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Abstract

We use a genetic algorithm to obtain artificial gene regula-
tory networks (GRN5s) controlling real time behaviour of ar-
tificial agents (animats) that gather food resources in a 2D
environment. We build a system in which evolving GRNs are
encoded in linear genomes. The encoding allows to deter-
mine which transcriptional factors (TFs) interact with which
regulatory regions (promoters) to form a GRN. The sensory
information is provided to an animat as externally driven con-
centration of selected TFs. Concentration of selected inter-
nally produced TFs is interpreted as signals for actuators.
We first consider foraging for one food source and then scale
the problem up to obtain animats that are able to switch be-
tween two types of food sources and avoid the poisonous
one. We show that our system is highly evolvable, even
though the genome encoding is very flexible (which results in
a large search space) and though continuous product accumu-
lation and degradation causes latencies in signal processing
by the networks. We then discuss the topological properties
of evolved networks and their evolutionary trajectories. Our
results provide a first step toward a more ambitious goal of
developing an artificial ecosystem in which multiple individ-
uals will compete for food and mates.

Introduction

Gene regulatory networks (GRNs) are an underlying con-
trol mechanism of all living cells. Artificial gene regulatory
networks are build either in order to understand how biolog-
ical GRNs work or in the hope of engineering biologically-
inspired systems that are, like biological systems, robust to
environmental and mutational insults. Many GRN mod-
els have been proposed, and quite a few papers consid-
ered the properties of evolving GRNs (for recent exam-
ples see Kuo et al., 2006; Nicolau and Schoenauer, 2009).
The model used in this work has been inspired by earlier
work of Eggenberger (1997) and is similar to several mod-
els developed in recent years (e.g Andersen et al., 2009;
Schramm et al., 2009). We have developed it originally
for controlling development of 3-dimensional embryos with
non-trivial morphologies or patterning (Joachimczak and
Wrébel, 2008, 2009).

Models of multicellular development are of great interest
in the field of Artificial Life, because they require consider-

ing at least two levels of biological organization: the level
of molecules (genes, proteins, etc.) and the level of cells.
Foraging behaviour also requires these two levels, and in
this work we apply our model to control unicellular animats
in an environment with a gradient of scents coming from
food particles. The cells are provided with sensory informa-
tion using externally driven concentrations of transcription
factors. Such setup resembles chemotaxis of unicellular eu-
karyotic organisms which can detect gradients of substances
with membrane receptors (Bagorda and Parent, 2008). How-
ever, small size of prokaryotic cells does not allow for signal
to noise ratio high enough to do that, so prokaryotes evolved
a different mechanism: bacterial chemotaxis is based on
detecting concentration fluctuations over time and random
changes in movement direction (see e.g. Alon, 2006).

What happens to the animat in our system depends not
only on the GRN state but also on the laws of simulated
simple Newtonian physics, and this can be exploited by
evolution. The interplay between the GRN and the physi-
cal environment removes some of the computational burden
from the GRN. This is analogous to the physics-GRN inter-
play used previously to guide developmental systems (e.g.
Eggenberger, 2003; Joachimczak and Wrébel, 2009). Also,
this is not the first time GRNs are used to control animat
behaviour (see e.g. Bentley (2004); Taylor (2004); Quick
et al. (2003) where obstacle avoidance, wall and light fol-
lowing were considered). Some previous papers considered
the dynamical properties of GRNs in which product con-
centrations oscillate, decay within desired time frames or
respond to noisy external signals (Kuo et al., 2004; Knabe
et al., 2006).

In this paper, we will first provide a brief description of
the regulatory model and the environment used in the ex-
periments. Two experiments will be presented. In one only
single food type was provided. In a more complex prob-
lem, two substances were present. One was poisonous until
a certain number of particles of the other were consumed; at
this point the roles were reversed. We end with a discussion
of the topologies of evolved GRNs and of the evolutionary
trajectories that lead to the solutions.
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Figure 1: The genome and the structure of a single genetic
element. Each element consists of a type field, a sign field,
and a sequence of N real values used to determine affinity
to other elements (/N = 2 was used in this paper).

The model

Our model of the genome is designed to capture some of
the most essential features of evolving regulatory networks.
The GRN topology is encoded in a linear genome. Genes
encode transcription factors (TFs). TFs bind to promoters
of genes to regulate their expression. Any network topol-
ogy can be encoded: there are no limits on the size of the
network, number of connections or maximum number of
connections per node. This is because our primary moti-
vation is to build a model that allows to ask questions rele-
vant to biology (where no such limits are imposed) rather the
to solve a particular optimization problem (where enforcing
them might decrease the search space).

Encoding a GRN in a linear genome

The genome is a list of genetic elements that fall into three
classes: elements that code for products (called genes); reg-
ulatory elements (called promoters); special elements (that
code for external inputs and outputs of the regulatory net-
work). The genome is parsed sequentially, and regulatory
units are formed whenever a series of promoter elements
is followed by a series of genes. Special elements are as-
signed to input and output nodes at a later stage. In result,
each regulatory unit is composed of one or several regula-
tory elements and one of several genetic elements coding
for TFs. Regulatory units form the nodes in the regulatory
graph. When the unit is expressed (active), all TFs that be-
long to it are produced at the same level. Fig. 1 provides
an overview of the process, together with the structure of a
single genetic element.

Each genetic element encodes N coordinates (/N = 2 was
used) and thus can be assigned to a point in R? space. When
a TF lies close enough to a promoter in this space, a con-
nection between the respective regulatory units is formed (a
cut-off distance of 5 prevents full connectivity, Fig. 2). The
abstract R? product-promoter space should not be confused
with the 2D environment in which the animat is simulated.
“Sign” fields of two elements allow to determine whether the
weight of a connection is positive or negative (using multi-
plication). Because regulatory units can have multiple pro-
moters and multiple genes, two nodes can be connected by
several edges.

10+

Figure 2: Translation of Euclidean
distance between genetic elements
into affinities (weights). Maximum
weight of 10 and cut-off at the dis-
tance of 5 are used.
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—
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Genetic algorithm

Each evolutionary run was initiated with 300 genomes con-
sisting of 5 randomly created regulatory units. Element co-
ordinates were initiated using uniform distribution to draw
a random direction and a random distance from (0,0). The
population size was kept constant. Binary tournament selec-
tion (draw two individuals, keep the better one) was used.

Genetic operators in our system act on the level of genetic
elements. Single element mutations can change element
type, sign bit (changing all its connections from inhibitory
to regulatory or vice versa) or coordinates (changing con-
nection weights). Coordinates are changed by shifting the
associated point in the abstract N-dimensional space in a
random direction by a distance drawn from a Gaussian dis-
tribution. Duplications and deletions of multiple elements
occur at random locations in the genome. When they oc-
cur, some points are created or removed in the abstract N-
dimensional space. If N < 3, it is possible to visualize
how the points move, appear and disappear. The duplica-
tion/deletion length is drawn from a geometric distribution,
with equal probability of duplications and deletions. Since
genetic elements cannot be created de novo and there is no
recombination, all genetic elements in any individual can be
traced back to the elements in one of the genomes that were
present in the initial population.

GRN dynamics

During simulation of the network, regulation of a given reg-
ulatory unit (node of the graph) will result in the change in
concentrations of TFs that belong to this unit. The rate of TF
synthesis is a function of activation of all promoters belong-
ing to the unit (inputs to the node). First, distances are con-
verted to affinities using an exponential function shown in
Fig. 2. Activation of each promoter is a sum of the concen-
tration of all products binding to it weighted by their affini-
ties. This sum (A) is used to derive product concentration (a
value within < 0,1 >) in the next simulation step using the
equation:

dL 2

dt  1+4e(A-D
where the time step dt determines the simulation accuracy
(dt = 0.1 was used), and current concentration (L) deter-
mines the intrinsic product degradation rate, so concentra-
tion increases only if the sigmoid function gives a value
above L, and the degradation rate increases if the value is

- L (1)
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Figure 3: Time scale of exponen-
tial degradation of a transcription
factor over time. All TF concen-
trations in the system are in the
time step range < 0,1 >.

concentration

negative. Fig. 3 illustrates the time scale of product degra-
dation used in the system.

Animats and their environment

Animats are modelled as simple circular objects, equipped
with two identical food sensors located towards the front
and two actuators towards the back (Fig. 4). To evaluate
the fitness of an animat, it is placed in the environment that
is an open and continuous 2D space with randomly placed
food particles. The animat and food particle coordinates are
represented as real numbers.

Each food particle generates a field of scent. At each
location in the environment, the scent coming from a food
particle is directly proportional to the distance to this scent
source. Fields from each food particle sum up, forming a
scent map (see right panel of Fig. 6 for an example). An-
imat’s sensors perceive the scent at its location in a non-
directional manner, so the gradient information has to be ex-
tracted using two sensors and/or movement. When a food
particle is consumed its field is removed from the map.

Sensors and actuators are assigned to special elements in
the genome, which come in two subtypes: input and out-
put. The scent perceived by a sensor determines the con-
centration of associated input product. In addition to inputs
representing sensors, special product whose concentration
is always at a maximum (1) can be used to initiate gene ex-
pression. The positions of input products in the R? product-
promoter space determine how they are connected to the rest
of the GRN. However, direct connection between the input
products and the output is not permitted. The output element
behaves essentially as a promoter in the system, but a better
way of putting it is that it is a single promoter regulating ex-
pression of a single gene, and that the concentration of the
corresponding product regulates the animat’s actuators. The
assignment of special elements to actual inputs and outputs
in the system (sensors/actuators) is based on their order in
the genome, superfluous special elements are ignored.

Actuators work as thrusters and animat motion is sim-
ulated using simple Newtonian physics. The thrust force
is proportional to the concentration of a product associated
with the output special element. The force is not directed
toward the centre of the animat, so when the activation of
actuators differ, the animat is caused to spin. However, the
animat cannot turn on the spot: even when only one actua-
tor is active, the animat moves in a loop rather than rotate
in place. Switching the actuators off results in continued
motion because of inertia, but the animat will be eventually

3 > Figure 4: The placement of sensors of

chemical signal (scent) and actuators

FaL Fip oD the animat.

brought to a stop due to fluid drag proportional to squared
velocity. This drag also limits the maximum speed possible.
To find a food particle it is thus not only necessary for the
animat to properly orient itself but also to properly deal with
inertia when taking turns.

Results

Designing a way to assess fitness in a chemotaxis
problem

In preliminary experiments, we have assessed the fitness by
measuring the energy level of an animat at the end of its
lifetime divided by the maximum energy that could be ob-
tained in a particular environment. The energy level was set
to zero at the beginning of fitness evaluation. Each particle
consumed by the animat increased the energy by 1.

We have noticed that if the genetic algorithm was con-
structed to minimize

ffitness =1- w (2)

energymax
the best animats would often show a suboptimal behaviour,
circling towards the food (Fig. 5). The corresponding hill in
the fitness landscape is very easy to find and climb, but dif-
ficult to escape from: simply circling around a map allows
to find some food particles by chance and the behaviour can
be further optimized by controlling the loop diameter with
only a single actuator (tightening it when the scent gradi-
ent increases). To promote alternative solutions, an addi-
tional term was introduced in the fitness function. This term
favours individuals that change the direction of the move-
ment at least once during their lifetime. For such individuals
fritness was decreased by 10%. This helps to arrive at an-
imats capable of controlling both actuators early during the
course of evolution, even though circling behaviour remains

a strong attractor for the genetic algorithm.

Using a map with fixed locations resulted in overfit in-
dividuals that simply followed trajectories optimized for a
particular map. To prevent this, for each animat fitness
was averaged for four maps with the same number of parti-
cles at random locations (so this average, fq.4, would differ
slightly even for two identical genomes).

Designing sensor preprocessing for foraging
behaviour

The only information about the environment made avail-
able to the animat is the state of two sensors Sy, and Sg,
corresponding to the concentration of the food scent in the
location when the sensors would actually be at. To allow
the information from the sensors to be processed by the
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Figure 5: A common suboptimal solution in the fitness land-
scape: targeting the food particles by performing circular
motion. Despite low average speed, it can be quite effective
at targeting. Particles consumed during lifetime are drawn
as empty circles.

GRN, some preprocessing of sensory information is neces-
sary. This is because TF concentrations in the system are in
the range < 0,1 > whereas the value of the scent field at a
given location has no upper limit.

Our initial approach was to provide the GRN with concen-
trations of input products S1 and S2 that would correspond
directly to the values of Sy, and Sgr but were restricted to
< 0,1 > using sigmoid function. This, in principle, should
have allowed for the emergence of simple controllers with
sensors cross wired with actuators in the regulatory network,
similar to Braitenberg vehicles.

However, such signal preprocessing resulted in very poor
evolvability, for a very simple reason. The diameter of the
animat is very small compared to the size of the environ-
ment, so both sensors perceive the scent at a very similar
level. Unless the animat is very close to the food parti-
cle, the difference in signal levels would often be less than
1%. Although we were able to obtain some animats capable
to climb the scent gradients, their overall performance was
poor.

Much better results were obtained when a simple sigmoid
function was used to derive the concentration of the input

product S1:
1

S1= s

3)
where « controls the steepness of the function and was set so
that it amplifies small differences between Sy, and Sg. If S,
is equal to Sy, the S1 concentration is 0.5. The concentra-
tion approaches 1 or 0 depending on the difference between
St and Sg.

Using just S1 was enough to evolve animats that quite
efficiently search for one food source. However, we have
observed that the animats turn too fast when close to the food
sources and too slowly when far away. Information about the
distance from sources is missing in S'1, so to allow for better
turn taking we have introduced a second input product (52)
which concentration depends on the perceived food scent at

Figure 6: Left panel: best individual navigating the map
with single type of food; Right panel: initial map of scent
intensity that is locally perceived by animat sensors (nor-
malized to span full colour range).
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Figure 7: Fitness over generations for the problem with a
single type of food source.

the animat location:

2

52 = 1+ e B(Sn+51)

-1 )

where (3 similarly controls the steepness of the sigmoid.

Foraging for a single type of food

In the first experimental setting, maps were created by plac-
ing 20 food particles at random locations. Animat behaviour
was simulated for 2000 time steps. The size of the map
was such that typically about 300 time steps were required
to cover the distance between the farthest food particles at
maximum speed. Because about 50 steps are needed for TF
degradation at the default rate (Fig. 3), latencies in informa-
tion processing in the GRN quickly become an issue when
there is a need to react fast.

Out of ten independent evolutionary runs of 5000 gener-
ations, seven resulted in very efficient solutions. The best
animats had f,,4 between 0.05 and 0.25, which means that
around 70-90% of food particles were collected. In the re-
maining runs the algorithm got stuck in a solution with a
circular motion and loop tightening when close to a food
particle (such behaviour is shown in Fig. 5). Only about 30-
40% food particles could be collected with this approach.

The behaviour of the best individual in ten runs is shown
in Fig. 6 (left panel). Fairly good solutions were found quite
early (Fig. 7; this could be observed also in the other runs).
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(a) (b)

Figure 8: GRN topologies of animats foraging for one (a,b)
or two (c) chemical substances; (b) shows the GRN of the
best animat (generation 5000), and (a) its ancestor in gen-
eration 3000. Multiple links between nodes have been col-
lapsed to one line.

In later generations, speed and targeting gradually improves,
but even the best animats turn too widely (which later needs
correction) and move only at about 60% of the maximum
speed possible. However, this is an expected trade-off given
the physical (inertia) and biochemical (latencies in product
synthesis/degradation) constraints.

Analysis of the evolved regulatory network (Fig. 8b)
shows a simple, largely symmetric topology with only three
internal nodes. The best GRN uses both sensory inputs
available: the directional information (S1) and the scent
concentration at the animat location (S2). However, S2 is
not critical for navigation, and in the best networks in other
runs it was often disconnected. Indeed, going back from the
best animat at generation 5000 to its ancestor at generation
3000 (Fig. 8a) shows that in the ancestral GRN S2 was not
connected. Perhaps this is the primary reason why the an-
cestral animat is less efficient at gathering food particles.

In 2000 generations that separate these two animats, the
network became less dense (see below) and the genome size
roughly doubled. The number of deletions and duplications
was similar, but the duplications were longer on average: 6.8
genetic elements for average duplication vs. 2.3 for deletion
(despite lengths being drawn from the same distribution). It
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Figure 9: Measuring the spread of genetic elements over
time: average distance from (0, 0) for all genetic elements
in each generation for the problem with single food type.

Figure 10: Distribution of genetic elements from all individ-
uals in first generation (left) and last generation (right). Dots
represent locations in R? space of all genetic elements in the
gene pool.

is possible that this excess of duplications allows for some
of the duplicated elements to take on new functions and per-
haps to optimize the speed of information processing in the
network. This requires changing the coordinates of points
associated with the duplicated elements.

Many genetic elements in a particular genome are not im-
portant for GRN functionality and small mutations in their
coordinates are neutral or almost so. This means that over
time, points in product-promoter space spread away from
each other, and because initial coordinates are drawn from a
uniform distribution centred at 0, points spread away from
the centre (Fig. 10 and Fig. 9). The unimportant points per-
form a random walk and slowly move beyond the interaction
distance, which reduces the density of the network. This is
a general property of element evolution in our system, but a
similar process is at play in biological evolution: neutral mu-
tations in duplicated genes or promoters eventually remove
redundant connections in GRNs.

Foraging for two types of food

The chemotaxis problem can be made more difficult by in-
troducing more types of food. Evolving animats that search
for two types of food may be seen as a first step towards
evolving even more complex behaviours, such as the ability
to avoid obstacles or to search for mates, perhaps with sepa-
rate modules in the network controlling different behaviours.
The task was formulated so that consuming an appropriate
food particle increases the energy by 1, wrong particle re-
sults in a decrease by 1. Poison changes to food and vice
versa when energy reaches a certain value (5). When energy
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SWITCH

Figure 11: The path of the best individual from generation
2600 for the problem with two food sources. After seek-
ing blue particles, the animat switches to circular motion
strategy, similar to that observed in the previous experiment
(Fig. 5). This behaviour is replaced later in evolution with
direct targeting. Consumed particles are drawn as empty cir-
cles.

drops below zero the animat becomes immobile. 30 food
particles of type one (blue) and 30 of type two (red) were
placed in the environment, and this rather high density of
particles was required so that poison avoidance could evolve
(otherwise accidental consumption would be too rare to af-
fect fitness).

To allow perception of two substances in the same fashion
as for one, four special genetic elements were used as GRN
input (S1 and S2 for the first type, and S3 and S4 for the
second). To increase evolvability, one more element (55)
had to be introduced. The concentration of its product would
be O until the energy reaches 5 for the first time, and 1 from
then on, signalling that a behaviour switch is necessary. The
best animats evolved before this mechanism was introduced
would move slowly enough to collect only about 5 particles
during their lifetime.

In this experimental setup ten independent evolutionary
runs were performed, but with individual lifespan increased
to 7000 time steps so that more particles could be collected.
In three runs f,,4 for the best individuals was between 0.19
and 0.26, which means that the animats extracted around
70% of energy available to them in the environment. The
animats showed the desired behaviour: they first searched
for blue particles and switched to search for red as soon as
signal S5 was set to 1. In four runs the best animats would
gather around 50% of energy by efficiently collecting blue
particles, but then collected red using the circular motion ap-
proach (a manifestation of same attractor in the fitness land-
scape as seen on Fig. 5). The best animats in the remaining
runs would gather only blue particles and then stop.

Fig. 12 shows the behaviour of the best animat in ten runs,
its GRN has been presented in Fig. 8c. Information from all
externally provided signals (S1 — S5) is used. This ani-
mat actively avoids wrong (red) food particles when search-
ing for blue. However, after the behaviour switch, when it

Figure 12: The path of the best individual from the final gen-
eration (5000) for the problem with two food sources. The
switch in behaviour occurs after 5 blue particles are con-
sumed. Particles consumed are marked as empty circles. !

actively seeks red particles, it will consume any blue par-
ticles that accidentally come its way. The difference in the
avoidance behaviours likely stems from the fact that the evo-
lutionary pressure to avoid red particles at the beginning
is stronger: consuming them when low on energy will be
lethal.

Fig. 13 shows that evolution of foraging for two types for
food was less gradual than for one type (Fig. 7), though in
some runs the plateaus were less pronounced; their lengths
varied. The best individual from the first plateau (generation
2600) actively and efficiently searches for blue particles, and
avoids the red, but uses the circular motion strategy after
the food/poison switch (Fig. 11). This behaviour allows to
gain energy because at this stage there is more red particles
than blue. The best individual from generation 3100 (the
second plateau) already seeks the red particles actively, but
moves rather slowly. The third plateau in fitness is reached
by improving the speed.

A large fitness improvement between generation 2900 and
3900 corresponds to an increase of genome size (Fig. 14).
The duplications that lead to this increase tend to create
new connections between existing nodes in the GRN rather
than create new nodes. This is not surprising: duplication
of genetic elements results more readily in a new product-
promoter pair than in a new regulatory unit. However, it
was rare for the duplications to occur before the onset of the
episodes of fitness improvement. Rather, they tended to oc-
cur at the very end of these episodes or during the plateaus.

"Videos of animat behaviours are available at:
http://www.evosys.org/alifel2chemotaxis
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Figure 13: The fitness for the problem with two food types.
Three stages corresponding to improved behaviour are seen.
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Figure 14: The genome size (the number of genetic ele-
ments) for the problem with two food types.

This suggests that even though the duplications may prepare
the stage for the improvements, the episodes themselves are
actually initiated when the elements acquire new functions,
and the points in the promoter-product space need to move
some distance before that can happen.

Discussion

The genetic algorithm used in this work did not include
elitism nor recombination. Together with small population
size and the fact that the fitness was evaluated using ran-
dom scent maps would mean that the best genomes, sub-
ject to the Muller’s ratchet, would not necessarily be main-
tained in the population. Even so, good solutions were ob-
tained. Random genomes grew through duplications, with
better and better fitness thanks to the divergence of dupli-
cated elements. The evolvability was good enough to scale
the system to a more complex foraging problem, in which
several navigating behaviours are required. The best animat
displayed 3 behaviours, activating them in a proper fashion:
first seeking blue particles and avoiding red, and then seek-
ing red particles after food/poison switch. Although pre-
processing of sensory information was necessary to obtain
good evolvability in the foraging tasks, all the information
available to the animats came from the scent concentrations
perceived at the locations of two sensors (Fig. 4).

Before this research platform could be used to address bi-
ologically relevant questions pertaining to the properties of
evolving networks, a few issues need to be addressed. First
of all, evolved networks are fairly small, even for the more
complex problem. Secondly, to observe any emerging trend
in properties with confidence, networks from multiple evo-
lutionary histories will have to be analysed. This is because

400

=t W oll
o

Figure 15: The number of generations to the most recent
common ancestor (MRCA) for the entire population in each
generation of the experiment with one food source. Average:
148.7; the value for the experiment with two sources was
similar.

individuals in a single evolving population are not very di-
vergent. For a given generation, all individuals have a com-
mon ancestor about 150 generations earlier (Fig. 15), so they
represent a single successful lineage rather than multiple lin-
eages evolving independently. To analyse general trends in
properties, evolutionary runs will have to be repeated many
times. Alternatively, such analysis will require constructing
a system in which multiple lineages can co-exist.

Artificial GRNs have computational properties equivalent
to recurrent neural networks. However, when compared with
typical perceptron-based neural networks, GRNs have richer
dynamics coming from product accumulation and degrada-
tion. This results in lower response time, but can allow
e.g. to integrate noise or produce signals that change grad-
ually. We provide a more in-depth discussion of evolv-
ability of regulatory networks together with comparison to
perceptron-like GRNs in a parallel paper (Joachimczak and
Wrébel, 2010).

We have observed that animats in the final generation have
usually low maximum TF concentrations, rarely above 0.3.
This may stem from the evolutionary pressure to reduce the
response time of the networks. In a system in which con-
centrations represent some continuous variables (such as the
activity of a sensor or actuator), it is relative changes of con-
centrations that are important. Intrinsic TF degradation is
exponential, so resulting relative changes do not depend on
the concentration itself (Fig. 3). However, relative changes
caused by regulation do depend on current concentration:
a low concentration allows for a larger relative change, so
keeping TF expression low permits to react faster to chang-
ing environmental signals. In biological systems lower con-
centrations would result in a decreased signal-to-noise ratio,
but in our system GRNs there is no noise. The only thing
that prevents using extremely low expression levels is the
limit of maximum connection weight. It will be interesting
to investigate if adding noise to gene expression will affect
the properties of evolved networks and the way information
is encoded in changing concentrations of TFs.

Our results demonstrate that a slightly simplified model
previously employed for artificial embryogenesis (Joachim-

Proc. of the Alife XII Conference, Odense, Denmark, 2010

354



czak and Wrobel, 2009) can be used to obtain GRNSs control-
ling real-time foraging behaviours of unicellular artificial or-
ganisms. In our future work, we plan to bring two problems
together with the goal to build a system in which multicel-
lular animats will develop from single cells and co-evolve
competing for resources.
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