
Proc. of the Alife XII Conference, Odense, Denmark, 2010 451

Dynamic Resolution in the Co-Evolution of Morphology and Control
Joshua E. Auerbach1 and Josh C. Bongard1

1Morphology, Evolution and Cognition Laboratory
Department of Computer Science

University of Vermont
Burlington, VT 05405

joshua.auerbach@uvm.edu

Abstract

Evolutionary robotics is a promising approach to overcom-
ing the limitations and biases of human designers in pro-
ducing control strategies for autonomous robots. However,
most work in evolutionary robotics remains solely concerned
with optimizing control strategies for existing morphologies.
By contrast, natural evolution, the only process that has pro-
duced intelligent agents to date, may modify both the control
(brain) and morphology (body) of organisms. Therefore, co-
evolving morphology along with control may provide a better
path towards realizing intelligent robots. This paper presents
a novel method for co-evolving morphology and control us-
ing CPPN-NEAT. This method is capable of dynamically ad-
justing the resolution at which components of the robot are
created: a large number of small sized components may be
present in some body locations while a smaller number of
larger sized components is present in other locations. Ad-
vantages of this capability are demonstrated on a simple task,
and implications for using this methodology to create more
complex robots are discussed.

Introduction
There are many reasons why it would be useful to have au-
tonomous robots operating in our homes and offices. These
range from freeing people from repetitive tasks to the ability
to perform actions that humans are incapable of. However,
with the exception of a few robots designed to accomplish
simple tasks, the vast majority of autonomous robots cur-
rently in use operate only in factories and other highly struc-
tured environments. In order to make the migration out of
the factories and into our everyday lives robots will need to
be adaptive and exhibit intelligent behavior.

There has been much work in recent years in the area
of embodied artificial intelligence (Brooks, 1999; Ander-
son, 2003; Pfeifer and Bongard, 2006; Beer, 2008) which
has led to the conclusion that such intelligent behavior must
arise out of the coupled dynamics between an agent’s body,
brain and environment. This means that the complexity of an
agent’s controller and morphology must increase commen-
surately with the task or tasks that it is required to perform.
However, when designing complex autonomous robots it is
often not clear how responsibility for different behaviors

should be distributed across an agent’s controller and mor-
phology. A good example of this is that if a robot is solely
tasked with moving over flat terrain while following a light
source then wheels and a direct sensory motor mapping are
an appropriate solution (Braitenberg, 1986), but if the robot
must be able to navigate over varied terrains while perform-
ing more complicated tasks a more complex control strategy
and/or morphology are required. This issue of scaling up
morphological and control complexity has been a major ob-
stacle in developing autonomous robots capable of operating
in most real world situations.

Background

The only truly intelligent agents to have yet existed, as far as
we are aware, are biological organisms. Therefore the only
known pathway to creating intelligent agents is evolution by
natural selection. Guided by this observation, the field of
evolutionary robotics (Harvey et al., 1997; Nolfi and Flore-
ano, 2000) attempts to realize intelligent agents by means of
artificial evolution. Generally how this methodology works
is that control policies for human designed or bio-mimicked
robots are optimized to perform a desired task via evolution-
ary algorithms. This has allowed for the creation of robust,
non-liner control strategies for autonomous agents that are
not bound by the limits of human intuition. However, nat-
ural evolution does not operate on one part of an organism
(brain) to the exclusion of others (body). In fact under evo-
lution by natural selection any and all parts of an organism
may be, and at some point in the past necessarily were, mod-
ified. This allows for the realization of organisms whose
brains and bodies are co-optimized for specific ecological
niches.

Luckily, artificial evolution is not necessarily limited to
acting solely on a robot’s brain or control strategy. Evo-
lutionary frameworks in which the morphology and con-
trol of simulated machines are co-optimized in virtual en-
vironments are possible and indeed have been created, start-
ing with Sims (1994) and followed by various other studies
(Dellaert and Beer, 1994; Lund and Lee, 1997; Adamatzky
et al., 2000; Mautner and Belew, 2000; Lipson and Pol-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 452

lack, 2000; Hornby and Pollack, 2001a,b; Stanley and Mi-
ikkulainen, 2003; Eggenberger, 1997; Bongard and Pfeifer,
2001; Bongard, 2002; Bongard and Pfeifer, 2003). With this
approach body plans and control policies uniquely suited for
a machine’s task environment may be found. This offers a
substantial improvement over relying on body plans created
by human designers who have inherent biases or copying
animal body plans more suited to a given ecological niche.

The current work continues in this tradition while present-
ing several important advantages over previous approaches.
First, the genomes of evolved agents are represented by
compositional pattern producing networks (CPPNs) (Stan-
ley, 2007), a form of indirect encoding that have been shown
able to capture geometric symmetries appropriate to the sys-
tem being evolved, are capable of reproducing outputs at
multiple resolutions (Stanley et al., 2009), and have shown
promise in producing neural network control policies for
legged robots (Clune et al., 2009a,b). Second, through novel
extensions of the CPPN outputs evolution can differentially
optimize the resolution of the simulated robots such that a
larger number of smaller sized components may be present
in some body locations while a smaller number of larger
sized components is present in other locations. To see why
this is desirable consider evolving a creature capable of lo-
comoting and grasping different objects. In this case evolu-
tion may choose to increase the resolution of the hands or
grippers in order to achieve more fine grained control of the
object to be grasped while at the same time using a lower res-
olution model of the trunk which will result in fewer compo-
nents keeping the morphology from becoming unnecessarily
complex and therefore providing faster simulations without
sacrificing performance.

This paper extends the work presented in (Auerbach and
Bongard, 2010) to allow for evolution of control as well as
dynamic resolution as just discussed. The paper is organized
as follows: the next section describers the CPPN encodings
used, describes how they are evolved and presents how these
encoding are used to grow actuated robots. Following that a
description of two experiments is presented which compare
this dynamic resolution method with a similar method lack-
ing this ability. Some observations of how evolution makes
use of the dynamic resolution capability are discussed, and
finally some conclusions and directions for future work are
presented.

Methods

This section presents a brief description of CPPNs and the
evolutionary algorithm used to evolve them. This is fol-
lowed by a description of the methods used for generating
actuated robots from evolved genotypes. After this a de-
scription is presented of the fitness function used for evalu-
ating these robots.

CPPNs
Compositional Pattern Producing Networks (CPPNs) are a
form of artificial neural network (ANN). Unlike most ANNs
where each internal node uses a form of sigmoid function,
each internal node of a CPPN can have an activation func-
tion drawn from a diverse set of functions. This function
set includes functions that are repetitive such as sine or co-
sine as well as symmetric functions such as gaussian. By
composing these functions CPPNs can produce motifs seen
in the majority of natural systems such as symmetry, repe-
tition, and repetition with variation. It is important to note
that these motifs come out of this encoding for free without
the need for a human expert to explicitly enforce or select
for them.

CPPN-NEAT
In this work the CPPNs are evolved via CPPN-NEAT
(Stanley, 2007). CPPN-NEAT uses the NeuroEvolution
of Augmenting Topologies (NEAT) method of neuro-
evolution (Stanley and Miikkulainen, 2001) to evolve in-
creasingly complex CPPNs. An extension of CPPN-NEAT
—HyperNEAT— has been used (Stanley et al., 2009; Clune
et al., 2009a,b) to evolve traditional ANNs, where each node
of the ANN is embedded in a geometric space and whose
coordinates are fed to an evolved CPPN to determine the
presence and weights of connections. In effect these con-
nections are “painted” on to the network from the output
patterns produced by the CPPN. As shown by Stanley et al.
(2009) this has the crucial benefit that a CPPN evolved to
produce the connectivity patterns of small ANNs can be re-
queried at a higher resolution to produce the connectivity
patterns of larger ANNs without needing to re-evolve these
large ANNs. Similarly as shown in (Auerbach and Bongard,
2010) it is possible to change the resolution at which CPPNs
grow physical structures.

Growing Actuated Robots from CPPNs
In this work actuated robot morphologies and control strate-
gies are grown from evolved CPPNs. Each robot is com-
posed of many spherical cells which connect to each other
either rigidly or via single degree of freedom rotational
joints. For an example of robots produced in this way see
Figure 1.

The growth procedure begins with a single cell, hence-
forth referred to as the root, with a predefined radius rinit lo-
cated at a designated origin. A cloud composed of n points
is cast around this cell with the n points being evenly dis-
tributed on the surface of the root sphere (all n points are at
distance r from the center of the root). In the current work,
n is restricted to 2, such that the points are directly opposite
each other along the y-axis. In the coordinate system used
here z is the vertical axis, and so the y-axis represents a hor-
izontal axis that passes through the center of each cell. It is
convenient to think of this as a cloud of points though, as is



Proc. of the Alife XII Conference, Odense, Denmark, 2010 453

Figure 1: A few samples of robots evolved for directed lo-
comotion.

the case in (Auerbach and Bongard, 2010), because in future
work this restriction will once again be lifted allowing for a
greater number of morphologies.

Once this cloud is cast, every point in the cloud is used
to query a CPPN. The CPPN is queried by providing as in-
put the Cartesian coordinates (x, y, z) of the point in ques-
tion, the radius rparent of the sphere to which it will attach
(rparent = rinit when considering points around the root), and
a constant bias input. These values are propagated through
the CPPN to produce multiple output values. The first of
these outputs is m. This output value can be thought of as
a concentration of matter at that point, such that when m is
over a certain matter threshold, Tmatter, a cell will be placed
at that point. The more that m exceeds the matter threshold
the denser the cell placed at that point will be. This creates a
continuum from no cell existing at that location up to having
a very dense cell at that location with all intermediate levels
of density in between being possible. The second of these
outputs is a radius scaling factor rscale which will determine
the size of the cell to be added at that location.

Once the m and rscale values have been determined for all
n points in the cloud the points are sorted in descending or-
der of the matter outputm. The sorted points are then looped
through and the algorithm considers adding a cell centered
at each point in turn. Specifically a cell, centered at point p
is added to the structure if (a) the output value of point p is
above the threshold Tmatter and (b) no other cell, besides the
one to which this new cell will be attached (its parent) has
previously been added to the structure with center located at
distance < r away from p.

1. GrowRobot(CPPN)
2. Initialize priority queue q, with priority based on

cell density
3. Create cell c at origin with full density and radius rinit,

add to morphology M and flag its coordinates
‘discovered’

4. Enqueue c in q
5. WHILE ∼ q.isEmpty
6. c← q.front
7. Cast point cloud C centered at c
8. Initialize vector V of neighboring cells
9. FOR EACH point p in C

10. Query CPPN at p to get output valuesm and rscale
11. Add p with values m and rscale to vector V
12. Sort V by descending value of m
13. FOR EACH point p with valuem in sorted vector V
14. IF coordinates of p not yet ‘discovered’
15. Flag p ‘discovered’
16. IF CanAdd(p,m,c,r)
17. Add cell centered at p with density

∝ m and radius r = rparent ∗ rscale
to morphology M

18. Re-query CPPN at c+p
2 to get output values

j, θ and ∆.
19. IF j > Tjoint
20. Determine joint normal ~n from θ
21. Connect cell with 1-DOF rotational joint

with normal ~n, range ∝ j actuated by
CPG with phase offset ∝ ∆

22. ELSE
23. Connect cell rigidly
24. Enqueue (p, v) in q

25. CanAdd(p,m,c,r)
26. IFm > Tmatter AND

∀ cells d ∈M,d 6= c dist(p,d) ≥ r AND
p is within bounding cube

27. Return true
28. ELSE
29. Return false

Figure 2: Grow Robot pseudo code. The growth procedure
starts with a root cell at the origin (line 3). Then, as long as
there are cells in the queue to consider it takes the cell at the
front of the queue, casts a point cloud around it and consid-
ers adding a cell at each point in turn (lines 5-17). A cell
is added at a given point if all of the following hold: it does
not conflict with a previously added cell, the CPPN outputs a
value above the threshold Tmatter when queried at that point,
and the point is within the bounding cube (lines 25-29). If a
cell is to be added the CPPN is queried once again to deter-
mine connectivity and control parameters (lines 18-23).



Proc. of the Alife XII Conference, Odense, Denmark, 2010 454

The radius r of a cell is determined from the radius of its
parent rparent and the output value rscale. Specifically

r =


rparent ∗ rscale rmin ≤ rparent ∗ rscale ≤ rmax

rmin rparent ∗ rscale < rmin

rmax rparent ∗ rscale > rmax

That is, the cell to be added will have radius equal to that of
its parent scaled by a factor determined by the CPPN output
capped by a minimum and maximum possible radius.

If a cell has been selected for addition to the robot the
CPPN will be queried once more to determine connectivity
and control parameters. In particular the CPPN will be fed
the coordinates where a joint may be added: a cell centered
at point p connecting to a parent cell centered at point pparent
may be connected by a single degree of freedom (DOF) ro-
tational joint located halfway between p and pparent (p+parent

2 ).
These coordinates are input to the CPPN along with rparent
to retrieve additional outputs: a joint “concentration” j, an
angle θ and a phase offset ∆.

If the output j exceeds a joint threshold Tjoint the cell will
attach to its parent with a 1-DOF rotational joint. The more
j exceeds this threshold the greater the range of motion of
the connecting joint will be. Similar to the matter case this
creates a continuum from connecting rigidly when j ≤ Tjoint
to connecting via a joint with a very narrow range to con-
necting via a joint with a large range of motion.

If indeed a given cell will connect to its parent via a joint
there are two more important properties of this connection
to be determined. First, the direction of motion of this joint
is defined by a normal vector ~n. This vector will be normal
to the axis ~a defined by the center of the cell and the center
of its parent. To choose one vector out of the infinitely many
such vectors the cross product of ~a and a default vector ~d
is taken. This results in a single vector normal to ~a which
is then rotated around ~a by angle θ. In this way all possible
vectors normal to~amay be used in constructing the joint and
it is left up to the CPPN to output a single angle to choose a
specific normal vector.

The second property to be determined in the case where
a cell connects via a joint is what control signal drives the
motor actuating this joint. In this work all motors are con-
trolled by time dependent harmonic oscillators. A central si-
nusoidal oscillation is used, but each individual motor is al-
lowed to be out of phase with this central control signal. The
phase offset of each motor is determined by the final CPPN
output ∆ when queried at the joint’s location. In this way the
CPPN also determines the control policy of the robot being
grown in addition to its morphology.

Once a cell is added to the structure and its connectivity
and control have been determined it gets placed into a prior-
ity queue whose priority is based on its matter concentration
m. When all points from the current cloud have been con-
sidered the algorithm takes the cell at the top of the priority

queue and casts a point cloud around it, and this process
continues until there are no valid possible points at which
to place cells. Points are valid if they are within a bound-
ing cube with side lengths l. This bounding cube constraint
was imposed so that in the future it will be possible to phys-
ically fabricate the entire evolved robots within the confines
of a 3D-printer. Figure 2 gives pseudo code for this growth
procedure.

There are several reasons why it is desirable to have a
growth procedure such as this. Merely querying CPPNs
over a sampling of three-dimensional space may lead to dis-
connected objects. Even if all but one of these objects are
thrown out much computational resources will have been
wasted querying these regions of space. Additionally, im-
posing a grid over space to determine which points to query
imposes a specific resolution on the morphology and thus
removes much of the benefit of the dynamic resolution (ra-
dius) method used in this work because the spacing of the
cells will have been predetermined by the grid.

Selecting for robots with desirable properties
This paper aims to demonstrate that CPPN-NEAT coupled
with the growth procedure just presented is capable of evolv-
ing actuated robot morphologies and control policies for a
given task. In particular the property selected for in this
work is maximum directed displacement of the robot in a
fixed amount of time.

To select for this property, an evolved virtual robot is
placed in a physical simulator1 for that set amount of time.
The fitness of this robot (and hence its encoding CPPN)
that CPPN-NEAT attempts to maximize is simply the y-
coordinate of the robot’s center of mass after the simulation
completes subject to a few conditions. The first of these
conditions is to prevent robots from exploiting simulation
faults. There are a number of ways these faults could be
avoided such as reducing the step size used in running the
simulation, but this would lead to increased simulation run-
times. The technique used here is to throw out any solution
where the robot’s linear or angular acceleration exceed pre-
defined thresholds by giving 0 fitness. The second condition
is to prevent solutions where the robot moves by rolling on
a subset of its cells. These solutions tend to be common but
are less interesting than other solutions that may be found,
therefore any robot that has a subset of its cells remain in
contact with the ground for over 95% of the time is discarded
and given a fitness of 0 once again.

Results
This section presents experiments comparing how the dy-
namic resolution method presented above performs is com-
parison to a similar method restricted to using cells with a

1Simulations are conducted in the Open Dynamics Engine
(http://www.ode.org), a widely used open source, physi-
cally realistic, simulation environment



Proc. of the Alife XII Conference, Odense, Denmark, 2010 455

Figure 3: Each column shows the behavior of a different dynamic resolution robot evolved for directed locomotion (with time
going from top to bottom). Three different robots are shown. Red cells are attached to two joints while the darker blue cells
attach to a single joint. The lighter blue cells all connect rigidly. Enlarged pictures of each of these robots are shown in Fig. 1.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 456

fixed radius. It should be noted that using a fixed radius in
this case would be equivalent to omitting the growth proce-
dure and merely querying the evolved CPPN over a gridded
region of space and then taking those cells which connect
to the cell at the origin as the resulting morphology, how-
ever as mentioned above this procedure would require more
computational resources than using the growth procedure to
accomplish the same result.

Specifically, two experiments are conducted each consist-
ing of a set of 30 evolutionary trials. All experiments attempt
to evolve simulated robots with CPPN-NEAT capable of di-
rected locomotion using the fitness criteria presented above.
Moreover, all experiments are configured to use a popula-
tion size of 150, and run for 500 generations with each fit-
ness evaluation given 2500 time steps. Additionally in all
experiments the values Tmatter and Tjoint are both fixed at 0.7,
and each cell of the structure is restricted to having its center
initially located in interval (0, [−2, 2], 0) (coordinates all in
meters). Before being placed in the simulator the morpholo-
gies are translated vertically such that the largest component
is resting on the ground. The CPPN internal nodes are al-
lowed to use the signed cosine, gaussian, and sigmoid ac-
tivation functions. All other parameters of the evolutionary
algorithm are kept at the default values provided with the
C++ implementation of HyperNEAT2.

The trials in the first experiment grow structures using the
dynamic resolution method introduced in this paper. In this
case rinit was set to 0.1 meters, rmin set to 0.01 meters, and
rmax set to 0.5 meters. Additionally the output value rscale
is normalized to the range [0.5, 1.5]; that is, a newly added
cell can have radius at the most 50% larger and at the least
50% smaller than its parent. Figure 3 demonstrates the be-
havior of a few of the more successful robots to evolve in
evolutionary trials in this experiment.

The second experiment is exactly the same as the first one,
but it is restricted to growing robots composed of cells with
a fixed radius. CPPN-NEAT is still used to evolve CPPNs
which are used to grow the morphologies and control strate-
gies under the procedure outlined above, but the rscale output
is not included in the CPPNs. In lieu of determining cell size
from this output this experiment builds robots from cells all
having radius rfixed = 0.1 meters.

Discussion
One advantage of using the dynamic resolution method over
keeping resolution fixed is that it allows evolution to explore
a greater variety of possible solutions. The first evidence of
this is observational. Looking at the behavior of the three
robots shown in Figure 3 a variety of dynamics can be ob-
served. The left most robot resembles a whip in that it has
one thicker end and tapers off to a thinner end. Additionally

2Available at
http://eplex.cs.ucf.edu/hyperNEATpage/
HyperNEAT.html

we see that the thin end is rigid. This can be inferred from
the light blue coloring of the cells at that end which repre-
sent cells that are not connected to any joint (while red cells
connect to two joints and dark blue cells to a single joint).
Scanning down the panels one can see that this rigid end is
utilized as a paddle to propel the robot forward while curling
over at the other end.

The middle robot on the other hand has no rigid connec-
tions. This robot moves by coiling and uncoiling to move
itself in the desired direction. The right most robot has yet a
different morphology and movement pattern than the other
two. While it has one rigid end like the left most robot this
end is composed of fewer spheres and actually includes cells
that are larger than those in the middle of its body, flaring
back out like a baseball bat. This configuration is actually
the most successful one discovered and its movement pat-
tern is different from the other two robots.

Figure 4: Top: Mean number of cells of best individual
in each generation across the 30 evolutionary trials for the
dynamic resolution set (black) and the fixed resolution set
(light blue). Bottom: Standard deviation from the mean
number of cells by generation.

Additional evidence of the dynamic resolution runs ex-
ploring a greater variety of morphologies is shown in Figure
4. The top part of this figure shows the mean number of cells
used by the best individual from each generation across the



Proc. of the Alife XII Conference, Odense, Denmark, 2010 457

30 evolutionary trials from both the dynamic resolution set
and the fixed resolution set. The bottom portion of this figure
shows the standard deviation from the means shown in the
top. One can see here that the trials in the dynamic resolu-
tion set tend to explore morphologies with a large number of
small cells early on, followed by exploring a fewer number
of cells on average later on in the trials. However, while the
fixed resolution robots tend to converge to a narrow range of
cell numbers as exemplified by the constant mean and small
standard deviation, the dynamic resolution robots continue
to explore a wide array of different number of cells and cell
sizes which can be inferred by observing that their standard
deviation never comes back down.

Figure 5: Mean (black) and standard deviation from the
mean (red) of cell radii within each best of generation indi-
vidual from the dynamic resolution set averaged across the
30 evolutionary trials.

This evidence is corroborated by Figure 5 which plots the
mean and standard deviation of cell radii within each best
of generation individual averaged across the 30 evolutionary
trials. Here it is shown in a different way how the dynamic
runs tend to explore smaller cell sizes early on in the evolu-
tionary trials followed by larger cell sizes later. While this is
the case on average, by looking at the standard deviations we
see that as evolution progresses morphologies with a wide
variety of cell sizes come into being (the standard deviation
trends upwards). This means that the dynamic resolution
runs are exploring the space of solutions with variable cell
sizes which is not possible in the fixed resolution case.

Conclusion
This paper has demonstrated how one can implement a
growth mechanism that can generate robots composed of
variable sized components. This ability was then shown to
be actually utilized by demonstrating how evolutionary trials
that incorporate this dynamic resolution mechanism explore
a greater variety of possible solutions than evolutionary tri-
als that are restricted to constructing robots out of fixed sized
components.

While it is not directly evident what performance advan-
tage using dynamic resolution offers on a task as simple as
the one utilized in this work, intuitively one can see the ben-
efit of such a mechanism when generating more complex
robots for more complex tasks. Specifically in any task that
requires object manipulation it will be useful to adapt the
component sizes of the parts of the morphology that will
be in contact with external objects while not creating overly
complex morphologies as would be the case if such a high
resolution were employed for the entire robot. Additionally,
it may not be possible to know the ideal component size a
priori, and so using a dynamic resolution method such as
this can help steer evolution towards constructing robot mor-
phologies with the proper component sizes.

Much work remains to be done in exploring the possibil-
ities of this methodology. The logical next step will be to
relax some of the restrictions imposed in this work such as
allowing robots to grow in arbitrary trajectories as opposed
to along only a single axis. The authors additionally plan
to tackle more complex tasks including object manipulation
to test whether using dynamic resolution will result in the
additional predicted advantages discussed here. This will
require the use of more complex control strategies such as
neural networks, and the inclusion of a mechanism for en-
dowing the robots with sensors in order to close the control
loop. The methods used here for generating joint and mo-
tor parameters via additional CPPN outputs seem promising
and the authors plan to further leverage this technique for
determining sensor and neuron positions and parameters.

References
Adamatzky, A., Komosinski, M., and Ulatowski, S. (2000). Soft-

ware review: Framsticks. Kybernetes: The International
Journal of Systems & Cybernetics, 29(9/10):1344–1351.

Anderson, M. (2003). Embodied Cognition: A field guide. Artifi-
cial Intelligence, 149(1):91–130.

Auerbach, J. E. and Bongard, J. C. (2010). Evolving CPPNs to
Grow Three-Dimensional Physical Structures. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence (GECCO). To Appear.

Beer, R. D. (2008). The dynamics of brain-body-environment sys-
tems: A status report. In Calvo, P. and Gomila, A., editors,
Handbook of Cognitive Science: An Embodied Approach,
pages 99–120. Elsevier.

Bongard, J. and Pfeifer, R. (2001). Repeated structure and dis-
sociation of genotypic and phenotypic complexity in Artifi-
cial Ontogeny. Proceedings of The Genetic and Evolutionary
Computation Conference (GECCO 2001), pages 829–836.

Bongard, J. and Pfeifer, R. (2003). Evolving complete agents using
artificial ontogeny. Morpho-functional Machines: The New
Species (Designing Embodied Intelligence), pages 237–258.

Bongard, J. C. (2002). Evolving modular genetic regulatory net-
works. In Proceedings of The IEEE 2002 Congress on Evo-
lutionary Computation (CEC2002), pages 1872–1877.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 458

Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psy-
chology. MIT Press.

Brooks, R. (1999). Cambrian intelligence. MIT Press Cambridge,
Mass.

Clune, J., Beckmann, B., Ofria, C., and Pennock, R. (2009a).
Evolving Coordinated Quadruped Gaits with the HyperNEAT
Generative Encoding. In Proceedings of the IEEE Congress
on Evolutionary Computing, pages 2764–2771.

Clune, J., Pennock, R. T., and Ofria, C. (2009b). The sensitivity of
hyperneat to different geometric representations of a problem.
In Proceedings of the Genetic and Evolutionary Computation
Conference.

Dellaert, F. and Beer, R. (1994). Toward an evolvable model of
development for autonomous agent synthesis. Artificial Life
IV, Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems.

Eggenberger, P. (1997). Evolving morphologies of simulated 3D
organisms based on differential gene expression. Procs. of
the Fourth European Conf. on Artificial Life, pages 205–213.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N.
(1997). Evolutionary robotics: the sussex approach. Robotics
and Autonomous Systems, 20:205–224.

Hornby, G. and Pollack, J. (2001a). Body-brain co-evolution using
l-systems as a generative encoding. Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO-
2001), pages 868–875.

Hornby, G. and Pollack, J. (2001b). Evolving L-systems to gen-
erate virtual creatures. Computers & Graphics, 25(6):1041–
1048.

Lipson, H. and Pollack, J. B. (2000). Automatic design and manu-
facture of artificial lifeforms. Nature, 406:974–978.

Lund, H. H. and Lee, J. W. P. (1997). Evolving robot morphol-
ogy. IEEE International Conference on Evolutionary Com-
putation, pages 197–202.

Mautner, C. and Belew, R. (2000). Evolving robot morphology and
control. Artificial Life and Robotics, 4(3):130–136.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The
Biology,Intelligence,and Technology. MIT Press, Cambridge,
MA, USA.

Pfeifer, R. and Bongard, J. (2006). How the Body Shapes the Way
We Think: A New View of Intelligence. MIT Press.

Sims, K. (1994). Evolving 3D morphology and behaviour by com-
petition. Artificial Life IV, pages 28–39.

Stanley, K., D’Ambrosio, D., and Gauci, J. (2009). A Hypercube-
Based encoding for evolving Large-Scale neural networks.
Artificial Life, 15(2):185–212.

Stanley, K. and Miikkulainen, R. (2003). A taxonomy for artificial
embryogeny. Artificial Life, 9(2):93–130.

Stanley, K. O. (2007). Compositional pattern producing networks:
A novel abstraction of development. Genetic Programming
and Evolvable Machines, 8(2):131–162.

Stanley, K. O. and Miikkulainen, R. (2001). Evolving neural net-
works through augmenting topologies. Evolutionary Compu-
tation, 10:2002.


