalent to the eighth time
step of cleavage cycle 14A (top) and the corresponding experimental data (bottom)

tom) with 2D-Atlas reconstructing the expression level of
the four genes in A-P sections of the embryo. More pre-
cise information about simulation behaviour are given with
the quantitative results provided in Fig. 7. A comparison
shows that the expression pattern of genes Hb, Kni, Gt and
Kr nicely fit the spatial distribution shown in the experimen-
tal data: Hb is expressed in the left pole until about 45%
of embryo length, while it does not appear on the right as
it should between about 85% and 95%; Kni is correctly ex-
pressed on the extreme left and between 65% and 75% but
it is slightly over-expressed on the right; Gt is reproduced
in the correct regions but over-expressed in the extreme left
and slightly under-expressed between 20% and 30%; finally,
Kr properly appears between 40% and 60%.

Discussion
Through the model refinement we found the network
showed in Fig. 8 where some more interactions are per-

formed. The weight in sec−1 of each node is then reported
in Fig. 9.

Figure 8: Gene regulatory network
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Figure 9: Rate of gene interactions

Bcd and Cad are activators of the gap genes. As maternal
factor their central role is in fact to input the wave of zygotic
expression. In particular, given the spatial distribution of
their expression, Bcd is responsible for the activations on the
left side of the embryo, while Cad in the opposite side. Tll
enhances Hb expression while inhibits the expression of all
the others as in the previous model. The interactions among
gap genes are slightly different. As before Hb and Kni on
one side and Gt and Kr on the other side inhibits one each
other, and from the parameters found we infer that these are
the strongest inhibitions among gap genes; Hb then weakly
inhibits Kr and vice-versa, as well as Gt versus Kni. New
weak edges have been found between Kni versus Gt, and Kr
versus Kni.

As far as we know, there are no evidences in biological
literature that already support the above results. It might be
a starting point for new laboratory experiments.

Conclusion
The process of spatial organisation resulting from the mor-
phogenesis process is demonstrated to be highly-dependent
by the interplay between the dynamics at different levels of
the biological systems hierarchical organisation. In mod-
elling and simulating the phenomena of morphogenesis it
might be appropriate to reproduce such a hierarchy. In this
work we have described the application of ABM as an ap-
proach capable of supporting multi-level dynamics.

We studied the phenomenon of pattern formation during
Drosophila embryo development, modelling the interactions
between maternal factors and gap genes that originate the
early regionalisation of the embryo. The possibility to model
both the reactions taking place inside the cells that regulate
the gene expressions, and the molecules diffusion that me-
diates the cell-to-cell communication, makes it possible the
reproduction of the interplay between the two levels in order
to verify its fundamental role in the spatial self-organisation
characteristic of such a phenomenon.

The results presented show the formation of a precise spa-
tial pattern which have been successfully compared with ob-
servations acquired from the real embryo gene expressions.

Future work will be firstly devoted to extending the model
with the introduction of new phenomena on the side of both
intracellular dynamics and cell-to-cell interaction. Gene reg-
ulatory network will be enlarged with other sets of genes
which are downstream to gap genes such as the pair rule
genes, even-skipped as first, whose expression gives rise at

the characteristic segments of Drosophila embryo. Mecha-
nisms regulating cell movements will then be added – cell
adhesion and chemotaxis in particular – as soon as they are
known to play a crucial role in cell sorting during morpho-
genesis.

Finally. we are planning to exploit the predictive power
of the model analysing embryos that are not wild type, for
instance performing in-silico Knock-Out experiments.
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