

Research Institute for Advanced Computer Science

Technical Report

Proceedings of the Second

Dynamic Aspects Workshop (DAW05)

Robert E. Filman
Michael Haupt

Robert Hirschfeld

Technical Report 05.01

March 2005

Proceedings of the Second
Dynamic Aspects Workshop (DAW05)

Robert E. Filman, RIACS
Michael Haupt, Darmstadt University of

Technology
Robert Hirschfeld, DoCoMo Euro-Labs

Technical Report 05.01

March 2005

Chicago, Illinois

This volume represents the proceedings of the Second Dynamic Aspects Workshop, held
at the Aspect-Oriented Software Development conference in Chicago, Illinois in March,
2005. This workshop identifies examples of useful dynamic aspect behavior, suggests
appropriate linguistic structures for dynamic aspects, and discusses implementation
techniques for dynamic aspects, such as shadow compilation, dynamically changeable
hook points, and modifications required in the underlying execution environment.

This work was supported in part by the National Aeronautics and Space Administration
under Cooperative Agreement NCC 2-1426 with the Universities Space Research
Association (USRA).

 i

Table of Contents
Workshop Organization.. ii
Introduction.. iii
1. State-Based Join-Points: Motivation and Requirements ..1

Nelis Boucké and Tom Holvoet

2. An application of dynamic AOP to medical image generation ...5
Thomas Fritz, Marc Ségura, Mario Südholt, Egon Wuchner and Jean-Marc Menaud

3. Dynamic Business Rules for Web Service Composition..13
Maria Agustina Cibran and Bart Verheecke

4. Flexible Call-by-call Settlement — An Opportunity for Dynamic AOP ..19
Christian Hofmann, Robert Hirschfeld and Jeff Eastman

5. Dynamic Aspects for Runtime Fault Determination and Recovery ...27
Jeremy Manson, Jan Vitek and Suresh Jagannathan

6. Dynamic Weaving in CAM/DAOP: An Application Architecture Driven Approach......................33
Lidia Fuentes, Mónica Pinto and Pablo Sánchez

7. A Source-level Kernel Profiler based on Dynamic Aspect Orientation..41
Yoshisato Yanagisawa, Shigeru Chiba and Kenichi Kourai

8. Coupling Availability and Efficiency for Aspect Oriented Runtime Weaving Systems47
Sufyan Almajali and Tzilla Elrad

9. SONAR: System Optimization and Navigation with Aspects at Runtime57
Chunjian Robin Liu, Celina Gibbs and Yvonne Coady

10. Dependency Issues in Aspect Weaving ..63
Aditya Varma and T.V.Prabhakar

11. Quantifying over Dynamic Properties of Program Execution ..71
Christoph Bockisch, Mira Mezini and Klaus Ostermann

12. Jumping Aspects Revisited...77
Bruno De Fraine, Wim Vanderperren, Davy Suvée and Johan Brichau

13. Contextual Pointcut Expressions for Dynamic Service Customization ..87
Thomas Cottenier and Tzilla Elrad

14. Using Guard Predicates for Generalized Control of Aspect Instantiation and Activation93
Stephan Herrmann, Christine Hundt, Katharina Mehner and Jan Wloka

 ii

Workshop Organization

Workshop Organizers

• Robert Filman
Research Institute for Advanced Computer Science/NASA Ames Research Center.

• Michael Haupt
Darmstadt University of Technology

• Robert Hirschfeld
DoCoMo Euro-Labs

Program Committee
• Johan Brichau

Vrije Universiteit Brussel
• Ruzanna Chitchyan

Lancaster University
• Yvonne Coady

University of Victoria
• Pascal Costanza

University of Bonn
• Robert Filman

Research Institute for Advanced Computer Science/NASA Ames Research Center.
• Stefan Hanenberg

University of Essen
• Michael Haupt

Darmstadt University of Technology
• Stephan Herrmann

Technical University Berlin
• Robert Hirschfeld

DoCoMo Euro-Labs
• Guenter Kniesel

Universities of Osnabrück and of Bonn
• Crista Lopes

University of California, Irvine
• Katharina Mehner

Technical University Berlin
• Mario Südholt

Ecole des Mines de Nantes

 iii

•
Introduction

Join points are the locus of aspect and functional code interaction. Traditional aspect systems define join
points in terms of the static structure of programs, such as syntactic method calls, method entry and field
access.

AOSD has moved beyond static aspects. In some situations, it is desirable to invoke or change aspect
behavior based on the dynamics of program execution. Such situations include changing behavior based on
the call-stack context, co-occurrence of predicate triggers, concurrent thread status, or events in the
underlying interpreter such as storage reclamation or process scheduling.

This workshop identifies examples of useful dynamic aspect behavior; suggests appropriate linguistic
structures for dynamic aspects; and discusses implementation techniques for dynamic aspects, such as
shadow compilation, dynamically changeable hook points, and modifications required in the underlying
execution environment. The topics of the workshop include:

• Application scenarios for and applications of dynamic aspects
• Linguistic structures for dynamic aspects
• Implementation mechanisms for dynamic aspects
• Enabling technologies and environment support for dynamic aspects (e.g., debuggers, IDEs)
• Models for dynamic aspects
• Validation techniques for dynamic aspects
• Achieving the effect of dynamic aspects in conventional programming environments
• Challenges and research directions

The jackdaw image is © Penny Ellis, www.tumbletales.com. Used by permission.

 iv

State-Based Join-Points: Motivation and Requirements

[Position paper]

Nelis Boucké
Tom Holvoet

AgentWise, DistriNet, K.U.Leuven
Celestijnenlaan 200A,

B-3001, Leuven, Belgium

{nelis.boucke,tom.holvoet}@cs.kuleuven.ac.be

ABSTRACT
In developing a real-world complex application, we experi-
ence the major problem that complex concerns do not easily
map onto low-level aspects with join-points based on fixed
points in the program code. It is our observation that mod-
ularizing concerns and quantification are to be tackled at
design-time, using suitable abstractions, with a translation
to dynamic weaving at run-time. In particular, we argue
that ‘abstract states’ of software entities (a concern consists
of software entities) are a promising instrument for defining
higher-level join-points for concerns. The specification and
quantification of concerns in terms of abstract states typi-
cally result in dynamic weaving, i.e. depending on run-time
states of the software entities.

Based on experience, we provide requirements for support-
ing concern modelling and quantification at design-time, as
well as an initial sketch of an approach that we investigate
in this perspective. The approach is based on a new type
of higher-level join-points, called state-based join-points and
serves as an example of the necessity for advanced dynamic
(state-based) aspect weaving. The approach is motivated
and illustrated through a scenario in a real-world applica-
tion, namely decentralized control software for several auto-
matic guided vehicles in an industrial transportation system.

Categories and Subject Descriptors
D.2.11, D.2.2 [Software Engineering]: Software Architec-
tures, Design Tools and Techniques

General Terms
Design

1. INTRODUCTION
Research in Aspect Oriented Software Development (AOSD)
focusses on developing systems with several non-orthogonal

(e.g. overlapping, crosscutting and interacting) concerns. In
the AOSD community great work has been done in build-
ing the technology to support separation of concerns, both
statically [10, 13, 9, 11] and dynamically [1, 2].

In this position paper we argue that there is more to dynamic
aspect approaches than technologies to support variety of
implementation code join points. In particular, a software
designer should be able to model concerns and explicitly
describe quantification [6], which results in dynamic aspect
weaving at run-time. To this end, implementation code join
points do not provide an appropriate level of abstraction.
Here, state-based join-points and quantification are defined,
describing concern interference on a higher abstraction level.

We base the arguments and the proposal on our experience
in developing a complex decentralized application for con-
trolling automatic guided vehicles (AGVs) in a warehouse
management system. For obvious reasons, we aim to apply
the principles of separation of concerns throughout the de-
sign of the application. For example in the architectural de-
sign phase interesting concerns can be identified. However,
these concerns do not easily map onto low-level aspects and
join-points based on fixed points in the program code. Such
a concerns are typically made up by a set of related soft-
ware entities (e.g. objects or components). We observe that
suitable quantification of these concerns can be achieved by
considering ‘abstract states’ of software entities, rather than
fixed points in program execution. Such an abstract state
are more than the value of a attribute, it is relevant state
on a higher abstraction level with a clear semantic mean-
ing, described in terms of operations calls and attributes of
software entities. A corresponding new type of higher-level
join-points is introduced, called state-based join-points. The
need for a dynamic join-point model is supported by publi-
cations on events in AOP ([7, 4]), the importance of a clear
semantic meaning came forward in [15]. High-level quantifi-
cation based on state-based join-points obviously results in
a highly dynamic run-time system, requiring dynamic weav-
ing.

First, in sec. 2, the necessity of higher-level concern quan-
tification is motivated by pointing out a concrete problem
scenario that we encounter in a real-world application of
AGVs. Next, in sec. 3, an initial list of requirements and an
initial sketch for design-level concern modelling and quan-

1

tification is presented, based on our experience with this
application. Finally, in sec. 4, we conclude with a number
of open issues and links towards future work.

2. REAL-WORLD APPLICATION: AUTO-
MATIC GUIDED VEHICLES

This section contains a description of the real-world appli-
cation, the identification of some important concerns in the
architecture and a more detailed problem statement.

2.1 Application
Currently, our group is active in a research project with an
industrial partner to decentralize control in this transporta-
tion system using a multi-agent system (EMC2 [5]). An
AGV is an unmanned, computer-controlled transportation
vehicle using a battery as energy source. AGVs are able to
perform transportation tasks, consisting of picking up a load
and transporting it to the destination. High-level functional
requirements for the AGV system are: (1) allocating trans-
portation tasks to individual AGVs; (2) performing those
tasks; (3) preventing conflicts between AGVs on crossroads;
and (4) charging the batteries of AGVs on time.

Multi-agent systems (MASs) provide an approach for solving
software problems by decomposing a system into a number
of autonomous entities (e.g. AGVs), embedded in an envi-
ronment, which cooperate in order to reach the functional
and non-functional requirements of the system [14]. In gen-
eral, MASs form a family of software architectures [16].

2.2 Architectural concerns
The need for state-based join-points is identified during ar-
chitectural design of an AGV system. Once the basic struc-
ture of the architecture is clear, there are several concerns
(specific to this architecture) that are important for the de-
signer of the system. The basic architectural structure used
here is a MAS, decomposing the system in agents (AGVs)
and an environment (the factory). In essence, a concern is
‘an issue that is important for a stakeholder in the system’.
Concerns specific to the basic structure of an architecture
are denoted with the term ‘architectural concerns’ and are
‘issues, part of a specific basic architecture, that are im-
portant for a designer using this architecture’. A few ar-
chitectural concerns have been listed here to illustrate our
position:

Autonomy One of the fundamentals of an agent is that
it operates autonomously and proactively. E.g. an AGV-
agents decides for itself what it will do, e.g. perform a task,
reload its battery. Autonomy is an architectural concern
because the way it is filled in has an important influence on
the remainder of the architecture.
Individual capabilities Each agent has a collection of ca-
pabilities it can perform. Both externally visible actions
(like driving, picking or dropping down a load) and inter-
nal calculation (like calculating the shortest path) belong to
this concern. The capabilities are an important factor in
determining the internal structure of an agent, asking for
attention on an architectural level.
Coordination A MAS is built using several agents and
these agents have to coordinate to meet the overall goals.
For example in the AGV system, agents coordinate their
behavior to prevent collisions on crossroads. Coordination

of entities is a non-trivial problem that asks for an architec-
tural solution. It is not our intent to focus on coordination
itself, but rather on how coordination can be combined with
other concerns.

Clearly, these concerns cross-cut and overlap each other. For
example, consider the concerns autonomy and individual ca-
pabilities. Autonomy has an important influence on how
individual capabilities are filled in. Both concerns overlap
and crosscut. From the designer point of view, it is good
to keep these concerns separated throughout the remaining
building process, following the philosophy of SoC.

2.3 Problem statement
A simple scenario of the AGV system is used to illustrate
our position. Consider two AGVs approaching a crossroad,
leading to a possible collision between them. To enforce that
only one AGV at a time can enter the crossroad, coordinat-
ing the behavior of both AGVs is needed. From the AGV
system designer’s point of view, there are several Architec-
tural concerns involved, we consider ’individual capabilities’
and ’coordination’ as an example. If an AGV is approach-
ing a crossroad (with ‘approaching crossroad’ as abstract
state) and if there is another AGV approaching this cross-
road leading to a possible conflicting situation (with ‘other
approaching’ as abstract state), the concern ‘coordination’
crosscuts the concern ‘individual capabilities’.

It is very hard, if not impossible, to specify quantification
of these concerns based on fixed points in the program code
of software entities. Simply because the quantification is
not dependent on an operation call or attribute value, but
rather on an abstract state (e.g. ’approaching crossroad’).
As stated before, such an abstract state is more then a value
of one or two attributes, it is relevant state on a logical level
with a clear semantic meaning, described in terms of op-
erations calls and attributes of software entities. E.g. to
determine if an AGV is approaching a crossroad, the po-
sition of the AGV and its driving direction are compared
with an internal layout of the factory. This type of behav-
ior can not easily be expressed with current dynamic aspect
approaches using the classical type of join-point, leading to-
wards a design where architectural concerns are not clearly
separated.

3. STATE-BASED JOIN-POINTS
It is our position that concern based approaches must sup-
port a level of abstraction that is higher than implemen-
tation code join-points. They must go beyond changing
behavior based on the call-stack context, co-occurrence of
predicate triggers or concurrent thread status (CFP of this
workshop [3]), moving towards a higher level of abstraction.

3.1 Requirements for state-based join-points
An initial list of requirements for a mechanism based on
state-based join-points is presented here, making up our re-
search challenges for the next few years.

First, it must be possible to define a state-based join-point
(in addition to implementation code join-points). For this
definition, a rich language is needed to determine the ab-
stract state.

2

+distance(in pos1, in pos2) : double
+drivingTowards(in pos : AgvPosition) : CrossRoad

FactoryLayout

+shortestPath() : <unspecified>

Router
-coordinate
-orientation

AgvPosition

+getCoordinate() : Coordinate
-coordinate

CrossRoad

Path

+state() : bool
-getLayout() : FactoryLayout
-getPosition() : AgvPosition
-getCoordinate() : Coordinate
+getSafeDistance() : double

abstract state::ApproachCrossRoad

Class ApproachCrossRoad{
...
public bool state(){
 CrossRoad c = getLayout().drivingTowards(getPosition());
 double d = getLayout().distance(getCoordinate(),c.getCoordinate());
 return (d < getSafeDistance());
}
...
}

Individual Capabilities

+action()
+setPointCut(in pointcut)

advice::StartCoordination

public bool trigger(){
 return (approachCrossRoad.state()
 && otherApproaching.state());
}

setPointCut(possibleCollision);

....
public void action(){
 NegotiationProtocol.start();
}

Coordination

+state() : bool

abstract state::OtherApproaching

+trigger()

point cut::PossibleCollision

+start()

NegotiationProtocol

Figure 1: A graphical representation of the Individual Capabilities concern.

A second requirement is that a declarative quantifica-
tion language is needed, backing away from enumeration or
pattern matching based on names [8, 12].

A third requirement is that a state-based join-point mech-
anism must respect the obliviousness property [6]. The
obliviousness property states that the development of a soft-
ware entity must be possible without being aware of the as-
pects that eventually will crosscut it. This implies that it
must be possible to (1) define state-based join-points sepa-
rately from the involved software entity; (2) after it is fully
developed; and (3) without enhancements to it.

The fourth requirement is that both the definition of state-
based join-points and the quantification of these join-points
must be translatable to a concrete execution of a pro-
gram. Thus, there is a need for a dynamic weaver, capable
of working with state-based join-points.

The fifth requirement is prevention of semantic mis-
match conflicts. Semantic mismatch conflicts between
concerns are a typical problem in AOSD approaches [15].
Because every state-based join-point needs a clear semantic
meaning, prevention of semantic mismatches is an important
requirement.

3.2 Initial sketch
In this section we present a preliminary attempt towards
supporting state-based join-points. The approach consists
of three steps: seperation/modularization, defining state-
based join-points and quantification. In this initial sketch,
the approach is presented as a UML-diagram.

First, architectural concerns must be separated and mod-

ularized. Although modularization is an important issue,
we only briefly describe it because our focus is on state-
based join-points. In this initial sketch an UML-diagram
corresponds with a concern and the software entities mak-
ing up the concern are classes and objects. In Figure 1 an
example is depicted, containing a few classes of the concern
‘individual capabilities’ and ‘coordination’ to illustrate our
approach.

Next, the state-based join-points must be defined. First,
abstract states are defined (e.g. ApproachCrossRoad and
OtherApproaching). The state operation represents the
condition for this abstract state. Next, a pointcut is defined,
based on these abstract states (e.g. PossibleCollision).
The trigger operation contains a condition when the quan-
tification should be triggered (enumerated here, the final
system should use a declarative description). The variables
approachCrossRoad and otherApproaching represent the
instantiations of the abstract states ‘approaching crossroad’
and ‘other approaching’ respectively. Every pointcut is as-
sociated with a particular concern and thus the concern def-
inition is extended with a new, externally visible, join-point.

Finally, quantification is specified using state-based join-
points. For this, we write an advice for a particular pointcut
(e.g. StartCoordination). The setPointCut operation sets
the pointcut for this advice, the action operation contains
the action for this advice.

The results of these three steps serve as input for the dy-
namic weaver. Run-time weaving based on state-based join-
points will probably be one of the most challenging problems
for our future research. Especially, determining when state
checks must be performed and thus where concerns should

3

be woven is one of the main problems. Using current aspect
technology could be useful in this step. Until know it is un-
clear what the exact implications are of run-time weaving
and state checks. But it is certain that the amount of state
checks and the checks itself will have an influence on the
performance of the system.

Remark that using the terminology of [6], our initial sketch
of state-based join-points is a event-based, publish and sub-
scribe (EBPS), black-box AOP-mechanism. Differences with
classical EBPS systems are that both the events (state-based
join-points) and the subscription (quantification statements)
are described separately. The main differences with quantifi-
cation of events (in [7]) and Event-based AOP (EAOP [4])
are that our ”events” are: (1) high-level state changes with
a clear meaning, in contrast with primitive events, similar
to fixed points in the program execution; and (2) defined ex-
plicitly and separately. In addition, [4] differs in its aspect
definition (an aspect is a transformation on an event) and
the way the weaving takes place (using a central execution
monitor, catching every event and applying every aspect).

4. CONCLUSION
In this paper we outlined our position that dynamic aspect
approaches must support an abstraction level that is higher
than implementation code join-points and illustrated this in
an industrial transportation system. High-level quantifica-
tion based on state-based join-points has been introduced.
This obviously results in a highly dynamic run-time system,
requiring dynamic weaving.

What the exact implications of using state-based join-points
are and how the join-points will translate to dynamic weav-
ing are still important open issues. Especially, where exactly
the weaving should take place and which current technology
for dynamic aspect can be (re)used for defining dynamic
weaving based on state-based join-points are important re-
search tracks for the near future. A crucial step will be
to determine a set of requirements for the dynamic weaver
working with state based join-points and to consider the
possible trade-offs.

5. ACKNOWLEDGMENTS
Thanks to the AgentWise taskforce, the EMC2 members
and the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).

6. REFERENCES
[1] Lodewijk Bergmans and Mehmet Aksit. Principles

and design rationale of composition filters. In
R. Filman, T. Elrad, S. Clarke, and M. Aksit, editors,
Aspect-Oriented Software Development.
Addison-Wesley, 2004. ISBN 0-32-121976-.

[2] I. Sommerville Chitchyan, R. Comparing dynamic ao
systems. Dynamic Aspects Workshop (at AOSD04).,
pages 23–36, 2004.

[3] DAW Organizing Committee. Call for papers of the
dynamic aspects workshop (daw05).
http://aosd.net/2005/workshops/daw/cfp.html.
Checked on 13 Januari 2005.

[4] Rémi Douence and Mario Südholt. A model and a tool
for event-based aspect-oriented programming (eaop).
Technical report, Ecole des Mines de Nantes, 2002.

[5] Egemin and DistriNet. Emc2: Egemin modular
controls concept. IWT-funded project. From 1 March
2004, until 28 February 2006.

[6] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Proceedings of the workshop on Advanced Separation
of Concerns, OOPSLA, 2000.

[7] R. E. Filman and K. Havelund. Source-code
instrumentation and quantification of events. In
Foundations of Aspect-Oriented Languages
(FOAL’02), 2002.

[8] Kris Gybels and Johan Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 60–69.
ACM Press, 2003.

[9] IBM. Concern manipulation environment (CME).
http://www.research.ibm.com/cme/. Checked on 4
januari 2005.

[10] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.M. Loingtier, and J. Irwin.
Aspect-oriented programming. Proceedings European
Conference on Object-Oriented Programming,
Springer-Verslag, 1241:220–242, 1997.

[11] Karl Lieberherr, Doug Orleans, and Johan Ovlinger.
Aspect-oriented programming with adaptive methods.
Commun. ACM, 44(10):39–41, 2001.

[12] István Nagy, Lodewijk Bergmans, and Mehmet Aksit.
Declarative aspect composition. http://trese.cs.
utwente.nl/publications/files/0201Nagy.pdf,
2004. Checked 13 januari 2005.

[13] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns and the hyperspace approach. Proceedings
of the Symposium on Software Architectures and
Component Technology: The State of the Art in
Software Development, 2000.

[14] H. V. D. Parunak. Agents in overalls: Experiences and
issues in the development and deployment of industrial
agent-based systems. International Journal of
Cooperative Information Systems, 9(3):209–227, 2000.

[15] Peri Tarr, Maja D’Hondt, Lodewijk Bergmans, and
Cristina Videira Lopes. Workshop on aspects and
dimensions of concern: Requirements on, and
challenge problems for, advanced separation of
concerns. Lecture Notes in Computer Science,
1964:203–243, 2001.

[16] D. Weyns, A. Helleboogh, E. Steegmans, T. De Wolf,
K. Mertens, N. Boucke, and T. Holvoet. Agents are
not part of the problem, agents can solve the problem.
In Proceedings of the OOPSLA 2004 Workshop on
Agent-oriented Methodologies, 2004.

4

An application of dynamic AOP
to medical image generation

Thomas Fritza,1, Marc Ségurab, Mario Südholtb, Egon Wuchnerc, Jean-Marc Menaudb

aInstitut für Informatik, Gruppe PST
Ludwig-Maximilians-Universität
Oettingenstr. 67
80538 München, Deutschland
fritz@informatik.uni-muenchen.de

bÉquipe OBASCO
EMN-INRIA, LINA
École des Mines de Nantes
4, rue Alfred Kastler
44307 Nantes cedex 3, France
{msegura,sudholt,jmenaud}@emn.fr

cCorporate Technology, SE2
Siemens AG
Otto-Hahn-Ring 6
81739 München, Deutschland
Egon.Wuchner@siemens.com

ABSTRACT
Medical image generation, e.g., in computer tomographs,
requires the use of sophisticated algorithms in a highly sen-
sitive application domain. These algorithms are character-
ized (i) by a large variability to enable generation of different
types of images and (ii) a strong need for dynamic recon-
figuration to adapt image generation to individual patients.
These two characteristics suggest the use of AOP techniques
to manage variability which is akin to a crosscutting func-
tionality and to enable dynamic reconfiguration.

In this paper we present three results related to AOP
and medical imaging in the context of medical devices from
Siemens AG, Germany: (i) a motivation why imaging soft-
ware for medical tomographs can benefit from dynamic AOP,
(ii) a case study of how system software for medical de-
vices can be adapted using the Arachne system for dynamic
AOP in C, and (iii) a detailed presentation of the underlying
Arachne implementation and the design of its extension to
C++.

1. MOTIVATION: MEDICAL IMAGE GEN-
ERATION AND AOP

Many medical devices (e.g., magnetic resonance or com-
puter tomography devices) require the generation of images
based on measurements from the human body. The corre-
sponding signal processing consists in the decomposition of
the input signals yielded at certain points of time into sig-
nals corresponding to all the positions within a space cube
representing the scanned 3-dimensional image (see Fig. 1).
The signal specific to a particular position within the cube is
characterized by its periodicity (i.e. cosine and sine waves),

1Part of this work has been done during the author’s stay

at École des Mines de Nantes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAW@AOSD ’05 Chicago, USA
Copyright 2005 EMN/INRIA, Siemens.

Figure 1: Space cube of measured signals associated
with a human body part

frequency, phase and amplitude.
The mathematical tool underlying such image generation

tasks is Fourier transformation. In medical scanners, mea-
surement data is typically stored within a raw data cube
consisting of lines, columns and slices. A position in this
cube is determined by its three dimensions and represents
one measured signal. On the other hand this cube also rep-
resents the part of the human body which is examined. The
state of human tissue at a position, is calculated by ap-
plication of a sequence of basic image calculation steps to
the measured raw data. These steps filter and adjust re-
ceived signals, calculate images and post-process images. In
the existing software for devices of Siemens AG the entire
image generation transformations are constructed from ap-
prox. 60 different basic image processing functors. The set
of valid transformations, i.e., valid orderings according to
which these basic functors may be combined, can be con-
ceptually represented using a graph with one start and end
node. The start node receives the measured signals and the
end node yields a generated image.

In practice, the devices are used as follows. A concrete
transformation needs to be configured before the start of
a measurement for a patient. Currently, doctors execute
one of a set of complete functor sequences generating an
image for a patient, followed by other complete sequences,
if necessary, for the same patient. However, based on cor-
responding customer requests, an evaluation is performed
within Siemens medical devices unit of explicit support for

1

5

dynamic adaptations of such functor sequences. With such
techniques medical staff would be able to interactively adapt
image generation during a measurement session depending
on an initial set of calculated images. This would be highly
useful in order to optimize the final images w.r.t. the indi-
vidual patient. Such adaptations would enable, e.g., using a
higher resolution for parts belonging to tumors and are ex-
pected to speed up generation of the images taken for each
patient.

During execution, code is executed corresponding to se-
quential and parallel functor sequences, the latter imple-
menting, e.g., calculations of different parts using different
resolutions. This means execution can be represented by an-
other graph, henceforth called the functor graph, which is a
subgraph of the graph of all valid transformations discussed
above.

Adaptation of functor sequences constitutes a software en-
gineering problem that has three main characteristics:

1. The changes required by these adaptations are scat-
tered over the functor graph and require a partial, but
possibly rather comprehensive, transformation of the
original processing graph.

2. The modifications to the functor graph during a mea-
surement cannot be anticipated.

3. Modifications to the functor graph must be reversible
so that new measurements can be performed based on
parts of the image information previously generated.

Aspect-Oriented Programming (AOP) [11] has been in-
strumental in the adaptation of complex legacy software (for
an example in the domain of operating systems program-
ming, see [1]). An application of AOP techniques for the
implementation of such medical image generation software
seems therefore promising. In particular, an AO approach
realizing this adaptation problem through (relatively) small
changes to an existing code base seems advantageous, e.g.,
concerning development effort and correctness validation,
compared to approaches incurring larger changes, such as
restructuring of the code base into an interpreter over the
functor graph.

In this paper we present initial results of how to address
the adaptation problems for image generation software for
medical scanning devices from Siemens AG. We show how
to apply the Arachne model and tool [6] for dynamic AOP
in C in order to directly address the three above-mentioned
characteristics: Arachne enables (i) the concise modular def-
inition of the changes to the functor graph, (ii) dynamic
modification of functor graphs without access to the source
code, and (iii) unweaving of functor modifications. Further-
more, we give an overview of Arachne’s implementation as
well as its on-going extension to C++.

The remainder of this paper is structured as follows. Sec-
tion 2 presents examples of the C++-based legacy code base
used for a medical device from Siemens AG. In Sec. 3, we de-
tail two fundamental transformations of the functor graph
used for adaptation of image generation. Section 4 shows
how such manipulations can be defined using Arachne. In
Sec. 5 we give an overview of the architecture of Arachne
and present its on-going implementation in C++. In Sec. 6
related work is discussed. Finally, Sec. 7 gives a conclusion
and presents future work.

Accumulator

RawFT

Raw2ImageFT

Combiner

Extractor

Post−processing

AdjustData4ImageFTAdjustData4RawFT

Last scan of slice?

yes

Figure 2: Basic steps for image generation

2. IMAGING CODE BASE
Let us first have a closer look at parts of the C++ code

base used for medical image generation in Siemens devices,
its overall structure and some specific generation steps.

Fig. 2 shows a sequence of basic processing steps for image
generation. The functor AdjustData4RawFT (as well as the
functors Accumulator and AdjustData4ImageFT) receives a
line of measured data and makes some adjustments for the
following Fourier transformations. The Fourier transforma-
tion RawFT works on the columns of the current line mea-
surement of the current slice and derives some intermediary
values for each column per receiver channel. (A channel cor-
responds to, e.g., sensors situated at different locations of
the medical device and receives its own signal during mea-
surement.) The functor Raw2ImageFT takes the values of
all these line calculations and computes a signal consisting
of frequency and amplitude for each matrix position of the
current slice. This way an image per receiver channel is
calculated. The Combiner functor then takes the computed
slice images corresponding to several receiver channels and
calculates a weighted combination of them. The functor
Extractor converts the complex values making up the im-
age into corresponding human-readable information (e.g.,
amplitude information) allowing conclusions about the kind
of human tissue. Finally, Post-processing performs graph-
ical manipulations, such as coloring of image parts, to the
generated image.

The implementation of the image generation algorithms
forming the basic steps are based on the cube containing
raw data measurements introduced previously. On the code
level, this cube does not have only three spatial dimensions
but, in fact, up to 16 dimensions. For instance, its fourth
dimension consists of the above-mentioned channels. Slice
images can be calculated for each channel and combined af-
terwards. The following statement constructs such a multi-
dimensional cube:

RawCube* cube =

CubeFactory::create(LINE, 256, COLUMN, 256,

SLICE, 512, CHANNEL, 8,

...);

Similarly, there is an ImageCube class allowing to store a
multi-dimensional array of (intermediate or final) images.

Functors essentially implement algorithms iterating over
the multi-dimensional data cubes. Each generation step
requires access to data from a certain set of dimensions.
As an example, the functor RawFt accesses the current line
and slice and executes the Fourier transformation on each
column for each receiver channel by initializing an iterator
accordingly (see the iterator rawFtIter in lines 20–23 of
List. 1).

2

6

1 class RawFT : public Functor {
2 public:
3 void addNextFunctor(Functor*);
4 FunctorList* getNextFunctors ();
5 ...
6
7 virtual void computeScan(CtrlInfo& ctrl , CubeIterator& iter);
8 };
9

10 void RawFT:: computeScan(CtrlInfo& ctrl , CubeIterator& iter) {
11 // copy input iterator referring to raw data cube
12 CubeIterator rawFtIter(iter);
13
14 // set the cube dimensions and ranges the RawFT should work on
15 rawFtIter.init(COLUMN , 0, ctrl.getNumberOfColumns (),
16 LINE , ctrl.getCurrentLine (), ctrl.getCurrentLine (),
17 SLICE , ctrl.getCurrentSlice (), ctrl.getCurrentSlice (),
18 CHANNEL , 0, ctrl.getNumberOfChannels ());
19
20 // call RawFT
21 Imager ::FT(iter , rawFtIter);
22
23 // call next Functors
24 for(int i, i<FunctorList.size(), i++){
25 this ->getNextFunctor(i)->computeScan(ctrl , iter);
26 }
27 };

Listing 1: RawFT implementation skeleton

Functors inherit from a base class Functor as shown for
RawFT in List. 1. This functor provides public methods
addNextFunctor and getNextFunctors (lines 3, 4) to man-
age a list of functors following RawFT within a sequence of
generation steps forming a transformation. These meth-
ods realize the functor graphs at runtime. The algorithm
represented by the functor is implemented by the method
computeScan (lines 7, 10–27). This methods first initializes
the iterator rawFtIter and applies it (lines 12–21). Finally,
all functors following RawFT in the current functor graph are
called using the method getNetFunctors (lines 24–26).

3. ADAPTATION SCENARIOS
We now present two fundamental adaptations of the imag-

ing process required to enable interactive control by the
medical staff. Technically, these adaptations take the form
of transformations of the graph defining the functor sequen-
ces which generate images from raw data.

The first scenario for interactive adaptation of the image
generation process consists in adjoining a new parallel func-
tor chain to an existing chain of the current functor graph,
as illustrated by Fig. 3 (which shows an application of a
transformation to a graph consisting of two parallel functor
sequences). For instance, a doctor using a tomograph could
find some indication of a tumor covering some part of the
human body which is currently being scanned. Thus, he
decides to examine the corresponding region further with-
out loosing the currently calculated image information and
without interference with other image parts. This can be
done by adding a new sequence of functors performing a
very detailed image calculation for the smaller body section
in addition to the original calculation of the initial body
part. Both chains are then executed in a pseudo-parallel
fashion and the resulting images of both functor chains are

new combinator

new functor chain

Figure 3: Adding a functor chain in parallel

combined to one image per slice.
The second adaptation scenario is to replace a part of a

functor chain by another one as shown in Fig. 4. This sce-
nario is used, e.g., to modify the section of an image a trans-
formation is applied to.

To conclude the discussion of image processing adapta-
tions, note that functors affect several connection points of
the original chain as illustrated by the two transformations
above. Furthermore, many adaptations are performed dur-
ing a tomography examination. Such adaptations may be
applied to the initial functor chain as well as to chains which
have been dynamically added previously. As a consequence
the corresponding transformations are spatially and tempo-
rally scattered over the entire functor graphs.

4. APPLYING DYNAMIC AOP

3

7

new functor chain

Figure 4: Replacing a functor chain

We now turn to the problem how to express the adapta-
tion scenarios using the aspect language of Arachne.

Let us consider a sequence of functors, where each func-
tor implements a method computeScan, as introduced in the
previous section. Since the current version of Arachne sup-
ports only C, the functors have been mapped from C++ to
C for the purposes of the evaluation presented in this paper.
Note that this is quite simple because the functors, as ex-
emplified by the code shown in the previous section, do not
make extensive use of the object-oriented features of C++.
As shown in List. 2 functors are mapped to C code by repre-
senting each functor class as a structure containing a pointer
to a list of subsequent functors in the functor graph and a
pointer to a function computeScan.

Arachne’s aspect language. Let us first briefly consider
Arachne’s aspect language (see [6] for a more detailed pre-
sentation). Arachne provides analogues for C to AspectJ’s
main Java-oriented [10] features: pointcuts can be used in
Arachne to match calls to C functions and match nested
calls on the execution stack, a form of “cflow”. (Note that
Arachne also provides pointcuts others than those related
to calls, e.g., variable access join points. Since these are not
used in this paper, we refer the interested reader to [6].)

Arachne distinguishes itself from most aspect languages
by providing a construct for explicit sequencing on the lan-
guage level, which is of the following form:

seq(Prim, Prim [*], . . . , Prim [*], Prim)

where Prim is a primitive aspect, such as

call(m(a, b)) then m’(b);

associating a primitive pointcut, which matches, e.g., a call,
to an action, typically a function call, which is to be exe-
cuted instead of the matched call and that can itself call the
original function. The construct is executed by first creating
a new instance of the sequence aspect (with a fresh state)
each time the first primitive aspect in the sequence matches.
Then the other primitive aspects of the sequence are applied
(repeatedly in case a star is used) as early as possible, i.e.,
a primitive aspect a has priority over its predecessor: a is
executed when the pointcut of a matches.

Adjoining a new functor sequence. A new functor se-
quence can be adjoined to an existing one using Arachne’s
aspect language by means of a single sequence aspect. As-
sume we want to add a chain of functors (f3’ to f4’) along
with a new functor combining the data of the parallel chains
to a chain of functors f1 to f6. An aspect that adds the new
chain at functors f3 and f6, and that can also be unwoven
without any side effects is presented in List. 3.

The computeScan functions of f1 and f2 are executed as
usual, but once f3 is reached (lines 6–8 in List 3) in this
sequence, the new subchain will be executed and the result-
ing data is stored temporarily. Then the original chain is
executed and before computeScan of f6 is executed, the im-
age data is combined (lines 9, 10). The second and third
step in the sequence aspect contain if-conditions to ensure
that the computeScan methods work on the same image and
iterator. This is necessary because there might be several
identical chains to be matched that work on different itera-
tors.

Replacing a functor sequence. Replacement of a functor
sequence by another one can be expressed using a single
sequence aspect, too. Assume we want to replace functors
f3 to f5 with new functors f3’ to f5’ (cf. Fig. 4). The
aspect in List. 4 achieves the replacement.

The computeScan functions of f1 and f2 will be executed
as usual, but once f3 is reached, the new subchain will be
executed and the computeScan function of f5’ will call the
one of f6 that then proceeds as usual. As in the preceding
aspect, we use if-conditions to ensure that the steps in the
sequence work on the same image and iterator.

Using Arachne, the functors replacing the ones in the orig-
inal chain can be added dynamically.

5. ARACHNE: ARCHITECTURE AND IM-
PLEMENTATION

In this section we describe how Arachne enables dynamic
weaving and unweaving of aspects into running legacy C ap-
plications. We present, in particular, a description of Arach-
ne’s structure which is improved w.r.t. the one in [6], a new
detailed discussion of the consistency of Arachne’s rewriting
of native code, and a design of Arachne for C++ developed
in order to apply Arachne (as future work) to Siemens AG’s
original code base, which has been developed over 8 years
and whose use without modification is an important cost cri-
terion for Siemens. By targeting Arachne directly to C++
code we obviate the need for the mapping to C introduced
in the preceding sections.

5.1 Arachne’s Architecture
Arachne’s architecture is shown in Fig. 5: it is composed

of three parts: the aspect runtime environment, a kernel
manager, and an aspect compiler.

5.1.1 Arachne’s runtime environment
The main component of Arachne’s runtime environment is

Arachne’s kernel dynamic link library (DLL). As it is respon-
sible for weaving aspects in the base program at runtime, it
has to be able to rewrite the binary code of the base program
and thus needs to be loaded in the same address space (as
discussed in Section 5.1.2). Once the kernel DLL is loaded
in the address space, it creates a thread in the base program

4

8

1 typedef struct functor *Functor;
2 struct functor{
3 Functor* nextFunctors;
4 void (* computeScan)(CtrlInfo* ctrl , CubeIterator* iter);
5 }
6
7 void computeScan_RawFT(CtrlInfo* ctrl , CubeIterator* iter){...}
8 Functor rawFT; rawFT.computeScan = computeScan_RawFT;

Listing 2: Mapping RawFT to C

1 CtrlInfo* ctrlNew; CubeIterator* iterNew;
2
3 seq(call(void computeScan_f1(CtrlInfo*, CubeIterator *)) && args(ctrl ,iter);
4 call(void computeScan_f2(CtrlInfo*,CubeIterator *)) && args(ctrl2 ,iter2)
5 && if(ctrl == ctrl2) && if(iter == iter2);
6 call(void computeScan_f3(CtrlInfo*, CubeIterator *)) && args(ctrl3 ,iter3)
7 && if(ctrl == ctrl3) && if(iter == iter3)
8 then executeOldAndNewChain(ctrl ,iter);
9 call(void computeScan_f6(CtrlInfo*, CubeIterator *))

10 && args(ctrl6 ,iter6) && if(ctrl == ctrl6) && if(iter == iter2)
11 then combineDataAndExecutef6(ctrl6 ,iter6);)
12
13 void executeOldAndNewChain(CtrlInfo* ctrl , CubeIterator* iter) {
14 ctrlNew = ctrl.clone (); iterNew = iter.clone ();
15 executeNewChainf3 ’tof5’(ctrlNew ,iterNew);
16 computeScan_f3(ctrl ,iter); // execute original chain
17 }
18
19 void combineDataAndExecutef6(CtrlInfo* ctrl , CubeIterator* iter) {
20 combine (); // combines the data (ctrlNew ,ctrl ,iterNew ,iter) and
21 // stores result in ctrl and iter
22 computeScan_f6(ctrl ,iter); // execute last functor with
23 // combined data
24 }

Listing 3: Sequence aspect for adjoining a chain

1 seq(call(void computeScan_f1(CtrlInfo*, CubeIterator *)) && args(ctrl ,iter);
2 call(void computeScan_f2(CtrlInfo*, CubeIterator *)) && args(ctrl2 ,iter2)
3 && if(ctrl == ctrl2) && if(iter == iter2);
4 call(void computeScan_f3(CtrlInfo*, CubeIterator *)) && args(ctrl3 ,iter3)
5 && if(ctrl == ctrl3) && if(iter == iter3)
6 then replace(ctrl3 ,iter);)
7
8 void replace(CtrlInfo* ctrl , CubeIterator* iter) {
9 executeNewChainf3 ’tof5’(ctrl ,iter);

10 // computeScanf5 ’ will call computeScanf6 that
11 // then proceeds as usual
12 }

Listing 4: Sequence Aspect for replacing a subchain

5

9

w
ea

ve

Rewriting Sites)
(Informations on
MetaData DLL

Loaded

(API for rewriting
join points)

Loaded
Rewriting DLL

Aspect DLL
Loaded

ARACHNE' s
Kernel DLL

Thread
Running

ARACHNE' s Runtime Environment

Aspect DLLs
Compiler

ARACHNE' s

Aspects

ARACHNE' s
Kernel

Manager

weave / unweave)
(provides

T
im

e
R

un
ti

m
e

A
sp

ec
t

C
om

pi
le

independent

Linux OS

Code & Data

Process Executing Base Program 1

Base Program 1

Figure 5: Arachne’s Architecture

process, waiting on weaving and unweaving requests. By
using a thread for processing the requests and weaving/un-
weaving, the execution of the base program does not have
to be suspended. Upon reception of a weaving request, the
Arachne kernel loads the corresponding aspect DLL. Then
the kernel loads the rewriting DLLs required by the aspect if
necessary. A rewriting DLL serves as an API that provides
functions to rewrite/instrument one kind of join point. A
rewriting DLL does not contain the information about the
places to be instrumented in the binary code of the base pro-
gram, i.e. the shadows. This information is stored in the
meta data DLLs. Metadata DLLs are used to ensure the in-
dependence between Arachne’s aspect system and the base
program. They contain a mapping between the symbolic de-
scription of rewriting sites and the actual rewriting sites in
the binary code of the base program. To rewrite join points,
the rewriting DLL will request the Arachne kernel to load
its corresponding metadata DLL. If this metadata DLL has
not yet been loaded, the kernel will attempt to generate it
by parsing the symbol tables and the object code contained
in the base program executable file. Once the correspond-
ing metadata DLL is loaded, the rewriting DLL will use
the metadata to resolve the symbolic references in the as-
pect DLL and the binary code of the base program will be
rewritten. For an unweaving request the kernel will instruct
the rewriting DLLs referenced by the aspect to restore the
original code before unloading the aspect DLL.

5.1.2 Arachne’s kernel manager
Arachne’s kernel manager serves as an intermediate be-

tween the user that wants to weave and unweave aspects into
different applications, and aspect kernels that actually weave
and unweave the aspects into a specific base program. The
kernel manager is embodied in a set of shell commands for
the weaving and unweaving of aspects. Once a (un)weaving
command is issued by a user, the kernel manager communi-
cates through sockets with the kernel of the specified base
program to initiate the (un)weaving. In case a user wants
to weave an aspect into a running application that does not
yet contain an Arachne kernel, the kernel manager will ”in-
ject” an Arachne kernel in the application’s address space
before instructing it to weave the aspect. First, the Arachne
kernel manager suspends the base program execution. Then

it uses debugging APIs (ptrace [ref POSIX]) to rewrite the
first bytes of the memory image of the base program and
restarts the execution of the base program at the begin-
ning of its memory image. Upon execution, the rewritten
code loads the Arachne kernel DLL into the address space
of the base program and sends a signal to the Arachne ker-
nel manager. Upon reception of the signal, Arachne’s kernel
manager suspends the execution of the base program, re-
stores the first bytes and finally triggers the continuation of
the execution at the place where it interrupted the program
execution beforehand. From this point on, the base program
contains an Arachne kernel loaded in its address space that
can handle weaving and unweaving requests. This dynamic
”injection” technique does not require a new start of the
application but might just lead to a suspension of the base
program execution for up to 500ms.

5.1.3 Arachne’s compiler
The compiler is a combination of a lexical analyzer writ-

ten with Flex and a parser and program generator written
with Bison. The compiler first translates an aspect writ-
ten in the aspect language into a C source file that contains
advice in executable functions and dynamic predicates, i.e.
the residue. Once a join point is rewritten by the aspect
runtime, it will automatically trigger the execution of the
predicates and in case the aspect applies at the join point,
run the appropriate function holding the aspect advice. In a
second step, the compiler generates a compiled aspect DLL
by using a regular C compiler (gcc). As the same aspect can
be woven into two different base programs, the information
about the rewriting sites, i.e. the shadows, of an aspect is
not available at aspect compile-time, and thus all references
to join points in a base program and rewriting DLLs are in
a symbolic form. Once woven, an aspect DLL instructs the
aspect runtime environment to instrument the base program
at the appropriate places.

5.2 Nuts and bolts of binary code weaving
Arachne’s dynamic weaving approach raises a number of

issues that have to be considered. First, the base pro-
gram code must remain executable and stay consistent at
all times, and second, the resources (memory and sockets)
used by the Arachne kernel should not interfere with the
base program.

5.2.1 Consistency of the base program execution

Atomic rewriting of a site. As the rewriting is done at
runtime without suspension of the base program execution,
Arachne has to ensure that the rewriting does not interfere
with the execution. A shadow in the binary code of the base
program is rewritten by a jump to the residue of the aspect.
However, such a jump instruction is too long for replacing it
with one of the atomic memory write operations of the x86
processor. Therefore Arachne uses a rewriting strategy that
ensures a consistent execution of the base program. It does
so by first inserting a self-referencing loop (short enough to
be written atomically) at the beginning of the instruction, so
that in case the base program wants to execute the code at
the rewriting site, it will just loop. (Note that this synchro-
nization mechanism requires minimal execution time and
is compatible with all common higher-level synchronization
mechanisms.) Then Arachne writes the end of the jump in-

6

10

struction behind the loop before finally rewriting the loop
instruction with the beginning of the jump instruction.

Rewriting consistency. In case a join point is composed
of a set of assembly instructions, there might be jumps in
the base program to an instruction in the set. To conserve
the consistency of these jumps, a weaver may not rewrite
the whole set of instructions as is done by Kerninst and
Dyninst [7, 17, 3], or it might change the jump addresses
beforehand. But latter one is nearly impossible to achieve
at runtime where jump targets may be determined by an
address held in a register or in memory. Therefore Arachne
ensures to instrument only the first instruction of the assem-
bly instructions belonging to the join point. At the same
time, the instruction that will be rewritten by Arachne has
to be big enough to fit a jump instruction. This however
is ensured by the selection of the join points that Arachne
provides.

Atomic weaving and unweaving. Arachne treats an as-
pect DLL as a collection of related aspects, potentially col-
laborating. To ensure a consistent execution of the base
program, all rewriting sites addressed by one aspect DLL
have to be woven atomically (the same counts for unweav-
ing). This atomicity is provided by executing a dynamic
check on the progress of the weaving before the residue and
eventually the advice of an aspect are called. Thus only
in case all addressed sites are rewritten, the aspect code is
executed.

5.2.2 Resource consumption
Rewriting the binary code of the base program at run-

time requires the Arachne kernel to share its memory with
the base program. To allocate the memory for Arachne,
the Linux function mmap is called within the base program
execution. This function associates a portion of the caller
address space with physical memory and treats it as freshly
allocated. Since the base program does not know of the en-
largement of its address space, it can not interfere with the
memory used by the Arachne kernel1. In addition, to isolate
the socket used by Arachne from the base program and thus
avoiding interference between these two, the kernel thread
is created through the Linux specific function clone, so that
only the memory is shared but not the used sockets.

5.3 Extension of Arachne to C++
We conclude this implementation section by considering

the design of how to extend Arachne for dynamic weaving
of C++ applications, such that Siemens AG’s code base for
medical image generation can be used without previously
mapping it to C.

Essentially, C++ is a typed object-oriented extension of
C providing function overloading and overriding, instance
variables and compile-time code generation facilities (i.e.
template). To ensure proper interoperability between com-
pilers, the compiled representation of a C++ file has been
normalized [5, 15]. Except from the language features spe-
cific to C++, this standard closely follows the ANSI C spec-

1Contrary to mmap, regular memory allocators typically have
some sort of side effect. For example, in case the Arachne
kernel was built with the GNU malloc command, the base
program could have used sbrk(0) to detect the memory
allocations performed by the Arachne kernel.

ification. Therefore, the techniques used in Arachne to in-
strument C programs are directly applicable to C++ pro-
grams and only the features specific to C++ require further
considerations and will be discussed in the following.

C++ implements function overloading by encoding the
types of the signature in the function name. This encoding
process is defined by the standard and allows tools such as
GNU nm to retrieve the exact, source level name from the en-
coded, binary level function name. By using this property,
Arachne will be able to properly handle overloaded func-
tions.

Function overriding in C++ is implemented using vtables
[5, 15]. The C++ compiler translates the invocation of
virtual functions into binary code that will first retrieve
the address to the function to be executed from the vtable

before actually executing it. In addition the C++ compiler
holds each vtable as a global variable. Therefore, to trigger
the execution of an action upon a virtual function, Arachne
can just replace the addresses stored in the vtable by the
address of the action.

Because of the standardization of the memory layout of
object instances [5, 15], the techniques used by Arachne to
track global and local C variables can easily be adapted to
cover instance variables.

Finally, C++ compile-time generation facilities will not
interfere with Arachne for C++. Arachne will however not
be able to trigger advices on the metacomputation per-
formed by template functions, since these computations are
performed at compile-time and their results are inlined in
the compiled executable. For the computations performed
at runtime, i.e. template mechanisms used to parameter-
ize a class or function, the necessary information is encoded
within the binary names of the functions and variables and
may be used by Arachne.

6. RELATED WORK
Image generation by medical devices is an active research

field [12, 2, 18, 14]. Despite rapid evolutions, industrial
medical software offers a fixed, closed set of features (func-
tors). Hence, the state of the functor graph required for each
image processing could be fixed at compile-time. However,
the combinatorial explosion makes this approach unsuitable
without appropriate tools.

Partial evaluation systems could be used to master such
an combinatorial explosion. To be successful, such an ap-
proach would require a design where all image treatments
will be derived from a most generic one. Ideally, in a partial
evaluation approach, the application should use only a single
functor graph capable of performing any image processing.
Partial evaluation techniques and tools [8, 13] could then be
used to automatically prune the unused functors from the
functor graph depending on its use in the different parts of
the program. But this generic and complete graph does not
exist for Siemens AG’s medical devices and tools for partial
evaluation are rather unwieldy compared to, e.g., Arachne.

To our knowledge, Arachne is the only dynamic aspect
weaving system for C. AspectC [4] (for which no tool sup-
port is available) and AspectC++ [16] extend C and C++,
respectively, by an aspect model very similar to AspectJ’s
[9]. Both of these provide static weaving and therefore do
not meet Siemens AG’s requirements of dynamic adaptabil-
ity. Furthermore static approaches would require the imple-
mentation of sophisticated (and probably complex) undo-

7

11

mechanisms to support a notion of reversibility, similar to
that built-in into Arachne.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented part of the existing code base

of Siemens AG, Germany, for the generation of images by
medical devices. We have presented some interactive adap-
tation scenarios arising in practice. We have also motivated
that the corresponding transformation of the structure of
image generation algorithms should benefit from AOP tech-
niques. We have then outlined a solution realizing the adap-
tation scenarios in form of aspects using the aspect language
of Arachne, a dynamic weaver for C programs. Finally, bi-
nary code weaving for C has been detailed and the design
of an extension of Arachne for C++ has been presented.

There are several direct leads to pursue the work presented
in this paper. Most prominently, the set of adaptation sce-
narios should be completed. Second, an implementation of
the C++-version and the corresponding transformations is
to be done. Finally, the relation between partial evaluation
techniques and our AOP-based approach should be investi-
gated.

8. REFERENCES
[1] R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and

A.-F. Le Meur. On the automatic evolution of an os
kernel using temporal logic and aop. In Proceedings of
Automated Software Engineering (ASE’03), pages
196–204. IEEE, 2003.

[2] J. Ashburner and K.J. Friston. Why voxel-based
morphometry should be used. NeuroImage,
14(6):1238–1243, 2001.

[3] B. Buck and J. K. Hollingsworth. An API for runtime
code patching. The International Journal of High
Performance Computing Applications, 14(4):317–329,
2000.

[4] Y. Coady, G. Kiczales, J.S. Ong, A. Warfield, and
M. Feeley. Brittle systems will break – not bend: Can
aspect-oriented programming help? In Proceedings of
the Tenth ACM SIGOPS European Workshop, pages
79–86, St. Emilion, France, September 2002.

[5] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red
Hat, and SG, editors. Itanium C++ ABI.
CodeSourcery, November 2003. published on-line
http://www.codesourcery.com/cxx-abi/abi.html.

[6] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud,
M. Ségura-Devillechaise, and M. Südholt. An
expressive aspect language for system applications
with arachne. In Proc. of 4th International Conference
on Aspect-Oriented Software Development (AOSD’05).
ACM Press, March 2005. To appear.

[7] J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves,
O. Naim, Z. Xu, and L. Zheng. MDL: A language and
compiler for dynamic program instrumentation. In
IEEE Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 201–213,
November 1997.

[8] Neil D. Jones. An introduction to partial evaluation.
ACM Computing Surveys, 28(3):480–503, Sep. 1996.

[9] G. Kiczales et al. An overview of AspectJ. In
J. Lindskov Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming 15th European

Conference, Budapest Hungary, volume 2072 of
Lecture Notes in Computer Science, pages 327–353.
Springer-Verlag, Berlin, June 2001.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, et al. An
overview of AspectJ. In ECOOP 2001 —
Object-Oriented Programming 15th European
Conference, volume 2072 of LNCS, pages 327–353.
Springer Verlag, Berlin, June 2001.

[11] G. Kiczales, J. Lamping, A. Mendhekar, et al.
Aspect-oriented programming. In Mehmet Aksit and
Satoshi Matsuoka, editors, 11th Europeen Conference
on Object-Oriented Programming, volume 1241 of
LNCS, pages 220–242. Springer Verlag, 1997.

[12] G. Lohmann, K. Muller, V. Bosch, H. Mentzel,
S. Hessler, L. Chen, S. Zysset, and D.Y. von Cramon.
Lipsia a new software system for the evaluation of
functional magnetic resonance images of the human
brain. Computerized Medical Imaging and Graphics,
25(6):449–457, 2001.

[13] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic,
A. Goel, P Wagle, C. Consel, G. Muller, and
R. Marlet. Specialization tools and techniques for
systematic optimization of system software. ACM
Transactions on Computer Systems, 19(2):217–251,
May 2001.

[14] W.D. Penny, N. Trujillo-Bareto, and K.J. Friston.
Bayesian fMRI time series analysis with spatial priors.
NeuroImage, 2004. Accepted.

[15] Nathan Sidwell. A common vendor c++ abi. In
Proceedings of the Association of the C and C++
Users conference, April 2003.

[16] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
AspectC++: An aspect-oriented extension to the
C++ programming language. In 40th International
Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 2002),
Sydney, Australia, February 2002.

[17] A. Tamches and B. P. Miller. Fine-grained dynamic
instrumentation of commodity operating system
kernels. In Operating Systems Design and
Implementation, pages 117–130, 1999.

[18] D. Veltman, A. Mechelli, K.J. Friston, and C.J. Price.
The importance of distributed sampling in blocked
functional magnetic resonance imaging designs.
NeuroImage, 17(3):1203–1206, 2002.

8

12

Dynamic Business Rules for Web Service Composition
María Agustina Cibrán

Vrije Universiteit Brussel
Pleinlaan 2

1050 Elsene
++32(2)629.29.64

mcibran@vub.ac.be

Bart Verheecke
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene

++32(2)629.38.13

Bart.Verheecke@vub.ac.be

1. INTRODUCTION
The domains of many software applications are inherently
knowledge-intensive. Examples of such domains are e-commerce,
the financial industry, television and radio broadcasting, hospital
management and rental business. Part of this knowledge is rule-
based, typically representing knowledge about policies,
preferences, decisions, advice and recommendations. The current
software engineering practices result in software applications that
contain implicit rule-based knowledge, which is tangled with the
object-oriented core functionality. Nowadays, rule-based
knowledge has become a hot topic and is also referred to as
business rules [8, 12, 17].

On one hand we have conducted previous work in the field of
business rules [5, 6] in which we observe the crosscutting nature
of business rules connectors and the suitability of AOP for their
implementation.

On the other hand, we are working on the design and development
of the Web Services Management Layer (WSML) [7, 16],
management middleware in between client applications and the
web services. Such a management layer allows the definition of
web services compositions to provide the functionality requested
by client applications. Service compositions are expressed using a
process-based language. An example of such a process-based
language is WS-BPEL [2], a service choreography and
orchestration language that allows the definition of business
processes as interactions between web services in order to achieve
a certain goal.

In this paper we focus on business rules present in the domain of
web services compositions. We observe that composition business
rules govern different aspects of the composition: how services
need to be composed together, how suitable services can be
discovered to fill in the roles of the composition, which services
should be chosen at deployment time to carry out the activities of
the process, and how the composition should adapt to the
changing business environment. In this paper we only focus on
the last kind of composition business rules.

We observe that support for explicitly defining business rules is
inexistent or hardly supported in current business processes
languages. Business rules are only implicitly expressed and their
implementation is tangled with the core business process. As a
consequence it is difficult to reason about and to evolve both parts
independently, the core composition and the business rules. WS-
BPEL, as a representative example of process-based languages,
fails at providing support for explicitly representing the business
rules in a clean and decoupled way.

Building on top of our previous work on business rules and AOP,
we observe that composition business rules crosscut the service
compositions and thus AOP can contribute to achieve their
decoupling.

In the rest of the paper, we identify different categories of
business rules that govern how the compositions should adapt to
the changing business environment. In particular we focus on
dynamic business rules, rules that take decisions on how to
modify the core composition based on advanced patterns of
execution history. We analyze the different kinds of AOP features
needed for the realization of such rules. The JAsCo AOP
language [13] is used as an example AOP technology. In
particular, this paper shows how JAsCo stateful aspects [15] are
suitable for realizing the identified dynamic business rules.

This paper aims to contribute by providing useful examples of
dynamic aspect behavior, meaning in this context, the invocation
or change of aspect behavior based on the dynamics of program
execution.

2. BUSINESS RULES
The Business Rules Group defines a business rule as a statement
that defines or constrains some aspect of a business. It is intended
to assert business structure or to control the behavior of the
business [14]. A significant characteristic of business rules is that
they tend to change whenever the business policies they embody
change, which is more often than the core application
functionality does [1][11][17]. Examples of business rules are “If
a customer has purchased more than 20 books, then he or she
becomes a frequent customer” and “If a customer is a frequent
customer, then he or she gets a 10% discount”. Business rules are
applied at events which are well-defined point in the execution of
the core application functionality. Example events are “before the
price of a product is retrieved” and “after the customer has
checked out”, at which the two examples rules are applied.

As business domains become more and more complex, it is
fundamental to explicitly capture business processes and policies
as business rules. The Business Rules Approach [17] states that it
is crucial to implement them adhering to four objectives: separate
business rules from the core application, trace business rules to
business policies and decisions, externalize business rules for a
business audience, and position business rules for change.

3. PROBLEM STATEMENT
Using a process-based language, a business process can be
realized by specifying how different services interact to carry out
a certain goal. In the definition of a business process a set of
activities is identified. Each activity is associated with a role,

13

which is mapped to a concrete web service or web services
composition at deployment time in order to perform the
functionality of the business process.
Currently, WS-BPEL [2] is one of the most promising process-
based languages, candidate for standardization. WS-BPEL
(Business Process Execution Language) for Web services is an
XML-based language designed to enable task-sharing for a
distributed computing - even across multiple organizations - using
a combination of web services. Using BPEL, a programmer
describes a business process that will take place across the Web in
such a way that any cooperating entity can perform one or more
steps in the process the same way. In a supply chain process, for
example, a BPEL program might describe a business protocol that
formalizes what pieces of information a product order consists of,
and what exceptions may have to be handled. The BPEL program
would not, however, specify how a concrete web service should
process a given order internally.
We observe that the problems encountered when implementing
business rules in object-oriented languages [6, 10] also arise in
process-oriented languages. These problems occur due to the
impossibility of achieving the following objectives in an oblivious
way, i.e. without having to manually change the core application:
(1) connect business rules to core application events which
depend on run-time properties, (2) retrieve the needed information
and make it available at those events when the rules are applied,
(3) reuse the rules by connecting them at different events, (4)
combine, prioritize and resolve rule interferences and (5) achieve
all this preferably dynamically. The reason of this impossibility is
that the rules are implicitly represented as if-then statements, and
as result they appear tangled and scattered in the core application.
A business process written in WS-BPEL is one monolithic
specification. It does not support the definition of business rules
in a clean, modularized and reusable way and the specification of
the rules gets tangled with the main process itself. Changes in the
workflow due to changes in business requirements need to be
done manually and invasively. The only support WS-BPEL offers
is a limited kind of rules such as alternatives between tasks and
repetitions based on business logic. Only limited workarounds or
no support at all is provided for certain business rules such as time
or order constraints between activities.

4. OUR APPROACH
We aim at defining service composition driven by explicit
business rules. It is important to explicitly represent them since
they tend to change faster than the core business processes. They
are very volatile since they need to adapt to business requirements
and thus should be decoupled. In order to achieve highly flexible
service compositions we observe the need for defining rules
explicitly and decoupled from the service composition itself. In
the remainder of this section, we will illustrate how aspects are
useful in this regard.
As mentioned before, in this paper we focus on composition rules
that govern how the core composition needs to be adapted
according to changing business knowledge. These rules will
decide whether to add, replace, change or remove activities that
are present in the core composition. In particular we consider
dynamic business rules, rules whose triggering events and/or
conditions are based on the dynamics of the execution of the core
application. To illustrate this kind of composition business rules,

consider the following example application. It describes the
business process of buying books online. In this context,
customers of the shop can send in a quote request. If the customer
is a valid customer then a quote is sent back and remains valid for
a two-day period in which the customer can purchase an item. On
the contrary, if the customer is not registered in the shop, then an
error message is returned. During the time the quote is valid, the
customers can place orders for buying books which are accepted
by the shop. The next step in the business process is the payment
of the ordered books. Depending on the results of this activity, the
workflow continues with the shipping of the goods or with the
refusal of the order, if the card payment is not authorized for
instance.

In the following sections we identify different categories of
dynamic business rules in the domain of service compositions.
Examples of these categories are provided based on the
introduced scenario. These rules are triggered depending on the
dynamics of core compositions execution flow. Note that we are
not presenting an exhaustive categorization, but the intention is to
provide significantly different example categories of service
compositions business rules that serve as a basis for the
identification of AOP solutions.

Examples of a possible implementation in JAsCo will be
presented for each category. JAsCo is an AOP language tailored
for the component based context. JAsCo builds on top of Java and
introduces two additional entities: aspect beans and connectors.
An aspect bean is an extended version of a regular Java bean and
allows describing crosscutting behaviour by means of a special
kind of inner class, called a hook. Aspect beans are specified
independently of concrete component types and API’s, making
them highly reusable. A connector on the other hand, is used for
deploying one or more aspect beans within a concrete component
context. In addition, connectors are able to specify explicit
precedence and combination strategies in order to manage the
cooperation among several aspects that are applicable onto the
same join point. In addition, the JAsCo technology provides an
extensive run-time infrastructure. Using this infrastructure,
aspects remain first-class entities at run-time and dynamic aspect
addition and removal becomes possible.

Sections 4.1, 4.2 and 4.3 discuss different example categories of
dynamic business rules.

4.1 Category 1
Condition: occurrence of behaviors in a specific sequence.
Additionally, checks on properties of business objects can be
specified on the identified sequence

Action: addition of extra activity to the core process

This category of rules is considered when certain activities can be
executed in different orders in the core composition. For instance,
consider the case where activities a, b and c are part of the
workflow, and the execution sequences a b c, b c a and
c b a can occur in the core composition. The rule checks
whether a particular path is followed, for instance the path
a b c. The condition can additionally define extra checks on
properties of business objects to be done at any of the points in
the identified path. As an action the rule defines the insertion of
an extra activity in the core composition, which needs to be added

14

at an execution point posterior to the identified path on which the
condition is checked.

Note that the activities a, b and c can be either consecutive (they
occur one after the other) or not (other behaviors can be
interleaved in between the identified activities in the path).
Moreover, they can occur within the control flow of each other or
outside. The path a b means that the execution of activity b
should be triggered after the execution of a is triggered, either
within the control flow of a or after the execution of a is
completed.

Example: suppose that the payment of the books can be done
electronically by credit card or by cash. Consider a business rule
that specifies that “if not trustworthy customer and cash payment
selected then check whether the payment has been received before
shipping the products”. Then, before the actual shipping we first
need to check whether the money was effectively received before
dispatching the items. This extra check will determine whether to
continue or not with the original workflow. This check is not done
if the electronic payment branch was followed instead. Moreover,
we only want to add this extra checking if the customer is
registered in the system as not trustworthy.

In this example, the condition needs to check whether the
sequence a:login b:cashPayment is executed and check the
trustworthiness of the customer when a:login is performed. The
action identifies the addition of an activity that would verify the
reception of the cash and act accordingly. This activity is added
before c:shipping.

Solution: A naïve solution using current process-based languages
would opt for adding variables in the core composition to keep
track of whether the customer is trustful and the execution path
that was taken (either the electronic payment or the cash one).
Next, before allowing the shipment of the purchased products,
those variables would need to be consulted in order to decide
whether the extra checking for receiving the money is needed.
However, this solution implies tangling the core composition with
code for the implementation of the business rule. Moreover, the
business rule results scattered in the composition and its identity
is lost. Aspects help to avoid tangling the core composition as the
variables and extra checking code would be encapsulated in a
single module, the aspect, outside the main composition.
However, keeping track of these variables inside the aspect code
might be tedious and unclean.
class UnknownPaymentAspect {

 hook UnknownPaymentHook {

 UnknownPaymentHook(

 logIn(String username, String password),
 cashPayment(Order order),
 shippingOrder(Order order)) {

 start > logInCustomer;
 logInCustomer: execute(logIn) > payment;
 payment: execute(cashPayment) > shipping;
 shipping: execute(shippingOrder);
 }

 isApplicable logInCustomer(){

 return !store.trustworthyCustomer
 (username, password);
 }

 replace shipping() {

 if (PurchaseDepartment.cashReceived(order))
 then proceed();
 else System.out.println
 (“Shipping cannot proceed”);
 }
 }
}

Code fragment 1 – Stateful aspect for payment check
JAsCo supports the definition of stateful aspects [15], aspects that
are triggered on protocol history conditions. Stateful aspects allow
achieving a cleaner implementation of this business rule, it is
possible to specify the desired execution path of interest and plug
in the crosscutting functionality at any time in the execution of
the identified path. In this case, the path of interest is the
execution of the sequence of activities a:log-in b:cashPayment

 c:shipping. The crosscutting code is the extra check for
receiving the money that needs to be done before allowing the
actual shipping of the purchased goods. The JAsCo stateful aspect
is shown in code fragment 1.

Note that this aspect should be instantiated perThread to avoid
inconsistencies when concurrent access.

This solution based on aspects that are triggered on protocol
history conditions is much cleaner since the execution path of
interest for the pluggability of the aspect behavior is explicitly
captured. Conditions can be checked at the different transitions in
the path as well as the extra/replacing behavior can be plugged at
each transition. This solution is illustrated in Figure 1.

Figure 1 – Stateful aspect for adding additional payment
checking to e-commerce business process

4.2 Category 2
Condition: checks on properties of business objects at a
specific point in time during the process execution

Action: addition of extra activity in the process that needs to
be applied on the execution of behaviors that occur in a
specific sequence

At a certain point in the execution of the composition a condition
that involves checking a certain property of a business object is
checked. Based on the result of this checking, it is decided
whether to add an extra crosscutting behavior. In order to execute,
this behavior operates on different execution points of a defined

OrderBook

ShipBook

LogIn
Customer

IsTrustworthy
Customer

Cash
Payment

or

noyes

Terminate

CheckCashReceived

Electronic
Payment

Stateful aspect

15

sequence of events that occur later on, when future tasks in the
execution path are executed.

Example: This example represents a conditional time constraint:
“If a purchase order is received and labeled as urgent then the
whole process payment-shipping-delivery should occur within a
maximum of 3 days. Otherwise, the customer is not charged for
the purchase”.

Solution: In this example, the condition of the rule is checked at a
certain point in time, which is the event a:orderBook. The result
of this check will determine the pluggability of the
monitoringTime activity. This extra behavior is applied on a
sequence of events, b:payment c:shipping, since it needs to
measure the execution time of these two activities.

The solution using stateful aspect in JAsCo looks as follows:
class ConditionalTimeConstraintAspect {

 hook ConditionalTimeConstraintHook {

 ConditionalTimeConstraintHook(

 orderBook(CustomerId customer, BookId book,
 Priority priority),
 paymentOrder(Order order),
 shippingOrder(Order order)) {

 start > placeOrder;
 placeOrder: execute(orderBook) > payment;
 payment: execute(paymentOrder) > shipping;
 shipping: execute(shippingOrder);
 }

 isApplicable orderBook(){

 return priority.isUrgent();
 }

 before payment() {

 timestampbefore=System.currentTimeMillis();
 }

 after shipping() {

 timestampafter=System.currentTimeMillis();
 if (//time difference not OK)
 store.reimbourseCustomerOfOrder(order);
 }
 }
}

Code fragment 2 – Stateful aspect for timing constraint
Figure 2 illustrates this example.

Figure 2 – Stateful aspect for adding additional time
monitoring to payment-shipping activities in e-commerce

workflow

4.3 Category 3
Condition: execution of behaviors in a sequence that is not
allowed

Action: perform extra behavior

When parallel threads of tasks executions are possible in core
composition, it might be desirable to restrict certain paths
depending on a certain condition. A constraint rule restricts which
paths are allowed, filtering out the not desired ones.

Example: An execution order constraint between tasks is enforced
by a business rule. Imagine a scenario where the shipment and
payment activities belong to different execution threads of
parallel activities. Suppose a business rule that states that “goods
can only be shipped after payment has been received”. If the
opposite occurs, then notify the manager of the shop.

Solution: JAsCo stateful aspects support triggering crosscutting
behavior on the opposite of a protocol using the complement
keyword. In this example such a feature is useful since the
manager needs to be notified whenever the protocol is not
respected. The solution looks as follows:

class ExecutionOrderAspect {

 hook ExecutionOrderConstraintHook {

 ExecutionOrderConstraintHook(
 paymentOrder(Order order),
 shippingOrder(Order order),
 methodsContext(..args)) {

 complement[execute(methodsContext)]:
 start > payment;
 payment: execute(paymentOrder) > shipping;
 shipping: execute(shippingOrder);
 }

 replace complement() {
 Manager.notify
 ("Shipping done before payment");

 }
 }
}

Code fragment 3 – Stateful aspect for payment execution
order

static connector ExecutionOrderConnector {

 ExecutionOrderAspect.ExecutionOrderHook checker
 = new ExecutionOrderAspect.ExecutionOrderHook (

 void paymentService.pay(Order order),
 void shippingService.ship(Order order), {

 void paymentService.pay(Order order),
 void shippingService.ship(Order order)
 }
);
}

Code fragment 4 – Connector for payment execution order
The ExecutionOrderAspect in code fragment 3 states that if
the specified protocol is not followed (e.g. the shipping is done
before the payment) the original behavior of the core application
is replaced by a notification which is sent to the manager. By
using the complement keyword, the specified advice is only
executed when the protocol is not followed.

OrderBook

ShipBook

Reimbourse
Customer

MonitorTime

Not OK

…

PayBook

CheckPriority

Stateful aspect

16

Figure 3 – Stateful aspect for triggering notification when a
certain path is not respected in e-commerce workflow

5. Related work
Previous research focused on the applicability of AOP for
business rules. Experiments have been done in AspectJ and
JAsCo illustrating the connection of business rules with the core
object-oriented application [5][6]. Other related previous research
focused more deeply on the implementation level, more specific
on the integration between the object-oriented paradigm and rule-
based languages as a rule-based approach is a more suitable
paradigm to implement business rules in [9]. Hybrid aspects were
proposed to achieve an oblivious integration at the language and
programming level.

However, in some situations, applications cannot afford to use a
rule-based programming language for implementing their
business rules since it might be too costly to incorporate support
for a rule engine for the kind and amount of rules under
consideration. Rule engines are proprietary, expensive products
and the learning curve can be steep and unaffordable for small
projects. Thus, a more lightweight approach is needed for the
definition and implementation of the business rules. In this
context, ongoing work is being carried out that envisions the
definition of a high level business rule language for the
specification of the rules, very close to natural language. This
language allows the definition of business rules independently of
any implementation detail. This way, business rules are defined
using the concepts defined in a business model. A business model
contains the different elements of the domain under consideration.
We are investigating the definition of a very configurable and
extensible business model in order to be extended with different
terms present in different domains such as, in this case, the web
service composition context. An automatic translation of the rules
defined in this high level language to a possible object-oriented
representation is under development as well as the transparent and
automatic generation of the connectivity JAsCo aspects for their
integration with the core application.
In [3], an AOP extension for BPEL is proposed. Examples of
business rules written in AO4BPEL are given in [4], illustrating
the use of AOP for decoupling business rules. This approach is
dynamic in the sense that it is possible to plug-in and out the
aspects at run-time. As it is an interpretation based approach,
aspects can be plugged in at run-time and triggered when the
interpreter reaches their pointcut definition. Pointcuts in
AO4BPEL are based on Aspect’s pointcut model. As most current
mainstream AOP languages, AspectJ’s pointcuts (with the
exception of cflow()) cannot refer to the history of previously
matched pointcuts in their specification. Thus, AO4BPEL does

not allow the triggering of aspects depending on protocol history
conditions.

6. CONCLUSION
In this paper we have presented different example categories of
business rules that are applicable in the web service composition
context. Business rules that are based on the dynamics of the core
composition are addressed meaning that either the triggering of
the rules, their conditions or actions are based on protocol history.
As a consequence of their application, crosscutting behavior is
plugged in which results in the addition, change or removal of
activities in the base composition. We provide example categories
of dynamic business rules in web services compositions. To
illustrate our results, examples of a possible implementation in the
JAsCo AOP language are given. JAsCo supports stateful aspects
which allow the definition of stateful pointcut expressions. The
use of JAsCo stateful aspects allows a more seamless integration
of the identified dynamic business rules in web service
compositions.
The business rules presented in this work are examples of rules
that guide how the composition should adapt to the changing
business environment. In order to fully cover the whole domain of
service composition business rules this work can be continued by
addressing the other kinds of composition rules already identified
in these paper.
To enhance the specification and implementation of business
rules, our current line of research focuses on creating a high-level
business rules language. This language allows specifying rules in
a very declarative way, without having to be aware of specific
AOP constructs. AOP is used as an underlying layer to realize the
connection of the business rules with the core applications in an
oblivious way.

7. REFERENCES
[1] Arsanjani, A.. Rule object 2001: A pattern language for
adaptive and scalable business rule construction.
[2] Business Process Execution Language for Web Services (WS-
BPEL), Specification Version 1.1, www-
128.ibm.com/developerworks/library/ws-bpel/
[3] Charfi, A., Mezini, M., Aspect-Oriented Web Service
Composition with AO4BPEL, LNCS 3250 , 2004
[4] Charfi, A., Mezini, M., Hybrid Web Service Composition:
Business Processes Meet Business Rules, 2nd International
Conference on Service Oriented Computing, New York City,
USA, November 2004
[5] Cibrán M. A., D'Hondt M., Jonckers V.: Aspect-Oriented
Programming for Connecting Business Rules. In Proceedings BIS,
Colorado Springs, USA (2003)
[6] Cibrán M. A., D'Hondt M., Suvée D., Vanderperren W.,
Jonckers V.: JAsCo for Linking Business Rules to Object-
Oriented Software. In Proceedings CSITeA, Rio de Janeiro,
Brazil (2003)
[7] Cibrán, M. A., Verheecke, B. and Jonckers, V. Modularizing
Client-Side Web Service Management Aspects. In Proceedings of
the second Nordic Conference on Web Services. Vaxjo, Sweden,
November 2003.

2

VerifyPayment

Status

OrderBook

ReportPurchase

NotifyManager

Stateful aspect

PayBook

VerifyTranspor
tCia

ShipBook

1

parallel

…

17

[8] Date C.: What not How: The Business Rules Approach to
Application Development. Addison-Wesley Publishing Company
(2000)
[9] D'Hondt M., Jonckers V.: Hybrid Aspects for Weaving
Object-Oriented Functionality and Rule-Based Knowledge. In
Proceedings of AOSD, Lancaster, UK (2004)
[10] M. D’hondt: Hybrid Aspects for integrating Rule-based
Knowledge and Object-Oriented Functionality, Phd Thesis, Vrije
Universiteit Brussel, May 2004.
[11] Kappel, G., Rausch-Schott, S., Retschitzegger, W. and
Sakkinen, M., From rules to rule patterns. In Conference on
Advanced Information Systems Engineering, pages 99--115,
1996.
[12] Ross R. G.: Principles of the Business Rule Approach.
Addison-Wesley (2003)
[13] Suvée, D. and Vanderperren, W. “JAsCo: an Aspect-
Oriented approach tailored for Component Based Software
Development,” in Proc of Second International Conference on
Aspect-Oriented Software Development, Boston, USA, March
2003.
[14] The Business Rules Group. Defining Business Rules: What
Are They Really?, July 2000. http://www.businessrulesgroup.org/
[15] Vanderperren, W., Suvee, D., Cibrán, M. A. and De Fraine,
B. Stateful Aspects in JAsCo. To be published at the Software
Composition Workshop (LNCS), ETAPS 2005, Edinburgh,
Scotland, April 2005.
[16] Verheecke, B., Cibrán, M. A. and Jonckers, V. AOP for
Dynamic Configuration and Management of Web services in
Client-Applications. In Proceedings of 2003 International
Conference on Web Services. Erfurt, Germany, September 2003.
[17] Von Halle B.: Business Rules Applied. Wiley (2001)

18

Flexible Call-by-call Settlement
An Opportunity for Dynamic AOP

Christian Hofmann
TU Ilmenau

Ehrenbergstraße 29
98693 Ilmenau, Germany

hofmann ch@gmx.de

Robert Hirschfeld
DoCoMo Euro-Labs

Landsberger Straße 312
80687 Munich, Germany

hirschfeld@acm.org

Jeff Eastman
Windward Solutions
1081 Valley View Ct.

Los Altos, CA 94024, USA

jeff@windwardsolutions.com

ABSTRACT
Dynamic aspect-oriented programming is gaining interest
due to its ability to provide attractive solutions to challeng-
ing technical problems. Most scenarios presented to date
are motivated by the technical capabilities of a particular
platform rather than application-level requirements to be
addressed. In this paper, we describe a scenario taken from
telecommunications where settlement systems of operators
and call-by-call providers need to be integrated in a flexible
manner after the system’s initial deployment. By compar-
ing static and dynamic object-oriented and aspect-oriented
approaches, we present a case for dynamic AOP.

1. CALL-BY-CALL SCENARIO
In the telephony domain, rate plans vary from provider to
provider. There are many different tariffs, for for example:
local, long distance, international, or toll-free calls. There
are also variations in how and when customers are billed.
Besides other ways to compete in this market, there are
call-by-call providers offering dial-around services. Here cus-
tomers can choose their actual connectivity provider for each
individual call by dialing a specific prefix or toll-free number
prior to the actual destination phone number to be called
(Figure 1).

The great flexibility offered to customers to select the best
(and in most cases cheapest) connectivity provider demands
a corresponding flexibility in the core telephony network and
its supporting systems. Network operators and call-by-call
providers can choose to start or terminate business relation-
ships at any time. Such decisions are rarely synchronized
with the design, development, or deployment of the responsi-
ble software systems. Most of these partnerships are formed
and terminated while their systems are being operated long
after their initial deployments. Entering into a partnership
requires both operators and providers to integrate their op-
erations environments. Such integration requires agreement

make call

make call using
call−by−call provider

Customer Provider

Call−by−Call Provider

Telephony

Figure 1: Dial-Around Services

on data and data formats to be exchanged as well as the
way this data is to be transmitted.

Settlement is one such area to be addressed (Figure 3). Both
operators and providers run their own settlement pipelines
that are unlikely to be exactly compatible in the formats
of call data records to be processed. Nor are the interfaces
required to interchange raw or processed call data records
standardized. Finally, security policies to be enforced and
communication protocols and endpoints to be utilized have
to be agreed upon. For customer convenience, some oper-
ators offer combined invoices to simplify customer billing.
Items charged for by a call-by-call provider need to be listed
separately from the ones charged for by the operator to make
cost distribution explicit and transparent to the customer.
The way items are listed may also vary from partnership to
partnership.

As it might have become apparent from the problem descrip-
tion so far, integrating settlement systems is a rather com-
plex task. Complexity increases by the general requirement
to keep system down time minimal, on both the operator
and the provider side. An operator can partner with several
call-by-call providers over a period of time, as similarly a
call-by-call provider might partner with several operators to
render its services to its customers.

In our paper we discuss selected system functionality as indi-
cated by the use-cases marked gray in Figure 3. We identify
variation points needed to support the aforementioned es-
tablishment and termination of partnerships, and describe

19

Call By Call Provider B

Call Record Processing

Unprocessed
Call Records

Processed
Call Records

Call By Call Provider A

Call By Call Provider C

Customer

OPERATOR

Billing

Call Record Processing

* Invoice Format

Different Requirements
* Separate Invoice

Unprocessed
Call Records

Processed
Call RecordsIncoming Call Records

Data Exchange

Data ExchangeData Exchange

Data Exchange

Different Requirements
* Formats
* Protocols
* Security
* Legal Requirements

Different Requirements
* Formats
* Protocols
* Security
* Legal Requirements

Invoice Issuing

Figure 2: Variation Points

charge call

issue invoice

<<include>>

charge routing fee

credit call fee

provide call data

<<include>>

CustomerOperator

Call−by−Call Provider

Provider

Settlement System

Figure 3: Call-by-call Settlement

how these variation points can be realized by applying both
object-oriented and aspect-oriented approaches. We show
how dynamic composition is of benefit in both cases; rec-
ognizing the dynamic aspect-oriented approach as the most
beneficial one.

2. SELECTED VARIATION POINTS
As indicated in the previous section, integrating settlement
systems offer interesting challenges. From the point of view
of each participant, its settlement system is considered the
stable part in such an activity. The settlement of calls can
be described as the processing of call data records. It is typ-
ically performed as a sequence of processing steps that can
be conveniently arranged within a settlement pipeline. Each
step is responsible for one particular task. Example tasks

are data record collection, correlation of ingress and egress
records, fraud detection, duplicate removal, and billing. In
general, a settlement system converts raw data records into
processed records that in turn are used for billing all partic-
ipating parties (Figure 2).

While operators process their call data records themselves,
records of call-by-call providers are processed preferably at
a provider’s site. After sorting and collecting records for
every individual provider (for example according to the di-
aling prefix used to initiate the call), all such records are
transmitted to each corresponding provider. There they are
handled similarly to the processing performed at the oper-
ator’s site. At the end of a provider’s settlement pipeline,
calls are settled either by the provider directly or, for cus-
tomer convenience, by the operators customers originated
their calls. In the former case, the provider uses its own
billing system. In the latter case, all processed call data
records need to be transferred back to the operator where
they are phased back into the operator’s settlement system.
There this data is eventually used to prepare the customer’s
bill that enlists provider charges separately and differently.

From this description we can infer at least three variation
points to be present to allow for operator-provider settle-
ment system integration:

• Raw call record transfer from the operator to the provider,

• Processed call record transfer from the provider back
to the operator, and

• Provider-specific billing by an operator.

20

Both the first and the second item most likely require data
conversion from one system’s representation to the other’s.
Also, it has to be decided which security policies (including
encryption mechanisms) to enforce and which transmission
protocol suites to use (Figure 4).

Call By Call Provider B

Call By Call Provider C

Unprocessed
Call Records

Call By Call Provider A

Data Exchange

Incoming Call Records

Data Exchange

Unprocessed
Call Records

OPERATOR

Different Requirements
* Formats
* Protocols
* Security
* Legal Requirements

Format II

Encryption

CallRecordConversion CallRecordTransmission

Provide Call Data

Protocol Format

Protocol I Protocol II Format I

Figure 4: Call Record Exchange

The third item, provider specific billing needs to reflect le-
gal constraints and requirements (such as privacy concerns)
or company guidelines (such as style guides for bill render-
ing). Also, customers may often still select to receive their
invoices by mail instead of viewing them online via the Web
(Figure 5).

To integrate two such settlement systems, at least one if
not both of them need to be adapted, at all of the varia-
tion points mentioned above. In addition to that, system
downtime must be kept at a minimum. This requirement
makes runtime adaptation very attractive for system inte-
gration. Partnership changes need not then equate to an
off-line system modification. The following sections discuss
four approaches to address system integration and show how
system downtime can be avoided.

Customer

Billing

* Invoice Format

Different Requirements
* Separate Invoice

Processed
Call Records

Operator

Invoice Issuing

Invoice by Mail Online Invoice Separate Invoices

Invoice Format

Invoice

Invoice Delivery

One Invoice

Figure 5: Invoice

3. OBJECT-ORIENTED
VARIATION POINTS

First we show how some of the variation points outlined
in the previous section can be implemented with object-
oriented technology, relying on polymorphism or dynamic
registries with explicit dispatch.

3.1 Static Object-Oriented
Figure 6 models call records, different kinds of calls, and
the specifics needed by individual providers via single inher-
itance. Here we can see that the kind of call or call-type
(in our example only long-distance and international are
addressed) acts as the dominant decomposition criterion.
Both implementations can offer different ways of charging,
or - from the operator’s point of view - different ways of
creating provider bills. To further distinguish long-distance
and international call records by provider, we need to sub-
class each of them and enhance every such subclass with
provider-specific behavior that might be duplicated across
neighboring branches of the class tree. Such behavior can
comprise call-record conversions or the selection of transmis-
sion protocols.

Call

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

A−LongDistanceCall

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

B−LongDistanceCall

LongDistanceCall

...

+ charge
+ createProviderBill

...

+ charge
+ createProviderBill

InternationalCall

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

A−InternationalCall

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

B−InternationalCall

start
end
...

+duration
...

Figure 6: Dominant Decomposition by Call-type

If we decide to use provider-specifics as the dominant decom-
position criteria, we might end up with a class tree as shown
in Figure 7. Information specific to long-distance or inter-
national calls needs to be modeled by further sub-classing
our provider-specific classes. This modeling step will intro-
duce duplication across neighboring branches of the class
tree similar to the dominant decomposition by call-type de-
scribed above.

In languages providing multiple inheritance or mix-in be-
haviors, we might end up with a class model as depicted in
Figure 8. While with mix-ins there can still be a dominant
decomposition (here kind of call, or call-type), mix-ins are
a means to help us avoiding code duplications by combining
crosscutting concerns in our implementation model.

Note that all models described above aim not only for imple-
mentation reuse, but also for simplicity of method dispatch
by using polymorphism. Such dispatch is necessary to se-
lect the appropriate implementation that matches, at each
variation point, the correct provider and call type. Dispatch
is also needed when transmitting raw call records from an

21

Call

+ sendBill
+ sendCallRecord
...

A

+ sendBill
+ sendCallRecord
...

B

+ charge
+ createCustomerBill
+ createProviderBill
...

A−LongDistanceCall

+ charge
+ createCustomerBill
+ createProviderBill
...

B−LongDistanceCall

+ charge
+ createCustomerBill
+ createProviderBill
...

A−InternationalCall

+ charge
+ createCustomerBill
+ createProviderBill
...

B−InternationalCall

start
end
...

+duration
...

Figure 7: Dominant Decomposition by Provider-
specifics

LongDistanceCall

...

+ charge
+ createProviderBill

+ sendBill
...

A

+ sendBill
...

B

...

+ sendBill
+ createCustomerBill

A−LongDistanceCall

...

+ sendBill
+ createCustomerBill

B−LongDistanceCall

Call

...

+ sendBill
+ createCustomerBill

B−InternationalCall

...

+ sendBill
+ createCustomerBill

A−InternationalCall

...

+ charge
+ createProviderBill

InternationalCall

start
end
...

+duration
...

Figure 8: Mix-in Solution

operator to one of its partnering call-by-call providers, and
when transmitting processed call records from a provider
back to to one of its partnering operators. Finally, similar
selection criteria also apply for provider-specific customer
billing at the operator’s site.

When using a static object-oriented approach, we need to
know all possible partners in advance at development time in
order to provide a complete set of implementations covering
all possible dispatches that might be necessary during sys-
tem operation. Since, in a static object-oriented approach,
code cannot change at runtime, all necessary dispatch code
needs to be provided initially. Code that turns out to be
incomplete then requires the exchange of deployed system
components. This requires expensive hardware and software
fail-over solutions to avoid system outages and down-time in
the high availability (99.999%) telecom world.

3.2 Dynamic Object-Oriented
A dynamic object-oriented solution benefits from language
platforms that allow to load and integrate additional code
into or remove code from a running system. Examples of
such platforms range from Java with its dynamic class load-
ers to Smalltalk or Lisp. In the latter two there is no distinc-
tion between code and data, thus any data made available at
runtime can also be interpreted as computation. This allows
partnership-specific processing data to be incorporated into
the system at runtime, or removed to storage for use at an-
other time. Since such behavior is difficult to be visualized
in rather abstract models, we will provide code to describe
one such solution. Due to its flexibility, usability and open
source availability, we opted for Squeak/Smalltalk [4, 2] to
do so.

Smalltalk has a powerful mechanism for expressing small
units of computation as blocks and block contexts. A block
is an object that embodies a sequence of operations. It is
only executed after a value message is received by the block.
A block context holds the dynamic state, such as parameter
values, for execution of a block. Since blocks are, as anything
else in Smalltalk, regular objects, they can be manipulated
and stored as any other object.

A simple dynamic and customizable dispatch mechanism
can be implemented by using a dictionary (similar to a hash
table in Java) as a dispatch table. The dictionary allows
us to store a set of associations where we use an associa-
tion’s key part to store the information necessary for dis-
patch selection, and the association’s value part to store the
code to be activated in the context of a dispatch. The code
is provided as a block. On dispatch we would simply use
the dispatch criteria to look up an associated block. Once
obtained, this block is executed by simply sending a value
message as mentioned above.

In our scenario, we can create a dispatch dictionary for each
variation point with call prefixes or identifiers as keys and
the appropriate provider-specific sequence of operations as
values.

Object s u b c l a s s : #RawCal lRecordExchange
i n s t a n c eV a r i a b l e s : ’ d i s pa t chTab l e

d e f a u l tA c t i o n ’

22

RawCallRecordExchange>>

initialize
d i s pa t chTab l e := D i c t i o n a r y new .
d e f a u l tA c t i o n := [: anObject | s e l f e r r o r] .

RawCallRecordExchange>>

addSelector: anArray
a c t i o n : aB lockContex t
d i s pa t chTab l e add : anArray −> aB lockContex t .

RawCallRecordExchange>>

removeSelector: anArray
d i s pa t chTab l e removeKey : anArray

i f A b s e n t : [] .

RawCallRecordExchange>>

dispatchOn: anArray with: aCallRecord
(d i s pa t chTab l e at : anArray
i f A b s e n t : [d e f a u l t A c t i o n])

v a l u e : aCa l lR e co r d .

RawCallRecordExchange>>

sendCallRecord: aCallRecord
| p r e f i x |
p r e f i x := aCa l lR eco r d c a l l P r e f i x .
s e l f d i spatchOn : { p r e f i x . #b e f o r e .

#s endCa l lR e co rd : . }
with : aCa l lR e co r d .

. . .
s e l f d i spatchOn : { p r e f i x . #a f t e r .

#s endCa l lR e co rd : . }
with : aCa l lR e co r d .

rawExchange := RawCal lRecordExchange new .
rawExchange
addSe l e c t o r :
{ 01071 . #be f o r e . #s endCa l lR eco r d : . }

a c t i o n :
[: aCa l lR e co r d |
aCa l lR e co r d s e r v e r
au then t i c a t eU s i n gKe rb e r o s .
aCa l l R e co r d a u t h e n t i c a t e d
i f T r u e : [aCa l l R e co r d s e r v e r connect]] .

rawExchange
addSe l e c t o r :
{ 01071. #a f t e r . #s endCa l lR eco r d : . }

a c t i o n :
[: aCa l lR e co r d |
aCa l lR e co rd s e r v e r d i s c onnec t]] .

. . .
rawExchange s endCa l lR e co rd : aCa l l R e co rd .

Every time a new partner (an operator or a provider) needs
to be added to the system, all dictionaries at our variation
points are populated with the call prefixes or identifiers of
the new partner and the code block specific to the new part-
ner and the concerned variation point. If a dispatch for the
new partner needs to be carried out, we simply look up and
evaluate the code block associated with that partner. Ter-
minating a partnership only involves removing all dictionary
entries associated with the partner separated from. Start-
ing or terminating relationships does not require a system
rebuilt and exchange as in the static object-oriented case.
With this dynamic registry and dispatch mechanism we can
modify the running system without requiring elaborate fail-
over mechanisms required by static methods.

4. ASPECT-ORIENTED
VARIATION POINTS

As with the static and dynamic object-oriented implemen-
tations of our variation points, there are static and dynamic
aspect-oriented implementations as well. In the following
we see how aspect-orientation helps us to avoid the coding
of explicit selections or explicit dispatches by using the dis-
patch mechanisms already built-in into an aspect-oriented
composition platform.

4.1 Static Aspect-oriented
Figure 9 shows an aspect-oriented model of call records,
kinds of calls, and the specifics needed by individual providers.
In contrast to our object-oriented models, for instance the
one in Figure 6, we decided to model only kinds of calls
within a call records hierarchy. This hierarchy acts as the
base system of our aspect-oriented model in which we ex-
press call record exchange and issuing invoices to customers.

Besides the reduction of code duplication, our aspect-oriented
model also frees us from explicitly selecting a particular im-
plementation for a specific operator or provider since such
conditionals are hidden within the static compositions or
residual test of the aspect composition.

Within a static aspect-oriented model the solution space
must be known completely at compile-time, requiring us to
know all possible combinations and their implications on our
integrated system when it is deployed. If, after the deploy-
ment of our integrated system, we discover that we were
wrong, we would have to perform similar corrective actions
as the ones needed to update a statically modeled object-
oriented system.

4.2 Dynamic Aspect-oriented
As with the dynamic object-oriented solution, the dynamic
aspect-oriented solution benefits from the malleability of dy-
namic programming and composition platforms at runtime.
Examples of such platforms are Steamloom, Prose, or As-
pectS. Since AspectS [3] is our research platform, we provide
our sample code for this system.

We do not describe a different aspect model for the dynamic
case since the static one discussed previously will do just
fine. To implement our variation point for exchanging raw
call-records, we first extend AspectS so that we can easily ex-
press aspects and their associated advice constructs that are
active or inactive depending on a particular provider. This
requires nothing else than allowing aspects to be provider-
specific. We implement a provider-specific activation block
and make it accessible to an advice qualifier object via the
#providerSpecific attribute.

AsMethodWrapper class>>

providerSpecificActivator
ˆ [: a sp e c t : ba seSender |

| r e s u l t r e c e i v e r |
r e c e i v e r := baseSender r e c e i v e r .
r e s u l t := a spe c t ha sP rov i d e r :
r e c e i v e r ca l l e rNumber p r e f i x .
a s p e c t := baseSender := n i l .
r e s u l t] copy f ixTemps

23

Call

LongDistanceCall InternationalCall

+totalCallTime
...

start
end
...

CallRecordExchangeSessionManagement

server closeConnection.
after: sendCallData

server sendPassword: aPassword.
server establishConnection.

server authenticate.
before:sendCallData

CustomerBilling

Call Record Exchange
Issuing Invoice

+ sendCallData
+ createCustomerBill
...

+ sendCallData
+ createCustomerBill
...

self callerNumber prefix = 1234
qualifier:

before:createCustomerBill
self customerBill addHeaderForA

Figure 9: Aspect-Oriented Composition

More code is necessary to make the provider-specific advice
qualifier attribute work. It requires the following changes to
class AsAspect:

Object s u b c l a s s : #AsAspect
i n s t a nc eVa r i a b l eNames :

’ r e c e i v e r s s ende r s
s e n d e rC l a s s e s p r o j e c t s p r o v i d e r s
c l i e n t A nn o t a t i o n s adv i c e i n s t a l l e d ’

c l a s sVa r i a b l eNames : ’ ’
p o o l D i c t i o n a r i e s : ’ ’
c a t ego r y : ’ AspectS−Aspec t s ’

AsAspect>>

providers
ˆ p r o v i d e r s

AsAspect>>

providers: anIdentitySet
p r o v i d e r s := a n I d e n t i t y S e t .

AsAspect>>

initialize
s e l f r e c e i v e r s : I d e n t i t y S e t new ;
s ende r s : I d e n t i t y S e t new ;
s e n d e rC l a s s e s : I d e n t i t y S e t new ;
p r o j e c t s : I d e n t i t y S e t new ;
p r o v i d e r s : I d e n t i t y S e t new ;
c l i e n t A n n o t a t i o n s : I d e n t i t y D i c t i o n a r y new ;
adv i c e : n i l ;
i n s t a l l e d : f a l s e

AsAspect>>

addProvider: aProvider
ˆ s e l f p r o v i d e r s add : aP rov i d e r

AsAspect>>

removeProvider: aProvider
ˆ s e l f p r o v i d e r s remove : aProces s

i f A b s e n t : []

AsAspect>>

hasProvider: aProvider
ˆ s e l f p r o v i d e r s i n c l u d e s : aP rov i d e r

Now we can implement our raw call record exchange, making
use of our newly defined advice qualifier attribute. Here it
is interesting to note that the association key we used in the
dynamic object-oriented example to select the appropriate
dispatch is represented as a provider specific activator in
our dynamic aspect-oriented example. The values of the
previously used associations (code blocks) can now be found
in our AspectS code as the before and after blocks of the
respective advice constructs.

AsAspect s u b c l a s s : #RawCal lRecordExchangeAspect

SessionManagementAspect class>>

prefix: anInteger
ˆ s e l f new

addP r o v i d e rP r e f i x : a n I n t e g e r

RawCallRecordExchangeAspect>>

adviceSendCallDataProvider
ˆ AsBe f o r eA f t e rAdv i c e

q u a l i f i e r : (A sA d v i c eQua l i f i e r
a t t r i b u t e s : { #r e c e i v e r C l a s s S p e c i f i c .

#p r o v i d e r S p e c i f i c . })
p o i n t c u t : [{ As J o i nPo i n tD e s c r i p t o r

t a r g e t C l a s s : I n t e r n a t i o n a l C a l l
t a r g e t S e l e c t o r : #sendCa l lData .

A s J o i nPo i n tD e s c r i p t o r
t a r g e t C l a s s : LongD i s t a nc eCa l l
t a r g e t S e l e c t o r : #sendCa l lData . }]

b e f o r eB l o ck : [r e c e i v e r s e r v e r
au then t i c a t eU s i n gKe rb e r o s .

r e c e i v e r s e r v e r a u t h e n t i c a t e d
i f T r u e : [r e c e i v e r s e r v e r connect]]

a f t e rB l o c k : [r e c e i v e r s e r v e r d i s c onnec t]

a s p e c t := RawCal lRecordExchangeAspect
p r e f i x : 12345.

a s pe c t i n s t a l l .

Looking at the code above we can see that the dynamic
aspect-oriented solution does not require an explicit dispatch
to be provided by a developer since this dispatch is intrin-

24

sic to all aspect-oriented platforms. Whenever necessary,
the underlying aspect system accesses the activation block
provided by us, evaluates this block, and, depending on the
outcome of this evaluation, activates the associated advice
code or not. So, in addition to all the flexibility gained by
our dynamic object-oriented solution, we also achieve sim-
plification of our code by the utilization of a hidden but well
known and proven system-provided dispatch mechanism.

5. SUMMARY
In this paper we provide a scenario taken from telecommu-
nications to motivate the need for dynamic aspect-oriented
programming languages and systems. Our scenario describes
how constantly changing relationships between operators
and call-by-call providers affect their system integration re-
quirements (here in the context of settlement), and how
one of the most important of these requirements – keep-
ing system downtime to a minimum – can be supported by
employing dynamic composition in general, and dynamic
aspect-oriented composition in specific. While focusing on
dynamic aspect composition, we do not argue for or against
the merits of aspect-orientation in general; this is done ad-
equately elsewhere [1].

OO AO

static
implicit dispatch
fixed set of providers
explicit selection

implicit dispatch
fixed set of providers

dynamic explicit dispatch implicit dispatch

Table 1: Properties of the Proposed Solutions

Table 1 summarizes the properties of the proposed solutions
ranging from static and dynamic object oriented techniques
to dynamic aspect-oriented composition. It is no surprise
that all decisions made in advance of building a software
system can be modeled, implemented, and optimized via
early-bound object- or aspect-oriented systems. Later deci-
sions, more precisely decisions made after the construction
and deployment of a software system can be modeled, im-
plemented, and, most importantly to us, adapted only in
late-bound object- and aspect-oriented systems. In addition
to adaptability, an aspect-oriented system has many other
advantages enabling the support of unanticipated software
evolution[5]. In our example, use of the built-in dynamic
dispatch mechanism allows us to avoid explicit and critical
dispatching code.

6. ACKNOWLEDGEMENTS
We would like to thank Matthias Wagner and Monika Fuchs
for their valuable discussions and contributions.

7. REFERENCES
[1] http://www.aosd.net.

[2] A. Goldberg and D. Robson. Smalltalk-80: The

Language and its Implementation. Addison-Wesley,
1983.

[3] R. Hirschfeld. AspectS - aspect-oriented programming
with squeak. In M. Aksit, M. Mezini, and R. Unland,
editors, Objects, Components, Architectures, Services,

and Applications for a Networked World, International

Conference NetObjectDays 2002, LNCS 2591, pages
216–232, Erfurt, 2003. Springer.

[4] D. Ingalls, T. Kaehler, J. Maloney, W. Wallace, and
A. Kay. Back to the future: the story of Squeak, a
practical Smalltalk written in itself. ACM SIGPLAN

Notices, 32(10):318–326, Oct. 1997.

[5] G. Kniesel, J. Noppen, T. Mens, and J. Buckley.
Unanticipated software evolution. Lecture Notes in

Computer Science, 2548:92–107, 2002.

25

26

Dynamic Aspects for Runtime Fault Determination and
Recovery

Jeremy Manson, Jan Vitek, Suresh Jagannathan
Department of Computer Science

Purdue University
{jmanson,jv,suresh}@cs.purdue.edu

ABSTRACT
One of the most promising applications of Aspect Oriented
Programming (AOP) is the area of fault tolerance and recov-
ery. In traditional programming languages, error handling
code must be closely interwoven with program logic. AOP
allows the programmer to take a more modular approach -
error handling code can be woven into the code by express-
ing it as an aspect.

One major impediment to handling error code in this way
is that while errors are a dynamic, runtime property, most
research on AOP has focused on static properties. In this pa-
per, we propose a method for handling a variety of run-time
faults as dynamic aspects. First, we separate fault handling
into two different notions: fault determination, or the dis-
covery of faults within a program, and and fault recovery, or
the logic used to recover from a fault.

Our position is that fault determination can be expressed
effectively as dynamic aspects. We propose a system, called
Rescue, that exposes underlying features of the virtual ma-
chine in order to express faults as variety of run-time con-
straints. We show how our methodology can be used to
address several of the flaws in state of the art fault fault
handling techniques. This includes their limitations in han-
dling parallel and distributed faults, their obfuscated nature
and their overly simplistic notion of what a “fault” actually
may comprise.

1. INTRODUCTION
It is extremely difficult to write code that handles faults
efficiently and effectively. They are a reasonably high per-
centage of source code generated: one study indicates that
up to 5% of program text is contained in fault handling
code, and that anywhere up to 46% of a given program is
reachable from that code [9].

We take an even broader view of faults: instead of saying
a fault is a situation where something drastic has occurred,

we simply define it as a situation that arises because of un-
expected change in resource availability or performance as-
sumptions. This notion encompasses the traditional notion
of program/node failures, as well as quality of service and
other non-functional characteristics of distributed program
behavior. For example, under this model, excessively high
load on a processor might be characterized as a fault.

The current state of the art mechanism for dealing with
faults in software treats them as exceptions which can be
thrown by a line of code, and then caught by an exception
handler whose dynamic scope encloses the code that threw
the exception. Some form of exception handling is avail-
able in most modern languages, including Java, C++, C#,
Visual Basic, Ada, ML and Haskell. Their use in this con-
text stretches back to the CLU programming language [4].
However, exceptions have a number of limitations.

The first problem that we encounter with the use of language-
level exceptions is that they tend to foster a binary view of
faults: either the program is out of memory (for example),
or it is not. This does not allow for graceful resolution of re-
source exhaustion – if we want to perform some emergency
cleanup task when a certain percentage of memory is avail-
able, we are out of luck.

Exceptions also obfuscate code greatly. One or two thrown
exceptions are simple to catch, and the resulting code is sim-
ple to read. However, in large systems, with calls to many
different libraries, code can throw many different exceptions.
This leads to a software engineering challenge: there will be
many clauses in the program that catch these exceptions, all
of which are interlaced with program logic that has nothing
to do with fault handling and tolerance.

This problem is exacerbated when dealing with faults; faults
incorporate unexpected as well as erroneous conditions. Since
fault criteria can be arbitrarily complex, using standard ex-
ception handling mechanisms to express more general faults
leads to further complexity.

It is also unclear how exceptions raised on one segment of
a distributed application can be handled cleanly in another.
If, for example, code running on one node fails, an exception
is propagated up the stack for that node, but not necessarily
propagated to other nodes which require the information.

Our conclusion is that is desirable to have a way to separate

27

the definition of an application-specific fault from the me-
chanics of fault book-keeping. Once a fault is identified, the
infrastructure should provide facilities for orderly recovery
and compensation.

This paper discusses a novel programming language based
approach to determining the presence of faults, called Res-
cue. The language is designed to be implemented on both
stand-alone and distributed systems; it is an extension to
AspectJ [3], the most widely used AOP language for Java.
Rescue would provide a wide spectrum of ways for users
to define mechanisms for determining when faults occur in
their programs. Once they have declared how the faults oc-
cur, they can either define their own compensatory code, or
use one of a number of built-in mechanisms (such as trans-
actions, or distributed replication). The code they define
may change behavior across the entire infrastructure; thus,
the resulting system would provide a pervasive system for
defining and handling faults in a clear, clean and efficient
way.

2. FAULT DETERMINATION IN Rescue
In distributed systems, just as in a parallel program, there
is a large set of events that need to be monitored in order
to detect “exceptional” situations. Rescue provides infras-
tructural support for fault determination, the act of recog-
nizing such conditions. An informal taxonomy of the faults
Rescue addresses is given below:

• Internal v. External. An external event (for example,
memory exhaustion or a network outage) exists outside
of the control of the program and can be monitored
either within the virtual machine or in middleware. An
internal event corresponds to a fault in the application:
for example, when a thread raises an exception as a
result of a condition that compromises the integrity of
other concurrently executing tasks.

• Fine- v. Coarse-Grained. Some events, such as a mea-
surement of CPU usage or a hardware interrupt, have
high frequencies. Other events, such as node failure
or file operations, are less frequent. The granularity
impacts the performance of monitoring.

• Builtin v. User-defined. Builtin events include events
supported by the VM, like CPU or memory usage.
User-defined events may include something as sim-
ple as a counter incremented every time an element
is added to an array; a fault might occur if the count
gets too high.

• Local v. Distributed. An example of a local event
would include a change in CPU usage on a given node.
An example of a distributed event would be a failure
on a different node.

In order to support the full taxonomy listed above, Res-
cue requires functionality that goes well beyond the cur-
rent state-of-the-art. Faults can be complex to express, and
the logic to keep track of them may not be easily localized.
In the case of fine-grained event monitoring, such as timers
or hardware interrupts, it is essential to guarantee that the
overhead of fault determination can be bounded.

2.1 Meters and Plans
Rescue includes a declarative language for fault determina-
tion; it is integrated into Java and designed to allow for an
efficient implementation. The two key concepts in the lan-
guage are plans and meters. Plans are specifications of fault
conditions as a predicate over meters. Meters provide an
interface to monitoring events. Typically, plans are written
by an application developer, as they describe the condition
which requires intervention. Meters, on the other hand, are
designed to be provided by the infrastructure: i.e. either the
virtual machine or libraries. User-defined meters can also be
defined using a programmatic API.

2.1.1 Meters
Meters provide the flexibility of join points for faults. A me-
ter is attached to a resource, and can be used to tell the user
how much of that resource remains. For example, a meter
may give information as to how much memory remains, how
many threads are active in a system, or how much network
bandwidth is available.

plan NetworkUnavailable:

meter bandwidth < 128kbps or

meter latency < 100ms;

Built in memory meters can also be used to determine that
an application is running out of memory. For example, the
following plan can be used to trigger a memory fault:

plan MemoryFault:

meter memory < 100k;

The obvious alternative to this approach would be to have
application code poll for memory at regular intervals. Doing
this in an automated way is clearly not very efficient in the
case where many applications are running on the same host,
trying to monitor the same fine-grained fault. Meters, on the
other hand, have compiler support and are registered with
the environment. So, for instance, in the case of memory, the
virtual machine could insert checks in the memory allocator
(and try to optimize these checks).

Additionally, meters may be defined in library code. A me-
ter in an I/O class may, for example, tell the user how
much space is left in a buffer, so that it can avoid buffer
overflow/underflow. In this case, the programmer explicitly
controls the frequency of checks. Obviously, this would also
be a case where more traditional aspect-oriented approaches
might suffice.

2.1.2 Plans
Once a meter is in place, it can be used to indicate the
presence of a fault by placing it in a plan, possibly aggre-
gated with other meters. In the following example, the plan
is triggered when network bandwidth is low or the latency
(perhaps of the last remote request) is high.

after(): within(Task) && NetworkUnavailable {

spawnTasksOnLocalHost = true;

}

28

The above code deals with the spawning of tasks on a dis-
tributed platform. It specifies that when the control flow
is in the Task class and the network becomes unavailable,
the task should be spawned locally. The example above is
not quite complete, as we should specify the rate at which
plans are evaluated. Without a rate, the MemoryFault plan
would be triggered at every allocation. The user can allow
the compiler to determine the rate (as mentioned earlier),
or can control it with explicit annotation. This can be done
with a period argument, e.g. period == 5s, or with the
once predicate which ensure that plan can only evaluate to
true once.

The expressive power of the meter predicates is determined
by the meters themselves. So, for instance, the memory me-
ter only allows for constant arguments and simple inequali-
ties. This is because the implementation of the meter needs
to order all meter predicates and be guaranteed that the
value of the meter expression does not change.

User-defined meters can include a evaluate(exp) predicate
to evaluate user code. For instance, it is possible to asso-
ciate a meter with the filesystem so that every I/O operation
evaluates the user defined check() function. To reduce the
granularity of events, inclusion of the period predicate en-
sures that check() will be invoked at most once per second.

plan Tick:

meter file evaluate(check()) &&

period == 1s;

We can directly associate the execution of method with a
plan by writing the following (when is a new keyword in-
troduced by Rescue as a shorthand for a more thorough
aspect-like syntax):

void takeAction() when Tick {

... implementation ...

}

2.2 Discussion
Meters monitor thread and system state. When a plan is
triggered, it may in turn affect the threads affected by the
fault, and update system resources as part of a recovery
process.

Not all plans need to be built-in runtime environment con-
structs like network bandwidth or CPU usage. The user
may also define her or his own plan. As an example, con-
sider the fact that in distributed and cluster environments,
there may be intermittent failures in one or more nodes.
It is frequently useful to provide a “timeout” function: a
component will register the fact that it is alive, and the
timeout will expire if they have failed, or are unreachable.
In the Java-based network services specification Jini [6], this
timeout is called a lease. Unlike Jini, leases in Rescue are
simply user-defined instantiations of plans and meters, and
not primitive.

Using Rescue, a library that holds a resource may imple-
ment leases by simply placing a meter on the time elapsed

Cancel
Advice

Cancel

Lease.time > 5min

Thread

Lease Manager

Figure 1: Using plans and advice to express a lease.

since it was contacted by a given lease holder. An example
of this can be seen in Figure 1. A meter monitors the ac-
quisition of leases by a thread. Whenever an acquired lease
exceeds a bound (in this case 5 minutes) a cancel plan is
triggered, and the executed code notifies the lease manager
to cancel the lease. This simple example could be effectively
implemented by incorporating timer information within the
lease manager itself. The advantage of using meters and
plans, however, lies in added flexibility: the criteria for can-
celing a lease can be application-specific, and may include
conditions beyond simple timer expiration, e.g., thread pri-
ority.

Meters and plans are partially inspired by event-condition-
action (ECA) rules (“triggers”), an approach used mainly by
database systems [11]. ECA rules check for the occurrence
of events; at the event, if the condition is satisfied, the action
takes places. Both academic and commercial databases use
trigger mechanisms.

2.3 Synchronization
One of the problems with this form of aspect is that exe-
cution is somewhat non-deterministic; specifically, it is dif-
ficult to predict exactly when (if ever) the advice will be
executed. On the other hand, advice should not execute un-
less any structures it is operating on are in a stable state.
For example, if the advice is going to alter the representa-
tion of a data structure, it is important to ensure that no
other code tries to alter that data structure while the ad-
vice executes. To put it another way, because the advice is
executed asynchronously, our techniques brings along with
it all of the difficulties of concurrency.

One way to formulate this problem is as an attempt to exe-
cute advice asynchronously while also ensuring that the exe-
cution of the advice is transparent to the rest of the program.
There has been some work in ensuring that asynchronously
executing code can be executed transparently [8], but only
for introducing additional concurrency to single-threaded
code, not for code that was originally intended to execute
asynchronously.

AspectJ does not typically encourage synchronization in as-
pects. It offers a Coordinator package, which allow tradi-
tional Java synchronization to be applied to a pointcut of the
program. Our proposed functionality is similar to this: the
mutex qualifier on a plan prevents that plan from executing

29

concurrently with its parameter, a join point.

Our system uses a mutex qualifier to ensure that it is not
executing concurrently with a given join point (or set of join
points). It should be stressed that mutex is not the same
as synchronized; the synchronized modifier would not only
prevent the advice from executing concurrently with the join
points, it would also prevent the join points from executing
concurrently with each other.

The following code is an example of a plan that can only
occur when the methods o.foo and p.bar do not execute:

plan Tick:

meter file evaluate(check());

mutex o.foo(), p.bar();

3. WEAVING
Obviously, there is a major problem with weaving an aspect
that is intimately tied to the dynamic state of the program.
Few of the meters we have discussed here can be resolved
statically; it is impossible, for example, to determine high
load levels when a program is not executing. Meters, there-
fore, may be triggered at any point in the program. How-
ever, it is obviously undesirable to check every meter after
any instruction is executed.

This problem is not exclusive to our work. More tradi-
tional dynamic aspects can use (for example) cflow point-
cuts, which execute advice based on whether the control flow
of the program is within a given join point, require checks to
indicate whether or not they are, in fact, in that join point.
Exceptions in Java provide a similar problem: because most
bytecodes can throw exceptions, it is necessary to check for
exceptional conditions frequently.

Our first implementation is ongoing work; it involves weav-
ing dynamically. Typically, static optimization is used to
reduce the number of checks in a program. For dynamic
aspects, Masuhara et al. [5] employ a technique based on
partial evaluation that can limit the number of unnecessary
run-time checks. There has also been a great deal of work
in reducing the number of necessary checks for exceptions
in Java [2, 10].

Unfortunately, the properties that we are checking for can-
not, in general, even be approximated statically. For ex-
ample, a plan that executes on high CPU load might be
triggered at any point in the program. Fortunately, most of
the potential meters do not require such broad support. For
example, a check for low memory can simply be triggered
on each allocation (when a check for low memory must be
performed in any case).

4. FAULT RECOVERY IN Rescue
As insufficient as the approaches for fault determination in
modern programming languages are, the mechanisms avail-
able for fault recovery are worse: in fact, they are generally
non-existent. All of the responsibility for failure recovery is
in the hands of the programmer. However, it is generally
accepted that programmers are very bad at planning for
failure recovery [9]. This has a dramatic effect on software

quality; in real environments, errors occur, and programs
are not prepared to deal with them adequately. Other than
doing nothing or killing a computation, applications have
relatively few choices on how to recover from faults, espe-
cially those triggered by outside events. In distributed and
grid environments, load balancing monitors can trigger of-
floading computation from one node to another. A more
aggressive strategy, and one rarely supported by most imple-
mentations, is to alter the computation so that it adapts to
the fault. For example, if a program has a memory-intensive
data structure, and is running low on memory, it may be
worthwhile to alter the data representation so that it is more
compact (perhaps at the expense of another resource, such
as CPU usage). Little support for these recovery mecha-
nisms is available in modern programming languages. In
fact, the programmer usually must implement them manu-
ally. This provides a great deal of flexibility. For example,
if a computation must be undone, it is usually possible to
undo only what needs to be undone, saving a great deal of
time with checkpointing and logging the program’s effects.

We provide some ideas here about how to support taking the
burden of recovery off of the programmer, in combination
with the programmatic techniques discussed in Section 2.
Our research focuses on several different strategies: (i) sup-
port for efficient checkpointing; (ii) transactional features;
(iii) task replication. We discuss (i) and (ii) below; the de-
scription extends naturally to (iii). We discuss this work in
the context of the Ovm virtual machine [7], an implementa-
tion of the Real-Time Specification for Java [1].

4.0.0.1 Checkpointing.
One way to provide fault recovery is to checkpoint pro-
gram state periodically. When done näıvely, checkpointing
can be expensive, potentially requiring the copying of large
amounts of state. Aspects provide one way to checkpoint
relevant data selectively. For example, consider an appli-
cation performing an iterative fixpoint calculation over a
complex data structure D. Modifications to D may occur
by different threads and in different parts of the program.
Nonetheless, every such modification is guaranteed to be rel-
evant. Checkpointing D whenever it is updated would thus
allow tasks that fail when faults arise to restart with latest
checkpointed version of D.

The code fragment shown below captures this functionality.
A write barrier allows the execution of specified code when-
ever a memory store occurs. Write barriers can be prefixed
with the name of the object to be monitored. A meter can
be associated with a write barrier. When a write occurs
on file f of a particular class, but before it takes effect, the
current version of the structure is saved; this version can be
restored if the computation must be restarted:

onwrite int ClassName::f when

within(fixpointTask) {

save(old(f));

return f = new(f);

}

This interface is already available in the Ovm customizable
virtual machine, but it requires deep knowledge of the in-

30

ternals of the VM to use. We will make it more accessible.
Read barriers are also supported. In both cases users should
be extremely careful with the use of this API due to obvious
performance implications. Another example of barriers for
implementing replication is as follows:

onwrite int *::_ {

buffer[i++]= old(_);

if (i==buffer.length) {

atomic { flush(); }

}

}

This barrier is triggered for any integer field write. The
function flush() tries to propagate the changes to other
machines in the cluster. It is only called when the buffer is
full. The atomic keyword is a low-level feature of the VM
which essentially turns off scheduling.

4.0.0.2 Transactions
A transaction is a sequence of operations that is performed
atomically: either all of it is seen to have been performed,
or none of it is. If it completes successfully, it commits;
otherwise, it aborts, in which case none of the updates it
made are seen.

Rescue should provide direct support for transactions. In
the scope of the transaction, if a write occurs, the original
value of the heap location is written to a log. When a fault
occurs, an earlier program state can be re-established by
restoring the original values from the log. Program flow
can be resumed either from the beginning of the transaction
(with some new compensatory code in place) or continued
as if the error did not occur.

Transactional execution is supported in Rescue by using
lightweight language-based transactions. A Rescue pro-
gram could use aspects to attach transactional support to
a computation and has programmatic control over their se-
mantics. To give an example, consider a method evaluate()

in a class Task. This method is called once for every task
and encapsulates most of the computation it performs. In
the case that the system runs out of memory, we would like
to abort the task. This can be done by a combination of
transactions and plans. The first piece of the puzzle is to
attach a transaction to the code. This can be done by at-
taching pre- and post- actions to the evaluate() method.

rescue.transaction transaction;

before(): Task.evaluate() {

// start a transaction before each call

transaction = new Transaction(solution);

// to evaluate()

}

after(): Task.evaluate() {

if (!transaction.aborted())

transaction.commit();

}

These methods start a transaction. Note that we give an ar-
gument to the constructor, the object solution, to indicate
the transactional root. All objects transitively reachable
from that root will be logged. We then define a method
that gets triggered when the system gets low on memory.
This method obtains the transactional log, extracts the con-
tents from the log (i.e. the objects that have been modified
during the transaction), and inspects their values. Finally
the transaction is aborted.

void handleOOM() when} LowOnMemory {

Object root = transaction.inspect();

// obtain the contents of the log

copyPartialResults(root);

// user procedure to capture

// partial results

transaction.abort();

// throw away changes

}

The default semantics of our transactional mechanism is
to log all reads and writes, modulo compiler optimizations.
More discriminate policies can be implemented with the low-
level read/write barrier interface.

Fig. 2 illustrates how transactional support interacts with
Rescue’s recovery mechanism. The figure depicts several
meters and plans that monitor memory usage. When avail-
able memory becomes low (less than 5MB), thread actions
are monitored are recorded in a transaction log. If memory
use continues to increase, and falls below a critical threshold,
an abort action is triggered, and the effects of the thread
are discarded using the contents of the transaction log to
restore original values. If memory use falls and exceeds a
safety threshold (here > 10MB), the contents of the log are
committed. Rescue’s design uses plans and advice, com-
bined with transactional mechanisms, to allow computation
effects to be propagated only when safe to do so; this is a
distinguishing characteristic and central to the contributions
of the proposed research.

Our proposal is designed to support fault recovery in Res-
cue by using transactions in conjunction with programming
language support for plans and meters. We will also investi-
gate a number of other fault recovery mechanisms, including
replication and task migration.

5. CONCLUSION
In this paper we have presented a method for expressing
hooks into a virtual machine to provide fault determination
and fault tolerance for user code. The resulting language in-
frastructure allows for a more nuanced approach to handling
faults; in essence, we provide an asynchronous construct that
can be woven into code at runtime and gracefully handle
exceptional conditions. We discuss how to combine this ap-
proach with fault recovery mechanisms that may take much
of the burden of fault recovery off of the programmer.

6. REFERENCES
[1] Greg Bollella, James Gosling, Benjamin Brosgol, Peter

Dibble, Steve Furr, and Mark Turnbull. The

31

Memory

< 1MB

> 10MB

Thread

< 5 MB

LowMemory

VeryLowMemory

Monitor
Advice

Abort
Advice

Normal

Reset
Advice

transaction log

Figure 2: Advice and transactions. Clouds rep-
resent meters that monitor resources for particu-
lar conditions. Octagons represent plans that are
triggered when their associated meters are satisfied.
Circles denote advice associated with plans.

Real-Time Specification for Java. Java Series.
Addison-Wesley, June 2000.
www.javaseries.com/rtj.pdf.

[2] Motohiro Kawahito, Hideaki Komatsu, and Toshio
Nakatani. Effective Null Pointer Check Elimination
Utilizing Hardware Trap. SIGPLAN Notices,
35(11):139–149, 2000.

[3] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
Overview of AspectJ. In ECOOP 2001 —
Object-Oriented Programming 15th European
Conference, Budapest Hungary. Springer-Verlag, June
2001.

[4] Barbara Liskov and Alan Snyder. Exception Handling
in CLU. IEEE Transactions on Software Engineering,
SE-5(6):546–558, November 1979.

[5] Kidehiko Masuhara, Gregor Kiczales, and Chris
Dutchyn. Compilation semantics of aspect-oriented
programs. In Gary T. Leavens and Ron Cytron,
editors, FOAL 2002 Proceedings: Foundations of
Aspect-Oriented Langauges Workshop at AOSD 2002,
number 02-06 in Technical Report, pages 17–26.
Department of Computer Science, Iowa State
University, April 2002.

[6] Sun Microsystems. Jini Network Technology version
2.0, http://www.jini.org, June 2003.

[7] Krzysztof Palacz, Jason Baker, Chapman Flack,
Christian Grothoff, Hiroshi Yamauchi, and Jan Vitek.
The OVM Customizable Intermediate Representation.
To appear in The Science of Computer Programming,
2005.

[8] Polyvios Pratikakis, Jaime Spacco, and Michael Hicks.
Transparent proxies for Java futures. In Proceedings of
the ACM Conference on Object-Oriented Programming
Languages, Systems, and Appilcations (OOPSLA),
pages 206–223, October 2004.

[9] Westley Weimer and George C. Necula. Finding and
preventing run-time error handling mistakes. In 19th
Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ’04), pages 419–431, October 2004.

[10] John Whaley. Dynamic Optimization through the Use
of Automatic Runtime Specialization. Master’s thesis,
Massachusetts Institute of Technology, May 1999.

[11] J. Widom and S. Ceri. Introduction to active database
systems. In J. Widom and S. Ceri, editors, Active
Database Systems - Triggers and Rules for Advanced
Database Processing, pages 2–41. Springer, Berlin,,
1996.

32

Dynamic Weaving in CAM/DAOP: An Application
Architecture Driven Approach

Lidia Fuentes
Dpto. Lenguajes y Ciencias de

la Computación
University of Málaga, SPAIN

lff@lcc.uma.es

Mónica Pinto
Dpto. Lenguajes y Ciencias de

la Computación
University of Málaga, SPAIN

pinto@lcc.uma.es

Pablo Sánchez
Dpto. Lenguajes y Ciencias de

la Computación
University of Málaga, SPAIN

granpablo@lycos.es

ABSTRACT
Dynamic weaving is much more flexible than static weaving
because the separation of concerns remains at runtime. This
results in highly configurable and adaptable applications,
since the rules that govern the weaving of aspects can evolve
during the application execution, according to different cri-
teria – i.e. user preferences, execution context, etc. In this
paper we describe the dynamic weaving mechanism offered
by CAM/DAOP, our own component and aspect platform.
The most relevant feature is that the plugging of compo-
nents and aspects is driven by the application architectural
information, which is loaded into the internal structures of
the CAM/DAOP platform to be consulted at runtime.

1. INTRODUCTION
During the last years, Aspect-Oriented Software Develop-
ment (AOSD) [2] became a more and more consolidated
software technology. Hundreds of new aspect-oriented a-
pproaches appeared that cope with the separation of con-
cerns principle in different ways. In this paper, our main
interest rely on the different weaving processes, which can
be static (performed during compilation) or dynamic (per-
formed at runtime).

In those approaches where the weaving process is static [5,
8, 10] the object/component and aspect code is mixed at
compile-time. Static composition provides high performance,
but separation of concerns is lost at runtime. Although they
normally use introspection to provide reflective information
about join points at runtime, the number and type of join
points affected by an aspect cannot be modified after com-
pilation.

Dynamic weaving is an interesting alternative to static weav-
ing. It is much more flexible than static weaving because the
separation of concerns remains at runtime, enabling, in some
cases, the late binding between objects/components and as-

pects. Approaches that offer a dynamic weaving mecha-
nism [17, 11] are mainly based on a reflection mechanism
that offers the ability to modify the application semantics
while the application is running. This adaptability is com-
monly achieved by implementing a Meta Object Protocol
(MOP) as part of the language interpreter that specifies the
way a program may be modified at runtime.

In this paper we describe the dynamic weaving mechanism
of CAM/DAOP [13]. CAM (Component-Aspect Model) is
a new component and aspect model that defines compo-
nents and aspects as first-order entities. The underlying
infrastructure supporting the CAM model is a Component-
Aspect Platform (DAOP, a Dynamic Aspect-Oriented Plat-
form) where the plugging of software aspects into compo-
nents is performed at runtime.

One of the most relevant features of our approach is that the
dynamic weaving among components and aspects is driven
by the information about the software architecture of the
application. Concretely, CAM/DAOP uses an XML-based
architectural description language (DAOP-ADL) [14] to de-
scribe components and aspects, together with the compo-
sition rules (i.e. the declaration of aspect pointcuts) that
govern the weaving of components and aspects. The plat-
form weaving mechanism loads and consults this information
at runtime to establish the connections among components
and aspects. This is particularly useful because we make
components and aspects much more reusable, isolating the
dependencies between them in the platform internal struc-
tures. In addition, this information can be easily adapted
at runtime, improving the flexibility and adaptability of the
final application.

The complete description of CAM/DAOP and the DAOP-
ADL language is beyond the scope of this paper and can
be found in [13, 14]. In this paper we focus on describ-
ing the dynamic weaving mechanism offered by the DAOP
platform, and the main advantages obtained from consulting
the application architectural information at runtime. After
this introduction, the paper is organized as follows. Next
section compares other AOSD approaches offering dynamic
weaving. Then, section 3 describes the architecture of the
DAOP platform and section 4 the DAOP dynamic weaving
mechanism. In order to cope with the limitations introduced
by dynamic weaving, in section 5 we describe our approach
to cope with these limitations in CAM/DAOP. Finally, we

33

present our main conclusions in section 6.

2. RELATED WORK
Table 1 contains a brief description of several AO frame-
works and platforms providing dynamic composition. Re-
garding the main features of CAM/DAOP, we have analyzed
the different works particularly interested in: (i) how they
incorporate the component concepts; (ii) the separation (or
not) of advice and pointcuts in isolated entities; allowing
the reuse of aspects, (iii) the mechanisms to express point-
cuts; with special interest in if they describe in some way
architectural information (iv) if they use an invasive or non-
invasive model, and (v) the mechanisms they use to perform
dynamic weaving.

PROSE [15] is an AO platform with dynamic composition,
for using aspects with objects. Aspects can intercept points
that are part of the internal behavior of objects. Its main
contribution is that the platform weaves and unweaves as-
pects directly in the Java Virtual Machine (JVM), inserting
the aspect advice directly into the native code generated by
the just-in-time (JIT) compiler. In addition, pointcuts and
advice are implemented in PROSE in the class representing
the aspect, with the drawback of reducing the (re)use of the
aspect advice.

Another similar approach is JAC [11], an AO framework
that uses the reflexive API BCEL for adding aspects. As-
pects in JAC are dynamically deployed and undeployed on
top of running application objects using wrappers and as-
pect containers. JAC pointcuts are not specified as part
of the aspect definition but in a third-party entity avail-
able at runtime, making aspects more reusable. In addition,
JAC uses AspectComponent configuration files (.acc files)
or XML files to configure externally the aspect evaluation
rules (or pointcuts). It does not really define a component
platform and its components cannot be considered software
components in the CBSD sense. JAC distributed protocols
are introduced as an extra mechanism to be able to dis-
tribute aspects in different hosts.

Another AO framework that performs dynamic composition
of objects and aspects is AspectWerkz [3], which implements
several weaving techniques. It offers static weaving like As-
pectJ [5], and other based on different mechanisms: JSR-163
JVMTI, hotswap, and bootclasspath. Using these technolo-
gies, aspects are composed with objects at runtime, by mod-
ifying objects byte code after class loading. Uses XML files
to define pointcuts separately from aspect implementations.
However, aspects in AspectWerkz are applied to objects and
not to components, defining an invasive model. Its weaving
mechanism completely relies on the Java technology.

JAsCo [17] is an aspect oriented implementation language
that defines a new component model compatible with the
JavaBeans component model. Aspects in JAsCo can be ap-
plied, adapted and removed at runtime. JAsCo introduces
two concepts: aspect beans that encapsulate advice, and
connectors that define pointcuts. Both advice and point-
cuts can evolve separately, increasing the reuse of advice.
Dynamic connector loading and unloading is possible in the
JAsCo connector registry. However, JAsCo connectors have
to be compiled, reducing their runtime adaptation. Aspects

Table 1: Related Work in Dynamic AOSD Ap-
proaches

PROSE JAC Aspect

Werkz

JAsCo Lasagne AOP

JBoss

CAM/

DAOP

I No No No Yes

(Beans)

Yes J2EE Yes

II No Yes Yes Yes Yes Yes Yes

III No .acc or

XML files

XML

files

No Composi-

tion policy

file

XML

files

XML

files

IV Yes Yes Yes No No Yes No

V JVM

Class

Loader/

HotSwap2

Wrappers

+

Container

HotSwap

/

JSR-163

Hotswap

+ Con-

nector

Registry

Decorator-

like

wrappers

Contai-

ner

Middle-

ware

Layer

(I) CBSD concepts (II) Separation od advice and pointcuts (III) External
Configuration of pointcuts (IV) Invasive model (V) Dynamism

interception is performed only before or after a method ex-
ecution, defining a non-invasive model, although an aspect
can replace the normal execution of a method.

Lasagne [18] defines a platform-independent architecture for
dynamic customization of component-based distributed sys-
tems using decorator-like wrappers, according with a non-
invasive model, that only intercept incoming/outcoming mes-
sages. In Lasagne, the composition logic is completely sep-
arated from the code of the components, and of the exten-
sions as well, increasing their reuse. This information is
specified in composition policy files that can be dynamically
attached to the system. Lasagne composes extensions at the
instance-level instead of at the class-level, giving Lasagne a
runtime performance overhead, although the composition
mechanism is much more flexible.

Finally, the JBoss AOP [1] framework is built on top of the
JBoss J2EE application server, and tries to solve the limita-
tion of providing just a set of built-in services. Aspect advice
in JBoss AOP is implemented using interceptors, according
with a invasiveness model, which is not required for compo-
nents models. The JBoss AOP framework has the advantage
that it separates advice and pointcuts in different entities,
where pointcuts are configured using XML descriptor files.

There are other dynamic approaches not covered in this sec-
tion due to the lack of space such as JMangler [6], Caesar [9],
EAOP [4], Rapier-LOOM.NET [16] and Weave.NET [7],
among others.

3. THE DAOP PLATFORM
The DAOP platform is a distributed component-aspect mid-
dleware platform for running applications conforming to the
CAM model [13]. Figure 1 shows its architecture, which con-
tains information about the services and facilities it offers
to components and aspects (elements that appear above the
DAOP Platform class in figure 1), together with the infor-
mation the platform stores to provide such services (classes
below the DAOP Platform class in figure 1).

Similar to other component platforms, the DAOP platform
provides a set of common services to develop distributed
applications, such as the instantiation of components (Com-

34

Figure 1: The DAOP Platform Architecture

ponentFactory interface), the communication of components
(CommunicationService interface), the evaluation of aspects
(AspectEvaluationService interface), the storage of properties
(PropertyService interface), the persistence service (Persistence-

Service interface) and the dynamic adaptation of the appli-
cation architecture (AAConfigurationServices interface).

Regarding the internal infrastructure of the DAOP platform
its information is arranged basically in two objects. The
ApplicationArchitecture object, which stores the architectural
description of the application; and the ApplicationContext ob-
ject, which holds the current list of component, aspect and
property instances.

The DAOP model in figure 1 is a platform independent
model that may be implemented using different middleware
technologies, such as .NET, CORBA or Java/RMI. Cur-
rently, we have a Java implementation that uses Java/RMI
as the base communication mechanism, and the reflective
package to help us to implement dynamic composition.

Regarding other AOSD approaches the main advantage of
CAM/DAOP is that it supports the development of peer-
to-peer distributed applications, since DAOP is neither a
client/server approach nor uses a central manager to be no-
tified of messages and events that occur within the applica-
tion. Instead, the DAOP platform is a distributed platform
that do not need to define extra mechanisms to distribute
aspects in different hosts. An application in DAOP is dis-
tributed among different hosts, where a local instance of
the DAOP platform is running. These DAOP platform in-
stances communicate among themselves, being possible for
all the components and aspects in a DAOP application to
communicate and collaborate amongst themselves. During
the deployment of the application it is determined the num-
ber of instances that the DAOP platform creates for each
aspect and how these instances are distributed. Also com-
ponents are distributed through the different nodes of the
DAOP application.

Other relevant advantage of DAOP is that components and
aspects are plain code in the language where the platform
was implemented. For instance, they are plain Java code in
the current Java/RMI implementation. Neither the use of
new constructions nor the generation of stubs and skeletons
are needed in order to implement DAOP components and
aspects. Only the use of the services offered by the DAOP
platform are needed. Other advantages of CAM/DAOP are
shared with other AOSD approaches, such as: (1) the appli-
cation of aspects to components [1, 17, 18] instead of objects
[3, 11, 15]; (2) the definition of a non-invasive model similar
to most component-based approaches [17, 18], where it is
not possible to intercept join points that are part of the in-
ternal behavior of a component. Instead, only the behavior
exposed through the explicit interfaces of components can
be intercepted, considering components as black-box enti-
ties, and (3) aspects are applied to components at runtime,
and the information needed to perform the dynamic weaving
of components and aspects is described using a declarative
language such as in [3, 18] and is not hard coded as part of
the application implementation classes.

4. DAOP DYNAMIC WEAVING
In this section we will explain the main features of the DAOP
dynamic weaving mechanism. The weaving in DAOP is dy-
namic since components and aspects remain as separate en-
tities during the application execution. By aspect weaving
we mean the execution of the corresponding aspect advice
when a join point is intercepted by the DAOP platform.

Even though the weaving mechanism in DAOP is based on
the interception of messages and events, there is an impor-
tant difference between DAOP and traditional component
platforms, such as CORBA, CCM/CORBA and EJB/J2EE.
Whereas these platforms offer a concrete number of services
that cannot be extended by users, in our approach it is pos-
sible to separate any crosscutting property. The difference
can be found in how both approaches manage these prop-
erties. In our approach the provision of these properties

35

does not rely on the platform provider, like in CORBA,
CCM/CORBA and EJB/J2EE. Instead, components and
aspects in DAOP are first-class entities that coexist at the
application level. Consequently, using CAM/DAOP appli-
cation’s developers decides how to divide the application
functionality into components and aspects, with no limit to
the kinds of aspects.

In the rest of this section we will give specific details about
the DAOP dynamic weaving mechanism. For that, we will
use the example showed in figure 2.

This example is taken from a virtual office application we
have developed. In this application users (User component)
join a shared space (VirtualOffice component) to collaborate
with other users. The figure shows that the user is authen-
ticated before joining the office, by evaluating the Authen-

tication aspect before the join message is sent by the User

component (BEFORE SEND join point). Additionally, when
the user leaves the office, the Persistence aspect is evaluated
after the leave message is received by the VirtualOffice compo-
nent (AFTER RECEIVE join point), to make persistence the
status of the office for that user. This status can be re-
stored the next time the user joins the office, by evaluating
the Persistence aspect after the join message is received by
the VirtualOffice component (AFTER RECEIVE join point).

Figure 2: A CAM/DAOP Example

We have used the CAM model to design the example in fig-
ure 2. Although the CAM model has not been described
in this paper, in order to understand the example we only
need to know that the CAM model describes components
(with stereotype 〈〈Component〉〉), aspects (with stereotype
〈〈Aspect〉〉) and the composition among them, expressed in
terms of applies to relationships. These relationships de-
scribes, in this example, which aspects are applied when
a message (with stereotype 〈〈Message〉〉) is sent or received.
The join points are the same described in the previous sec-
tion.

From the point of view of the application developer, the
main step in the development of a CAM/DAOP application
– i.e. related to the dynamic weaving mechanism, is the
description of the application architecture. From the point
of view of the platform, the main step is the use of the
information about the application architecture to perform
the dynamic weaving of components and aspects.

4.1 Description of the Application Architec-
ture

Step 1: Describe the application architecture informa-
tion, including the declaration of aspect’s pointcuts

As we mentioned in the introduction, an important feature
of our approach is that the DAOP platform stores a descrip-
tion of the application architecture (AA), which is consulted
by the platform to perform component and aspect instan-
tiation and dynamic weaving. This information is specified
during the design and architecture phases using the DAOP-
ADL [14] language, an XML-based architectural description
language. Then, during the execution, when an instance of
the DAOP platform is created, the XML document is parsed
and the structure of the CAM/DAOP application is stored
in the ApplicationArchitecture class and its subclasses (see fig-
ure 1).

With this language, firstly, all the components and aspects
that could be instantiated in the application are described;
each of them identified by its role name. Role names are
identifiers that we use in CAM/DAOP to uniquely identify
both components and aspects. These role names are archi-
tectural names that are used for component-aspect compo-
sition and interaction, allowing loosely coupled communica-
tion among them – i.e. no hard-coded references need to
be used for exchanging information, but just a role name
identifying the source and the target of a message.

Then, the aspect composition rules, – ie. pointcuts, defin-
ing when and how to apply aspects to components are de-
scribed, where components and aspects are referred by their
corresponding role names. In this example, we have two
components with role names ”user ” and ”office”, and two
aspects with role names ”authentication” and ”persistence”.
Aspect composition rules are stored in the AspectComposi-

tionRule class in figure 1.

There are three kinds of aspect composition rules. In the fol-
lowing code, we have expressed these rules in EBNF in order
to better explain which kind of information can be provided
to define pointcuts and, even more important, which kind
of information can be adapted to modify component and
aspect weaving at runtime.

The first kind of rule describes which aspects are applied
when components communicate by sending messages:

1 <message_pc> ::= <message_jp> <message_description>
’{’<aspect_composition>’}’

2 <message_jp> ::= BEFORE_SEND | AFTER_SEND | BEFORE_RECEIVE |
AFTER_RECEIVE | AFTER_THROW

3 <message_description> ::= <source> <target> <message>
4 <message> ::= [<TYPE>] <Ident> ’(’ (<TYPE>)* ’)’
5 <source> ::= <rolename> [<message>]
6 <target> ::= <rolename>
7 <aspect_composition> ::= ’{’ sequential_aspects ’}’ |

’{’ sequential_aspects ’}’
<aspect_composition>

8 <sequential_aspects> ::= (<aspect>)+

Notice that the description of the intercepted message (see
line 3) includes the source and the target components, iden-
tified by their role names. In order to make the definition

36

of pointcuts much more flexible, the source of a message in-
cludes not only the role name of the source component but,
optionally, the definition of the method from which that
message was sent (see line 5).

The aspects to be evaluated are described using a bi-dimen-
sional array of strings with the format {{A1},{A2}, {{A3,A4}}
(see lines 7 and 8) where every Ai is an aspect role name.
This bi-dimensional structure allows us to specify two kinds
of aspect evaluation: sequential evaluation and parallel eval-
uation. Aspects enclosed in the outer brackets, for instance
A1 and A2, are evaluated sequentially. On the other hand,
aspects in the inner brackets, for instance A3 and A4, will
be evaluated concurrently.

Coming back to our example there are three pointcut dec-
larations that correspond with this kind of rule:

1 BEFORE_SEND user * office join(String) {{authentication}}
2 AFTER_RECEIVE user * office join(String) {{persistence}}
3 AFTER_RECEIVE user * office leave(String) {{persistence}}

which can be interpreted as follows: (1) before sending the
message join(String) from the component with role name
user to the component with role name office the aspect with
role name authentication must be evaluated. The wildcard
”*” indicates that this rule is applicable independently of the
method in the source component from which the join(String)
message is sent; (2) after receiving the same message with
the same source and target components the aspect with role
name persistence has to be evaluated, and finally (3) after
receiving the leave(String) message, being the source and
target components the same, the aspect with role name per-
sistence is applied once again.

There are other kind of rule to describe which aspects are
applied when components communicate by throwing events:

9 <event_pc> ::= <event_jp> <event_description>
’{’ <aspect_composition> ’}’

10 <event_jp> ::= SEND_EVENT
11 <event_description> ::= <source> <message>

This kind of rule only differs from the previous one in that
the description of events (see line 11) does not include its
target.

Finally, the last kind of rule describes which aspects are ap-
plied when components are instantiated or eliminated from
the system:

12 <component_pc> ::= <component_jp> <component_description>
’{’ <aspect_composition> ’}’

13 <component_jp> ::= BEFORE_NEW | AFTER_NEW | BEFORE_DESTROY |
AFTER_DESTROY

14 <component_description> ::= <source> <rolename>

The main advantages of describing the AA information as
done in CAM/DAOP are the following:

Advantages

1. The moment of the evaluation (when creat-
ing/destroying components and when sending and/or
receiving messages and events), the kind of evalu-
ation (sequential or parallel), and the information
about which components are affected by aspects is
not hard-coded as part of the component or aspect
implementations. Instead, this information is taken
out of components and aspects and stored in the Ap-
plicationArchitecture class inside the DAOP platform,
achieving a higher degree of component and aspect
independence.

2. Pointcut declarations are not distributed through the
different aspects in the application. Instead they are
centralized in the document describing the AA. In con-
sequence, designers and programmers are able to com-
prehend the structure of the application, facilitating the
understanding and evolution of final applications.

4.2 Dynamic Weaving of Components and As-
pects

Step 2: At runtime, the DAOP platform consults the
AA information that was previously stored in its in-
ternal structures

During the deployment phase, the document describing the
AA is stored together with all the other application re-
sources, i.e. component and aspect implementations, im-
ages, etc. Later at runtime, when a user join an application,
the information about its AA is downloaded as part of the
application specific applet, is de-serialized at the user site
and the information stored in the platform.

Finally, this information is used by the platform to perform
the dynamic plugging of components and aspects. This oc-
curs when components create or destroy other components
using the corresponding methods of the ComponentFactory

interface (see figure 1). Also, it occurs when components
communicate between them using the component commu-
nication primitives offered by the platform (see the Commu-

nicationService interface and all its subinterfaces in figure 1).
As in other component platforms (e.g., CORBA), DAOP
allows components to send synchronous and asynchronous
messages, as well as to broadcast a message to several target
components. DAOP also allows components to throw events
to other components.

By intercepting the throwing of events, CAM/DAOP pro-
vides a join point that occurs within the execution of a com-
ponent method, similar to the around join point in other
approaches like AspectJ or PROSE. The difference with
these white-box approaches is that the DAOP platform can
only intercept the points that the component makes visi-
ble throughout the throwing of events, considering it still a
black-box component. The handling of events is resolved at
runtime by a coordination aspect, which is out of the scope
of this paper [12].

Coming back to our example, figure 3 describes how compo-
nents and aspects are dynamically plugged when the compo-
nent with role name user sends the join(String) message to the
component with role name office; using for that the DAOP
execmi() communication primitive (step 1 in figure 3).

37

Figure 3: Dynamic Weaving Mechanism

At this moment, the DAOP platform takes the control and,
by each intercepted join point, consults the information about
the aspect pointcuts, which are stored in the :Application-

Architecture object (steps 1.1, 1.3, 1.5 and 1.7). As spec-
ified by these pointcuts, the platform invokes the evalBE-

FORE SEND() method in the Authentication aspect (steps 1.2,
1.2.1, and 1.2.2), then it invokes the join(“john”) method in
the target component (steps 1.4 and 1.4.1) and, finally, it
invokes the evalAFTER RECEIVE() method in the Persistence

aspect (steps 1.6, 1.6.1 and 1.6.2).

In order to perform this evaluation, DAOP aspects must
implement the AspectEvaluationService interface (see figure 1).
This is mandatory since, as described above, the platform
will invoke one of the methods in this interface to evaluate an
aspect – i.e. to execute the aspect advice. There is a method
in the AspectEvaluationService interface for each CAM/DAOP
join points. All these join points are enumerated in the As-

pectJoinPoint enumeration class shown in figure 1. Addition-
ally, CAM/DAOP also provides the eval() method, which is
a general method that allows to make aspects completely
independent from the intercepted join point. For instance,
this is useful for a Trace aspect that records information
about the application execution. Its behavior is always the
same, independently of the join point where the aspect is
evaluated.

The main advantages of the CAM/DAOP weaving mecha-
nism are the following:

Advantages

1. We close the usual “gap”, or loss of information, be-
tween design and implementation levels, since exactly
the same information generated during the description
of the application architecture is then used at runtime

2. This is a real ”runtime” weaving mechanism, not a
”load time” one

3. During the execution it is possible to adapt the behav-
ior of the application by adding, removing or modifying
the information about the application architecture. The
platform will assure that this information remains con-
sistent if changes are performed by some user

4.3 Dynamic adaptability of the Application
Behavior

Step 3: Optionally, the application behavior can be
adapted at runtime by modifying the information
about the application architecture stored in the DAOP
platform

Finally, if required by the application, the information about
the application architecture that is stored in the internal
structures of the DAOP platform can be adapted at runtime
in order to modify the behavior of the application. This can
be done without stopping or recompiling the application. In
the Java implementation this also means that classes do not
need to be loaded again with the Java class loader. New
components and aspects can be incorporated to the appli-
cation, or existing ones removed from it. Also, aspect com-
position rules can be modified, added or removed from the
description of the application architecture, changing how the
plugging of components and aspects is performed.

In order to do that the DAOP platform offers the AACon-

figurationService interface (see figure 1). Currently, we are
developing a system tool that will support any kind of ap-
plication that desire to adapt its application architecture.
Additionally, applications can incorporate their own tools
to adapt it according to their specific necessities. In both
cases, the AAConfigurationService interface must be used.

Advantages

1. Final applications are more adaptable and evolvable

5. IMPROVING PERFORMANCE: COMBIN-
ING STATIC AND DYNAMIC WEAVING

The main drawback of dynamic approaches is that in many
cases static weaving is faster and therefore offers better per-
formance than dynamic weaving. In this sense, in CAM/DAOP
the use of reflection and the dynamic composition mecha-
nism may introduce some overhead at runtime.

The performance study we have performed with CAM/DAOP
has been using our Java/RMI implementation. Currently,

38

we have a virtual office application1, and after one year of
evaluation we can state that the performance is satisfactory.
Even when Java poses significant drawbacks related to effi-
ciency, we find that the overload of dynamic evaluation of
aspects is not so critical in distributed systems based on
Java. For instance, component and aspect creation through
the platform takes 30 ms, and the time to incorporate the
evaluation of the aspect at runtime is insignificant (around
20 ms). Comparing this evaluation time with the time spent
loading a web page from the same host, they are insignifi-
cant.

Nevertheless, and taking into account that there are aspects
that might not need to be adapted at runtime, we are now
developing a alternative static composition mechanism us-
ing the Java BCEL API. One of the goals of this extension
is to be able to study these run-time overheads to check if
they are really relevant to the application performance and
how we are able to reduce the overhead in some situations.
Extending the DAOP-ADL language to specify whether an
aspect must be woven into components statically or dynam-
ically, this tool manipulates component class files to weave
static aspects at compile time. Additionally, it generates a
new DAOP-ADL document which only contains the decla-
ration of pointcuts for dynamic aspects. Therefore, dynamic
aspects will be weaved at runtime as described previously.

Using this approach we sacrifice the independence of as-
pects and components at implementation level, in order to
increase the application’s performance. Independence is still
maintained at design and architectural levels.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the dynamic weaving mech-
anism of CAM/DAOP. The main contribution of this mech-
anism is that it performs the plugging of components and
aspects using the information about the application archi-
tecture. This information is described during the architec-
ture description phase using the DAOP-ADL language, and
includes the definition of aspect’s pointcuts. During the ap-
plication instantiation, pointcuts are loaded in the internal
structures of the DAOP platform, to be consulted at run-
time. This have two important advantages: (1) aspects are
more reusable in different contexts since they do not in-
clude the pointcut declaration, and (2) we bridge the gap
between design and implementation, since the weaving of
components and aspects is performed according to exactly
the same information that was provided during the design
and architecture phases.

Additionally, aspect’s pointcuts can be added, modified or
deleted at runtime without stopping or (re)compiling the ap-
plication. The dynamic weaving mechanism offered by the
platform allows that in order to automatically adapt the
application behavior, only the information about the appli-
cation architecture was modified, using for that the corre-
sponding service of the DAOP platform.

7. ACKNOWLEDGMENTS
This work is supported by European Commission grant IST-
2-004349: European Network of Excellence on Aspect-Oriented

1see http://150.214.108.46/CoopTEL

Software Development (AOSD-Europe), 2004-2008.

8. REFERENCES
[1] The aspect oriented programming and jboss tutorial.

http://www.onjava.com/pub/a/onjava/2003/05/28/aop jboss.html.

[2] Aspect-oriented software development web site.
http://aosd.net.

[3] Aspectwerkz web page. http://aspectwerkz.codehaus.org/.

[4] Event-based aspect-oriented programming.
http://www.emn.fr/x-info/eaop/tool.html.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An Overview of AspectJ. In Proc. of
ECOOP’01, pages 327–355, Budapest, Hungary, 18-22 June
2001. Springer-Verlag.

[6] G. Kniesel, P. Costanza, and M. Austermann. Jmangler - a
powerful back-end for aspect-oriented programming. In
R. Filman, T. Elrad, S. Clarke, and M. Aksit, editors,
Aspect-oriented Software Development. Prentice Hall, 2004.
To appear.

[7] D. Lafferty and V. Cahill. Language-independent
aspect-oriented programming. In Proc. of the 18th annual
ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pages 1–12, California,
USA, 2003.

[8] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual
collaborations: Combining modules and aspects. The
Computer Journal, 46(5):542–565, Sept. 2003.

[9] M. Mezini and K. Ostermann. Conquering aspects with caesar.
In Proc. of the Second International conference on AOSD,
pages 90–100, Boston, MA, 17-21 March 2003. ACM Press.

[10] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns and the hyperspace approach. In M. Aksit, editor,
Software Architectures and Component Technology. Kluwer
Academic Publishers, 2001.

[11] R. Pawlack, L. Seinturier, L. Duchien, and G. Florin. JAC: A
flexible and efficient framework for AOP in Java. In Proc. of
Reflection’01, Kyoto, Japon, 25-28 September 2001.
Springer-Verlag.

[12] M. Pinto, L. Fuentes, M. Fayad, and J. M. Troya. Separation of
coordination in a dynamic aspect-oriented framework. In Proc.
of the First International Conference on AOSD, pages
134–140, Enschede, The Netherlands, 22-26 April 2002. ACM
Press.

[13] M. Pinto, L. Fuentes, and J. M. Troya. A dynamic component
and aspect platform. The Computer Journal, Accepted for
Publication.

[14] M. Pinto, L. Fuentes, and J. M. Troya. DAOP-ADL: An
architecture description language for dynamic component and
aspect-based development. In Proc. of the Second
International Conference on GPCE, pages 118–137, Erfurt,
Germany, 22-25 September 2003. Springer-Verlag.

[15] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. In Proc. of the First
International Conference on AOSD, pages 141–147, Enschede,
The Netherlands, 22-26 April 2002. ACM Press.

[16] W. Schult and P. Trger. Loom.net - an aspect weaving tool. In
Proc. of the ECOOP 2003 Workshop on Aspect-Oriented
Programming, Darmstadt, June 2003.

[17] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: An
aspect- oriented approach tailored for component based
software development. In Proc. of the Second International
conference on AOSD, pages 21–29, Boston, MA, 17-21 March
2003. ACM Press.

[18] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. N.
Joergensen. Dynamic and selective combination of extensions in
component-based applications. In Proc. of the 23rd
International Conference on Software Engineering, pages
233–242, Toronto, Canada, 12-19 May 2001. IEEE Computer
Society.

39

40

A Source-level Kernel Profiler based on Dynamic
Aspect-Orientation

Yoshisato YANAGISAWA
Tokyo Institute of Technology

2-12-1-W8-50 Ohkayama,
Meguro-ku

Tokyo 152-8552, JAPAN

yanagisawa@csg.is.titech.ac.jp

Shigeru CHIBA
Tokyo Institute of Technology

2-12-1-W8-50 Ohkayama,
Meguro-ku

Tokyo 152-8552, JAPAN

chiba@acm.org

Kenichi KOURAI
Tokyo Institute of Technology

2-12-1-W8-50 Ohkayama,
Meguro-ku

Tokyo 152-8552, JAPAN

kourai@csg.is.titech.ac.jp

ABSTRACT
We present a source-level kernel profiler named KLAS. Since
this profiler is based on dynamic aspect-orientation, it allows
the users to describe any code fragment in the C language.
That code fragment is automatically executed for collecting
detailed performance data at execution points specified by
the users. Enabling dynamic aspect-orientation is crucial
since otherwise the users would have to reboot an operat-
ing system kernel whenever they change aspects. Although
KLAS dynamically transforms the binary of a running op-
erating system kernel for weaving an aspect at runtime, un-
like other similar tools, the KLAS users can specify those
execution points, that is, joinpoints through a source-level
view. For example, the users can describe a pointcut that
picks up accesses to a member of a structure; they do not
have to explicitly specify the addresses of the machine in-
structions corresponding to the member accesses. We have
implemented this feature by extending a C compiler to pro-
duce augmented symbol information. KLAS has been im-
plemented for the FreeBSD operating system with the GNU
C compiler.

1. INTRODUCTION
During the history of operating systems (OS), performance
tuning of OS kernels has been an important topic for kernel
developers. Even nowadays, the kernel developers are mak-
ing serious efforts to run the OS kernel as fast as possible.
They are still improving scheduling algorithms, implemen-
tation of network stack, lock mechanism, and so on. For
example, both Linux and FreeBSD recently introduced new
implementation of their process schedulers.

Investigating a performance bottleneck is the important first
step for improving the performance of OS kernels. To do
this, using a sophisticated performance profiling tool for OS
kernels is mandatory. Here “sophisticated” means that the
profiler reports not only the number of calls to each function

constituting an OS kernel but also more detailed data spec-
ified by the users. In fact, we are studying a performance
bottleneck of network processing of the FreeBSD operat-
ing system since we observed inappropriate behavior of the
network module when multiple processes are simultaneously
executing network I/O operations. We need a profiler that
allows us to produce a log message including time stamp
at any execution points (a.k.a joinpoints in AOP) that we
specify.

This paper presents our kernel profiler called KLAS. It is a
dynamic aspect-oriented system and allows the users to exe-
cute a code fragment as advice at specified execution points
in an OS kernel. The advice is normally used to record time
stamps but it can also executing any code written in the C
language, for example, printing a log message. Since KLAS
is a dynamic aspect-oriented system, the users can dynam-
ically weave an aspect with a running OS kernel. Enabling
dynamic weaving is crucial since the users can avoid reboot-
ing a OS kernel whenever they change an aspect during in-
vestigation of kernel performance. For KLAS, we have devel-
oped a new implementation technique for dynamic aspect-
oriented systems. KLAS replaces machine instructions in
an OS kernel with breakpoint-trap instructions so that ad-
vice is woven at the address of those instructions. To enable
the users to specify pointcuts with a source-level view, such
as accesses to a member of a structure, we modified a C
compiler so that it will produce extra symbol information.
KLAS uses this extra information to identify the machine
instructions that correspond to the specified pointcut. We
implemented KLAS for the FreeBSD operating system with
the GNU C compiler.

The rest of this paper is organized as follows. Section 2 de-
scribes requirements for kernel profilers. Section 3 presents
our new implementation technique for dynamic aspect ori-
ented programing (AOP). It also shows an overview of the
current implementation of KLAS. Section 4 compares KLAS
and other systems, including AOP systems and non-AOP
systems. We conclude this paper in section 5.

2. REQUIREMENTS
To investigate a performance bottleneck, using a perfor-
mance profiling tool is mandatory; in particular, a tool that
can measure the elapsed time between interesting execution
points in the OS kernel is useful. However, existing tools
or techniques do not satisfy our requirements for investigat-

41

ing kernel performance. Since modern OS kernels are imple-
mented with object orientation in the C language, a number
of interesting execution points are calls to functions speci-
fied by function pointers. That profiler does not support
such execution points; it only supports functions statically
resolved. We below mention our requirements for such a
kernel profiler.

First, the kernel profiler must enable the users to measure
elapsed time between given two execution points. The users
must be able to give those execution points in the kernel at
runtime and change them, if necessary, without rebooting
the kernel. The ability to change the execution points is
crucial. The users would first measure the execution time of
a large code section and then they would gradually narrow
the range of that code section to find a performance bottle-
neck. Since rebooting the whole kernel is a time consuming
task, frequent rebooting significantly decreases our produc-
tivity. Rebooting also clears the whole memory image and
thus the internal data of the network module. After reboot-
ing, the behavior that the users want to investigate might
disappear. Furthermore, the code snippet for measuring the
elapsed time must be given by the users since the users may
want to measure the elapsed time between the execution
points in which a certain variable holds a specific value. To
do this, the measurement code must check the runtime value
of that variable but only the users can give such code de-
pending on a particular use case. Also, the users may want
to print a log message, for example, to record the value of
an interesting variable.

Second, the profiler should support the C language. The
users must be able to specify execution points by indicating
a point in a source file. This is mainly because the FreeBSD
operating system, and other major operating systems like
Linux, are written in C. Several features of the C language
makes it difficult to develop a kernel profiler. For example,
the macro processor makes it difficult to specify an execution
point and the compiled binary includes only limited symbol
information.

Third, the execution points that the users can specify for
profiling must be fine grained. The possible execution points
must include not only function calls but also member ac-
cesses, that is, accesses to members of structures. A num-
ber of execution points that we are interested in for perfor-
mance profiling are function calls through function pointers.
Modern OS kernels use function pointers for inter-module
function calls since function pointers can be used for im-
plementing a kind of polymorphism in the C language. If
the read or write system call is issued, the OS kernel in-
vokes a function pointed to by a function pointer associated
with the accessed I/O device. The function pointer associ-
ated with each I/O device points to the read/write function
dedicated for that device. The VFS (Virtual File System)
uses the same technique for dispatching to a function ap-
propriate to each type of file system. The network module
of FreeBSD and NetBSD, which are descendants of 4.3BSD,
uses this technique for deallocating a memory buffer (mbuf)
in a means depending on a network device.

Finally, the prove effects due to the profiling should be min-
imized. If the overheads of measuring elapsed time is large,

the obtained data would be obviously inaccurate. Once nec-
essary data are obtained, the profiling code for the time
measurement must be removed to avoid disturbance of the
kernel behavior while the elapsed time of a different code
section is being measured.

A naive approach for performance profiling of OS kernels
is to manually insert profiling code into source files of the
kernel, compile the source files, and reboot the kernel. How-
ever, this approach is error-prone and does not satisfy our
requirements since it needs rebooting.

3. KLAS: KERNEL LEVEL
ASPECT-ORIENTED SYSTEM

To fulfill all our requirements, we have developed a new
dynamic aspect-oriented system called KLAS (Kernel-level
Aspect-oriented System) for FreeBSD 5.2.1. AOP is the
most promising approach for our requirements. KLAS re-
ceives the definition of an aspect from the users through a
KLAS command running in the userland. Then it dynam-
ically patches the running OS kernel to weave that aspect
into the kernel at runtime. Since KLAS uses a modified ver-
sion of gcc for augmenting the symbol information contained
in the compiled binary of the OS kernel, it allows the users
to pointcut member accesses at the source-code level.

3.1 Overview of the KLAS system
KLAS is a dynamic aspect-oriented system for the OS kernel
of FreeBSD. The users can dynamically weave an aspect
into the running kernel so that they can change the code
section of which they measure the execution time. They do
not have to reboot the kernel when they change a woven
aspect. This feature improves the efficiency of the users’
investigation since they do not have to wait until the kernel
is rebooted and the behavior that they want to investigate
appears again. They can start investigation as soon as they
find the behavior that they are interested in.

KLAS allows the users to pick out member accesses (accesses
to a member of a structure) by pointcut. As we have already
mentioned, it is a crucial feature that the users can specify
that an advice body is executed when a particular member of
function pointer type is accessed. For example, this feature
helps us investigate a performance bottleneck of network
processing since we can easily measure the execution time
of functions accessing the mbuf structure.

An aspect definition for KLAS is described in XML. Fig-
ure 1 shows an example of an aspect definition for KLAS.
It pointcuts accesses to the member ext free of the m ext

structure. Since the value of ext free is a function pointer,
this member access is a function call. The advice body as-
sociated with this pointcut prints the current time and the
arguments to the function when that member access is per-
formed. In KLAS, special variables $eip, $ebp and $esp are
available within advice body. They represent eip, ebp and
esp register.

3.2 Implementation
KLAS inserts the hook code into the OS kernel for execut-
ing advice body when the thread of control reaches there.
The overhead due to the hook code is minimum since KLAS

42

<aspect name="log_mbuf_clean">

<pointcut>

<member-access name="ext_free" struct="m_ext" />

<pointcut>

<before-advice>

void* resolve_arg(long eip, long ebp, int argn)

{

/* resolve the N-th argument of

ext_free function. */

}

struct timespec ts;

nanotime(&ts);

printf("mbuf_clean@%d,%lld, arg:0x%x,0x%x\n",

ts.tv_sec, ts.tv_nsec,

resolve_argument($eip,$ebp,1),

resolve_argument($eip,$ebp,2));

</before-advice>

</aspect>

Figure 1: Aspect Definition in KLAS

dynamically inserts the hook code only at the places corre-
sponding to the joinpoint shadow picked out by given point-
cuts. If the aspect is unwoven, the inserted hook code is also
removed from the running OS kernel. Minimizing the over-
head is important since the primary application of KLAS
is to investigate a performance bottleneck in the OS kernel.
If the overhead of using aspects is not negligible, the users
may be confused by the disturbance by the prove effects and
have a trouble to find a real performance bottleneck.

A unique feature of KLAS is that KLAS enables member
accesses to be picked out by a pointcut. To do this, KLAS
expands the symbol table contained in the compiled binary.
This fine-grained pointcut helps the users to efficiently in-
vestigate a performance bottleneck in the OS kernel. The
users can specify a pointcut to pick out interesting member
accesses at the source-code level, and KLAS refers to the
expanded symbol table so that it can insert the hook code
at the machine instructions corresponding to those member
accesses (Figure 2).

To use KLAS, the OS kernel must be compiled by our ex-
tended the GNU C compiler (gcc) with the -g debug op-
tion. During compilation, our compiler collects the names
of structures and their members with the line numbers and
the file names in which those members are accessed. The
collected information is stored in an auxiliary file of the com-
piled kernel. Note that this information is not included in
the normal symbol table of the compiled binary even if the
-g option is given to the compiler. For example, the GNU C
compiler discards this information after the parse tree is cre-
ated; the structure names and the member names are con-
verted from character strings to integer ID. numbers. The
GNU C compiler uses not names but those ID. numbers for
identifying structures and members after the parsing phase.

If KLAS is requested to dynamically weave a new aspect
while the OS kernel is running, it refers the symbol infor-
mation generated when the kernel was compiled. KLAS
uses that information for identifying the addresses of the

KLAS kernel half

KLAS userland half

OS-kernel

Symbol
Information

gcc

kldload

Aspect Definition

pointcut designationadvice

Compiled
Advice

resolve
point to
insert hook

system call

insert
hook

Figure 2: Implementation of KLAS

machine instructions corresponding to the joinpoints picked
out by given pointcuts. To identify the address of a function,
KLAS simply refers to the regular symbol table by invoking
the nm command. To identify the address of a member ac-
cess, KLAS performs the following three steps. First, KLAS
refers to the auxiliary file generated by our extended com-
piler and obtains the file name and the line number at which
that member access is executed. Then KLAS accesses the
debug information, which is included in the regular sym-
bol table. It uses the file name for identifying the name of
compilation unit, which is an object file constituting the OS
kernel, and it finally accesses the debug line information (the
DWARF2 format) of that compilation unit. The address of
the line specified by the line number can be found in the
debug line information, which is also included in the regular
symbol table. Since KLAS can obtain only the address of the
first machine instruction of the line including the joinpoint,
it cannot insert the hook code exactly at the instruction
corresponding to that joinpoint. However, we believe that
this limitation is not a serious problem for our application,
which is investigating a performance bottleneck of the OS
kernel. Moreover, this approach allows the users to use the
same compiler that they are usually using for compiling the
kernel because the information our modified GNU C Com-
piler generates is only a mapping between member accesses
and line numbers.

KLAS uses the GNU C compiler (gcc) for compiling an ad-
vice body and the kldload command for loading the compiled
advice body into the kernel land. After parsing an aspect
definition written in XML, KLAS extracts an advice body
and attaches the prologue and the epilogue to the advice
body to make a source file of a loadable kernel module. This
produced source file is compiled by gcc. The compiled bi-
nary is loaded by the kldload command. The advice body
can be any code fragment if it is a valid C program in the
kernel.

The loaded advice body is woven when a system call for
dynamic weaving is issued. KLAS identifies the machine in-
struction corresponding to the joinpoint and replaces it with
the breakpoint-trap instruction, which is the hook code of

43

system call(address,advice)

mapping between address and advice

KLAS

OS kernel

insert breakpoint

Figure 3: KLAS in the kernel space

int
ip_output(..)
{
 breakpont fault

}

trap(..)
{

 case BPT_FLT:
 map_hook_code(..)

}

map_hook_code(..)
{ ...
 advice = lookup_adv(pc)
 execute advice
 ...
}

advice{
...
}

Figure 4: Execution of Advice

KLAS (Figure 3). This replacement is done while the OS
kernel is running. Since the length of the breakpoint in-
struction of the x86 architecture is one byte, any machine
instruction can be replaced with the breakpoint instruction.
If the aspect is unwoven, the original machine instruction is
substituted for the breakpoint-trap instruction. Note that
the jmp instruction cannot be used as the hook code since
the length of that instruction is three bytes. If an one-byte
instruction located at the end of an basic block is replaced
with the jmp instruction, the first instruction of the adja-
cent basic block is overwritten by the jmp instruction. This
may cause system hang-up. However, according to our ex-
periment, using the jmp instruction for the hook is about 25
times faster than using the breakpoint-trap instruction. We
are planning extend KLAS to use the jmp instruction if the
joinpoint is in the basic block.

When the thread of control reaches the breakpoint instruc-
tion substituted by KLAS, a breakpoint trap occurs (Fig-
ure 4). Then the trap handler executes the map hook code

function, which we implemented. This function looks up the
advice body corresponding to that breakpoint instruction,
that is, the joinpoint and then executes that advice body.
Finally, this function executes the original instruction re-
placed with the breakpoint instruction. KLAS execute this
in the same way as DDB, the kernel debugger of FreeBSD,
does.

4. RELATED WORK
4.1 Kernel Profilers
Ktr[8] is a kernel profiler included in BSD/OS and FreeBSD.
This system is activated if a special compile option is given

when the kernel is compiled. The users can manually insert
logging code in the kernel source files before compilation.
The logging code must be written by using CTRx macros.
Since each logging code is individually activated during run-
time according to the data structure called ktr mask, the
users can turn on and off the logging code by accessing
ktr mask. Unlike KLAS, Ktr does not allow the users at run-
time to change the locations where log messages are printed.
If the users insert logging code at a large number of loca-
tions, they can selectively activate only a few of them and
change which ones are activated during runtime. However,
this approach implies non-negligible overhead.

LKST[1, 2] is a kernel profiler for Linux. This system allows
the users to record current time or execute any given code
at a fixed set of locations in the kernel code. A problem of
LKST is that the users cannot specify the locations where
log messages are printed. They must select from the loca-
tions predetermined by LKST. This feature makes it difficult
to investigate the behavior of the kernel in a fine-grained
way.

KernInst[13] and GILK[9] can dynamically transform the bi-
nary code of the OS kernel. However, the users must specify
which machine instructions are replaced with another code
fragment. They cannot specify the replaced code with the
source-level abstraction, such as a function call and a mem-
ber access.

4.2 Aspect-oriented Solutions
AspectC++[12] is an aspect oriented system for the C++
language. Although it satisfies most of our requirements,
it is a static aspect-oriented system. If the users change
profiling code, that is, aspect code, the OS kernel must be
recompiled and rebooted.

µDyner[11] is a dynamic aspect-oriented system for the C
language, but the runtime overhead is not negligible. It in-
serts special hook code at the shadow of all the join-points
at compile time. Some of the inserted hooks are activated
by the pointcut description given at runtime and then they
invoke an advice body when the thread of control reaches
those hooks. That is, µDyner inserts the hook code at com-
pile time at all the places in which the users may potentially
want to measure the execution time. Since the number of
the places in which the hook code must be inserted is usually
large, the overhead due to the hook code is not negligible.

TinyC2[7] is another dynamic aspect oriented system for the
C language. Unlike µDyner, TinyC2 can directly insert and
remove the hook code in/from the compiled binary during
runtime. This capability is provided by Dyninst[4], which
is the backend system of TinyC2. Since the hook code is
inserted at only the places selected at runtime according to
the given pointcut description, the overhead due to the hook
code is minimized. However, TinyC2 provides only a limited
kind of execution points as joinpoints. For example, func-
tion calls are joinpoints but member accesses are not since
the compiled binary of a C program does not include the in-
formation about which machine instruction corresponds to
member accesses. The users must explicitly specify which
machine instruction they want to pick out by pointcut de-
scription.

44

TOSKANA[3] is a dynamic aspect oriented system for OS-
kernels. It runs on the NetBSD operating system. It uses
the same approach as KLAS for loading advice. Since the
hook is implemented with a branch instruction, the execu-
tion time of advice is faster than KLAS’s. However, since
it does not use a modified compiler, it can not pick out a
member access as a joinpoint.

AspectC is an aspect oriented system for the C language.
Research with AspectC showed that AOP is useful for imple-
menting the cache mechanism in the kernel[6, 5] . Caching
in the kernel is a concern crosscutting across a memory man-
agement module and a disk management module. Since
these two modules are in different layers, implementing this
concern without AOP is more difficult than other concerns
cutting across multiple modules at the same layer. AspectC
weaves an aspect by source-to-source translation at compile
time. It does not support dynamic weaving. Also it does
not provide member accesses as joinpoints.

PROSE[10] is an early dynamic AOP system for Java. It
uses JVMDI (Java Virtual Machine Debugger Interface) to
implement dynamic weaving of aspects. It sets breakpoints
at the joinpoints specified by pointcuts. If the thread of con-
trol reaches one of those breakpoints, the JVM (Java Virtual
Machine) transfers the control to the PROSE system so that
PROSE will execute advice code associated with the join-
point. This idea is the same as ours but KLAS is a dynamic
AOP system for the OS kernel written in C. The cost of han-
dling breakpoint traps in the OS kernel is relatively smaller
than in the JVM.

5. CONCLUSION
Investigating a network bottleneck in the OS kernel needs
a sophisticated kernel profiler that enables measuring exe-
cution time of a fine-grained code section. Since the OS
kernel consists of a large number of layered modules, aspect
orientation is a significant paradigm for designing such a ker-
nel profiler. Furthermore, an aspect-oriented kernel profiler
should be able to dynamically weave an aspect for avoiding
kernel rebooting, which seriously decreases the efficiency of
the investigation of performance bottleneck.

In this paper, we proposed an aspect oriented system named
KLAS. This system provides fine-grained joinpoints, includ-
ing member accesses to structures, so that the users can
investigate details of the behavior of the OS kernel. KLAS
extends the symbol information included in the compiled
binary. KLAS collects symbol information, such as the file
name and the line number of member-access expressions, at
compile time and it makes the collected information avail-
able for the runtime weaver of KLAS. This is because normal
C compilers produce a relatively smaller amount of symbol
information than Java compilers. We are currently still im-
plementing KLAS. The runtime weaver and the enhanced
the GNU C compiler have been implemented but a language
processor for compiling an aspect written in XML are still
being implemented.

6. REFERENCES
[1] http://lkst.sourceforge.net/.

[2] http://oss.hitachi.co.jp/sdl/english/lkst.html.

[3] http://www.betriebssysteme.org/Aktivitaeten/

Treffen/2004-Dresden/Programm/Folien/Engel/

AOSTA-Slides.pdf.

[4] B. Buck and J. K. Hollingsworth. An API for runtime
code patching. The International Journal of High
Performance Computing Applications, 14(4):317–329,
Winter 2000.

[5] Y. Coady and G. Kiczales. Back to the future: a
retroactive study of aspect evolution in operating
system code. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software
development, pages 50–59. ACM Press, 2003.

[6] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn.
Using aspectC to improve the modularity of
path-specific customization in operating system code.
In ESEC/FSE-9: Proceedings of the 8th European
software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 88–98.
ACM Press, 2001.

[7] G. T. Leavens and C. C. (eds.). Foal 9,003 proceedings
- foundations of aspect-oriented langauges workshop
at aosd 2003.

[8] G. Lehey. Improving the freebsd smp implementation.
In Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, pages 155–164.
USENIX Association, 2001.

[9] D. J. Pearce, P. H. J. Kelly, T. Field, and U. Harder.
GILK: A dynamic instrumentation tool for the linux
kernel. In Computer Performance Evaluation /
TOOLS, pages 220–226, 2002.

[10] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In AOSD
’02: Proceedings of the 1st international conference on
Aspect-oriented software development, pages 141–147.
ACM Press, 2002.

[11] M. Ségura-Devillechaise, J.-M. Menaud, G. Muller,
and J. L. Lawall. Web cache prefetching as an aspect:
towards a dynamic-weaving based solution. In AOSD
’03: Proceedings of the 2nd international conference
on Aspect-oriented software development, pages
110–119. ACM Press, 2003.

[12] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
AspectC++: an aspect-oriented extension to the C++
programming language. In CRPITS ’02: Proceedings
of the Fortieth International Confernece on Tools
Pacific, pages 53–60. Australian Computer Society,
Inc., 2002.

[13] A. Tamches and B. P. Miller. Fine-grained dynamic
instrumentation of commodity operating system
kernels. In Operating Systems Design and
Implementation, pages 117–130, 1999.

45

46

Coupling Availability and Efficiency for Aspect Oriented
Runtime Weaving Systems

Sufyan Almajali
Illinois Institute Of Technology

3300 S. Federal St.

Chicago, IL 60616, USA

almasuf@iit.edu

Tzilla Elrad
Illinois Institute Of Technology

3300 S. Federal St.

Chicago, IL 60616, USA

elrad@iit.edu

ABSTRACT
Performance and availability are two critical requirements of
today’s systems. Current dynamic AOP approaches have
addressed the performance issue from one specific dimension: the
performance of code after the weaving process. Other
performance factors may have a great impact on overall system
performance. This includes performance of the weaving process
itself and also system availability in single and multithread
environment. In this paper, we present Dynamic Aspect C++
(DAC++), a new runtime aspect weaving system that addresses
the performance and availability issues in an integrated approach.
By addressing the following issues we increase system
availability for runtime aspect weaving: We propose a finer-
grained of atomic weaving, we introduce two new efficient
aspect-weaving techniques and we support multithreading. The
scope of performance impact has been extended to include a more
general evaluation of the overall system performance. This
includes the performance of both the woven product and the
weaving/unweaving time. The synergy of these two contributions,
increasing availability and overall performance consideration, led
to runtime weaving systems of better throughput, response time,
and accessibility to resources.

General Terms
Languages, Performance, Design

Keywords
Aspect Oriented Programming, Dynamic Weaving, Language
Design.

1. INTRODUCTION
Many dynamic aspect oriented systems have been implemented.
Examples of these are PROSE [13], Steamloom [3], Jboss [9],
AspectWerkz [17], JAsCo [16], JAC [8], AspectS[7] and others.
Some of the characteristics addressed by these systems include
the technique used to introduce runtime weaving capability, the
types of advices that can be used, the scope of the weaving
process like per class or per instance, the ability to, partially or
completely define a new aspect at runtime, and the ability to
weave and unweave aspect at runtime.

None of the current AOP approaches have addressed the
performance impact of runtime weaving at all different times of
the program lifetime. Many factors contribute to the overall

performance of runtime weaving system. The performance of
systems after the weaving process is an important factor because
it’s the most significant part of the overall system execution time,
but other factors may degrade the overall system performance.
One of these factors is the runtime weaving/unweaving process.
This weaving /unweaving time can lead to performance
degradations and poor system availability. Another factor is the
weaving atomicity principles followed by these approaches. Not
optimizing the weaving atomicity leads to extra degradation in
system performance and availability. In addition, the weaving
atomicity techniques followed by current systems make it difficult
to support dynamic weaving for multithreaded and database
transactional systems. A detailed analysis about the atomicity
handling by current AOP systems is presented in the coming
section.

In this paper, we show that addressing these two issues: (1)
performance impact in all dimensions, and (2) weaving atomicity,
can lead to a runtime weaving system that exhibits better
performance and overall availability.

2. DAC++ Design Goals and Challenges
2.1 Design Goals
The main design goal for the DAC++ system is to support runtime
aspect weaving system with the following characteristics: high
system performance, high system availability and support of
different service levels for the weaving process.

2.1.1 High System Performance
To come up with a high system performance, we need our system
to provide efficient execution in the following cases: First,
efficiency when the system does not require any aspects – this
requires minimizing the overhead of introducing dynamic aspect
capabilities so that when aspects are not raised, the execution time
is as close as possible to the time of executing the code in a non
AOP environment. Second, efficiency after we weave aspects at
runtime - this requires runtime to be as close as possible to the
runtime at a static woven environment. Third, we require an
efficient weaving process and fourth an efficient unweaving
process. Weaving atomicity will be discussed latter.

Current AOP approaches provide efficient execution for some of
these four cases but not all. Our goal to make our system
supports high performance in all of these four cases.

47

2.1.2 High System Availability
There are three different ways to view system availability:
Throughput, Response Time and Access to Resources.

For throughput, the more jobs and transactions the system
executes per interval of time, the higher the system throughput.
For response time, the shorter time to respond to user requests, the
faster the average response time. And finally, the smaller the
service interruption time, the better the access to system
resources.

Multithreading is a powerful tool for creating high performance
applications. Threading is a key feature to maintain high system
availability.

Supporting multithreading with the runtime weaving capability
can lead to high performance applications that have the flexibility
to change at runtime and adapt to different situations.

Some runtime weaving systems support weaving per thread
capabilities. Examples are JBoss, AspectWerkz and Steamloom.
To our knowledge, the majority of current dynamic AOP systems
support coarse-grained atomic weaving. When a weaving request
comes to the system, it makes sure that the entire aspect is woven
for all targeted joinpoints before proceeding. For single thread
applications, that would be easily applicable and there will be
little or no effect on the system availability. For multithreaded
applications, coarse-grained atomic weaving can cause
perceptible degradation to system performance and availability
especially if the weaving request is suppose to crosscut multiple
threads. In case we have multiple threads running and one or
more thread needs a longer time to finish execution, weaving an
aspect at application, class or instance level for multiple threads
cannot be done before all current running threads finish
execution, and no new threads can start before the weaving
process is complete. This would be the case when threads share
some class and method invocations. Threads may need a long
time to finish even if we have low CPU utilization because
threads may contain asynchronous operation like I/O operations.
Such cases can result in a system with smaller number of jobs
served, longer response time and halting services for some time.
This availability reduction time will last for the whole period of
the weaving time. In addition, it will be always difficult to find
the right time to do the weaving step. This could be a very
complicated task.

In our system, we have relaxed the condition of atomicity from
Coarse-grained atomic weaving to fine-grained atomic weaving.
System consistency is still maintained under fine-grained atomic
weaving. Using fine-grained atomic weaving simplifies the
process of supporting multithreaded systems and minimizes
availability degradation during the weaving process. Using fine-
grained atomic weaving allows us to weave aspects at any time
and at any level (Application, class, instance or thread) without
the need to stop the running threads or wait until they finish their
execution. Note that we still provide for system consistency (see
section 3).

2.2 Design Challenges
To achieve our goals, we had to address the following design
challenges.

2.2.1 Fine-Grained Atomic Aspect Weaving
First, let us show by example the difference between fine-grained
and coarse-grained atomicity for the runtime weaving system.

Consider the example shown in Figure 1. Figure 1.a shows a
program that has two transactions (T1 and T2) and each one of
them invokes a number of methods. Assume that while the
program is being executed in the middle of transaction T1, a
request has been issued to weave aspect A. Assume that weaving
aspect A affects methods m1 through m4 and the resulting
methods after the weaving are m1A through m4A. If we are using
Coarse-grained weaving, then system has to look like Figure 1.b.
To keep the atomicity of both transactions, system has to wait
until both transactions are finished and then weave aspect A to
end up with program in Figure 1.b.

Figure 1. Coarse-Grained and Fine-Grained Atomic
Weaving

With fine-grained atomicity, it would be possible to get a case
like Figure 1.c where aspect A is woven for T2 but not T1 for a
short period of time. This can improve weaving responsiveness
and still maintain system consistency. The same thing applies for
the multithreaded system in Figure 2. Figure 2.a shows a
multithreaded program. Figure 2.b shows coarse-grained weaving
and Figure 2.c shows a possible state that may occur sometimes
during fine-grained weaving. Figure 2.d shows an invalid system
state that should be avoided for single thread and multithreaded
systems. Transaction T1 has aspect A partially woven. This state
should be infeasible because it does not belong to either the
coarse-grained weaving space or fine-grained weaving space.
Figure 3 shows a more complicated atomicity case. This case
shows that atomicity needs to be verified at the method level and
not only for transactions. Method m1 has in its body two
invocations one for m2 and another for m3 (Figure 3.a). If we
weave an aspect that targets methods m2 and m3, then the atomic
weaving is shown in Figure 3.b. Figure 3.c shows an invalid case
that should be avoided.
Achieving fine-grained atomicity is difficult. We need a system
that is able to analyze the impact of each aspect on every method
and then make this information available at runtime for weaving
when needed. Also aspects interaction adds extra complexity to
this needed analysis.

48

2.2.2 Sustaining Both Efficiency and Availability
To produce high system availability, we need a fast weaving
approach. Also, we need to support a multithreading-aware
runtime weaving system. On the other hand, to produce high
performance execution time, we need a weaving approach that
results in efficient woven code. Unfortunately, different weaving
approaches are available and none of them can guarantee for us
both fast weaving process and efficient woven code for all
possible system cases.

2.3 Paper Structure
The paper is structured as follows: In Section 3 we describe
DAC++ architecture and the different components used and how
they are integrated. In addition, Section 3 explains the

implementation details of our system. The system performance is
examined in Section 4. We conclude the paper with section 5.

3. DAC++ Architecture and Implementation
Details
The long-term goal of DAC++ [1,2,4] compiler research is to
support a complete feature set of AOP capabilities for networking
services, protocols, devices and frameworks.

DAC++ compiler has been implemented to support efficient
runtime weaving capabilities for the C++ language. The current
version of DAC++ supports a subset of ANSI C++ syntax and
extends the C++ language to support AOP capabilities. A
customized version of the LCC project [6] has been used as the
back end of DAC++ to give us more control over the code
generation stage. Part of the back end has been modified to
accommodate the needs of our DAC++ compiler.

DAC++ includes five main added elements: Atomicity Analysis
for Runtime Weaving, Metadata, Two-Mode Runtime Weaving,
Multithreading Support, and the Automatic Availability Analyzer.

3.1 Atomicity Analysis for Runtime Weaving
DAC++ performs Atomicity Analysis for Runtime Weaving at
compilation time. Analysis determines the effect of weaving
aspects on an application program. Atomicity analysis finds all
weaving possibilities that can cause conflict with atomic
execution. Analysis results in locating fine-grained atomic
execution units. Those units could be methods or transactions.
Guaranteeing atomic execution for these units eliminates the
atomicity violations that can happen at runtime. Some aspect may
cause atomicity conflict and others may not. We consider the
aspect as a conflicting aspect only if it can cause side effect
problems for method or transaction execution during weaving
time. Logging, debugging and aspects of similar functionality are
not going to be conflicting aspects in general.

Figure 2. Coarse-Grained and Fine-Grained Atomic
Weaving for Multithreading Systems

To perform atomicity analysis, the DAC++ compiler performs
four steps: control-flow analysis, inter-method data-flow analysis,
method execution data-flow analysis and aspect weaving conflict
analysis.

3.1.1 Control-Flow Analysis
Figure 4 shows how the analysis happens. In the first step, control
flow analysis is used to compute the call graph of the program.
Figure 4.b shows the call graph of the code given in Figure 4.a.
Constructing call graph is a straightforward process for simple
programming languages. In our case, there are three issues that
make this process difficult, namely, separate compilation,
function overload support and virtual function support.

Separate compilation can be bypassed as an issue by doing call
graph construction only when an entire program is presented to a
compiler at once, or it can be handled by saving, during each
compilation, a representation of the part of the call graph seen
during that compilation and building the graph incrementally. We
have assumed the first solution although the second can be used in
our system. This separate compilation problem applies in the
same manner to the rest of steps.

Figure 3. Atomicity at the method level

The C++ support for function overloading allows the use of the
same name to define different functions of different prototypes.

49

This problem is resolved using name mangling process. Finally,
the problem of virtual function support is the most challenging
one. This makes it impossible to create a call graph at compilation
time. The reason for that is the need for runtime information to
know which virtual function to call for different function call
statements. As a result, we had to create an approximated call
graph. For each virtual function call, we have created one arrow
for each possible targeted virtual function.

3.1.2 Data-Flow Analysis
Next, the compiler performs data-flow analysis. This allows us to
gain detailed information about all variables used by every
method. C++ supports different type of variables. This includes
global, member, static, local and global variables. In addition, our
system allows the definition of aspect local variables and advice
local variable. Our current system allows aspect to access
program global variables, class static variables, and parameters of
method invocation, aspect and advice local variables.

The goal of this analysis is to determine for each function call, a
safe approximation of the side effects of each method invocation.
We represented side effects using two functions:
and REF . We computed this for two types of variables supported
by C++ global and static.

MOD

)MOD(f,i defines the variable that may be modified by executing
the ith instruction of function .f

)REF(f,i defines the set of variables that may be referenced by
executing the ith instruction of function .f

3.1.3 Method Execution Data-Flow Analysis
This step includes accumulating all variables that are used within
the method body or its execution flow. The approximated call
graph is used in this step along with information generated from
previous stage. This allows us to approximate both the MOD and
REF functions for each program function.

)MOD(f defines the set of variables that may be modified by
executing function . Also, the MOD function defines for each
variable the number of modifications. takes the
following form:

f
)MOD(f

nnnf ,,,......,2,2,2,1,1,1)MOD(
where i is the name of ith variable in the list, i is the type of
the variable (global or static), and i is the number of times
variable i can be modified inside this method or method
execution flow. For each variable i, its name i is fully qualified
using the function or class mangled name.

Regarding the REF function, defines the set of variables
that may be referenced by executing function and the number
of references for each variable. can be represented by the
following form:

)REF(f
f

)REF(f

nnnf ,,,......,2,2,2,1,1,1)REF(
where i is the name of ith variable in the list, i is the type of
the variable (global or static), and i is the number of times

variable i may be referenced inside this method or method
execution flow.

MOD and REF functions are easy to compute for functions that
do not contain other function calls. For nested function calls, the
approximated call graph is used. Also, MOD and REF functions
will be evaluated for the advice function for each aspect.

3.1.4 Aspect Weaving Conflict Analysis
The purpose of the final step is to study the side effect impact of
each aspect in every method. Assume we want to weave aspect A
with method M, then we have two cases:

Case 1: Aspect A does not cause side effects to the execution of
the application.

Case 2: Aspect A does cause side effects to the execution of the
application.

In case 1, we do not need to force atomic weaving because it is
not required. In case 2, we need to force atomic weaving to avoid
partial weaving of aspect A. To satisfy atomic weaving during the
weaving of aspect A, the system should be in one of two states: 1)
either run the effected application part without any aspect A side
effects or 2) run it with same aspect A side effects.

Figure 4. Control-flow Analysis: Call-graph

The following algorithm is used to determine the aspects require
atomic weaving and the program location for that.

Assume we have aspect “A” that crosscuts application methods
represented by the set nA MMMMS ,...,, 321 .

(1) Assign Aspect “A” a unique version number VA.

(2) For each method Ai SM , use the approximated call-graph
and find all execution paths that lead to . Execution paths can
be cached for later use and avoid redundant computation. The
result of the second step will be a set of execution paths, each one
of the following form:

iM

.ihMKKK21

(3) Evaluate the following step for each execution path
:ihMKKK21

50

conflict = false; count =1;

 while (count <=h)

{

S =)REF(countK)MOD(A

(i) if S = then

exit; // break while loop , no conflict

(ii) if (for i Si

= for i for all instructions before invoking

)
i countK

1countK

exit; // break while loop , no conflict (S implicitly)

(iii) if (for i Si

= for i for all instructions after invoking

)
i countK

1countK

exit; // break while loop , no conflict

(iv) if (for i S = for i for)

then
i i)1REF(countK

 count=count+1

 else

 { conflict= true;

 record Aspect version number “VA” as a conflict with
current execution path. And force atomicity at method Kcount

 exit; // break while loop , conflict case}

 } // end of while statement

S defined in step 3 represents the set of variables used by method
 and may get modified by aspect A. Condition (ii) of step 3

addresses the case when all of instructions that reference the
variable(s) modified by the aspect are before invoking method

1 . This leads to no conflict since the aspect A will be woven
after all references happen. Condition (iii) addresses the opposite
situation. Conflict will happen when some references are made
before invoking method and the others are made after
invoking method .

iK

iK

iK

1iK

1iK

One important issue here is aspect interaction. When we weave an
aspect A and follow it by weaving an aspect B, this needs more
complicated analysis. It is possible that weaving aspect A or B
alone does not cause conflict with method M , but weaving both
aspects causes conflict with the method.

Figure 5. Aspect Interaction Analysis for Aspect A, B
and C

To resolve this issue, DAC++ generates approximated call-graphs
for all weaving possibilities of the aspect that have side effects
(write statement(s)). Figure 5 shows aspect interaction for three
aspects A, B and C. Each node represents a weaving case. Each
node is given a version number to represent aspects being woven
for the case.

For each node in the graph, DAC++ performs conflict analysis
and records the conflicting version number with each method.
Notice that this could be a space and time consuming process in
case we have a large number of aspects, but it is needed only at
compilation time (done one time) and the result graphs are not
needed at runtime.

3.2 DAC++ Metadata
DAC++ metadata includes all information needed to support
atomic runtime weaving/unweaving. It is the aspect runtime
representation. DAC++ generates the initial metadata during
program compilation and loading and linking time. Metadata
information changes during program runtime to reflect the aspect
weaving and unweaving status. Metadata includes three main
categories: classes and methods metadata, aspect metadata and
threading metadata.

Part of the metadata is method relocation entries. They are
compiler-generated entries and used to track all locations that
access the method. Many compilers generate relocation entries
information [11]. This information is usually used by linkers to
link multiple program modules. They are usually used at linking
time, but we filter the unneeded relocation entries and load the
rest in our system and utilize them at runtime.

3.3 Two-Mode Runtime Weaving
One of the main unique things used to support efficiency in our
system is the inclusion of two approaches for runtime weaving.
The two weaving approaches represent two different system
modes for weaving aspects at runtime. DAC++ uses these two
modes alternatively to meet the different system needs at different
times for different weaving cases. Weaving modes include the
following: Wrapping weaving mode and Splicing weaving mode.

Both modes share the first steps of the weaving process and differ
in the rest of the steps. One exceptional characteristic of DAC++
weaving modes is their minimum service suspension time and the

51

promptness of the weaving process without affecting program
semantics or performance.

3.3.1 Wrapping Weaving Approach
Figure 6 shows how the wrapping mode works. When the AOP
thread receives a weaving request, aspect metadata will be used to
determine the targeted methods of this weaving process. For each
one of these methods, DAC++ instantiates and customizes mini
stubs of code that will be used for temporary fine-grained
atomicity check and method call redirection. In addition, DAC++
creates a wrapper method that does not have any code but method
invocations and two stack instructions. The wrapper method
structure is formulated to reflect the type of advice: before or
after. This whole process happens without the need to stop any
program part to continue its execution in parallel. Also, DAC++
can control the percentage of CPU cycles given to the AOP
weaving thread so we have minimum impact on system
availability. After having the stub and the wrapper methods
created simultaneously with program execution, the affected
thread(s) will be suspended for very short period of time to do
runtime relocation for the methods. This last step is actually
runtime relinking and it is the only stage where we have to
suspend the execution. Suspension can be done one thread at a
time to have minimum impact on overall system availability.
After this minimal service suspension time, thread(s) resume their
execution from the state they were suspended at without losing
any state information.

The runtime relinking step allows method joinpoints to point to
the stub method or wrapper method depending on atomicity
conflict status. The stub takes care of atomicity checking. For
each aspect weaving step, there is one Boolean variable
safe_to_weave (default is false). Also, there are three types of
stubs: first-step-weaving stub, atomicity-check-and-relink stub
and atomicity-disable stub.

In case of weaving a non-conflicting aspect (an aspect that does
not cause conflict in any case), the relocation entries are mapped
to point to the wrapper method directly and stubs are not be used
at all.

In case of weaving a conflicting aspect (aspect may cause
atomicity conflict), the first-step-weaving stub, the atomicity-
check-and-relink stub and the atomicity-disable stub are used as
follows: The relocation entries are mapped to point to the first-
step-weaving stub directly.

The first-step-weaving stub does the following tasks:

1) Check the stack to evaluate the current calling
sequence and discover which methods are activated
(discover current execution path).

2) If current aspect weaving version VA conflicts with
the current execution sequence, then set
safe_to_weave to false otherwise, set
safe_to_weave to true. Method causes conflict is
predetermined at compilation time.

3) For that method stack frame, save its return
address, and modify it to point at the atomicity-
disable stub.

4) If safe_ to_weave then

a. Relink caller to new wrapped_method

b. Execute_wrapped_method

5) Else

a. Execute_original_method

6) Replace first-step-weaving stub by atomicity-
check-and-relink stub

Note that the first-step-weaving stub is executed one time only for
each weaving request.

The atomicity-check-and-relink stub has only steps 4 and 5 of the
first-step-weaving stub.

The atomicity-disable stub will be called only when system
reaches the end of the method that has a conflict. The atomicity-
disable stub will check again for atomicity conflict with the
current stack and either reset the return address of the conflicting
method as happened in the first step or, set the safe_to_weave
variable to true. In case safe_to_weave is set to true, the next
method calls will access the wrapper method directly and the
stubs will not be accessed.

Figure 6. Wrapper Weaving Approach The relink step used by the DAC++ stubs allows next method
calls to be direct method calls instead of redirecting each call
through the stub. Also, to accomplish relinking, we do not need to
have any information saved, the caller calling instruction address
can be easily computed from the current stack frame of the
current executing method.

The wrapper method contains the following assembly code:

1 Wrapper_method:

2 Call advice_function ; used if the advice is of type before

3 Pop some_memory_loc; this is used to pop the return

4 ; address of the wrapper method

5 Call original method ;

52

6 push some_memory_loc; replaceing the return address into its

7 ; correct location

8 Call advice_function ; used if the advice is of type after

9 Leave

10 Ret

Either line 2 or 8 will be used but not both depending on the
advice type. The reason for using the push and pop operations is
to avoid pushing the method parameters again.

The wrapping weaving approach has the advantage of constant
weaving time per method. The overall time complexity will be
linear in the number of targeted methods affected by the weaving
process. On the other hand, this approach adds little overhead
during method execution because the wrapper method adds one
indirect call step in addition to the two additional instructions, pop
and push.

3.3.2 Splicing Weaving Approach
To reduce overhead completely, we have included another
weaving approach that avoids indirect methods calls. We call this
approach: splicing weaving approach. In this method, we follow
the same start in the same manner as with the wrapping weaving
approach by including a stub to check for atomicity conflicts. But,
instead of using a wrapper method, DAC++ generates a new
version of the method that contains the method code after the
weaving process. Splicing the method code with the advice code
on the fly does the process. Methods splicing does not need
recompilation or method/class reloading. The original method
code is already in memory. DAC++ reuses a copy of the method
code and makes a small modification to accomplish the splicing
with the aspect advice code. Splicing is done as the following:

1) Initially, the method object for X86 machines has the following
format:

method_label:

 enter X,0

 ; method code

 leave

 ret

Enter instruction is used to perform the method prologue by
initializing needed registers and reserving Local_Bytes in the
stack frame for local variables. Leave is used to perform the
program epilogue.

2) The advice code has similar code:

advice_label:

 enter Y,0

 ; advice code

 leave

 ret

3) The spliced code looks like the following:

splicied_method:

 enter X+Y,0

 ; relocated advice code if before advice

 ; method code

 ; relocated advice code if after advice

 leave

 ret

A challenge issue for machine code splicing is its dependency on
the memory location. Copying a method from one memory
location to another is simply not going to work. To solve this
problem, DAC++ offers two solutions. The first solution is to
customize the back end of our compiler to generate method code
that is location independent. Position Independent Code (PIC) is a
technique used by some operating systems to load code without
having to do load-time relocation and to share memory pages of
code among processes even though they do not all have the same
address space allocated [11]. PIC code does not help our
situation because we need to relocate method code only and not
the entire program. Consequently, we had to generate a kind of
position independent method code (PIMC). Generating PIMC
code is much easier as a process than PIC code. In PIMC code, all
jump and branch instructions are made relative. But unlike PIC,
we do not need to take care of changing instructions that have
direct data access.

Although PIMC allows us to implement code splicing easily,
PIMC has little overhead due to the relative referencing that it
uses. For each jump and branch instruction, an extra memory
reference is needed in order to access the PC register that saves
the current execution address.

DAC++ offers programmers the option to generate PIMC code
with version 2. The PIMC code of version 2 does not have
relative address access instructions. Instead, it uses direct address
access instructions. To make it a PIMC code, DAC++ attaches a
list of memory addresses that need to be shifted during method
copying and splicing time. This eliminates overhead completely
but requires more space.

The same idea is applied to the advice code. The access to local
variables need to be relocated by X amount because the frame
pointer will be pointing at the original method local variables.

User can pick the optimization option based on the application
needs and code size.

3.4 Multi-Threading Support
DAC++ supports runtime weaving for multi-threaded
applications. Support includes POSIX threads, a well-known
threading standard in the C++ and C languages. DAC++ allows
weaving per thread. During program compilation, DAC++
identifies each thread type and performs the following steps: First,
it uses the result of the call-graph generated during atomicity
analysis to find all methods used by each thread and thread flow.
After this, it compares all applications threads and sees the
methods shared among the different threads. For each one of these
methods, one copy or more of the method source code is created

53

and method renaming is applied. The original method name is
saved in the metadata part and renaming happens only for the
mangled name. As a result, each thread will end up with its own
code space. This allowed us to implement aspect weaving per
thread without paying performance penalty. Figure 7 shows the
way in which threads are handled. It is important to notice that the
code space conflict has to be resolved for the inner method calls
too. In case of a thread calling method m1, and method m2 is
called inside m1, then DAC++ treats m2 in the same way it treats
m1 with respect to threading handling. This repeats for all user-
defined methods but not built-in functions like the mathematical
sin function. We did not include support for per thread weaving
with built in functions although it can be added to our system. It is
interesting to know that cflow and weaving per instance are both
supported using the same technique used for threads.

4. DAC++ Performance

We have measured the performance of DAC++ using different
measurements. All evaluations were done using 3.0 GHz Pentium
IV on Linux machine with I GB memory. First, we measured the
overhead added by DAC++ when no aspect is woven. Table 1
shows the result of this evaluation. PIMC version 2 overhead is
very minimum. The little overhead we have is due to the lack of
support of all optimization levels by standard C++ compilers as
we described in previous section. PIMC version 1 code has more
overhead specially when it comes to loops and jumps instructors.
This is expected because of the relative referencing used by this
version of code generation.

Table 1. DAC++ Overhead When no Aspect is woven

Benchmark DAC++
PIMC v1

DAC++
PIMC v2

Method call 10.02% 1.7%

Fibonacci 11.02% 2.03%

Nested Loop 15.02% 3.2%

In the second performance measurement, we evaluated the
performance overhead of the two weaving approaches supported
by DAC++ and compared them to statically woven aspect in
AspectC++ system [15]. Table 2 shows the performance overhead
after dynamically weaving aspect at run time.

Table 2. DAC++ Overhead of Weaving Aspect at Runtime

Benchmark
WWM /
PIMC

v1

WWM /
PIMC

v2

SWM /
PIMC

v1

SWM /
PIMC

v2
Logging
Aspect 7.1% 2.11% 6.02% 1%

Fibonacci
Aspect 9.4% 3.53% 8.02% 2.03%

In general, Splicing Weaving mode (SWM) with PIMC version 2
has the lowest performance impact. Notice that Wrapping
Weaving mode (WWM) has more performance overhead and the
reason is the indirection of method call and the additional
parameter passing and handling necessary to accomplish the
wrapping.

5. Conclusion and Future Work

DAC++ supports runtime weaving with new capabilities that are
not offered by current approaches. It supports per application, per
thread, per class and per instance weaving. In addition, it controls
the weaving process so that it does not impact the overall system
availability. It offers a minimum service suspension time with
very efficient woven code. With its runtime relinking and fine-
grained weaving capabilities, DAC++ makes the promptness of
the weaving process faster with minimum program suspension.

The current DAC++ implementation has a set of limitations that
need to be elaborated in future. First, We are planning to extend
DAC++ capabilities in future to support full C++ syntax. Also,
redefining the pointcut designator for an aspect at runtime is
problematic for DAC++. We prevented it because it needs extra
space at runtime and it slows down the weaving process due to the
need for atomicity analysis.

Figure 7. Threading Preprocessing

Another issue that we need to address is the compiler optimization
techniques that fit with DAC++. Aggressive optimization levels
supported by current C++ compilers have note been addressed
yet. The optimization level of spliced code generated on the fly is
not high compared to the code generated during compilation. Run
time code optimization is needed to achieve better performance
with woven code.

One of the biggest challenges to runtime weaving in C++ is to
support inter-type aspect runtime weaving. We needs to modify
the C++ object model at runtime. This needs a major change in
compiler technique.

Finally the effect of the program execution on aspect semantics
using fine-grained atomic weaving needs more elaboration.

6. ACKNOWLEDGMENTS
This work is supported in part by CISE NSF grant No. –0137743.

54

7. REFERENCES [9] JBoss AOP Home P. http://www.jboss.org
[1] Almajali, S. and Elrad, T. A Dynamic Aspect Oriented C++

using MOP with Minimal Hook Weaving Approach. In
Dynamic Aspect Workshop, Lancaster, England. March
2004.

[10] Levine, J. Linkers and Loaders. Morgan-Kauffman, October
1999.

[11] Lippman, S. Inside the C++ Object Model. Addison-Wesley,
1996.

[2] Almajali, S. and Elrad, T. Dynamic Aspect Oriented C++
for Upgrading without Restarting. In proceeding of
Conference on Advances in Internet Technologies and
Applications with Special Emphasis on E-Education, E-
Enterprise, E-Manufacturing, E-Mobility, and Related
Issues, Purdue, USA, July 8-11, 2004.

[12] Popovici, A., Gross, T. and Alonso, G. Dynamic Weaving
for Aspect Oriented Programming. In AOSD 2002
Proceedings. ACM press, 2002.

[13] Popovici, A., Gross, T. and Alonso, G. Just-in-Time
Aspects. In AOSD 2003 Proceeding. ACM Press, 2003

[14] Schult, W. and Polze, A. Dynamic Aspect Weaving with
.NET. http://www.dcl.hpi.uni-potsdam.de/dcl/papers/
GI2002.ps

[3] Bockisch, C., Haupt, M., Mezini, M. and Ostermann, K.
Virtual Machine Support for Dynamic Join Points. In AOSD
2004 Proceeding. ACM Press, 2004

[15] Spinczyk, O. ,Gal, A. and Schröder-Preikschat, W.
AspectC++: An aspect-oriented extension to the C++
programming language. Fortieth International Conference
on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), volume 10 of Conferences in
Research and Practice in Information Technology. ACS,
2002.

[4] DAC++ Home Page.
http://www.iit.edu/~almasuf/dacpp.html

[5] Douence, R. and Sudholt, M. A Model and a Tool for Event-
Based Aspect-Oriented Programming (EAOP). Technical
Report 02/11/INFO, Ecole des Mines de Nantes, 2002.

[6] Fraser, C. and Hanson, D. A Retargetable C Compiler:
Design and Implementation. . Addison-Wesley, 1995.

[7] Hirschfeld, R. Aspect-Oriented Programming with AspectS.
http://www-ia.tu-ilmenau.de/~hirsch/Projects/
Squeak/AspectS/Docs/AspectS_NODe02_Erfurt2_rev.pdf

[16] Vaderperren, W. and Suvee, D. Optimizing JAsCo dynamic
AOP through HotSawp and Jutta. In Dynamic Aspect
Workshop, Lancaster, England. March 2004.

[17] Vasseur, A. Dynamic AOP and Runtime Weaving for Java-
How does AspectWerkz address it? In Dynamic Aspect
Workshop, Lancaster, England. March 2004.

[8] JAC Home Page. http://jac.aopsys.com

55

56

SONAR: System Optimization and Navigation with Aspects
at Runtime

Chunjian Robin Liu
University of Victoria

cliu@cs.uvic.ca

Celina Gibbs
University of Victoria

celinag@cs.uvic.ca

Yvonne Coady
University of Victoria

ycoady@cs.uvic.ca

ABSTRACT
Traditional system optimization and navigation techniques, based
on static system structure and static instrumentation, are not
suitable for understanding and handling today's complex,
distributed and dynamic systems at runtime. This paper
introduces an approach we call SONAR (System Optimization and
Navigation with Aspects at Runtime). Through a combination of
Extensible Markup Language (XML), dynamic Aspect-Oriented
Programming (AOP) and Java Management Extensions (JMX),
SONAR provides a fluid and unified framework for runtime
system optimization and navigation. In particular, dynamic
aspects are used to integrate scattered code level artifacts across
predefined abstraction boundaries – application,
framework/middleware/virtual machine, operating system –
together as a meaningful entity with respect to users' interests.
Such aspects can be defined, enabled and disabled by a
stakeholder at runtime. A preliminary evaluation of SONAR
shows only minimum impact on performance and a relatively
small memory requirement for large systems.

1. INTRODUCTION
Today’s systems are increasingly challenging to holistically
analyze due to both their size and complexity. Though layering,
componentization, and virtualization can be leveraged to provide
meaningful abstractions at various levels, these abstractions also
make system-wide navigation and analysis, which must cross
these predefined boundaries, more difficult than in simple flat
systems. For example, to perform a root-cause fault-analysis,
exceptions and states at various levels of the software stack need
to be collected and analyzed collectively. This is difficult
because application level exceptions are usually handled by the
middleware and hidden from both the lower layers and the users.
Likewise, certain exceptions at lower levels can be hidden or
transformed to a different representation for higher levels to
digest [2,3]. To be able to understand the root-cause of a
problem, or some other systematic behaviour, information from
entities across layers and/or distributed at different locations
needs to be easily collected and correlated.

Looking at this problem from another angle, today’s complex
system architectures are designed and documented with multiple
views (structural - class, deployment; behavioral - use case,
sequence, collaboration; control flow, data flow) for multiple
stakeholders. At an implementation stage, these design views are
mapped into code level artifacts (module/component, file,
package, class, method). For structural views, the mapping is

usually direct and explicit, since current object-oriented
programming methodology provides a hierarchical/structural
decomposition and code is developed based on such
decomposition. Other views, such as behaviour views, are
typically difficult to map or realize from hierarchical/structural
decomposed code level artifacts. Furthermore, users with
different roles, i.e. designer, developer, administrator and
maintainer, might have different interests and therefore require
different views of a single system at runtime. These views may be
directly derived from design views, or may represent new
perspectives based on more specific stakeholder interests.

In addition to these increasing demands, increasing heterogeneity
of large systems, dynamic features of programming languages,
frameworks/middleware/virtual machines and operating systems,
and other advanced techniques (such as configuration, adaptation
and autonomic computing) make the overall system more
dynamic and as a result, static instrumentation techniques are not
suitable for navigation and analysis such systems. For example,
by using Java reflection, a level of indirection is added and
therefore a program can achieve higher degree of flexibility.
However, it also makes realizing which object is actually invoked
more difficult than a static call. For systems such as pervasive
systems, which feature a high degree of dynamism in terms of
device/service states and availability, static based techniques are
equally unsuitable for analyzing runtime behavior.

In order to understand system-wide runtime behavior, certain
entities in the system (or even from the outside environment)
might need to be correlated together and represented as a single
entity – coarser/finer grained or even crosscutting – for navigation
and other tasks. Moreover, such views should be able to be
reconstructed when users’ interests change. Runtime analysis of a
problem has been shown to typically be an iterative process, with
an analyst’s focus constantly changing during the process of
analyzing [4]. Thus, views need to be easily defined and
constructed dynamically across the predefined boundaries of class,
component, subsystem, layer and so on. Ideally, views should be
able to be easily removed once users no longer need them, and
further incur little to no performance penalty. Simply put,
systems need to be abstracted and viewed differently and
dynamically.

Based on this premise, SONAR was motivated by this need for a
fluid mechanism to dynamically integrate all scattered artifacts
(entities and data) cross predefined vertical and/or horizontal
abstraction boundaries together to represent a meaningful entity

57

with respect to a user’s interest. As a result, SONAR was
designed with three key goals in mind:

1. Language/framework agnostic definition: As there
are now an increasing number of AOP frameworks for
different programming languages. SONAR can be
configured to leverage this variety in order to diagnose
more systems.

2. Dynamic instrumentation: Instrumentation code
should be able to be inserted dynamically. Furthermore,
such code should be able to be removed with zero
impact.

3. Simple visualization and management: Collected data
should be easily visualized and managed. Furthermore,
management should also be standard-compliant.

The rest of this paper is organized as follows: Section 2 covers
some background information. Section 3 explains SONAR’s
architecture and describes relevant implementation details
showing how some of the most challenging goals above are
accomplished. In Section 4, we evaluate our implementation
based on performance, memory footprint, and other factors.
Finally, we discuss related work and future research directions in
Section 5 and conclude in Section 6.

2. Background
This section briefly introduces the three key technologies used by
SONAR – XML, AOP, and JMX – and the specific ways in which
SONAR uses each.

2.1 Why XML?
Extensible Markup Language (XML) was originally designed to
improve the functionality of the Web by providing more flexible
and adaptable information identification1. Given that XML is not
a fixed format like HTML (a single, predefined markup language),
it can be generally used to customize markup languages.

SONAR uses XML’s ability to encapsulate information in order
to pass it between different computing systems which would
otherwise be unable to communicate.

2.2 Why AOP?
Aspect-oriented programming (AOP) modularizes crosscutting
concerns – concerns that are present in more than one module,
and cannot be better modularized through traditional means [7].
Looking at an aspect, a developer can see both the internal
structure of a crosscutting concern, and its interaction with the
rest of the program during execution. Three key elements of AOP
are joinpoints, pointcuts and advice. Joinpoints are well-defined
points in the program flow such as method call/execution, and

1 http://www.ucc.ie/xml/#acro

field accesses, pointcuts select certain execution points in the
program flow, and advice provides code to run at these selected
points. Dynamic AOP allows aspects to be introduced/removed
to/from a system at runtime.

SONAR leverages dynamic AOP’s ability to structure system-
wide crosscutting concerns for dynamic analysis, and
introduce/remove them at runtime.

2.3 Why JMX?
Originally known as Sun’s JMAPI, Java Management Extensions
(JMX) [5] is gaining momentum as an underlying architecture for
J2EE servers. It defines the architecture, design patterns,
interfaces, and services for application and network management
and monitoring. Managed beans (MBeans) act as wrappers,
providing localized management for applications, components, or
resources in a distributed setting. MBean servers are a registry
for MBeans, exposing interfaces for local/remote management.
An MBean server is lightweight, and parts of a server
infrastructure are implemented as MBeans.

SONAR leverages JMX’s support for highly modular and
customizable server architectures, and standard support for
management features.

3. SONAR Design and Implementation
The subsections that follow provide an overview of SONAR’s
current design and implementation. Further features and
enhancements are discussed in Section 6.

3.1 SONAR Architecture
In order to address the goals described in Section 1, the overall
architecture of SONAR is organized as shown in Figure 1.
Aspects are generated from XML-based definition files, deployed
to instrumented applications, application framework/middleware,
and virtual machine. They are then managed through JMX
compatible tools through domain independent API such as those
related to deployment/undeployment of aspects and domain
specific API such as system navigation. SONAR is thus designed
and implemented in three main parts: AOP integration, XML
transformation/code generation and JMX management. Each
corresponds to one goal in Section 1, and is further explained in
detail in the following subsections.

58

Figure 1. SONAR overall architecture.

3.2 AOP Integration
To achieve dynamic instrumentation, we chose dynamic AOP
since it provides a language level (code centric) support for
augmenting existing systems for various purposes. AOP’s rich
joinpoint model provides a solid foundation for implementing
instrumentation. The joinpoint model covers almost all execution
points in a system written in certain languages. These points
include method invocation/execution, field access and so on. This
enables fine-grained instrumentation – almost all significant
events in the source code can potentially be instrumented.

Dynamic AOP further provides a powerful mechanism for
runtime aspect manipulation such as runtime
deployment/undeployment. In other words, advice can be
dynamically woven into targets and dynamically removed from
targets. Our implementation is based on a Dynamic AOP
implementation, AspectWerkz[1].

Figure 2. Illustrates how configuration file, aspects and
targets are used in AspectWerkz.

3.3 XML Transformation/Code generation
3.3.1 XML Definition
Aspects are defined in AOP framework independent XML files.
Therefore, they can be implemented using different AOP
frameworks or even in different programming languages such as
Java, C++.

Figure 3. Sample XML definition file.

The core content of an aspect includes: variable/method
declaration, pointcut expression, advice with actions, parameter
definition. Variable/method declarations and actions are discussed
in details in the next 2 sections. The current schema is mainly
based on AspectWerkz’s aspect definition schema, which is very
similar to many other existing AOP frameworks, with additions
required for transformation and code generation. Aspects can be
declared to be started automatically or manually. Automatically
started aspects are enabled when the target systems are loaded,
while manually started aspects have to be explicitly manually
enabled at the runtime.

3.3.2 Domain Specific API or Language
The target domain in SONAR prototype implementation is system
optimization and navigation. Variable/method declarations and
actions contain code targeting this specific domain. The reason
for using a domain specific API or language is to separate aspect
code from domain specific implementation. For example, the log
method used in the Figure 3 is defined outside of the aspect code.
It can be implemented as printing to screen, writing to a log or
sending to some management console. As a result, the
implementation choice of such method can be made
independently from aspect code and therefore, can be adjusted
based on the target system. Other reasons are to ease the
development and limit the impact of aspects. In the current
implementation, declarations and actions are written only in Java.

3.3.3 XSLT Transformation & Code Generation

59

Figure 4. XML definition files are transformed into other
XML files and source code in target language using XSLT and

domain specific compiler/code generator.

As shown in Figure 4, XSL Transformation (XSLT) is used to
transform XML definition files into other XML files, such as the
aspect definition file for AspectWerkz (Figure 5), aspect code
(Figure 6) and other necessary source code such as interfaces and
helper classes for management purposes. If variable/method
declarations and actions in the aspect definition are written in
domain specific languages, domain specific compiler might be
used to compile the code into the language used in the target
system.

Figure 5. AspectWerkz’s aop.xml generated by transforming
the definition file in Figure 3.

Figure 6. Java source code containing AspectWerkz specific
code generated from the definition file in Figure 3.

3.4 JMX Management
JMX is used as a means to manage the aspects. This includes
retrieving data from aspects, invoking operations and receiving
event notification. Through JMX, the aspects can be managed by
JMX-compatible tools remotely and/or locally. The tool we used
is called JConsole which is a JMX-compliant graphical tool for
monitoring and management and is built in Sun’s JDK
distribution. Figure 7 and Figure 8 show how JConsole can be
used to manage aspects, more specifically MonitorAspect as
implemented in SONAR. MonitorAspect monitors HTTP request,
database access and JSP service. The Figure 7 illustrates how the
invocation statistics collected by MonitorAspect from those three
different instrumentation points are visualized as line charts in
JConsole. These data and therefore charts are automatically
updated. Figure 8 shows the operations supported by
MonitorAspect. The deploy()/undeploy() are used to
deploy/undeploy MonitorAspect. After being undeployed, advices
defined in MonitorAspect are removed from their targets.
MonitorAspect still can be accessed by JConsole. Therefore, it
can be redeployed by invoking deploy() from JConsole.

60

Figure 7. Data from aspects is visualized and can be updated
in JConsole.

Figure 8. Operations of aspects are listed and can be invoked
in JConsole.

4. ANALYSIS/EVALUATION
Currently, there is no JVM that supports schema redefinition of
any loaded classes. In other words, changes (such as add, remove
or rename fields or methods, change the signatures of methods, or
change inheritance) are not allowed at runtime 2 [1]. However,
dynamic deployment/undeployment of aspects in AspectWerkz
requires schema changes to target classes.
To get around with the above restriction, AspectWerkz uses a
preparation mechanism to prepare target classes for later

2 As mentioned in Java API’s instrumentation section, such

restriction might be lifted in the future.

deployment/undepolyment at runtime. The special construct,
named deployment scope, is used to specify the joinpoints to be
prepared – by adding a call to a public static final method that
redirects to the target join point. The added indirection will surely
introduce overhead. However, such indirection can be inlined by
most modern JVMs [1].
As a result, it is not possible to achieve absolute zero impact on
the performance and memory footprint on target classes. Table 1
shows the impact of using AspectWerkz, with regarding to class
file size and runtime performance. The added size to target class
file is around 1000 bytes.

Table 1. Impact on file size and performance.

Size (bytes) Runtime
Performance (ms)

Original 1,064 0.281

After preparation
(no advice weaven)

2,447 0.282

After weaven 1,839 + the size of
the aspect(s)

0.328

As indicated in the Table 2, Tomcat server’s startup time is
significantly increased because it is running under AspectWerkz’
online mode – aspects are weaved into target classes when they
are loaded into JVM.

Table 2. Startup time of Tomcat. Sampled by running Jakarta
Tomcat 5.5.4. Spring Framework 1.1.3, Spring JPetstore and

AspectWerkz 2.0 (RC2) with online mode on JDK 1.5.0.

Configuration Start up time (ms)
Tomcat 5,953

Tomcat with JMX enabled 6,122

Tomcate with AspectWerkz
and JMX enabled

27,883

One limitation of the current joinpoint model used in defining
aspects in SONAR’s XML files is that it is based on the joinpoint
model from AspectJ and AspectWerkz. Thus, it is closely
targeted to object-oriented programming language model. Many
advanced features are not available to systems developed in non-
object oriented languages. This makes integration with legacy
systems harder. Moreover, AOP provides a low-level code
centric approach. It is focused on static structure of code such as
control flow. It lacks support for data flow and other dynamic
behavior. For example, based on current AOP technology, it is
easy to track when a field is accessed but there is no
straightforward way to track where the value of the field is passed
to and how the value is used in a program.

SONAR does not explicitly support distribution since, currently,
no AOP framework provides built-in support for distribution –
aspects cross distributed applications/systems. However, by
using JMX, aspects deployed in a distributed fashion could
ultimately be accessed and managed through JMX Remote API.

61

5. RELATED WORK
5.1 Pinpoint
Pinpoint [2,3] is a dynamic analysis methodology that automates
problem determination in complex systems by coupling coarse-
grained tagging of client requests with data mining techniques.
Data mining correlates the believed failures and successes of
these client requests as they pass through the system. This
combined approach is used to determine which component(s) are
most likely to be at fault. Pinpoint has been implemented and
used as a framework for root-cause analysis on the J2EE platform
that requires no knowledge of the application components.
Pinpoint consists of a communications layer that traces client
requests, a failure detector that uses traffic-sniffing and
middleware instrumentation, and a data analysis engine. It would
be possible to merge Pinpoint and SONAR in such a way that
would eliminate the manual instrumentation currently required for
Pinpoint’s middleware instrumentation.

5.2 Magpie
Magpie’s [8] goal is to provide synthesis of runtime data into
concise models of system performance [8]. In Magpie, online
performance modeling is an operating system service. Magpie’s
modeling service collates detailed traces from multiple machines,
extracts request-specific audit trails, and constructs probabilistic
models of request behaviour. . It would be possible to adopt some
of the strategies used by Magpie that apply to distribution and
performance debugging to extend SONAR to further
environments.

5.3 DTrace
DTrace [4] is a unified tracing toolkit for both system and
application levels. DTrace can be used to observe, debug and
tune system using the D programming language which is designed
specifically for tracing. As a result, it is a comprehensive
dynamic tracing framework, though only applicable within the
Solaris Operating Environment. DTrace attains many of the goals
shared by SONAR, but within this proprietary environment.

5.4 PEM/K42
Vertical Profiling3 is an approach to correlating performance and
behavior information across the layers of modern systems
(hardware, operating system, virtual machine, application server,
and application) to identify causes of performance problems. The
Performance and Environment Monitoring (PEM) group and K42
group [6, 9] at IBM Research are getting promising results using
this among other approaches to develop effective system
diagnosis tools. We believe SONAR to be an early prototype of a
tool that would fit with this family.

6. FUTURE WORK
As mentioned above, both DTrace and PEM/K42 provide unified
dynamic tracing across operating system, virtual machine and
application. The current SONAR implementation lacks an easy
way to instrument the operating system and certain aspects of

3 http://www-plan.cs.colorado.edu/~hauswirt/Research/

virtual machine. As for a future improvement, we plan to
investigate how to unify SONAR with such tool kits in order to
provide an efficient means for tasks requiring flexible and
customizable tracing crossing all layers in the software stack, but
still focusing more on higher level such as application and
middleware. Additionally, we plan to further investigate
advances in AOP, especially dynamic AOP. We also hope to
eventually integrate a high level language specifically for
optimization and navigation into SONAR.

7. CONCLUSION
SONAR uses XML, AOP, and JMX in order to achieve a
language/framework agnostic, dynamic, manageable, unified
framework for system-wide analysis at runtime. We believe the
results we have gathered from the prototype to date to be
promising in terms of both functionality and performance.

8. ACKNOWLEDGMENTS
We would like to thank Jonathan Appavoo for his inspiration and
insights.

9. REFERENCES
[1] AspectWerkz, http://aspectwerkz.codehaus.org/index.html.
[2] Chen, M., Kiciman, E., Accardi, A., Fox, A., Brewer, E.

Using Runtime Paths for Macroanalysis. In HotOS IV (2003).
[3] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox.

Pinpoint: Problem determination in large, dynamic, Internet
services. Proc. International Conference on Dependable
Systems and Networks (IPDS Track), pages 595-604, June
2002.

[4] DTrace, http://www.sun.com/bigadmin/content/dtrace/
[5] JMX, http://java.sun.com/products/JavaManagement.
[6] K42, http://www.research.ibm.com/K42/
[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Videira Lopes, Jean-Marc Loingtier and
John Irwin, Aspect-Oriented Programming, European
Conference on Object-Oriented Programming (ECOOP),
1997.

[8] Magpie, http://research.microsoft.com/projects/magpie/.
[9] PEM, http://www.research.ibm.com/vee04/Duesterwald.pdf

62

Dependency Issues in Aspect W eaving
 Aditya Varm a, T.V.Prabhakar
 Departm ent of Com puter Science

 IIT Kanpur
 INDIA

tvp@ iitk.ac.in

Aspect Oriented Programming is helpful in writing less tangled
and easier to maintain code with a greater reuse. W eaving of
aspects could be done at compile time, static weaving or at run-
time called dynamic weaving. W hen multiple aspects are woven,
the dependencies amongst them might push the system into an
inconsistent state. In this paper, we describe the problems that
could arise when there are dependencies amongst the aspects
being woven. W e also present an analysis on whether “immediate
or deferred weaving” should be done at runtime.

 Advice, aspect, dependency preserving aspect weaving,
dynamic weaving, emergent properties, inconsistency, weaving.

Aspect orientation is a framework for separation of concerns,
which crosscut the base functionality of the system. By
“crosscutting concerns”, we mean those program fragments that
cannot be encapsulated in a single module and are scattered over
various modules in the system. Different methodologies have
evolved to address issues raised by aspects such as AOP [10],
subject oriented programming [17], M eta object protocols [2],
composition filters [5] etc. In aspect-oriented programming, an
“aspect” is a basic unit implementing a concern. The aspects such
formed are then woven into the system comprising the base
functionality using an aspect weaver. The advantage is improved
modularity, efficient code, aspect reuse and a more easily
maintainable code. Initially, weaving of aspects started with static
weaving - weaving done at compile time. AspectJ [9], Hyper/J
[14] are examples of static weaving of aspects. AspectJ is an

extended language of Java facilitating features and constructs for
writing and inserting aspects at compile time. An aspect is defined
in terms of “Join points”, “Point cuts” and “advices”. A join point
represents a well-defined point in the execution of a program.
Point cut represents a collection of join points. An advice
represents the behavior to be executed at the join point. Aspect
dependence can be defined using the “declare precedence”
keyword. W eaving of an aspect into base code requires access to
the source code. The base code is transformed by embedding calls
to the advice methods. For every dynamic join point in the aspect
there is a corresponding static shadow in the source code. Each
piece of advice is matched with each static window. If there is a
match, a call to the advice method is embedded into the source
file.

The main drawback of static aspect weavers is that they do not
facilitate the insertion or deletion of aspects during the execution
of system. The decision to which aspect is to be woven has to be
done beforehand, leaving no chance to reconfigure the system at
runtime without aborting and restarting it. Once an aspect is
statically woven, identifying aspect specific statements that are
added during weaving is difficult. This has led to the advent of
dynamic weaving of aspects.

There are numerous examples, which illustrate the necessity for
weaving and unweaving aspects at runtime.

W e consider the two well-known examples of debugging and load
balancing aspects. Let us suppose that an application is being
under execution and we want to trace the execution stack or
obtain some values of the variables. Assuming that a debugging
aspect is written for the purpose, it needs to be woven into the
application at runtime. Unfortunately, the static weavers cannot
implement this.

Another well-known example is that of load balancing. Let us
suppose that a system is designed consisting of multiple servers,
multiple clients etc. The configuration of the system needs to be
modified depending on the number of the incoming clients and
the number of presently available servers. This requirement
necessitates that load balancing functionality be written as an
aspect and added at runtime.

The two most widely used approaches for dynamic weaving are:
“byte code manipulation” and the “interpreter approach [16]”.
There is also another approach in use called “proxy approach [6]”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
4th International conference on Aspect-Oriented Software Development,
M arch 14-18, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-58113-000-0/00/0004… $5.00.

63

though not widely used as compared to the former ones. Currently
there are tools basing on the above-mentioned approaches like
Prose [12], JAC [11], W ool [19], AspectW erkz [15], CLAW ,
AOP/ST, Jasco etc.

M ost of the weaving tools do not consider inter-dependencies that
could exist between aspects. They just follow a fixed order (for
example, Prose [13] executes aspects in the decreasing order of
their insertion time). This could result in a violation of
dependencies leading to inconsistencies in the system.

In this paper, we present the problems that arise when
dependencies are not considered during weaving of aspects. W e
start with static weaving and then move on to dynamic weaving.
W eaving at runtime also involves an additional parameter, the
point in execution at which the aspect enters the code base.

The rest of the paper is structured as follows: In section 2, we
present the dependencies and the problems that arise in case of
static weaving. W e also illustrate an analysis, to be done before
the weaving of an aspect. W e do the same for dynamic weaving in
section 3. Finally, section 5 presents the conclusions.

Dynamic aspect weavers provide a solution to the problem of
switching off any aspects, modifying already added ones or
inserting any new ones at runtime. The drawback with currently
available static and dynamic weavers is that there is no support
for specifying the dependency of the aspects. Though some
support is available in AspectJ, it is limited in its capabilities.
Prose, a dynamic aspect-weaving tool, executes aspects in the
reverse order of their insertion. Even in the case of a single
aspect, the advices concerning a single join point are executed in
the reverse order of their specification.

According to Huang [8], aspects not only interact with the
primary abstraction but also with other aspects.

Since weave order cannot be specified, weaving multiple aspects
at a time or even a single aspect, deviating from the dependency
order would lead to problems in the system. Failure to preserve
dependency order of aspects would lead to inconsistencies in
various states of the system. These undesirable behavior is termed
“emergent properties”.

According to Kienzle [7], aspects are categorized into three kinds:
orthogonal, uni-directional and circular.

aspect provides functionality, which is independent
of the functionalities of the other aspects or the base application.
Ex. - Timing aspect implemented by a timing counter.

 aspect provides functionality that is dependent on
the functionalities of other aspects in the system. It can be further
classified into uni-directional preserving and uni-directional
modifying aspects

 aspect does not affect the
functionality of any other aspect. Ex. – Billing aspect depending
on the timing aspect.

aspect modifies the functionality
of some part of an application, but transparently without the
latter’s awareness.

when several aspects form a chain of
dependencies between them.

Essentially, by dependency we mean a write operation followed
by a read or a write followed by a write. W e can see that
orthogonal aspects do not pose any concern with regard to the
dependency order issue, but others do. The weaving and
execution of aspects can be in a single thread of execution, i.e. no
concurrent executions. It can also be done through multiple
threads of execution. However, the consistency problems that we
will be discussing will be same in both the cases.

W e classify the inconsistencies, which occur due to dependency-
failing-aspect-executions in a fashion similar to the levels of
consistency in the database terminology like “Repeatable read”,
“Read committed”, and “Read uncommitted”.

 allows only committed records to be read. It
also requires that, between two reads of a record by a transaction,
no other transaction is allowed to update the record.

 is more relaxed compared to repeatable read in
the sense that between two reads of a record by a transaction, the
records can be updated by any other committed transaction.

 is the lowest level of consistency. It allows
even uncommitted records to be read.

W hen we consider the problem of inconsistency caused due to the
failure in preserving aspect dependencies during execution, the
notion of “problem” depends on the level of inconsistency
acceptable by the user and the domain under consideration. For
Ex. – If we consider an application, where the user queries for
search results on the web during the execution of the application,
the user may well be comfortable with the partial results or he
may as well be less bothered even the results change for two
consecutive searches. In that case, we can say that the user allows
for weaker levels of consistency.

The upcoming discussion deals with the before and after advice
declarations. Advice defines the additional code that should be
executed at the join points. ‘Before advice’ is executed when a
join point (say field modification join point) is reached. W hen the
control returns from the join point, ‘after advice’ is executed. The
problems illustrate only generic instances, and do not deal with
any real time domain problems.

The discussion assumes that the weaving follows the ordering as
in tools like Prose, JAC etc. That is if there are m aspects woven,
the execution order goes as:

.

 - before advice; - base functionality; - after advice.

64

Some tools like AspectJ weave in this fashion:

.

W e base our discussion on the former. The analysis for the latter
can be done on similar lines.

If we are weaving at runtime, the program counter could be at
any point along this sequence at the time of weaving. This gives
rise to different kinds of problems that we will discuss further. W e
assume that the developer of an aspect has prior knowledge of the
aspects woven into the system. Therefore, the developer while
providing the aspect for weaving at runtime specifies its
dependencies with the existing aspects.

2.2.1 Static weaving

W e begin our analysis with the static case, observe the
dependency problems and move on to dynamic weaving. As said
before, AspectJ facilitates for specifying aspect priorities.
However, it is limited in its capabilities. Giving a fixed order to
the weaving of aspects (like Prose), would lead to inconsistent
states in the system.

Now, we will try to analyze the various dependencies that need to
be considered in the weaving of aspects.

W e use the following notation to specify the dependencies:

W henever we say ‘not solvable’ in the future discussion, we mean
that an ordering, satisfying the constraints cannot be obtained.

2.2.2 Problems with Static W eaving

There are three cases to consider:

 If there are ‘m’ aspects and no dependencies are
specified between them, then the aspects can be woven in any
order.

 If a single aspect is to be woven, the order of weaving
the aspect is not concerned by whether it’s after advice has a
dependency on the before advice or not.

The weave order would be:

 If two or more than two aspects are to be woven, and if
dependencies exist between them, then those dependencies have
to be analysed as to whether a valid ordering satisfying these
constraints can be obtained or not.

(a) If the aspects are orthogonal, they can be woven in any order.

(b) If the aspects are non-orthogonal and some of them are uni-
directional, then we need to consider the dependencies specified
between them to obtain a valid ordering.

W e assume that by default, the weaving order is .

The dependencies between two aspects asp 1andasp 2can be
any of the below specified ones:

D(A1 , B1)

D(A2 , B2)

D(B1 , B2)

D(B2 , B1)

D(A1 , B2)

D(A2, B1)

D(A1 , A2)

D(A2 , A1)

W e left out D(Bi , Aj), as we assume that before advices do not
depend on the after advices.

If or or both is/are specified, then the weave
order would be in contrast with the required. Violating the
dependency order would lead to

inconsistencies. The corresponding advices have to
be swapped to maintain the dependency.

Similarly, we can easily state that if a cyclic dependency occurs
between the specified dependencies, then the aspects cannot be
woven. Swapping would not solve the problem.

Ex:- and ; and .

No other combinations of the above-mentioned dependencies
would lead to problems.

The reason is that of the above eight dependencies, four are of an
after advice depending on a before advice. These dependencies
whether present or not would not be of any problem. The reason
is that after advices always come later in execution relative to the
before advices.

Of the remaining four dependencies, the dependencies involving
only before advices would not lead to any inconsistency in the
after advices. Therefore, only a cyclic ordering between the
dependencies as specified before, would lead to an unsolvable
problem.

In case of a possible weave ordering based on the dependencies,
the order of the advice execution would be any of the below:

In the case of more than two aspects to be woven into the system,
the analysis would be the same with the same problems occurring,
as specified above.

Bj Ai

D(Ai,Bj)

65

Algorithm:

 Static-weave (i , j) // Default weaving order: BjBi F AjAi

{

 if (i & j) are orthogonal

 W eaving can be done. Return true.

 else

 if ((D(Bi , Bj) & D(Bj , Bi)) || (D(Ai , Aj) & D(Aj , Ai)))

 W eaving cannot be done. Return false.

 else

 if (D(Bj , Bi) || D(Aj , Ai))

 W eaving can be done

 by swapping the corresponding advices.

 Return true.

 }

Before going into the discussion, we assume that a valid ordering
is obtained for the statically woven aspects. Now coming to
dynamic weaving, we strive to obtain an order equivalent to that
of the static case i.e.

 If D(X , Y) is required: W eave Y before X.

If we consider an aspect that is already woven and at runtime, a
new aspect or a modified version of the same aspect is to be
woven, there are different weaving points depending on when the
aspect arrives:

Since the weaving command could come at any arbitrary time, the
points at which weaving can be done, are as shown below:

Ex -

If an aspect is to be woven at runtime, the points to be considered
are:

The arrows represent the possible points for weaving.

Therefore, in dynamic weaving, two issues come into
consideration. One is, whether a valid weave order is possible for
the given dependencies. If so, can the weaving be done
immediately? There will be instances where weaving can be done,
but not at the very point of arrival of the aspect. W eaving of the
aspect may need to be deferred to a later stage in execution. All
this we will see in our coming subsections.

W e have considered three types of scenarios to present the
dependency order problem. They will be dealt in succession.

In our first scenario, we assume that no aspects are woven
statically. An aspect asp1 is to be woven at runtime into the
system.

In this situation, the aspect can or cannot be woven directly at the
very instance of arrival. It depends on whether the after advice
has a dependency on the before advice or not. It also depends on
the point of execution at which the aspect arrived.

If the aspect arrives before the execution of the join point
functionality, then the aspect can be immediately woven.

If the aspect arrives after the execution of the join point
functionality, then the dependency of the after advice on the
before advice has to be considered. If dependency exists, then
weaving should not be performed at that instant. It should be
deferred to a later stage in execution. Otherwise, weaving can be
performed.

Therefore, the final advice execution order would be:

Algorithm: //Aspect i has to be inserted

 Dynamic-weave (i , weave-point)

 {

 if (weave-point before F) do weave.

 if (weave-point after F)

 if (D(Ai , Bi)) defer weaving

 else

 do weave.

 }

In this scenario, we assume that we already have an aspect asp1
woven into the system at static or runtime. A new aspect asp2 is
to be woven. Here two cases need to be considered.

Ifasp2 is orthogonal, it can be woven into the system. However,
decision should be taken as to whether it can be woven
immediately. The analysis required is the same as that considered
in the previous section. It is not restated to avoid redundancy.

Ifasp2 depends on the services of the asp1, then the dependencies
specified should be considered before making the decision.

Before weaving:

66

The new aspect may arrive at any of the four weaving points
shown below:

1 2 3 4

 In the below analysis, each case refers to a weaving point.

Ifasp2 is to be woven before the execution of B1, then it can be
directly woven, if a valid ordering satisfying the inter-aspect
dependencies is obtained. For this, the analysis to be done is the
same as that done in the case of static weaving, where two or
more aspects are to be woven.

The final advice execution order can be any of the following:

In this case, initially it should be checked whether is
required.

If doesnot exist, then the analysis would be the same
as that of Case 3 in static weaving. If comes before in
advice execution order, would not be executed.

If exists, then weaving is attempted without the
execution of .

In both the above situations, the problem of weaving the aspect
without ’s executiondepends on whether has dependency on
 and the inter-aspect dependencies.

If does not exist and the inter-aspect dependencies
provide a weave order (analysis is the same as that of Case 3 in
static weaving), then weaving can be performed.

If exists, we should check whether a valid weave
ordering can be obtained satisfying the inter-aspect dependencies
(analysis is the same as that of Case 3 in static weaving). If yes,
then the weaving should be postponed to a later point in
execution. W eaving the aspect immediately would lead to

 as may access data written by
(which does not execute).

If a valid ordering cannot be obtained with the inter-aspect
dependencies, weaving should not be done.

The final advice execution order can be any of the following:

In this case, is not executed. Therefore, the analysis should be
done by considering the dependence of on .

If exists and a valid ordering can be obtained with the
inter-aspect dependencies, weaving should not be done
immediately. It is deferred to a later stage. W eaving the aspect
immediately would lead to as
A2 may access data written by B2(which does not execute).

If does not exist and the inter-aspect dependencies
provide a valid weave order (analysis same as that of case 3 in
static weaving), then weaving can be performed.

If a valid ordering cannot be obtained with the inter-aspect
dependencies, weaving should not be done.

The final advice execution order can be any of the following:

Issues concerning the weaving of multiple aspects at a time
involve considerations of multiple issues specified above. W hat
can be stated is that concerns involving multiple aspects can be
resolved into issues involving two aspects, one aspect at a time.

Algorithm://Aspect i already exists & aspect j has to be woven

 //Before weaving: Bi F Ai

 Dynamic-weave (j , weave-point)

 {

 if (weave-point before Bi)

 if (Static-weave (i , j)) do weave.

 if (weave-point after Bi & weave-point before F)

 {

 if (! D(Bi , Bj))

 if (Static-weave (i , j))

 if (D(Bj , Bi)) goto L2.

 else

 do weave.

 else

 goto L2.

 }

67

 L2: { if (! D(Aj , Bj))

 if (Static-weave (i , j)) do weave.

 else

 if (Static-weave (i , j)) defer weaving.

 }

 if (weave-point after F) goto L2.

 if (weave-point after Ai)

 if (Static-weave (i , j)) do weave.

 }

In this scenario, we assume that two aspects asp1 & asp2 are
already woven into the system and are in execution. W e need to
examine the situation when one of the aspects changes. That is, it
is modified and sent to be re-woven.

The weaving points to be considered are:

1 2 3 4 5 6

In the following analysis, each case refers to a weaving point.

asp1

:

If weaving is at the point 1, then the default weaving order of the
advices would be:

The analysis to be done to determine the possibility of weaving is
the same as that done in the case of static weaving, where two or
more aspects are to be woven.

The final advice execution order can be any of the following:

:

In this scenario, older version would be executed.

To weave the newly modified aspect asp1, dependence of on

should be checked.

If exists, weaving of the aspect should not be done
immediately. It must be deferred to a later stage in execution.

If doesn’t exists, weaving of the aspectis attempted
considering the inter-aspect dependencies. The analysis would be
the same as done in case of static weaving involving two or more
aspects.

In case, weaving cannot be done or deferred to a later execution
point, executions with the older versions will continue.

The final advice execution order can be any of the following:

W eaving can be done if a valid order can be obtained from the
aspect dependencies specified.

The final advice execution order would be:

asp2

Similarly, the scenario of a single orthogonal modified aspect to
be rewoven is a special case of this section.

There may be some domain specific situations, where the version
difference between advice executions may not be of problem. In
such a case, in Case 2 – 4, modified aspect can be woven though

exists and is not executed.

Algorithm:

//Aspects i & j were already inserted. Aspect i’(modified i) has to
be woven.

//Before weaving: Bi Bj F Ai Aj

 Dynamic-weave (i’ , weave-point)
 {

 if (weave-point before Bi)

 if (Static-weave (i’ , j)) do weave.

 if (weave-point after Bi & weave-point before F)

 goto L2.

 if (weave-point after F) goto L2.

 L2: { if (! D(Aj’ , Bj’))

 if (Static-weave (i’ , j)) do weave.

68

 else

 if (Static-weave (i’ , j)) defer weaving.
 }

 if (weave-point after Ai)

 if (Static-weave (i’ , j)) do weave.
 }

A dynamic aspect weaver requires the dependencies between the
aspects. The class constructs written for the tool should facilitate
for the specification of dependencies (as in the case of aspectJ that
provides “declare precedence” keyword). Then the problem can
be solved. In a sense, the dependencies should be specified along
with aspects for insertion.

 Once the dependencies are specified, the analyses discussed
in sections two & three, should be done based on the run-time
information for dynamic weaving. For this JVM DI can be used to
obtain information of the stack frame and method executions etc.
during run-time. Only then, the decision to weave the aspect or
not, and if so when in the execution phase, is to be made.

W hen an aspect cannot be woven, feedback is provided to the
aspect developer specifying the dependent aspects. The system
will continue its operation with the woven aspects.

W e are in the process of implementing a dynamic aspect-weaving
tool with the feature of dependency preservation. The interpreter
approach wherein hooks are inserted as breakpoints is being
applied for dynamic weaving.

In this paper, we discussed the issues that arise when there are
dependencies between aspects. W e initially considered the static
case of weaving. W e then presented an analysis that is necessary
before an aspect can be woven at runtime. Essentially one needs
to check whether a weaving is permissible at all, and if yes, at
what point of execution can the weaving happen. An
implementation incorporating these ideas is in progress.

[1] Alonso, G., A. Popovici, T. Gross. Dynamic W eaving for
Aspect Oriented Programming. In 1st Intl. Conf. on Aspect-
Oriented Software Development, Enschede, The
Netherlands,Apr. 2002.

[2] Bobrow, D.G., G. Kiczales and J. des Rivieres., The Art of

M eta-Object Protocol, M IT Press 1991.
[3] Böllert, K.: “On W eaving Aspects”. European Conference

on Object-Oriented Programming (ECOOP), W orkshop on
Aspect Oriented Programming, June 1999.

[4] Bradley, J.T., An Examination of Aspect-Oriented
Programming in Industry. Honors Thesis, Advisor

, Technical Report CS-03-108, Department of
Computer Science, Colorado State University, Fort Collins,
Colorado.2003

http://www.cs.colostate.edu/~rta/publications/CS-03-108.pdf

[5] Composition Filters homepage
http://trese.cs.utwente.nl/oldhtml/composition_filters

[6] Constantinides, C.A., T. Elrad, M . E. Fayad, Netinant P.,
Designing an aspect-oriented framework in object-oriented
environment, ACM Computing surveys, M arch 2000.

[7] Jörg Kienzle, Yang Yu, Jie Xiong, On Composition and
Reuse of Aspects.

[8] Huang, J., Experience using AspectJ to implement Cord,
OOPSLA 2000.

[9] Kiczales, G., E. Hilsdale, J. Hugunin, M . Kersten, J. Palm
and W .G.Griswold: “Getting Started with AspectJ”,
Communications of the ACM , October 2001

[10]Kiczales, G., J. Lamping, A. M endhekar, C. M aeda, C.
Lopes, J. Loingtier, J.Irwin. Aspect-Oriented Programming.
In 1997, European Conf. on Object-Oriented Programming
(ECOOP, '97), pages 220-242. Springer Verlag, 1997.

[11]Pawlak, R., L. Seinturier, L. Duchien, and G. Florin, “JAC:
A Flexible Solution for Aspect-Oriented Programming in
Java,” in M etalevel Architectures and Separation of
Crosscutting Concerns (Reflection 2001), LNCS 2192, pp.
1–24, Springer, 2001.

[12]Popovici, A., T. Gross, and G. Alonso., Just-In-Time
Aspects: Efficient Dynamic W eaving for Java, AOSD 2003,
Proceedings of the 2nd international conference on Aspect-
oriented software developmentBoston, M assachusetts.

[13]Popovici, A., T. Gross, and G. Alonso, “ PROSE website
http://prose.ethz.ch/W iki.jsp?page=AboutProse” 2003.

[14]Tarr, P., H. Ossher, W . Harrison, and S. Sutton. N Degrees of
Separation: M ulti-dimensional Separation of Concerns. In
1999 Intl. Conf. on Software Engineering, pages107-119,
Los Angeles, CA, USA, 1999.

[15]Vasseur, A., and J Boner,”AspectW erkz W eb Site”,
http://aspectwerkz.codehaus.org” 2004.

[16]W asif Gilani and Olaf Spinczyk. A Family of Aspect
Dynamic W eavers,AOSD 2004 –Dynamic Aspects
W orkshop, Lanchester, UK,M ar.2004

[17]W illiam Harrison and Harold Ossher. Subject-Oriented
Programming (A Critique of Pure Objects). In Proceedings
of OOPSLA’93.

[18]Xerox Corporation. The AspectJ Programming Guide.
Online Documentation, 2002. http://www.aspectj.org/.

[19]Yoshiki Sato, Shigeru Chiba, M ichiaki Tatsubori, A
Selective, Just-In-Time Aspect W eaver, Proceedings of the
second international conference on Generative programming
and component engineering Erfurt, Germany, Year of
Publication: 2003

69

70

Quantifying over Dynamic Properties of Program
Execution

Christoph Bockisch Mira Mezini Klaus Ostermann
Software Technology Group

Darmstadt University of Technology, Germany

{bockisch,mezini,ostermann}@informatik.tu-darmstadt.de

ABSTRACT
In a pointcut we want to fully specify the points in the exe-
cution of a program at which an advice is to be executed.
The pointcut languages of current aspect-oriented program-
ming languages only provide limited support for specifying
points in the execution that do not directly map to points in
the program code. As a result, an aspect programmer has to
implement logic to keep track of certain runtime properties
manually. This logic is detached from the advice’s pointcut.
In this paper, we identify two common patterns of dynamic
properties on which advice rely. We present pointcut des-
ignators that allow to declaratively specify the join points
based on runtime properties in a pointcut and outline a pos-
sible implementation.

1. INTRODUCTION
Pointcut-and-advice units are used in AspectJ-like languages
[9] to modularize crosscutting concerns. The advice part is
a piece of code and a pointcut is a special expression specify-
ing a set of join points at which the advice must be executed.
Join points are points in the execution of a program, for ex-
ample reading a field or calling a method. Each join point
has two parts of context. First, there is the static context,
which can be retrieved by analyzing a static represenation
of the program, such as the source code or bytecode. For a
”field-read” join point the static context is, among others,
the field’s name and the class in which the field-read expres-
sion stands. Second, there is the dynamic context, which
is made up of the situation at runtime when the join point
is executed. Again, using ”field-read” exemplarily, the dy-
namic context can be the value of the field, the methods on
the current call stack, or even the complete history of the
program execution.

The intuition behind using aspect-oriented programming (A-
OP) is that a concern’s implementation is well localized and
the knowledge of when an advice must be executed is bun-
dled to the advice. This implies two goals we want to achieve
when writing aspect-oriented code: first we want to execute

code in different contexts implicitly, second we want to ex-
press the knowledge of these contexts declaratively.

The pointcut language of AspectJ has extensive support for
selecting join points based on the static context. We call this
pointcuts based on static properties. In addition, it also pro-
vides pointcut designators (PCD) for selecting join points by
their dynamic context - pointcuts based on dynamic proper-
ties. Using the cflow or cflowbelow PCDs one can specify
the methods that must be on the call stack when the join
point is executed. With the PCDs target, this and args

one can specify the dynamic type of the receiver object, ac-
tive object or argument objects. However, there are more
dynamic properties that can be relevant for the execution of
an advice at runtime.

In this paper we give examples of aspects that show why a
better support for pointcuts based on dynamic properties is
needed. They show that it is not possible to specify the pre-
cise set of join points declaratively with current pointcut lan-
guages. Additionally, the relevant parts of the join points’
dynamic context must be accessed programma-tically. For
the given examples we have implemented aspects in Alpha
[1, 11], an experimental aspect-oriented language that allows
pointcuts to reason over dynamic properties of a program. It
is possible in Alpha to define new pointcut designators in a
declarative way. We present the resulting PCDs in a pseudo
AspectJ notation, so that it is not necessary to introduce
Alpha in detail in this paper.

The remainder of this paper is organized as follows. In the
next section we show two examples of aspects which heavily
rely on dynamic properties. We discuss how these aspects
can be implemented in current aspect-oriented languages.
Section 3 defines a notation for extended dynamic pointcut
designators in an AspectJ-like pointcut language. A conclu-
sion is given in section 4. Section 5 presents our ongoing
work as well as some related work.

2. CURRENT STATE
In this section, we present two examples of aspects for which
a pointcut must quantify over complex dynamic properties.
We discuss an implementation for those examples in a con-
ventional aspect oriented language where aspects are active
globally and during the whole program execution, and in al-
ternative languages where aspects can be deployed dynam-
ically. This discussion shows that neither of them satisfies
our goals.

71

The first example is a text editor application (Fig. 1). At any
time, the editor has at most one document opened. Docu-
ments can be created, edited and saved. For this application,
we want to write an aspect that prevents the quitting of the
application and the creation of a new document when the
current document is in a dirty state, i.e., there are unsaved
changes.

Editor

create()
edit()
save()
quit()

document

1 0..1

Document

edit()
save()

Figure 1: Base code for the editor example.

A natural description of the pointcut for this problem is:
”calls to the methods create() or quit(), when there has
been a previous call to the method edit() but no call to
save() or create() since then”. Fig. 2 illustrates this.

: Editor

currentDocument
: Document

create()

edit()

save()

currentDocument
: Document

create()

edit()

quit()

clean

dirty

clean

dirty

edit()

Figure 2: A possible sequence of method calls in
the editor example. The last call to quit() should
be prevented because the document is dirty at this
time.

The second example is a graphical editor (Fig. 3). The pro-
gram has a hierarchy of Figure classes that can be displayed
by an instance of the class Display. To reflect the current
state of the Figure objects on a Display, we want to de-
fine an advice calling the Display’s method draw() with the
pointcut: ”calls to a setter method of a Figure to which a
Display points” (see Fig. 4).

2.1 AspectJ
For the discussion of a conventional aspect-oriented lan-
guage we exemplarily use the AspectJ language [9]. This
uses static weaving, i.e., it weaves the aspects into the pro-
gram at pre-runtime. We call this ”static deployment” as
opposed to ”dynamic deployment” discussed in the next sub-
section.

A possible AspectJ implementation for the editor example
is given in Listing 1. The intended pointcut has a sta-
tic part, namely call-instructions to the methods quit() or
create(), and a dynamic part. For the dynamic part the
history of the program execution must be accessed to decide

Display

addFigure(Figure)
removeFigure(Figure)
draw()

Figure

draw(Display)

Line

setStartX(int)
setStartY(int)
setEndX(int)
setEndY(int)
draw(Display)

Circle

setCenterX(int)
setCenterY(int)
setRadius(int)
draw(Display)

Figure 3: Base code for the display updating exam-
ple.

startX = 1
startY = 1
endX = 2
endY = 2

centerX = 1
centerY = 1
radius = 3

centerX = 2
centerY = 2
radius = 4

: Display

f2 : Linef1 : Circle

f3 : Circle

Figure 4: A possible configuration of objects in the
display updating example. Changes to f1 and f3

should trigger a call to the Display’s draw() method.

whether there have been calls to the method edit() since
the last call to save().

AspectJ’s pointcut language only allows to involve that part
of the history which is still on the call stack, i.e., by the
pointcut designators cflow and cflowbelow. However, in
our example the relevant calls to edit() or save() are not,
in general, on the stack when the method quit() or create()
is called. Hence, we store this part of the history in a field
of the aspect (documentDirty) which is maintained by two
separate advice. The one advice setting the state to ”dirty”
after the edit() method has been called. And the other one
setting the state to ”clean” after one of the methods save()
or create() have been called.

The pointcut for the advice of preventing the disposal of
dirty documents is defined to match each call to quit() and
create(), which is the static part. As the dynamic part an
if pointcut designator is added. This one checks the state of
the field documentDirty so that the pointcut only matches
when the document is indeed dirty.

1 public aspect PreventDirtyDispose {
2 private static boolean documentDirty;
3 pointcut makeDocumentDirty():
4 call(void Editor.edit());
5 pointcut makeDocumentClean():
6 call(void Editor.save()) ||
7 call(void Editor.create());
8 after(): makeDocumentDirty() {
9 documentDirty = true;

10 }
11 after(): makeDocumentClean() {
12 documentDirty = false;

72

13 }
14 pointcut disposeDocument():
15 (call(void Editor.quit()) ||
16 call(void Editor.create())) &&
17 if(documentDirty);
18 void around(): disposeDocument() {
19 // prevent quitting or creating a new document
20 }
21 }

Listing 1: An AspectJ aspect that prevents the dis-
posal of dirty documents.

By using advice to keep book of the execution history, the
aspect of preventing the disposal of a dirty document is still
localized. However, the knowledge of when the document
is dirty is spread over several advice. As a result, it is not
specified in a declarative manner but uses conditional logic.

For the second example, the intended pointcut also has a
static and a dynamic part. The static part says that calls
to setter methods on Figure objects are selected, and the
dynamic part says that the Figure objects must be reach-
able from a Display object. The only dynamic property of
the target object we can specify in AspectJ is its dynamic
type. This is done by using the target pointcut designator
(similarly there are the designators this refering to the ac-
tive object and args refering to arguments of the join point).
But we can not decide via the object type whether the target
is reachable from a Display object, or not.

The display update example is basically an instance of the
observer pattern [4] for which [6] presents an abstract imple-
mentation in AspectJ. Listing 2 shows a concrete adaptation
that implements the presented example. The code for im-
plementing the updating behavior is localized in the aspect.

A pointcut is specified that matches each potential join
point, i.e., each call to a method whose name starts with
set on a Figure. But actually the call to a setter yields a
join point only if the target is an instance of Figure that
can be reached from a Display object. Therefore, an if

pointcut designator is added to specify the intended dynamic
property. To make the dynamic property of ”reachability”
accessible to the pointcut we maintain a mapping between
Figure and Display objects by separate advice.

1 public aspect DisplayUpdate {
2 static private Hashtable perFigureDisplays
3 = new Hashtable();
4 static private Set getDisplays(Figure figure) {
5 Set result = (Set) perFigureDisplays.
6 get(figure);
7 if(result == null) {
8 result = new HashSet();
9 perFigureDisplays.put(figure, result);

10 }
11 return result;
12 }
13 pointcut addFigure(Figure f, Display d) :
14 call(void Display.addFigure(Figure)) &&
15 args(f) && target(d);
16 after(Figure f, Display d): addFigure(f, d) {
17 getDisplays(f).add(d);
18 }
19 pointcut removeFigure(Figure f, Display d) :
20 call(void Display.removeFigure(Figure)) &&

21 args(f) && target(d);
22 after(Figure f, Display d):
23 removeFigure(f, d) {
24 getDisplays(f).remove(d);
25 }
26 pointcut change(Figure f) :
27 call(* Figure.set*(..)) &&
28 target(f) && if(!getDisplays(f).isEmpty());
29 after(Figure f): change(f) {
30 Iterator iterator =
31 getDisplays(f).iterator();
32 while(iterator.hasNext()) {
33 ((Display) iterator.next()).draw();
34 }
35 }
36 }

Listing 2: An AspectJ aspect that implements the
display updating concern.

As in the editor example, the aspect of display updating is
localized, but it is not possible to specify the intended point-
cut declaratively. The pointcut is even harder to understand
because the intended dynamic property is only accessed in-
directly by the maintenance logic. The question ”is an ob-
ject a reachable from another object b?” is not answered by
investigating the object heap. It is rather approximated by
investigating method calls, namely calls to addFigure() and
removeFigure().

2.2 Other Approaches
In AspectJ the pointcuts are evaluated at weave-time. For
pointcuts relying on static properties the evaluation results
in points in the program code that directly correspond to the
specified points in the execution. As a result the advice can
be woven there. For pointcuts that specify dynamic prop-
erties, the evaluation only results in potential join points.
AspectJ generates code that checks if the dynamic proper-
ties are satisfied there. The advice is only executed if the
check succeeds [8]. This is also the case for the if pointcut
designator used in the last subsection.

There are other approaches of aspect-oriented languages that
allow aspects to be deployed at runtime [10, 2] or even to
deploy aspects for single objects [3, 12] (we will refer to
this as instance-local deployment). In such languages, it is
possible to define pointcuts that only depend on static prop-
erties and deploy/undeploy an appropriate advice when the
dynamic property becomes satisfied respectively unsatisfied.
In the editor example, we would write the pointcut call(*

Editor.create()) || call(void Editor.quit()). The ad-
vice would be deployed after the method edit() has been
called and undeployed after a call to save() or create(). A
more general description of this approach is given in Mor-
phing Aspects [5].

With instance-local deployment, we can write the pointcut
for the display update example by only specifying the static
part of it, such as call(void Figure.set*(..)). An advice
with this pointcut is deployed for Figure objects that are
added to a Display and undpeloyed for each Figure that is
removed from a Display.

Similar to the presented examples, the deployment can also
be realized as an advice. However, when using dynamic de-

73

ployment, the knowledge of when the advice really must be
executed is also not expressed declaratively as it was postu-
lated as a goal of AOP ealier in this paper. The lack of run-
time checks before executing the advice leads to improved
performance [7], but does not help writing aspect-oriented
code more clearly, at least for the two presented problems.

3. EXTENDED POINTCUT DESIGNATORS
FOR DYNAMIC PROPERTIES

In this section, we show how to implement the examples
from section 2 in Alpha [1, 11], a toy aspect-oriented lan-
guage, where pointcuts can be specified based on a rich set
of dynamic properties. To accomplish this, facts are gen-
erated in a Prolog [13] database at relevant join points1.
This database contains facts about (1) the abstract syntax
tree of the program, (2) the type hierarchy, (3) a complete
history of the execution trace up to the current point in ex-
ecution, and (4) the current content of the heap. Pointcuts
are written as Prolog queries which provides us with func-
tional abstraction for pointcut designators. Everytime a fact
is added to the database, all pointcuts are evaluated. When
the join point matches a pointcut, the associated advice is
executed. All this combined allows us to define high-level
pointcut designators that rely on a rich set of static and
dynamic properties of join points.

AspectJ is widely known and thus we present the resulting
high-level pointcut designators as suggestions for extensions
to AspectJ’s pointcut language. By doing so we can omit
an introduction to Alpha which is not necessary for argu-
menting the need of better pointcut designators. These ex-
tensions are tailor-made for the presented examples and are
not useful in general. The general pointcut designators im-
plemented as extensions to Alpha can be downloaded from
[1].

To specify the control flow in which join points can occur it
must be possible to specify when the control flow is entered
and when it is exited. To stay conform with AspectJ, one
pointcut is specified that describes the join points at which
the control flow is entered and one pointcut can be specified
at which the control flow is left. As opposed to the PCDs
cflow and cflowbelow both pointcuts generally are distinct.
Further, the points in the execution to be specified can be
just before a join point or just after a join point (similar to
the difference of a before and an after advice), see Fig. 5.
Thus, we suggest to add the following pointcut designators
to AspectJ.

1 afterstart(<pointcut>)
2 afterend(<pointcut>)
3 beforestart(<pointcut>)
4 beforeend(<pointcut>)

With these extensions, the pointcut for the editor exam-
ple can be specified as in Listing 3. The first part of the
pointcut specifies method calls that lead to the disposal of
the current document, as in Listing 1. The afterend and
beforeend PCDs declare that join points can only match

1Alpha uses static optimization techniques to find the smal-
lest possible set of join point shadows. This process can
be compared to the evaluation of pointcuts by the AspectJ
weaver [8].

: Editor

create()

edit()

save()

edit()

b
e

fo
re

b
e

g
in

(c
a

ll
(*

s
a

v
e

(.
.)

))

b
e

fo
re

e
n

d
(c

a
ll

(*
s
a

v
e

(.
.)

))

a
ft
e

rb
e

g
in

(c
a

ll
(*

s
a

v
e

(.
.)

))

a
ft
e

re
n

d
(c

a
ll

(*
s
a

v
e

(.
.)

))

Figure 5: Join points specified by the new control
flow based pointcut designators.

after the current document has been put into a dirty state
(i.e., the method edit() has been called), and before the
document has been made clean. Of course, we can not look
into the future to see whether the beforeend pointcut will
eventually match. Thus the latter PCD is implemented in
a way that the complete pointcut only matches when the
afterend pointcut has already been matched during the ex-
ecution, but the beforeend pointcut has not matched since
then or never at all. If any of these pointcuts has been
matched several times in the execution, only the last time
is taken into account. The right ruler in Fig. 2 is black for
the time spans at which both conditions are satisfied. Join
points can only occur during those time spans.

1 pointcut disposeDirtyDocument():
2 (call(void Editor.quit()) ||
3 call(void Editor.create())) &&
4 afterend(call(void Editor.edit()) &&
5 beforeend(call(void Editor.create()) ||
6 call(void Editor.save()));

Listing 3: A pointcut for the editor example using
the extended pointcut language.

For object-graph based pointcuts we have identified the need
for a pointcut designator based on the ”reachability” prop-
erty for the target in the context of the join point. We sug-
gest the pointcut designator targetreachable(<type>) to
select join points where the target is reachable from an ob-
ject of type <type>. With this designator we can define the
pointcut for the display update example declaratively. As is
possible with the target PCD in AspectJ, values from the
join point’s context can be bound with the targetreachable
pointcut designator. Unlike in AspectJ it is, however, pos-
sible that several Display object have the property that the
Figure is reachable from them. In this case the associated
advice is called once for each value in the context.

1 pointcut changeDisplayedFigure():
2 call(void Figure.set*(..)) &&
3 targetreachable(Display d);

A similar pointcut designator can be added to specify the
reachability property for the active object, i.e., thisreacha-
ble(<type>). In our prototype the reachability property
can also be specified for argument objects. But we will not

74

present this here because this PCD requires a different syn-
tax than targetreachable and thisreachable.

4. CONCLUSION
With the possibility of defining precise pointcuts in a declar-
ative way as presented in the last section, the meaning of
an advice becomes more clear. In the presented AspectJ
implementation of the aspects in section 2 we used the if

PCD to refer to dynamic properties in the pointcuts. Thus,
you have to understand the helper-advice for maintaining
the state accessed in the if PCD before you can understand
which join points are selected.

What’s more the presented examples each represent a pat-
tern that occurs repeatedly. For example the specification
of a control flow as in the editor example is also used by
other concerns. Let’s assume we want to add an aspect for
recording macros to the editor. The user can start and stop
the recording by pressing a button which results in a call
to the method startMacro() and stopMacro() accordingly.
Between two such method calls, each call to edit() must be
recorded. The problem is very similar to the prevention of
disposing a dirty document, but we have to implement the
complete logic for keeping track of the execution history,
over again.

We used AspectJ’s pointcut language to describe our exten-
sions to the pointcut language because AspectJ is widely
known. However, we suggest to exetend the pointcut lan-
guages not only of conventional AO lanuages with globally
deployed aspects. The suggested extensions are complemen-
tary to the deployment mechanism. Steamloom [3], for ex-
ample, uses an AspectJ-like pointcut language, too, includ-
ing the PCDs based on dynamic properties that already exist
in AspectJ, such as cflow.

5. ONGOING AND RELATED WORK
We are currently classifying properties on which pointcuts
can be founded. The properties are rated based on the com-
plexity needed for an efficient implementation. We are also
exploring the possibility to implement pointcuts based on
dynamic properties in an execution environment with dy-
namic and instance-local deployment that is being developed
at our group (Steamloom [3]).

[14] presents an extension to AspectJ where temporal rela-
tions between events can be specified in a pointcut that must
be true to select a join point at runtime. The relations are
defined using context free grammars. The authors of [14]
do not, however, analyze the need for expressing dynamic
properties in pointcuts, in general. We see this extension as
a possible notation for pointcut designators based on the ex-
ecution history as well as a possible implementation of such
PCDs.

6. REFERENCES
[1] Alpha project. http://www.st.informatik.tu-

darmstadt.de/pages/projects/alpha/.

[2] AspectS homepage, 2003.
http://www.prakinf.tuilmenau.de/ hirsch/Project-
s/Squeak/AspectS/.

[3] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual Machine Support for Dynamic Join Points. In
AOSD 2004 Proceedings. ACM Press, 2004.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[5] S. Hanenberg, R. Hirschfeld, and R. Unland.
Morphing aspects: incompletely woven aspects and
continuous weaving. In AOSD, pages 46–55, 2004.

[6] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proceedings
OOPSLA ’02. ACM SIGPLAN Notices 37(11), pages
161–173. ACM, 2002.

[7] M. Haupt and M. Mezini. Micro-Measurements for
Dynamic Aspect-Oriented Systems. In M. Weske and
P. Liggesmeyer, editors, Proc. Net.ObjectDays 2004,
volume 3263 of LNCS. Springer, 2004.

[8] E. Hilsdale and J. Hugunin. Advice Weaving in
AspectJ. In Proc. of AOSD’04. ACM Press, 2004.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of ECOOP ’01, 2001.

[10] M. Mezini and K. Ostermann. Conquering aspects
with Caesar. In Proceedings Conference on
Aspect-Oriented Software Development (AOSD) ’03,
pages 90–99. ACM, 2003.

[11] K. Ostermann, M. Mezini, and C. Bockisch.
Expressive pointcuts for increased modularity. In
Proceedings ECOOP ’05. to appear. Springer.

[12] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura,
and S. Komiya. Association aspects. In Proc. of
AOSD’04. ACM Press, 2004.

[13] L. Sterling and E. Shapiro. The Art of Prolog. MIT
Press, 1994.

[14] R. J. Walker and K. Viggers. Implementing protocols
via declarative event patterns. In Proceedings of the
ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE-12), 2004.

75

76

Jumping Aspects Revisited

Bruno De Fraine, Wim Vanderperren,
Davy Suvée

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

bdefrain,wvdperre,dsuvee@vub.ac.be

Johan Brichau
Programming Technology Lab (PROG)

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels, Belgium

jbrichau@vub.ac.be

ABSTRACT
In this paper, we propose an extension of the JAsCo aspect-
oriented programming language for declaratively specifying
a protocol fragment pointcut. The proposed pointcut lan-
guage is equivalent to a finite state machine. Advices are
attached to every transition specified in the pointcut pro-
tocol. We claim that stateful aspects benefit from run-time
weaving and therefore introduce the JAsCo run-time weaver.
When employing this run-time weaver, a stateful aspect is
only woven at the join points it is currently interested in.
When a state-change occurs, it is rewoven to the new target
join points. Hence, a real jumping aspect is realized, that
literally jumps from join point(s) to join point(s).

Keywords
Aspect-Oriented Software Development, Run-Time Weav-
ing, Stateful Aspects, JAsCo

1. INTRODUCTION
An aspect definition generally consists of two separate parts:
the aspect applicability condition (pointcut specification)
and the aspect functionality (advice). The aspect applica-
bility condition determines when the aspect’s functionality
should be invoked. In early aspect-oriented languages, this
condition was often expressed in terms of static locations
in the base program. However, it was argued early on that
conditions in terms of run-time events were more appropri-
ate (e.g. jumping aspects [3], AspectJ’s dynamic join point
model [19], event-based AOP [10],. . .).

The importance of dynamic applicability conditions is very
well illustrated by a relatively new kind of aspects: state-
ful aspects [8]. These aspects describe their applicability
in terms of a sequence of run-time events. The true dy-
namic nature of their applicability condition even implies
that these aspects can benefit from a run-time weaver that
enables aspects to ‘jump’ in a very literal sense. This con-
cept is illustrated in the context of JAsCo [28], which is a

dynamic aspect language with support for the definition of
stateful aspects, and which provides a run-time weaver for
dynamically adding and removing aspect behavior.

The following section describes how stateful aspects benefit
from a run-time weaver. Section 3 describes stateful as-
pects in JAsCo, together with an analysis of the drawbacks
of static weaving. Section 4 describes run-time weaving in
JAsCo and weaving of stateful aspects using run-time weav-
ing. Section 5 describes related work and section 6 concludes
the paper and discusses future work.

2. STATEFUL ASPECTS BENEFIT FROM
RUN-TIME WEAVING

Stateful aspects [8] are aspects that are triggered by the oc-
currence of a consecutive sequence of events. They are con-
sidered stateful because their applicability condition needs
to consider the notion of state to keep track of the (past) se-
quence of events. In contrast, the applicability condition of
traditional aspects is stateless because the aspect applies on
all the events that it matches. For example, consider a state-
ful logging aspect that only requires to write data to a log if
a user is logged in. The applicability condition of this state-
ful logging aspect can be described in terms of a sequence
of events. The first event is the execution of the login()

method. Subsequent events trigger the aspect’s advice that
writes data to a log until the execution of the logout()

method, which terminates the applicability of the stateful
logging aspect. Another example, which is used in this
paper, is a simple publish/subscribe collaboration, imple-
mented using an aspect. In such a stateful publish/subscribe
aspect, the aspect only publishes to a subscriber after it has
actually subscribed, i.e. the publish advice is only applicable
after the execution of the subscribe() method.

Some AOP languages, such as JAsCo [28], provide linguistic
support for the description of stateful aspects. In JAsCo, the
aspect applicability condition of stateful aspects is described
by means of a declaratively specified protocol that describes
the desired sequence of events. An implementation of such
a protocol in JAsCo is shown later on, in section 3.2. Al-
though stateful aspects could be simulated using traditional
aspects by keeping an explicit state variable in the aspect
code, such a manual implementation is a cumbersome and
error-prone task. More importantly, it involves tangling the
aspect-applicability mechanism with the aspect’s function-
ality inside of the advice, which is undesirable. Providing

1

77

linguistic support for the implementation of stateful aspects
frees the programmer from the burden of writing the state
bookkeeping code, which allows for a trivial and clean im-
plementation of stateful aspects.

However, the weaving of stateful aspects using a static weaver
results in a significant performance overhead, as code needs
to be woven at any possible join point that is considered
by the stateful aspect. Although a stateful aspect might be
interested in many different join points in its lifetime, only
a limited set of join points are applicable at a particular
point in time. Hence, the stateful aspect is only interested
in the occurrence of a particular subset of events, i.e. those
events that are applicable given the aspect’s state. Con-
sequently, the presence of woven code at those join points
that are not applicable only induces a performance over-
head. Static weaving of stateful aspects also results in a
severe limitation in expressiveness because the possible join
points need to be known at compile-time. Some stateful as-
pects however require to compute the applicable join points
at run-time. For instance, reconsider the case of the simple
publish/subscribe protocol. In some cases, a decision about
the events that should be published can only be taken upon
subscribing (i.e. at run-time). This means that the aspect
can only be woven at the required join points after the sub-
scription event.

To resolve these problems, we propose to weave stateful as-
pects at run-time. Instead of statically weaving code at any
possible join point that might be required for the execution
of the stateful aspect, the aspect is only woven at the ap-
plicable join points at run-time. In essence, when a stateful
aspect changes state (because an event expressed in the pro-
tocol has occurred), the run-time weaver unweaves the code
at those join points in which the aspect is no longer inter-
ested and reweaves it at the appropriate join points. This
realizes a real jumping aspect that literally jumps from join
point(s) to join point(s). As a result, no unnecessary wo-
ven code is left at inapplicable join points. Furthermore, a
run-time weaver provides the opportunity to determine the
join points at run-time. Also notice that when the aspect
is no longer applicable, it is completely unwoven and thus
does not cause a performance overhead any longer. Previous
work by Costanza [6] also motivates that aspects should be
able to vanish.

Run-time weaving thus provides a natural and efficient tech-
nique for the realization of stateful aspects. Of course,
run-time weaving itself also causes a significant performance
overhead. Nevertheless, for stateful aspects that do not re-
quire frequent reweaving (i.e. do not change state very of-
ten), the performance gain from the absence of woven code
at unnecessary join points can be far greater than the per-
formance loss induced by run-time weaving.

3. JASCO LANGUAGE
3.1 Introduction
The JAsCo [28] AOP approach is an aspect-oriented ex-
tension for Java that allows for a clean modularization of
crosscutting concerns. The JAsCo language tries to stay as
close as possible to the original Java syntax and concepts,
and introduces only two new entities, namely Aspect Beans
and Connectors. An aspect bean is an extended version of

1 class PublishManager {
2
3 // Bookkeeping/notification code
4 void addListener(MethodListener ml) { ... }
5 void notifyListeners(String methodname, Object[] args) { ... }
6
7 hook Publish {
8 Publish(topublish(..args)) {
9 execute(topublish);
10 }
11
12 after() {
13 notifyListeners(thisJoinPoint.getMethodName(), args);
14 }
15 }
16 }

Figure 1: A JAsCo aspect bean for simple publish
behavior

a regular Java Bean that allows describing crosscutting con-
cerns independently of concrete component types and APIs.
JAsCo connectors on the other hand are used for deploying
one or more reusable aspect beans within a concrete com-
ponent context and provides support for describing their
mutual interactions.

The JAsCo language is illustrated by implementing the sim-
ple publication behavior that was mentioned in the previ-
ous section. Suppose the execution of certain methods of
a component should be published to interested listeners. It
should however be avoided to tangle the components logic
with code that manages this publication system. JAsCo al-
lows to specify this behavior as a reusable aspect bean that
is illustrated in figure 1. Note that an aspect bean looks very
similar to a regular Java Bean, and likewise implements a
number of ordinary Java class members. In addition, one or
more hook definitions that implement the crosscutting be-
havior can be specified. For example, the PublishManager

aspect bean contains a number of standard methods to man-
age and notify the listeners (lines 3-5), and a Publish hook
(lines 7-15) that is responsible for invoking the notification
after the execution of a relevant method. A hook has one
or more constructors that specify in an abstract way when
the behavior should be triggered, and one or more advice
methods (before, around, after . . .) that specify what
this behavior consists of. In this case, the constructor (lines
8-10) outlines that the hook behavior applies to the execu-
tion of the abstract method topublish. The after() advice
method (lines 12-14) then specifies that, after this event, the
listeners should be notified of the method name and the ar-
guments.

JAsCo’s abstract and reusable aspect beans are deployed
onto a concrete component context by making use of con-
nectors. Each connector allows to explicitly instantiate and

1 static connector PublishUpdates {
2
3 PublishManager.Publish publish =
4 new PublishManager.Publish(void ComponentX.update*(*));
5
6 publish.after();
7
8 }

Figure 2: A JAsCo connector for the publishing of
updates

2

78

initialize one or more logically related hooks. Figure 2 il-
lustrates a connector that instantiates the Publish hook of
figure 1 onto the update methods of the ComponentX com-
ponent. This is realized by passing these methods as a
wildcard to the hook constructor (lines 3-4). A connector
additionally allows to select and order the behavior meth-
ods of the instantiated hooks. In this case, it is specified
that the after() advice method of the Publish hook should
be executed whenever a join point of this hook is encoun-
tered (line 6). As a result of the declarations in the connec-
tor, the Publish hook is applied to the update methods of
ComponentX, and as such, registered listeners will be notified
after the execution of these methods.

Now consider an extension of the PublishManager aspect
bean where this publication only occurs after a certain sub-
scribe method has been executed. To capture this behav-
ior using traditional (stateless) aspect facilities, we have to
manually implement code that maintains a state regarding
this condition. This approach is illustrated in figure 3, where
the extended ConditionalPublishManager aspect bean is
presented. It contains two hooks: the new Subscribe hook
is responsible for setting the subscribed instance variable
to true after the execution of an abstract subscribe method,
and the ConditionalPublish hook extends the Publish hook
to make the publishing behavior apply only when the state
variable subscribed is true. In the specification of these
hooks, the usage of the isApplicable() hook method is
crucial. This JAsCo language construct allows to describe
a run-time condition for a hook as the advices are only exe-
cuted when the body of this method evaluates to true (sim-
ilar to the if pointcut construct in AspectJ). For the first
hook, the isApplicable() method in line 10 specifies that
the hook should not execute when the subscribed variable
already has a true value. For the second hook, the method
in line 18 specifies that the publishing behavior should only
apply when the subscribed variable reflects a subscribed
state. As no other elements of the Publish hook are modi-
fied, they can be inherited as such.

Although it is possible to implement the desired functional-
ity using only stateless aspect facilities, this is quite a cum-
bersome and error-prone task, since it requires to capture

1 class ConditionalPublishManager extends PublishManager {
2
3 boolean subscribed = false;
4
5 hook Subscribe {
6 Subscribe(subscribe(..args)) {
7 execute(subscribe);
8 }
9
10 isApplicable() { return !subscribed; }
11
12 after() {
13 subscribed = true;
14 }
15 }
16
17 hook ConditionalPublish extends Publish {
18 isApplicable() { return subscribed; }
19 }
20 }

Figure 3: An extended JAsCo aspect bean for con-
ditional publish behavior

each state in a separate hook and involves adding code to
maintain variables regarding this state. In the next sec-
tion, a stateful extension to the JAsCo language is presented
which solves these problems by allowing the developer to de-
claratively specify a protocol of expected pointcuts.

3.2 Stateful Aspects Language
Mainstream aspect-oriented approaches rarely support pro-
tocol history conditions. In many cases, it is only possible
to refer to previous join points when they still have an acti-
vation record on the stack (i.e. using the cflow() keyword
in AspectJ). In order to solve this limitation, Douence et
al. [8] propose a formal model for aspects with general pro-
tocol based triggering conditions, named stateful aspects. In
this section, we illustrate how the JAsCo language is ex-
tended with stateful pointcut expressions, based on this for-
mal model.

1 class StatefulPublishManager extends PublishManager {
2
3 hook PublishSubscribe {
4
5 PublishSubscribe(subscribe(..args),
6 topublish(..args)) {
7
8 Waiting: execute(subscribe) > Publish;
9 Publish: execute(topublish) > Publish;
10 }
11
12 after Publish() {
13 notifyListeners(thisJoinPoint.getMethodName(), args);
14 }
15 }
16 }

Figure 4: A JAsCo stateful aspect bean for the sim-
ple subscribe/publish protocol

To illustrate the JAsCo stateful aspects syntax, reconsider
the simple publish-subscribe protocol from the previous sec-
tions. Only when a subscription event occurred, the as-
pect should start publishing. Figure 4 illustrates how this
protocol can be declaratively described by making use of
the JAsCo stateful aspect language. The constructor of
the stateful hook PublishSubscribe (line 5-10) describes
a protocol-based pointcut expression. Every line in the con-
structor defines a new transition within the protocol. Each
transition is labeled with a name (e.g. Waiting), defines
a JAsCo pointcut expression (e.g. execute(subscribe))
and specifies one or more destination transitions that are
matched after the current transition is fired. A transition
fires when its pointcut expression evaluates to true. For ex-
ample, the Waiting transition only fires whenever the con-
crete method(s) bound to the abstract method parameter
subscribe are executed. In that case, transition Publish

is activated and will be evaluated for the subsequent join
points encountered during the application’s execution.

A stateful aspect always starts by evaluating the first defined
transition. As a result, a protocol subscribe-topublish is
described. In between the fired transitions, other join points
can also be encountered. As such, a sequence of events
methodY-subscribe-methodX-topublish is also a valid in-
stance for the defined protocol and will trigger the associated
transitions.

On every transition defined in the stateful constructor, ad-

3

79

vices can be attached which are executed whenever the tran-
sition is fired. For example, the after Publish advice (line
12-14) is only triggered whenever the transition Publish is
fired. In other words, the advice is executed whenever the
concrete method(s) bound to the abstract method parame-
ter topublish are executed in that state of the stateful as-
pect. To sum up, the stateful PublishSubscribe hook will
only start notifying interested subscribers when a subscrip-
tion event occurred.

Figure 5 illustrates how the stateful aspect of figure 4 is
instantiated and deployed using a JAsCo connector. This
example is similar to the connector of figure 2 as it bounds
the abstract method topublish to the update methods of
ComponentX. Additionally, the subscribe abstract method
parameter is bound to a concrete subscription method of
a certain PSComponent. Consequently, as soon as this sub-
scription method has been executed, the aspect will start
intercepting update methods on ComponentX and will start
notifying its registered listener(s).

1 static connector PSConnector {
2 StatefulPublishManager.PublishSubscribe ps =
3 new StatefulPublishManager.PublishSubscribe(
4 boolean PSComponent.subscribe(),
5 void ComponentX.update*(*)
6);
7 }

Figure 5: The JAsCo connector for deploying the
stateful PublishSubscribe hook.

3.3 Advanced Language Features
In addition to attaching advices on each transition sepa-
rately, it is also possible to describe global advices that are
triggered for all fired transitions. In this case, the advice
is specified as usual, but the transition label is omitted. It
is also possible to attach a specific isApplicable method
to a particular transition in the protocol. Hence, the tran-
sition will only fire when both the pointcut expression and
the isApplicable condition evaluate to true. Likewise to
advices, a global isApplicable condition can be specified
which is applied to all transitions. In that case, transi-
tions are only fired when they satisfy their pointcut expres-
sion and both the global and local isApplicable conditions.
The following code fragment shows both a global and local
isApplicable condition.

1 isApplicable() {
2 // global condition for all transitions
3 }
4 isApplicable XTrans() {
5 // local condition only relevant for the transition XTrans
6 }

The JAsCo stateful aspects constructor can also specify mul-
tiple destination transitions for a given transition. The syn-
tax is illustrated in the code fragment below. After firing
the XTrans transition, both the YTrans and QTrans transi-
tions are evaluated for subsequent encountered join points
(line 4). Note that the destination transitions are evalu-
ated in the sequence defined in the destination expression.
As such, when both the YTrans and QTrans transitions are
applicable for a given join point, only the YTrans transition
will be fired and only the YTrans destination transitions will

be evaluated for subsequent encountered join points. This
allows to keep the protocol deterministic and efficient to exe-
cute. It is also possible to omit a destination transition for a
certain transition. In that case, when the transition fires, no
more transitions need to be evaluated and the aspect van-
ishes. This concept is illustrated by the QTrans transition
(line 6). Also notice that this transition describes a more
involved pointcut designator using the cflow keyword.

In case the stateful aspect requires to start by evaluating
more than one transition, the start keyword can be em-
ployed. This keyword is followed by a list of starting transi-
tions for matching join points when the aspect is deployed.
Multiple start transitions are specified similarly to multiple
destination transitions, by using || as delimiters. When no
start transition is specified, the first defined transition is
used as the starting one.

1 //starting with two transitions:
2 start > XTrans || QTrans;
3 //two destination transitions:
4 XTrans: execute(methodA) > YTrans || QTrans;
5 //no destination transition:
6 QTrans: execute(methodB) && !cflow(methodC);
7 YTrans: execute(methodC) > YTrans;

The syntax proposed in the previous paragraphs provides a
way for specifying powerful protocols but might be too te-
dious in case of simple protocols. Therefore JAsCo also sup-
ports a simpler syntax for protocols that do not require mul-
tiple destination transitions for a given transition. The fol-
lowing code fragment illustrates a constructor that is equiv-
alent to the constructor of figure 4. Labeling transitions is
still possible in order to be able to attach local advices to
specific transitions.

1 PublishSubscribe(subscribe(..args), topublish(..args)) {
2 execute(subscribe) > Publish: execute(topublish) > Publish;
3 }

The JAsCo stateful aspect language also supports triggering
aspects on the opposite (complement) of a protocol. Fur-
thermore, JAsCo stateful aspects are non-strict per default,
i.e. they allow non-specified intermediate transitions. Spec-
ifying strict protocols is also supported. The discussion of
these features is however outside of the scope of this pa-
per. The interested reader is referred to [30, 15] for more
information.

3.4 Implementing Stateful Aspects
A naive approach to realize a stateful aspect would be to
weave it at all possible join points defined within its protocol.
This induces a performance overhead at all these join points,
while the stateful aspect is only interested in a limited set of
join points corresponding to the subsequent transitions that
are to be evaluated. In order to implement stateful aspects
more efficiently, a genuine run-time weaver is required which
is able to reweave the stateful aspect each time a transition
is fired.

Another major problem with statically weaving stateful as-
pects is that the pointcuts have to be defined in advance.

4

80

As argued in section 2, it would be interesting to dynami-
cally decide the concrete join points that have to be used for
triggering the subsequent transitions. In that case, a static
binding of the abstract method parameters of the hook con-
structor is not possible and a run-time weaver is necessary
for reweaving the stateful aspect after a transition has fired.

To address these shortcomings, we propose to employ a run-
time weaver. The following sections introduce the JAsCo
run-time weaver and explain how stateful aspects are imple-
mented employing this weaver.

4. TOWARDS RUN-TIME WEAVING
The JAsCo technology was originally trap-based. At every
join point a trap is inserted that defers execution to the
JAsCo run-time infrastructure. This infrastructure will trig-
ger any aspects that apply to the join point or, when no
aspects are applicable, it will return to the normal execu-
tion. As such, dynamic aspect addition and removal be-
comes possible because the aspects behavior itself is not sta-
tically woven. The JAsCo distribution contains a preproc-
essor tool that inserts traps at all possible join points be-
fore run-time by transforming the necessary classes. These
transformations are performed through the byte-code adap-
tation library Javassist [5]. The main problem of this pre-
processing approach is performance. Applications equipped
with JAsCo traps execute often more than ten to twenty
times slower than the original, which is unacceptable. This
overhead stems in part from the naive interception system,
namely inserting traps at all possible join points.

In order to improve the performance of JAsCo, the JAsCo
HotSwap framework [29] is introduced. HotSwap is a custom-
made byte-code instrumentation framework that allows al-
tering the byte-code of a class, even if it is already loaded
into the virtual machine. As such, it is possible to install
traps just-in-time when a new aspect is added to the sys-
tem. Likewise, the original method byte-code is re-installed
when the aspect is removed and no other aspect are ap-
plicable. JAsCo HotSwap has two different implementa-
tions, depending on the virtual machine version. For Java
1.4, HotSwap employs the Java Debugging Interface (JDI)
to dynamically replace classes. When a 1.5 compatible vir-
tual machine is detected, HotSwap employs the novel Java
Programming Language Instrumentation Services (JPLIS)
API, which avoids running the virtual machine in debug-
ging mode. Both libraries are standard libraries available
in most standalone (i.e. not embedded) virtual machine im-
plementations, making JAsCo perfectly portable over a wide
range of platforms. They also make sure that the applica-
tion is left in a consistent state after byte-code of a class has
been replaced. The byte-code manipulations themselves are
also performed through the Javassist library.

In principle, JAsCo HotSwap already suffices to efficiently
implement stateful aspects as it allows to only insert traps to
join points where the stateful aspect is currently interested
in. However, by inserting traps that refer to the JAsCo run-
time infrastructure, the performance of JAsCo is still not
optimal. In several benchmark experiments, the JAsCo ad-
vice execution performance is measured [29, 15] to be five
to ten times slower than the statically woven language As-
pectJ. This overhead is mainly caused by the additional in-

direction these traps impose. In addition, the traps have a
fixed implementation for every possible advice attached, so
they have to capture all possible relevant run-time informa-
tion. However, capturing the actual arguments in an array
for instance, is a very expensive operation. When the ac-
tual arguments are not required in the advices, a substantial
performance gain can be realized by avoiding capturing this
run-time information.

4.1 The JAsCo Run-Time Weaver
In order to improve the run-time performance of JAsCo
AOP, a run-time weaver is proposed. Instead of inserting
traps, a highly optimized code fragment is inserted into the
target join points. This code fragment directly invokes all
applicable advices in the correct sequence and thus avoids
the indirection through the JAsCo run-time infrastructure.
The JAsCo approach is however a dynamic AOP approach.
As such, the woven join point behavior might become in-
valid. This event occurs when a connector is added that
instantiates a hook that is applicable on a join point where
aspects are already attached or when a connector is removed
that contains an applicable hook for such a join point. In ad-
dition, it is possible to change some properties of a connector
dynamically so that the applicable context of the instanti-
ated hooks is altered. The JAsCo run-time weaver is able to
cope with these issues. When no advices are applicable any
longer, the original byte-code of the method is reinstalled.

Generating optimized code for a target join point is not al-
ways achievable because some pointcut expressions have to
be re-evaluated for every execution of the join point (pre-
cisely because of the dynamic join point model). For exam-
ple, when a hook defines a cflow condition in its constructor,
this constructor has to be re-evaluated for every execution
of a join point. The entire constructor body does not have
to be re-evaluated however. In this case, only the result of
the cflow condition is able to change for different executions
of the join point. As such, partial evaluation techniques are
used to cache a partially evaluated constructor. In addition,
for the particular cflow construct, it is sometimes possible
to statically analyze whether the condition might ever be
true or not by examining the call graph of an application.
This technique is elucidated in [26].

Another major optimization of the JAsCo run-time weaver
consists of detecting which static and dynamic reflective join
point information the aspects might require. Suppose for in-
stance that an aspect only requires the method name of the
current join point. In that case, most AOP implementations
still capture all actual arguments in an array, which is a very
expensive operation, even though they are not required. The
JAsCo aspect bean compiler analyzes in detail which contex-
tual join point information is required and stores this infor-
mation in the compiled aspect so that the run-time weaver
can exploit this. If the applicable aspects at a join point only
require the method name for instance, only this information
is captured. Obviously, because this detection happens at
compile-time, it has to be conservative and thus might still
capture too much. For example, if a logging advice contains
a dynamic test for selecting whether it logs only the method
name or also the arguments, the advice is analyzed to re-
quire the actual arguments and the method name, while in
some cases it only requires the method name. Nevertheless,

5

81

this analysis allows for a significant optimization in a large
number of cases.

The main drawback of the run-time weaver is the increased
run-time overhead for adding and removing aspects. In the
trapped approach, when a trap is already placed, adding a
new aspect does not require any HotSwap overhead what-
soever. Also, even if a new trap has to be inserted, this is a
lot less costly than weaving because the code for the trap it-
self remains constant whereas with run-time weaving, a new
code fragment has to be computed for each individual join
point. In order to address this overhead, JAsCo is still able
to combine the regular preprocessing approach with the run-
time weaver and even with the trapped HotSwap approach.
Classes that are preprocessed to include traps are never sub-
ject to run-time weaving. In addition, it is possible to define
a global function that dynamically decides whether a trap is
inserted or whether the run-time weaver is employed. This
function has the following signature:

boolean inlineCompile(JoinPoint jp, Vector hooks)

When the method returns true, the run-time weaver is em-
ployed, otherwise a trap is inserted. Both reflective infor-
mation about the join point and the list of applicable hooks
are available for deciding whether run-time weaving is ap-
propriate. As such, a heuristic function can be implemented
that for example only activates the run-time weaver for join
points that are executed more than twenty times in the
past second. JAsCo thus effectively combines and integrates
three alternative aspect weavers.

4.2 Performance Evaluation
In order to evaluate the performance of the novel JAsCo
run-time weaver, we employ the AWBench [17] benchmark1.
This benchmark is a project of the AspectWerkz team and
is especially created to compare the performance of dynamic
AOP systems. AWBench is a micro benchmark and consists
of 12 tests, all advising a single method in a different way.
Every test is executed two million times and the average ex-
ecution time of the method is recorded. When a certain test
is not directly supported by the AOP approach, it is simu-
lated using the best available alternative (e.g. when no af-
ter throwing advice is available, it is simulated using around
advice). We compared the performance of JAsCo with the
following AOP approaches: AspectJ 1.2 [19], JBoss/AOP
1.0 [16], AspectWerkz 2.0 [18], Spring/AOP 1.1.1 [27], dy-
naop 1.0 Beta [11] and cglib 2.0.2 [4]. The next paragraph
shortly introduces the technologies employed in each of these
approaches. Notice that this selection is not meant as a
comprehensive overview of dynamic AOP approaches. Nev-
ertheless it includes a significant portion of the practically
used dynamic AOP systems.

AspectJ and AspectWerkz both use a traditional weaver
that invasively weaves the aspects into the target classes
at run-time. Similar to JAsCo, AspectWerkz also features a
genuine run-time weaver while AspectJ is limited to compile-
time weaving. JBoss/AOP uses an approach similar to the
original JAsCo technology, namely inserting traps to all ad-

1The AWBench distribution including JAsCo can be down-
loaded here: http://ssel.vub.ac.be/jasco/awbench

vised join points. In contrary to JAsCo, the traps are in-
stalled at load-time and can never be removed. As such,
at join points where no traps are attached, dynamic as-
pect interference is impossible. Spring/AOP and dynaop are
two proxy-based approaches that employ the Java Dynamic
Proxies feature to dynamically attach advices to objects.
Dynamic Proxies are instance-based, so it is easily possi-
ble to only advice one object of a certain class. The main
drawback however is that class-based aspect application is
more difficult to realize. In addition, Dynamic Proxies in-
duce a relatively high performance overhead. cglib (Code
Generation Library) is not an AOP framework per se, but a
byte-code adaptation library with extensive AOP features.

Figure 6 on page 7 illustrates the results of running the AW-
Bench with the introduced approaches. The performance of
JAsCo using the trapped approach to attach aspects is also
measured. Notice the logarithmic scale of the results to fit
all results in one clear chart. In all benchmarks the three ap-
proaches that use weaving (JAsCo, AspectJ, AspectWerkz)
perform significantly better than the others. In the most
simple before advice for example, JAsCo executes more than
a hundred times faster than Spring/AOP. The trapped ap-
proaches (JBoss/AOP and JAsCo no-RTW) perform worse
than weaving but still execute considerably faster than the
proxy-based approaches (Spring/AOP and dynaop).

For the before advices where the run-time context is fetched
declaratively, the three woven approaches perform equally
well. All three optimize the join point interception to only
fetch that data that is requested. When reflection is used
however, JAsCo is able to improve on both AspectWerkz
and AspectJ. This is because JAsCo has a fine-grained re-
quired context detection, also when it is reflectively queried.
thisJoinPoint vs. thisJoinPointStaticPart is the only
difference accounted for by AspectJ and AspectWerkz. When
thisJoinPoint is employed, all possible run-time context in-
formation (target object and type, caller object and type,
actual arguments and types, etc...) is stored, whereas only
a fraction of this dynamic information might be effectively
required.

In addition, when several advices are combined or when an
around advice is employed JAsCo seems to improve more
significantly on AspectJ and certainly on AspectWerkz. In
all the other tests JAsCo, AspectJ and AspectWerkz are
very close. As such, it seems that the performance of compile-
time and run-time weaving approaches converges and prob-
ably a boundary of traditional weaving has been reached.
In any case, the run-time performance of JAsCo has been
improved quite considerably when comparing it with the
trapped approach and thus the goal of the run-time weaver
has been accomplished.

4.3 Implementing Stateful Aspects using the
Run-Time Weaver

The previous paragraphs motivate and explain the JAsCo
run-time weaver. As explained before, stateful aspects also
particularly benefit from run-time weaving. A naive ap-
proach for integrating a stateful aspect would be weaving
it at all possible join points defined within the protocol.
This induces a performance overhead at all these join points,
while the stateful aspect is only interested in a limited set of

6

82

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

AsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

Before Advice

No Context Access

Reflective Method Name

Access

Reflective Target Object

Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

AsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

Before Advice

Declarative Args Access

(primitive types)

Declarative Args Access

(Object types)

Declarative Args Access

(Object types) + Declarative

Target Object Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

AsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

Around Advice

Reflective Target Object

Access

Reflective Method Name

Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

AsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

 Combining Advice

Before+After

Stacked 2 Around, Declarat-

ive Args and Target Object

Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

JAsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000 10000 100000

After Returning/Throwing

After Returning

After Throwing

Joinpoint Execution Time (ns)

Figure 6: AWBench benchmark results run on a PENTIUM4, 2GHZ, 256 RAM with Ubuntu Linux 4.10,
Java 1.5.0 update 1. Notice the logarithmic scale of the timings in order to keep every result readable.

join points corresponding to the subsequent transitions that
are to be evaluated. By employing the run-time weaver, it
is possible to only weave the stateful aspect at those join
points where the aspect is currently interested in. When a
transition is fired, the weaver unweaves the aspect at the join
points associated with the current transition and weaves it
back in at the join points relevant for the subsequent tran-
sitions. As such, a real jumping aspect is realized. Notice
that when the aspect vanishes because no subsequent tran-
sitions are defined, it is completely unwoven. As a result, no
performance overhead for the aspect is endured any longer.

The weaving process itself does however also require a sig-
nificant overhead. Therefore, when a given protocol is en-
countered many times in a short time interval, it might be
more efficient to weave the aspect at all possible join points
of the protocol instead of weaving and unweaving it on-the-
fly. This can be configured in JAsCo by using the novel
Java 1.5 annotations (meta-data). When the @WeaveAll an-
notation is supplied to the hook, as illustrated by the code
fragment below, the run-time weaver weaves the aspect at
all join points and never unweaves it unless the aspect itself
is manually removed or vanishes.

1 @jasco.runtime.aspect.WeaveAll
2 hook StatefulHook { ...

In order to implement the stateful pointcut itself, the point-
cut is translated to a Deterministic Final Automaton (DFA)
[13]. The JAsCo stateful aspects language is equivalent to a
DFA because every expression defines one DFA transition,
two DFA states and possibly several connection DFA tran-
sitions for the destinations. Therefore, the JAsCo compiler

compiles a stateful aspect constructor to a DFA that is in-
terpreted at run-time. Every transition of a DFA contains
a representation of the pointcut definition and possibly an
isApplicable condition. When a join point is encountered,
the outgoing transitions of the current state are evaluated
with the given join point and when a match is encountered,
the state machine moves to the destination state. When this
event occurs, all associated advices are executed and the as-
pect is rewoven to the new join points corresponding to the
outgoing transitions of the destination state. Because of this
implementation strategy, a stateful aspect can be executed
very efficiently. It suffices to check only the transitions of the
current state, as JAsCo stateful aspect protocols are regular
and can be interpreted by a regular DFA. When non-regular
protocols are allowed, a history of all relevant encountered
events should be maintained, which is very expensive.

5. RELATED WORK
The emerging stateful aspect research is still quite young and
at the moment not many AOP approaches support its ideas
and concepts. Douence et al. are the first ones to propose an
extension of their formal aspect model [7], to support state-
ful aspects [8]. The advantage of having a formal model
is that it allows to automatically deduce possible malicious
interactions among aspects. Furthermore, the model sup-
ports the composition of stateful aspects using well-defined
composition operators. A proof of concept implementation
of this model, based on static program transformations, is
available [9]. JAsCo improves upon this implementation,
as only a subset of join points needs to be woven, whereas
a static approach requires to weave all possible join points
defined within the protocol.

7

83

Walker et al. introduce declarative event patterns (DEPs)
[31] as a means to specify protocols as patterns of multi-
ple events. Here, AspectJ aspects are augmented with spe-
cial DEP constructs that can be advised. Their approach
is based on context-free grammars, and involves a transfor-
mation of the DEP constructs into regular AspectJ aspects
that contain an event parser. While DEPs can recognize
properly nested events and thus possess an even higher de-
gree of declarative expressibility than the JAsCo approach,
they only provide the ability to attach advice code to the
entire protocol. Separate transitions of the protocol can as
such not be advised, and several overlapping protocols are
required to mimic JAsCo stateful aspect behavior. Further-
more, the fact that DEPs lose their identity in a preprocess-
ing step that reduces them to standard aspects, rules out
the possibility for optimizations by a weaver that analyzes
the feasible transitions of the protocol.

Finally, Masuhara et al. [20] propose an extension of the
AspectJ pointcut language to identify join points which are
based on the data flow of values within an application. Their
novel dflow pointcut designator allows to declaratively spec-
ify that a particular join point can only match if its argu-
ments are originating from the arguments/return value of a
previously encountered join point. By explicitly declaring
this preferred data flow, this mechanism allows specifying
a more precise pointcut then possible using the current As-
pectJ pointcut designator language. Although a data flow
aspect is not completely similar to a stateful aspect, this
research illustrates the need for a mechanism that allows
the specification of aspect behavior defined in terms of the
history of previously encountered join points. It should how-
ever be mentioned that JAsCo stateful aspect are also able
to capture data flow pointcuts. This however requires a
programmatic approach, which is not as declarative as the
approach proposed by Masuhara et al.

Apart from the dynamic AOP technologies employed during
our performance evaluation, several other AOP approaches
have been introduced for enabling dynamic AOP. Many of
these approaches make use of traps and a corresponding
registry infrastructure for dynamically (un)weaving aspects.
Event-based aspect oriented programming (EAOP) for in-
stance, allows specifying crosscutting concerns by employ-
ing event patterns which are described using a formal lan-
guage [10]. On the implementation level, EAOP inserts
traps that query a central execution monitor that has a
global view of the executing application and which con-
tains all active EAOP artifacts. In contrast to JAsCo how-
ever, EAOP inserts these traps by employing source-code
transformations, which obstruct performance optimizations.
JAC [21] also make use of traps. Here, these traps are auto-
matically inserted at load-time of the application by making
use of byte-code transformations. The Dynamic Aspect-
Oriented Platform (DAOP) [22] is an approach that targets
legacy component-based systems and allows flexible applica-
tion of aspects at run-time. DAOP introduces a distributed
platform, where a middleware layer is employed for stor-
ing the aspect composition information. DAOP does not
require any component adaptation and allows aspects to re-
main first-class entities at run-time.

PROSE [24] and Wool [25] both employ the Java Virtual

Machine Debugging Interface (JVMDI) for intercepting the
program’s execution. A dedicated execution monitor is de-
ployed on top of the JVMDI, which allows capturing the
relevant execution events. Whenever an event is encoun-
tered where an aspect is applied upon, the corresponding
aspect behavior is triggered. Wool improves upon PROSE,
as it also allows to invasively insert join points. In addi-
tion, aspects are able to implement their own heuristics for
deciding whether they should be invasively inserted or not.
The Wool heuristics improve on JAsCo as they can be cus-
tomized on a per-aspect basis whereas in JAsCo only one
global heuristics function can be specified.

PROSE2 [23] and Steamloom [2] both aim at achieving an
aspect-aware Java Virtual Machine in order to boost the
run-time performance of AOP. PROSE2 proposes a next-
generation implementation for the original PROSE approach,
this by incorporating the execution monitor for joint points
into the virtual machine itself. This execution monitor is
then responsible for notifying the AOP engine which exe-
cutes the corresponding advices. Steamloom is implemented
as an extension of IBM’s Jikes Research Virtual Machine [14]
and employs its adaptive optimization system for decorat-
ing the base application with aspects. Similar to JAsCo,
this mechanism allows for the structure-preserving compi-
lation of reusable aspects which are explicitly deployed at
run-time. The main advantage over a run-time weaver is
that it avoids the weaving overhead, which makes it very
suitable when aspects are deployed and removed frequently.

Filman [12] finally proposes dynamic injectors in order to
introduce aspects within an application. These dynamic in-
jectors are incorporated into the OIF (Object Infrastructure
Framework), a CORBA centered aspect-oriented system for
distributed applications. Dynamic injectors are first-class
objects that can be added and adapted at run-time. At the
implementation level, a wrapping approach is employed for
injecting the logic of an aspect within a component commu-
nication channel.

6. CONCLUSIONS AND FUTURE WORK
This paper presents an extension of the JAsCo language
that allows to declaratively specify a regular protocol frag-
ment pointcut. Advices can be attached to each transition
in the protocol. Furthermore, we present the JAsCo run-
time weaver, of which the run-time performance is able to
compete with current state-of-the-art AOP. In this paper
we claim that stateful aspects benefit from run-time weav-
ing because 1) they can be executed faster and 2) dynamic
pointcut introduction becomes possible. By implementing
stateful aspects using the JAsCo run-time weaver, genuine
jumping aspects are realized that jump from join point(s) to
join point(s) depending on the state of the aspect. It is even
possible that the aspect vanishes when no new join points
are defined for a certain state.

A limitation of the current stateful aspects language is that
it only supports regular protocols. Protocols that require
a non-regular language (like for example n times A; B; n

times C, where n can be a different number in every oc-
curance of the protocol), cannot be represented. For in-
stance, in order to enhance the example of figure 4 with an
unsubscribe transition so that the aspect is unwoven when

8

84

no subscribers are present, a non-regular protocol has to be
used because the aspect has to wait for an equal amount of
unsubscriptions as subscriptions before it can be unwoven.
The advantage of keeping the protocols regular is that they
can be efficiently evaluated using a DFA. A naive implemen-
tation of a non-regular protocol would require to keep the
complete history of all encountered join points in memory,
which is not very practical. In literature, several domain-
specific optimization techniques for interpreting non-regular
languages have been proposed [1]. Extending the JAsCo
stateful aspects language to non-regular protocols while still
allowing an efficient implementation is subject for future
work.

Another intesting area for future work consists of developing
heuristics for deciding whether the run-time weaver has to
be used or whether the trapped approach is desired. As
such, the performance of JAsCo-enabled applications can
be automatically tweaked. For long running applications, it
could be even possible to exploit learning strategies in order
to learn the most optimal heuristic.

7. ACKNOWLEDGEMENTS
Bruno De Fraine and Davy Suvée are supported by a doc-
toral scholarship from the Institute for the promotion of
Innovation by Science and Technology in Flanders in the
Industry (IWT).

8. REFERENCES
[1] J. Aycock and N. Horspool. Schrodinger’s token.

Software Practice and Experience, 31(8), 2001.

[2] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual machine support for dynamic join points. In
Proceedings of AOSD, Lancaster, UK, Mar. 2004.

[3] J. Brichau, W. D. Meuter, and K. D. Volder. Jumping
aspects. In Workshop on Aspects and Dimensions of
Concerns (ECOOP 2000), June 2000.

[4] cglib. cglib Project. http://cglib.sourceforge.net/.

[5] S. Chiba. Load-time structural reflection in Java. In
Proceedings of ECOOP, LNCS, Cannes, France, July
2000.

[6] P. Costanza. Vanishing aspects. In Workshop on
Advanced Separation of Concerns (OOPSLA 2000),
Oct. 2000.

[7] R. Douence, P. Fradet, and M. Südholt. A framework
for the detection and resolution of aspect interactions.
In Proceedings of GPCE, Pittsburgh, USA, Oct. 2002.

[8] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
Proceedings of AOSD, Lancaster, UK, Mar. 2004.

[9] R. Douence, P. Fradet, and M. Südholt. Trace-based
aspects. Aspect-Oriented Software Development, Sept.
2004.

[10] R. Douence, O. Motelet, and M. Südholt. A formal
definition of crosscuts. In Proceedings of
REFLECTION, Kyoto, Japan, Sept. 2001.

[11] dynaop. dynaop Project. http://dynaop.dev.java.net/.

[12] R. Filman. Applying aspect-oriented programming to
intelligent systems. In Position paper at the ECOOP
2000 workshop on Aspects and Dimensions of
Concerns, Cannes, France, June 2000.

[13] J. Hopcroft, R. Motwani, and J. Ullman. Introduction
to Automata Theory. Addison Wesley, 2st edition,
2001.

[14] IBM. The Jikes Research Virtual Machine.
http://www-
124.ibm.com/developerworks/oss/jikesrvm.

[15] JAsCo. JAsCo Distribution Website.
http://ssel.vub.ac.be/jasco.

[16] JBoss Inc. JBoss/AOP Project.
http://www.jboss.org/developers/projects/jboss/aop.

[17] Jonas Bonér and Alexandre Vasseur. AspectWerkz
AWBench Project.
http://docs.codehaus.org/display/AW/AOP+Benchmark.

[18] Jonas Bonér and Alexandre Vasseur. AspectWerkz
Project. http://aspectwerkz.codehaus.org/.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen,
J. Palm, and G. Griswold. An overview of AspectJ. In
Proceedings of ECOOP, Budapest, Hungary, June
2001.

[20] H. Masuhara and K. Kawauchi. Dataflow pointcuts in
aspect-oriented programming. In Proceedings of
APLAS, Bejing, China, Nov. 2003.

[21] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented
programming in Java. In Proceedings of
REFLECTION, Kyoto, Japan, Sept. 2001.

[22] M. Pinto, L. Fuentes, M. Fayad, and J. Troya.
Separation of coordination in a dynamic aspect
oriented framework. In Proceedings of AOSD,
Enschede, The Netherlands, Apr. 2002.

[23] A. Popovici, G. Alonso, and T. Gross. Just-in-time
aspects: efficient dynamic weaving for Java. In
Proceedings of AOSD, Boston, USA, Mar. 2003.

[24] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
Proceedings of AOSD, Enschede, The Netherlands,
Apr. 2002.

[25] Y. Sato, S. Chiba, and T. Michiaki. A selective,
just-in-time aspect weaver. In Proceedings of GPCE,
Erfurt, Germany, Sept. 2003.

[26] D. Serini and O. D. Moor. Static analysis of aspects.
In Proceedings of AOSD, Boston, USA, Mar. 2003.

[27] Spring. Spring/AOP Project.
http://www.springframework.org/.

[28] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for
component-based software development. In
Proceedings of AOSD, Boston, USA, Mar. 2003.

9

85

[29] W. Vanderperren and D. Suvée. Optimizing JAsCo
dynamic AOP through HotSwap and Jutta. In
Proceedings of Dynamic Aspects Workshop, Lancaster,
UK, Mar. 2004.

[30] W. Vanderperren, D. Suvée, M. A. Cibrán, and
B. De Fraine. Stateful aspects in JAsCo. In Submitted
to SC 2005, LNCS, Edinburgh, Scotland, Apr. 2005.

[31] R. Walker and K. Viggers. Implementing protocols via
declarative event patterns. In Proceedings of the ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, Newport Beach, USA, Nov.
2004.

10

86

Contextual Pointcut Expressions
for Dynamic Service Customization

Thomas Cottenier
Illinois Institute of Technology

cotttho@iit.edu

Tzilla Elrad
Illinois Institute of Technology

elrad@iit.edu

ABSTRACT
In service-oriented environments, components are discovered and
integrated at runtime. The type of the client entities that expose
potentially interesting contexts can therefore not be anticipated,
and can not be subject to type-based pointcut expressions.

This paper proposes a contextual pointcut construct that attempts
to address context passing mechanisms needed for concurrent
customization of services.

Contextual pointcut expressions generalize the semantics of
‘cflow’ to enable advices to retrieve a richer set of context
information along the call path to a target joinpoint. A context
visitor collects information about the particular circumstances in
which a target joinpoint is executed, including references to the
joinpoints encountered along the path.

Contextual advices have the power to alter the control flow of the
aspect execution, and return control to the joinpoints that are still
alive in the target joinpoint’s call path.

1. INTRODUCTION
The thoughts expressed in this position paper draw from the
authors’ experiences in applying AOP concepts and languages
constructs to the development of a distributed aspect platform for
dynamic and distributed service composition and customization

The particularities of distributed environments, and service-
oriented environments in particular, force distributed aspect
platforms to take a different perspective on context passing
pointcut expressions and joinpoint composition.

Remote pointcuts [1] allow us to locally specify events of interest
occurring on remote hosts. When the pointcut is triggered, the
metadata of the joinpoint is passed to the local host and the
corresponding advice is executed locally. Context passing from
the joinpoint to the remote advice is part of the remote pointcut
semantics.

However, more advanced context passing scenarios are not
straightforward to support in a distributed setting.

In AspectJ, context passing from a client down through the calls
that lead to a target service can be implemented as shown in
Figure 1.

This type of context passing addresses the concurrent
customization of services according to the context of a client
entity. Concurrent service customization [2] means that a same
service instance can be customized in one execution context
without impacting clients interacting with the service instance in
other contexts.

However, in service-oriented environments, components are
discovered and integrated at runtime. The type of the client
entities that expose interesting contexts can therefore not be
anticipated, and can not be subject to type-based pointcut
expressions. Tough, the contexts that are of potential use for
service customization are matched by:

cflow(call(* *(..)) && target(obj))

&& execution(* Service.f(..))

This pointcut expression is triggered at each method call
encountered from the root to the call to the Service.f() method.
However, only the last client context encountered is exposed by
the joinpoint. Each client context is overridden by the next one.

To tackle context-dependent dynamic service composition and
customization, we propose to generalize this construction, so that
the context of all encountered entities on the path from the entity
that initiates the interaction to the final caller is potentially
available at the service side. We therefore attach a visitor to the
cflow pointcut that accumulates the encountered context
references instead of overriding them.

The paper is structured as follow. Section 2 briefly introduces
Contextual Aspect-Sensitive Services and its context passing
construct. Section 3 illustrates the need for a generalization of
‘cflow’ through a distributed advice chaining example. Section 4
introduces contextual pointcut expressions and section 5 discusses
dynamic service customization. Finally, section 6 concludes this
paper.

pointcut myServiceCall(Client client): cflow(call(* *(..)) && target(client));

pointcut myServiceExec(Service service): execution(* Service.f(..)) && this(service);

pointcut myServiceContext(Client client, Service service): myMethodCall(client) &&

myMethodExec(service);

Fig.1. Caller context passing for a remote pointcut

87

2. SERVICE-ORIENTED POINTCUTS
The Contextual Aspect-Sensitive Service (CASS) [3,4,5] platform
proposes a new technique to dynamically compose Web Services
in a decentralized manner, by deploying SOAP message
interceptors at the boundaries of Web Services. Remote pointcuts
are declared with respect of the port types defined in the service
WSDL definitions, to maintain platform independence.

CASS enables crosscutting and context-dependent behavior to be
factored out of the Service implementations and modularized into
separate units of encapsulation that are exposed as Web Services.
Service orchestrations can then be defined in a much more
flexible way, as services can be dynamically customized to
address changing business rules or context-dependent
requirements. Because CASS weaves the coordination logic
directly at the level of web service interfaces, support for a
‘perCflow’ type of aspect construct is fundamental in order to
provide the capability to specify the context under which a given
orchestration should be activated.

CASS provides joinpoint and advice callback interfaces to deal
with asynchronous message based interactions. These callback
interfaces allows multiple advices bound to a shared joinpoint to
be executed concurrently and also enable synchronization
primitives to be embedded into pointcut expressions, using the
‘join’ pointcut composition operator. A pointcut that is composed
of ‘joined’ pointcut expressions is triggered only once each one of
the expression has been triggered in a specific context.
Asynchronous joinpoints can handle not being returned control to,
when their callback methods are never invoked.

In CASS, messages are intercepted at the joinpoints specified by a
‘cflow’ expression and wrapped into an envelope which contains
the cflow expression, as well as the joinpoint instance reference.
The system ensures the propagation of this information from
caller to callee, and within a same service instance execution
context.

The following specification shows how ‘cflow’ is implemented
CASS. The effect of the ‘cflow’ aspect is to wrap calls to the
‘MathService’ web service into an envelope that contains the
current execution context of the call.

The ‘inContext’ pointcut will only match the execution of an
operation on ‘MathService’ if it is called in the context of the
‘cflow.context’ pointcut.

The smooth the progress of the discussion, a notation derived
from AspectJ/AspectWerkz will be used in the following sections,
instead of the Cass specification.

Next sections motivate the need for a generalization of ‘cflow’
that enables advices to retrieve a richer set of context information
along the call path to a target joinpoint.

3. DISTRIBUTED ADVICE SEQUENCES
When defining a chain of advice in a distributed environment, the
advices of the chain might very well execute on different hosts. In
order to minimize unnecessary use of network resources, it is
desirable to support direct chaining from one advice host to
another, instead of letting the remote joinpoint dispatch the advice
calls.

The example depicted in Figure 3 represents a simple B2B
choreography. A billing service and a credit service perform some
processing before and after an order is processed on a supplier
service. Both the billing service and the credit service can force
the transaction to rollback.

A chain of advices around the execution of the ‘processOrder’
method on the supplier service can be decomposed by declaring a
pointcut expression on the call to the ‘proceed’ method of the
joinpoint the ‘BillingService’ advice is bound to.

Instead of returning control to the billing joinpoint, the credit
service advice returns control to the ‘orderProcessing’ joinpoint,
that’s higher on the call stack. This example illustrates how
advices can return control to other joinpoints then the one that
initially triggers them.

While this construct allows to effectively implementing chain of
advices in a distributed setting, it forces the developer to pass
along the root joinpoint reference from joinpoint to joinpoint,
until the last advice.

<cass name="cflow">
<pointcut name="context"

service="edu/iit/concur/cass/testservices/MathService"
operation="add"
type="client"/>

<advice name="contextPropagationAdvice"
type="around"
bind-to="context"
host="http://localhost:8081"
service="edu/iit/concur/cass/testservices/MathService"
operation="add"/>

</cass>
<cass>

<pointcut name="inContext"
host="http://localhost:8081"
service="edu/iit/concur/cass/testservices/MathService"
operation="*"
context="cflow.context"/>

</cass>

Fig.2. Cass specification of context pointcut

88

This implementation is therefore very brittle and not reusable as
the ‘CreditService’ advice implementation should be independent
on whether it is used in an advice chain or not.

In order to pass the root joinpoint context to the advice chain, we
propose to generalize the semantics of cflow to enable advices
to retrieve a richer set of context information along the call
path to a target joinpoint. Indeed, the joinpoints encountered in
the chain are successively in the control flow of each other.

4. CONTEXTUAL POINTCUT
EXPRESSIONS
Contextual pointcuts follow the same triggering rules as cflow
pointcuts, but their joinpoints can accumulate context information
during their life cycle. The context lives from the point the
corresponding cflow expression evaluated to true until the system
exits from the control flow.

Contextual pointcuts are defined by programmatically specifying
a joinpoint context visitor. The joinpoint visitor is part of the
pointcut definition rather than the advice definition.

We here adopt a notation that is closer to that of AspectWerkz.
The arguments and return value of an advice are exposed by
accessing the ‘JoinPoint’ parameter.

A visitor implements the ‘Context’ interface, which defines a
‘visit’ method and a ‘proceed’ method.

The ‘visit’ method is called by the runtime system each time a
joinpoint is triggered in the control flow of the contextual pointcut
the visitor is bound to.

The ‘proceed’ method allows an advice to return control, not only
to the joinpoint that triggered it, but also to the other joinpoints
encountered along that path.

The code sample of figure 4 defines a visitor for sequential
chaining of advices in a distributed setting. On proceed, control is
returned to the root joinpoint.

The advice sequence can now be defined as depicted in figure 5.

The visitor of figure 6 corresponds to the regular cflow behavior:
each context is successively overridden by the next one.

Supplier

Service

Billing

Service

BillingPortTypeSendOrderPortType

proceed()

Credit

Service

CreditPortType

proceed()

Cass

joinpoint

Cass

advice

‘core’

Service

processOrder(…)
bill(…)

checkCredit(…)

processOrder(…)

billing pointcut credit service adviceprocessOrder pointcut

Fig.3. Distributed sequence of advice on a shared joinpoint

pointcut joinpoint_proceed(JoinPoint jp): call(* proceed()) && target(jp);

pointcut billing(JoinPoint jp): within(BillingService) && joinpoint_proceed(jp):

void around (JoinPoint jp) : billing(jp){

checkCredit();

jp.proceed();

logTransaction();

}

89

5. DYNAMIC SERVICE CUSTOMIZATION
In many cases, nothing is known about the type of the client
entities of a service. There is then not other alternative than to
expose the entire interaction context:

pointcut exposecallpath: context(call(* *.*(..)));

pointcut computation: exposecallpath &&

execution(* S.do_computation(…));

This kind of context propagation is however not scalable, and
requires the context consolidation logic to be woven into all
entities that are potentially in the path from the client to the
service. There is therefore a need for mechanisms to discriminate
entities on the base of the context they may expose. As this
decision needs to be taken before the logic is woven into the
entities, it needs to be expressed at the pointcut level.

In service-oriented environments, services can expose additional
information about themselves in the form of Service Data. Service
Data is set of structured data that describes static and dynamic
properties of web service instance.

Figure 7 presents an example of a contextual visitor that uses
service data to discriminate service contexts.

In the example, the visitor logic needs to be woven only at the
interface of services that expose the
‘ReliabilityServiceDataElement’.

Properties of this nature should therefore somehow be expressed
at the pointcut level. Semantic Web techniques might be a way to
achieve this goal.

5. CONCLUSIONS
This position paper proposes to generalize the semantics of
‘cflow’ to enable advices to retrieve a richer set of context
information along the call path to a target joinpoint.

Contextual visitors collect information about the particular
execution circumstances of a target joinpoint, including references
to the joinpoints encountered along the path.

pointcut processOrder = "execution(* SupplierService.processOrder(..))";

pointcut chain = "call(* Context.proceed()) && chainVisitor(processOrder)";

class chainVisitor implements Context{

JoinPoint cjp;

int i=0;

public void visit(JoinPoint jp){

if(i==0)

cjp=jp;

}

public Object proceed(){

return cjp.proceed();

}

}

@Around("processOrder && chain")

public void bill(Context context){

checkBillingInfo(…);

context.proceed();

doBilling(…);

}

@Around("within(BillingService) && chain")

public void checkCredit(Context context){

checkCredit();

context.proceed();

logTransaction();

}

class cflowVisitor implements Context{

JoinPoint cjp;

public void visit(JoinPoint jp){

cjp = jp;

}

public Object proceed(){

return cjp.proceed();

}

}

Fig.4. Contextual Visitor for Distributed sequence of advice on a shared joinpoint

Fig.5. Distributed sequence of advice with contextual
pointcut.

Fig.6. Contextual Visitor implementation of cflow

90

When control is returned to the target joinpoint, contextual
advices have the power to alter the control flow of the aspect
execution, and return control to other joinpoints that are still alive
in the target joinpoint’s call path.

REFERENCES
[1] M. Nishizawa, S. Chiba, M. Tatsubori, Remote Pointcuts – A

language Construct for Distributed AOP, In Proceedings of
the 3rd International Conference on Aspect-oriented
Software Development, Lancaster, UK, March 2004

[2] Eddy Truyen, Dynamic and Context-Sensitive Composition
in Distributed Systems, PhD Thesis, October 2004.

[3] T. Cottenier, T. Elrad. Validation of Aspect-Oriented
Adaptations to Components, Ninth International Workshop
on Component-Oriented Programming as part of
ECOOP’04, Oslo, Norway, June 2004.

[4] T. Cottenier, T.Elrad. Layers of Collaboration Aspects for
Pervasive Computing, in proceedings of the 5th Argentine
Symposium in Software Engineering (ASSE'2004), Cordoba,
Argentine, September 2004

[5] T. Cottenier, T. Elrad. Contextual Aspect Sensitive Services
www.iit.edu/~concur/asc

class ComputationContext extends Context{

List reliabilityData = new ArrayList();

List joinPoints = new ArrayList();

JoinPoint lastjp;

public void visit(JoinPoint jp){

ServiceData sd = jp.getThis().

getServiceData();

if(sd.contains(“ReliabilitySDE”)){

reliabilityData.

add(sd.get(“ReliabilitySDE”));

joinPoints.add(jp);

lastjp = jp;

}

}

public Object proceed(){

if(computeReliability() > 0.95)

return lastjp.proceed();

((JoinPoint)jps.get(0)).signal(

new ReliabilityException()

);

}

private float computeReliability(){ …}

}

Fig.7. Discrimination of context based on service data

91

92

Using Guard Predicates for Generalized Control of Aspect
Instantiation and Activation

Stephan Herrmann Christine Hundt∗∗ Katharina Mehner∗ Jan Wloka∗

Technical University of Berlin Fraunhofer FIRST

{stephan,resix,mehner}@cs.tu-berlin.de jan.wloka@first.fhg.de

ABSTRACT
Many aspect-oriented programming languages employ static
transformations in order to produce the executable system.
Some aspects, however, should only be effective if certain
conditions are fulfilled that can only be evaluated at run-
time. The näıve approach of using conditionals within the
advice code easily leads to scattering and tangling regarding
these conditionals, suggesting that they should be separated
from the advice code. In this paper we analyze how aspects
can be made conditional, i.e. how their effect can be con-
trolled based on runtime values.

We present an extension to the ObjectTeams/Java program-
ming language that provides a flexible means for controlling
the instantiation and activation of an aspect implemented
by a ”team” and its roles by means of guard predicates. We
discuss different points in a program for which we consider
a guard predicate suitable. We argue that this approach is
more general than the ways other aspect languages control
aspect instantiation and activation. Our approach makes
use of the fact that in Object Teams aspects are imple-
mented as first-class objects, which have full support for
inheritance and polymorphism.

1. MOTIVATION
The goal of AOP is to reduce tangling and scattering. AOP
has successfully contributed to separating orthogonal and
crosscutting code into aspect modules. Besides statically
defined and deployed aspects, dynamism of aspects increas-
ingly attracts researchers’ interest. In some situations, it is
desirable to invoke or change aspect behavior based on the
dynamics of program execution.

In previous work, we have identified three dimensions to
classify dynamism of aspects [14].

• The dimension of aspect dynamism addresses concep-
tually different life-cycles for aspects. Here we distin-
guish (a) static and dynamic definition of aspects, (b)
static definitions of aspects which can be added and
removed at runtime, and (c) static and dynamic acti-
vation of aspects.

• The dimension of adaptation scope distinguishes be-
tween type level and instance level control, assuming

∗This work has been supported by the German Federal Min-
istry for Education and Research under the grant 01ISC04A
(Project TOPPrax).

that aspects can be instantiated like classes in object-
oriented languages.

• The dimension of weaving distinguishes between dif-
ferent points in time for the technical weaving pro-
cess ranging from pre-compile time weaving to runtime
weaving.

To give programmers maximal control over aspect dynamism
it is desirable that these dimensions be clearly distinguished
in language support. Therefore, we examine how this can be
achieved in the context of the core language elements which
have already been identified for AOP: advice (or compara-
ble elements) containing the actual code of the crosscutting
concern, and pointcuts for matching events in the execution
of a program.

Existing AOP approaches support the above dimensions to
different extents and in different ways. We observe deficien-
cies especially related to the concepts of dynamic activation
control and instance level activation.

In approaches with static weaving and without explicit sup-
port for dynamic activation nor instance specific activation,
these concepts have to be simulated using conditionals such
as if-statements. Hence, advice code becomes tangled with
code for activation control. This is especially dissatisfying
because AOP made a start in avoiding one of the principal
maintenance nightmares: nested conditionals spreading all
over the code, resulting in programs that are more concerned
with deciding what to do than with doing.

Approaches which have taken a step further support for
separation of concerns include specialized support for con-
trolling instantiation and activation of aspects. In AspectJ
[16] keywords like perthis and pertarget allow to control
aspect instantiation, but only a limited set of pre-defined
strategies is available. Arbitrary querying of state is possi-
ble with the if-pointcut [16], but here pointcuts tangle the
interceptions of events with activation control.

We feel that the separation of conditionals and actions can
be taken one step further by elevating the conditions used
to control different kinds of activation to a prominent lan-
guage feature. Between join points and the action attached
to them, this paper suggests a third concept: guard predi-
cates. The main contribution of this paper is to report on
an experiment integrating guard predicates into the aspect-
oriented programming language ObjectTeams/Java.

1

93

Relating AOP to more fundamental concepts of program-
ming should help to identify a general system of coordinates
for describing AOP languages, which should eventually lead
to a common theory of AOP. Guard predicates are a candi-
date for such a fundamental concept.

After providing explicit support for guard predicates, other
parts of AOP languages — most notably join point lan-
guages — can be stripped down and will eventually reveal
those atomic concepts that are new in AOP.

The paper is structured as follows: Sect. 2 gives a brief
introduction to the language ObjectTeams/Java. Sect. 3
motivates the need for more flexible control over aspect ac-
tivation. Sect. 4.1 explains how we integrate guard predi-
cates into ObjectTeams/Java for controlling aspect activa-
tion. Sect. 4.2 relates guard predicates to issues of instanti-
ation. Sect. 5 discusses the results in the context of related
work. In Sect. 6 we conclude and outline some future work.

2. AN OVERVIEW OF OBJECT TEAMS
Before introducing the integration of guard predicates into
ObjectTeams/Java, we give a brief overview of this language
(see also [10, 20]). Object Teams introduces two new kinds
of classes: teams and roles. A role is used to decorate an
existing class, called its base. Teams are a structural concept
for encapsulating collaborating roles. An instance of a team
encapsulates a set of role instances.

A role instance intercepts method calls to the decorated ob-
ject if a callin method binding between a role method and
one or more base methods has been specified. A callin can be
of type before, after, or replace (similar to an advice weave as
found in AspectJ [16]) and inserts additional behavior into
the control flow. A role together with its enclosing team can
therefore be seen as an aspect.

Callin bindings of a role are only effective if the enclosing
team has been explicitly activated. When a callin-bound
base method is called the base object is ”translated” to the
corresponding role. The translation is called lifting [12].
Next, the bound role method is called. The lifting transla-
tion must be aware of any existing role-base pairs. To this
end, every team internally has a role registry for storing and
retrieving roles. If no appropriate role is found it is created
on demand and stored in the registry.

2.1 Example
The following source code illustrates the concepts team, role
and callin bindings by the example of an automatic teller
machine (ATM). We start with a most simple Account class
and step-by-step introduce new requirements which are to
be added non-invasively.

1 pub l i c c l a s s Account {
2 p r i v a t e i n t ba l ance ;
3 pub l i c boo lean d e b i t (i n t amount) {
4 i f (! (amount>ba l ance)) {
5 b a l anc e −= amount ;
6 r e t u r n t rue ;
7 }
8 r e t u r n f a l s e ;
9 }

10 . . .
11 }

An Account is a regular (base) class offering the functional-
ity of debiting an amount (among other things).

12 pub l i c team c l a s s ATM {
13 pub l i c i n t payCash (
14 Account account , i n t amount)
15 {
16 boolean ok = account . d e b i t (amount) ;
17 i f (ok) r e t u r n amount ;
18 e l s e r e tu rn 0 ;
19 }
20 // role definition:
21 pro tec ted c l a s s FeeAccount playedBy Account {
22 c a l l i n boolean deb i tWi thFee (i n t amount) {
23 i n t f e e = c a l c u l a t e F e e (amount) ;
24 r e t u r n base . deb i tWi thFee (f e e+amount) ;
25 }
26 // replace callin binding:
27 deb i tWi thFee <− r e p l a c e d e b i t ;
28 i n t c a l c u l a t e F e e (i n t amount) {. . . }
29 }
30 }

The ATM allows to withdraw money via the method
payCash(..)1. So far only standard Java features have been
used. However, the team modifier in line 12 denotes that this
class is realized as a team class. An additional requirement
to be fulfilled is to collect a fee when withdrawing money.
This is realized by the role FeeAccount which decorates the
base class Account. Inner classes of teams are per definition
roles. The decoration relationship is stated by the playedBy

keyword (see line 21).

Via a replace callin binding the role method debitWithFee

is dedicated to intercept the base method debit (see line
27). The effect of this binding is the following: Whenever
Account.debit is called the target is lifted to a FeeAccount

role. The control flow is redirected to its debitWithFee

method, which calculates the fee and calls the original base
method with the increased amount via base.debitWithFee.
In analogy to super calls, a base call uses the name and
signature of the enclosing role method.2 This base call is
comparable to the proceed in AspectJ.

3. MORE CONTROL OVER ASPECTS
So far, the introduced concepts of Object Teams allow gen-
eral control over the activity of aspects by activating and
deactivating teams and all contained roles. In many cases,
this may be enough, but in more complex applications a
more flexible control will be needed.

Reconsidering the ATM example, it is questionable if the
general collection of fees is fair. The role-base binding stated
by the playedBy-clause generally attaches the fee-collecting
role to every Account (base-)object. Actually, an ATM be-
longs to a certain bank and only for withdrawal from a for-
eign account an additional fee is debited. Let’s assume also,
that it should not be possible to query the balance of a for-
eign account.

1Authorization needs are omitted for simplicity.
2This syntax is further motivated by the goal to keep the
callin method independent of any bindings to (possibly mul-
tiple) base methods.

2

94

In the following, a more realistic behavior for an ATM is
achieved. The addition of a Bank attribute to an Account

as well as to an ATM is straightforward. More importantly,
in order to fine-tune the general behavior, we need a more
flexible control over the activity of the aspect encapsulated
in the FeeAccount role. So far, this is only possible with
explicit hand-coded if-statements in the advice code. The
following source code only shows the relevant additions com-
pared to the first version3:

31 pub l i c c l a s s Account {
32 p r i v a t e Bank myBank ;
33 pub l i c Bank getBank () { r e t u r n myBank ; }
34 . . .
35 }

37 pub l i c team c l a s s ATM {
38 p r i v a t e Bank bank ;
39 pub l i c i n t payCash (Account ac , i n t am) {. . . }
40 pub l i c i n t ge tBa l ance (Account account) {. . . }
42 pub l i c c l a s s Fore ignAccount playedBy Account
43 {
44 c a l l i n vo id deb i tWi thFee (i n t amount) {
45 i f (ATM. t h i s . bank . e qua l s (getBank ())) {
46 base . deb i tWi thFee (amount) ;
47 } e l s e {
48 i n t f e e = c a l c u l a t e F e e (amount) ;
49 base . deb i tWi thFee (f e e+amount)) ;
50 }
51 }
52 c a l l i n i n t checkedGetBa lance () {
53 i f (ATM. t h i s . bank . e qua l s (getBank ())) {
54 r e t u r n base . checkedGetBa lance () ;
55 } e l s e {
56 throw new AccExcept ion (”foreign account”) ;
57 }
58 }
59 deb i tWi thFee <− r e p l a c e d e b i t ;
60 checkedGetBa lance <− r e p l a c e ge tBa l ance ;
61 ab s t r a c t Bank getBank () ;
62 getBank −> getBank ;
63 }
64 }

The new requirement of restricting the query of balance, is
realized as another callin method denying the call to
getBalance for foreign accounts (see line 52). In line 45
and line 53 if-statements are used to ensure the desired be-
havior. If the callin methods are called for own accounts
they just forward to the original base method (see lines 46
and 54). Otherwise, they perform the special behavior of
foreign accounts. Lines 61 and 62 are used to define and
bind the method ForeignAccount.getBank via callout4 to
the corresponding base method, which is needed in the con-
ditions.

Although the required behavior is now achieved some bad
smells can be observed. First of all, the condition is tan-
gled with the advice code. Secondly, we see a scattering of
the (identical) condition over the two role methods. What
we really want to state is that the role ForeignAccount is

3Note, that the role is now called ForeignAccount, because
this name better states its meaning.
4Callout bindings declaratively specify the forwarding from
a role method to a base method. Reverse to callin bindings,
which are denoted with the symbol ”<-”, callout bindings
use the symbol ”->”.

only valid for accounts belonging to a different bank than the
ATM.

We need a more flexible control over the activity of aspects
and we want to get rid of the drawbacks observed in the
hand-coded version. The following section shows how the
integration of guard predicates can achieve this goal in a
more elegant way.

4. GUARD PREDICATES IN OBJECT-
TEAMS/JAVA

In the previous section we have illustrated the problem of
condition tangling as it pertains even if some form of AOP
is applied. In order to remedy this problem we go back to
fundamental concepts of programming and try to identify
ECA elements (”event-condition-action”) in AOP:

• We interpret join points as places in a program that
emit events.

• We consider advice weaving as an adaptation of the
action that happens at join points.

• The contribution of this paper is the prominent role
which conditions play as a middleman between events
and actions.

In order to distinguish conditions in this sense from condi-
tions in the imperative part of the language we will use the
notion of guard predicates. In slight adaptation of existing
ECA formalisms, we define that a guard predicate is to de-
termine whether the firing of a given event should actually
cause the adapted action to be performed. Otherwise the
original behavior is performed unchanged.

In this section, we will first introduce the places where guards
can be attached to specific entities of an ObjectTeams/Java
program (4.1) and show how aspect activation can be con-
trolled using guards. Also aspect instantiation can be con-
trolled by guards as we present in Sect. 4.2. We will then
relate guards to other concepts in the language (Sect. 4.3).

4.1 Controlling aspect activation
Callin-bindings as described in the previous section cause
the control flow to leave a base object and enter the cor-
responding role object. In our model, guard predicates are
used to filter these added control flows. The effect of a guard
evaluating to false is that the current callin trigger is re-
jected and the base behavior is performed unmodified. If
a guard evaluates to true (or if no guard is present) the
callin trigger is effective and the adaptation defined by the
corresponding role is applied. We say, an aspect (team and
its roles) is active if its callin bindings are effective. Thus,
guard predicates are a means to control aspect activation.

We support guard predicates at four levels of granularity.
The first level refers to method bindings. This is a straight
forward adoption of tests for dynamic properties as they are
supported, e.g., by the if pointcut designator in AspectJ.
Semantically, guards of method bindings do not differ from
the if designator, we just syntactically separate the guard
to be evaluated at runtime from the statically computed set
of join points.

3

95

Here is the syntax of a guarded method binding (details of
the when clause will be discussed below):

pro tec ted c l a s s MyRole playedBy MyBase {
. . .
/∗ c a l l i n method b i n d i n g wi th guard ∗/
vo id rmeth (i n t x) <− a f t e r vo id bmeth (i n t y)

when (boolean expr. using t h i s (refers to role) and x) ;
}

As a first means for generalization we also support guards
attached to a method. In ObjectTeams/Java the action to
be performed at a join point is defined by regular methods5.
This way several method bindings may bind to the same role
method. Attaching a guard predicate to a role method has
the semantics of attaching the guard to all method bindings
of this method. Only if a method is invoked due to a callin
binding, guards are evaluated and may reject the current
trigger.

In the next level of granularity guards are attached to role
classes such as in the header of the following role class:

pro tec ted c l a s s MyRole playedBy MyBase
when (boolean expression using t h i s (refers to role))

{
//class body omitted

}

In this case the idea is to enable or disable a role instance
based on the evaluation of a guard predicate. The guard is
evaluated before any callin bindings to an instance of the
current role class are considered.

Finally, by attaching a guard predicate to a team class, all
role classes of the team are consistently enabled or disabled
based on the evaluation of the guard predicate.

The following table summarizes the locations where guard
predicates can be attached and describes the respective ef-
fect. Note that guard predicates are only checked if a method
is called via callin.

location/level affected role methods
role method binding this role method if called due to

this binding
role method this role method
role all role methods of this role
team all role methods of all roles in

this team

4.1.1 Scope of guard predicates
First of all, all predicates may access the current team in-
stance, because only with an existing instance of the team,
any callin bindings are considered at runtime. Within a
team level guard, the team instance is simply referred to as
this. In practical examples this proves very useful, since
a team instance can be used to store arbitrary context in-
formation that is valuable for evaluating the predicate. We
will further discuss the role of teams for context based pro-
gramming in Sect. 5.4.

5Only for replace callin bindings a special kind of method
is required that is marked by the callin modifier.

All guards at the level of role classes or below also have
access to the role instance whose method is about to be
invoked. Also the role instance can be used to store con-
text or history information, that will help to formulate the
predicate. In a role level guard, this refers to the role in-
stance and the notation MyTeam.this to the enclosing team.
Guards of methods and method bindings also expose pa-
rameter values (except for the shorthand variant of callin
bindings, which may omit method signatures).

With a role level guard predicate the ATM example from
section 3 can now be rewritten as follows:

65 pub l i c team c l a s s ATM {
66 . . .
67 pub l i c c l a s s Fore ignAccount
68 playedBy Account
69 when (! (ATM. t h i s . bank . e qua l s (getBank ())
70 {
71 c a l l i n vo id deb i tWi thFee (i n t amount) {
72 i n t f e e = c a l c u l a t e F e e (amount) ;
73 base . deb i tWi thFee (f e e+amount)) ;
74 }
75 c a l l i n i n t checkedGetBa lance () {
76 throw new AccExcept ion (”foreign account”) ;
77 }
78 deb i tWi thFee <− r e p l a c e d e b i t ;
79 checkedGetBa lance <− r e p l a c e ge tBa l ance ;
80 ab s t r a c t Bank getBank () ;
81 getBank −> getBank ;
82 }
83 }

The guard predicate attached to the ForeignAccount role
in line 69 ensures that this role and therefore all its callin
bindings are only effective for foreign accounts. This way,
all previously necessary partial checks are substituted by
one specification, expressing exactly our intended require-
ment. Also a clean separation of advice code and activation
conditions is achieved.

4.2 Controlling aspect instantiation
In most AOP languages, instantiation of aspects is fairly
different from instantiation of regular objects. Commonly,
aspects are instantiated automatically when needed without
using a new expression. Aspect instances are yet important
because they allow to store state of the aspect. Technically,
aspect behavior is usually implemented as instance methods
of the aspect, with the only exception of ”advice” which
lacks some important properties of methods.

Aspect instantiation attaches an aspect instance (in Object
Teams: role object) to one or more base objects. The Ob-
ject Teams approach pays very close attention to providing
all benefits of instantiation also to aspect related language
features. Therefore, actual role objects are used instead of
augmenting base classes with additional features. In this
context, role instantiation is such an essential concept that
the used strategy should not be hard-coded into the lan-
guage as a fixed set of options. Rather should programmers
have the chance to effectively control the strategy of role
creation. Different from regular objects, the default for role
objects is an implicit creation on demand. However, client
code may force the creation of additional roles and may pre-
vent the default creation of roles.

4

96

4.2.1 Positive control
Before we demonstrate how guards may prevent role cre-
ation, let us briefly review the means ObjectTeams/Java
provides for triggering role creation.

The default constructor of each bound6 role class expects as
its only parameter an instance of the connected base class.
This constructor can be used from within the context of a
team. The language implementation ensures that role ob-
jects created using this constructor are also registered in
the team for consistent integration with the mechanism of
lifting.

As a second option, methods of a team may declare an argu-
ment with a dual type: the caller is required to pass a base
object yet the method body receives a role object. The sig-
nature for this declaration looks as follows:
teamMethod(MyBase as MyRole r). When calling such a
method, on demand creation of roles remains implicit, how-
ever, the existence of a role object for the given base object
is ensured upon entry to this method.

4.2.2 Negative control
Whenever a callin binding is about to invoke a role method,
first the base object is lifted to its corresponding role object.
If that role object is not yet present in the team’s registry,
a fresh role is automatically created. The guards we have
presented so far reside at the role side of a binding. Thus,
lifting happens before evaluation of the predicate. This has
the advantage, that information in a pre-existing role object
can be used within the predicate.

By attaching the modifier base to any guard predicate, the
semantics is changed such that the predicate is evaluated at
the base side, i.e.: prior to lifting. If a base guard evaluates
to false no lifting occurs and the aspect has no effect at all,
not even creating a role.

It is important to see, that lifting potentially has side effects.
First, creation of a role is an implicit side effect, affecting
the team’s registry. Second, a custom role constructor may
implement arbitrary side effects. Only a base guard ensures,
that in the negative case no side effect has been caused. A
future version of the compiler for ObjectTeams/Java will
also include an analysis, whether guard predicates are in
fact free of side effects.7 Syntactically, a guard predicate
may invoke any boolean method in scope.

As an example, consider again the case of a predicate at-
tached to a method binding:

pro tec ted c l a s s MyRole playedBy MyBase {
. . .
/∗ c a l l i n method b i n d i n g wi th base guard ∗/
vo id rmeth (i n t x) <− a f t e r vo id bmeth (i n t y)

// optional parameter mapping omitted
base when (boolean expression using base and y) ;

}

Please note that the scope of a base predicate is at the

6A role with a playedBy clause is bound.
7The need for side effect analysis fits nicely with other work
on Object Teams where a concept of readonly interfaces is
used to enforce representation encapsulation [11].

t : MyTeam

r : MyRole b : MyBase

bm()

rm()

b r

base when (...)

base

MyTeam.this

when (...)

MyTeam.this

this

control flow
references

Figure 1: Characteristics of Guards in Object Teams

base side. The base object at which the join point trigger
occurred can be accessed using the special identifier base.
Method parameters available in the predicate are those of
the base method (here: y). In anticipation of the control
flow into an existing team instance, the team causing the
callin interception can be accessed using MyTeam.this.

Figure 1 shows which objects a predicate can access, inde-
pendently from the level of granularity. A call to MyBase

intercepted by MyRole is controlled by a guard predicate. A
when predicate can refer to the involved role via this, while
a base when has access to the corresponding base object via
base.

Now it is possible to further enhance the ATM example by
controlling the instantiation of the ForeignAccount role. If
an account belongs to the same bank as the ATM, it will
never need the extra functionality of the ForeignAccount

role. Using a base side guard prevents the creation of roles
for such accounts, thus preventing all possible side effects.

84 pub l i c team c l a s s ATM {
85 . . .
86 pub l i c c l a s s Fore ignAccount
87 playedBy Account
88 base when (
89 ! (ATM. t h i s . bank . e qua l s (base . getBank ())
90 {
91 c a l l i n vo id deb i tWi thFee (i n t amount) {. . . }
92 c a l l i n i n t checkedGetBa lance () {. . . }
93 . . .
94 }
95 }

Line 89 shows the mentioned base when predicate. We
now have direct access to the Account.getBank() method
through base in the guard predicate and do no longer need
the indirect access via callout.

4.3 Relating guards to other concepts
The idea of guard predicates originates from the fundamen-
tal issue of controlling the flow of execution. The previous
section has shown how guards in ObjectTeams/Java can be
used to control also the instantiation of role objects where
the default behavior is otherwise an automatic instantiation
per team and per base object. In this section we investigate
the relationship of guards to other fundamental concepts of
(object-oriented) programming.

4.3.1 Guard combinations
When introducing predicates as a new language feature,
rather than relying on regular methods and method calls

5

97

only, care must be taken, not to break polymorphism and
dynamic dispatch. More specifically, predicates should be
able to exploit the inheritance structure of roles and base
classes.

In some situations more than one guard watches over the
callin to a single role method. On the one hand this can
occur if a role predicate is inherited and overridden in the
subclass. On the other hand a second dimension of combina-
tion appears if guards at different levels of granularity affect
the same role method. In both cases a reasonable strategy
for combining these predicates is needed.

Guards at different positions of the inheritance hierarchy:
The semantics of object-oriented inheritance is to refine the
behavior in subclasses. In analogy to this, guards in a sub-
classes are combined by logical and with the guards of its
superclass. Thus, the subclass can only further refine an
inherited guard predicate.

Guards at different levels of granularity:
If looking at a team-level guard predicate, the programmer
should be allowed to assume that this predicate is effective
for the whole team. For reasons of locality guard predicates
of inner entities may not invalidate outer ones. This means
that inner guard predicates may only refine the conditions
of outer ones. Thus, they are again combined by a logical
and with all outer predicates.

The case of polymorphism only seems to be more difficult
when considering base guards. Here, no role instance ex-
ists yet, thus dynamic dispatch to the most suitable role
class seems impossible. However, guard predicates are in-
tegrated into the language in such a way, that dispatching
can indeed exploit all kinds of polymorphism involved. A
detailed description of this integration would require to dive
into the mechanism of smart lifting as defined in [12], which
establishes a new level of polymorphism called translation
polymorphism. Such details are, however, beyond the scope
of this paper. For the programmer, the situation could be
interpreted as a role instance that exists virtually, whereas
the point in time of evaluating the base guard is early enough
to prevent the role object from materializing.

4.3.2 Reflection
Object Teams also aims at supporting reflection with re-
spect to teams, roles, and role-base relationships. As men-
tioned before, each team instance internally has a registry
of known role objects indexed by their base object. Pro-
grammers may make use of this registry using the following
reflective methods defined in org.objectteams.Team8. The
last one of these methods does not access the registry but
can be used to inspect whether a control flow has already
been intercepted by at least one callin binding.

boolean hasRo l e (Object aBase) ;
boolean hasRo l e (Object aBase ,

C l a s s e xpec t edRo l e) ;
Object ge tRo l e (Object aBase ,

C l a s s e xpec t edRo l e) ;
vo id u n r e g i s t e r R o l e (Object aRo le) ;
boolean i s E x e c u t i n g C a l l i n () ;

8The predefined super class of all team classes

It is desirable and possible to use these methods within
guards. These methods allow to write the specification of
guards in a more concise and more expressive way. Deter-
mined by the signature, the first three methods can only be
used in a base-level guard because they require a reference
to a base object.

4.3.3 Example using reflection
We now conclude the introduction of guard predicates in
Object Teams with an example which summarizes several
concepts and illustrates the use of reflective predicates.

We want to extend the account example as follows: If an
account is registered to collect a special bonus, every time
an amount of more than 1000 is deposited, additional 1%
of the amount is credited. To this end, we create another
team SpecialConditions which is responsible for the new
functionality.

96 pub l i c c l a s s Account {
97 p r i v a t e i n t ba l ance ;
98 pub l i c vo id c r e d i t (i n t amount) {
99 b a l anc e += amount ;

100 }
101 . . .
102 }

104 pub l i c team c l a s s Sp e c i a l C o n d i t i o n s {
105 pub l i c vo id p a r t i c i p a t e
106 (Account as BonusAccount ba) {}

108 pub l i c c l a s s BonusAccount
109 playedBy Account
110 base when (S p e c i a l C o n d i t i o n s . t h i s . ha sRo l e (
111 base , BonusAccount . c l a s s))
112 {
113 pub l i c vo id c r ed i tBonu s (i n t amount)
114 when (amount > 1000)
115 {
116 base . c r e d i tBonu s (amount+(amount /100)) ;
117 }
118 c r e d i tBonu s <− r e p l a c e c r e d i t ;
119 }
120 . . .
121 }

This team provides a registration method participate which
is used to register an account for the special conditions (see
line 105). Here, the explicit role creation mechanism as de-
scribed in 4.2.1 is used.

The base side guard predicate in line 110 checks, if the base
object already has a role in this team. If this is not the case
it prevents lifting (and thus role creation). In combination
with the registration method this means that BonusAccount
roles are never created automatically via lifting but have to
be explicitly registered first. This is exactly what we want
for our bonus collection.

The callin method in line 113 implements the collection of
the bonus. It replaces the original Account.credit method
(see line 118) and performs a base call with the increased
amount of money. In line 114 we use an additional predicate
to ensure that bonus is only credited for amounts greater
than 1000.

The following code snippet shows a usage example. Only

6

98

the account a1 is registered for the bonus collection, while
a2 does not have any special conditions.

. . . // main method:
Account a1 = new Account () ;
Account a2 = new Account () ;
S p e c i a l C o n d i t i o n s sc = new Sp e c i a l C o n d i t i o n s () ;
s c . a c t i v a t e () ;
s c . p a r t i c i p a t e (a1) ;
a1 . c r e d i t (2000) ; // − > balance += 2020
a2 . c r e d i t (2000) ; // − > balance += 2000
. . .

5. COMPARISON TO RELATED WORK
There is a long tradition in specifying program behavior us-
ing triplets of events, conditions and actions (ECA). This
has been made popular by the statecharts notation [9]. In
this context the fundamentally different nature of events and
conditions has been elaborated in depth. This suggests that
also programming languages might benefit from a clear sep-
aration of pure events that happen at a specific point in time
versus conditions reasoning about state that persists over a
span of time.

The idea of ECA triplets has been taken up in the active
database context [5]. Typically, the events, also called trig-
gers, are changes in the database such as an insertion into a
table. The condition evaluation determines whether a cer-
tain action will be executed or not.

5.1 Event-based programming
A similarity of ECA systems and AOP systems has been
discussed in [4]. Also event-based AOP (EAOP) has been
proposed ([6]). Here, aspects are defined in terms of events
emitted during program execution. Identifying each hit of
a join-point with an event that can trigger further behavior
is well in line with the common understanding that AOP
opens new options for reasoning about points in the control
flow of a program. However, the EAOP approach does not
provide explicit support for conditions, leaving this to the
imperative part of the language. This leads to the tangling
of conditions and actions, which motivated the introduction
of guards predicates.

5.2 Predicates in programming
The expressiveness of predicates has been exploited for object-
oriented programs by the concept of predicate dispatch [3, 19].

Predicate Classes were first introduced as an extension of the
programming language Cecil [3]. They complement normal
classes. An object is automatically an instance of a predi-
cate class whenever it satisfies a predicate expression associ-
ated with the predicate class. Any of these predicate classes
can override a method of that object if it formulates more
specific conditions in a predicate. Consequently, method
look-up depends not only on the dynamic types but also
on dynamic object states (as captured by predicates). In
this approach, ill-defined predicates could lead to situations
where several methods or no method at all will be selected
during method look-up producing fatal run-time errors. To
prevent such errors, programmers have to follow specific dis-
ciplines.

Recently, an extension of Java with predicate-based dispatch
called JPred has also been presented [19]. In this approach
the problem of ambiguity and incompleteness of predicates is
addressed by modular type-checking using a theorem prover.

Both approaches have the benefit that they avoid large switch
statements and instance-of checks in individual methods,
which are also difficult to maintain. Instead, each method is
responsible for one case only, and the most specific method
according to the most specific predicate is chosen. Such a
system is easier to extend by new cases as each concern is
encapsulated in a method. This benefit has also been iden-
tified by [22].

While these approaches improve the separation of concerns
and flexibility, at the same time they introduce a complex
analysis problem that either has to be dealt with by the
programmer or by employing tool support based on for-
mal methods. The question remains whether this is always
tractable for the programmer.

By contrast, guard predicates in ObjectTeams/Java do not
select necessary methods for execution, but only filter
whether additional aspect behavior will be triggered or not
(before/after). If replace bindings are involved, semantic
consistency is of course subject to the implementation of
the replacing callin method, but this problem is intrinsic to
replace/around aspects and even to regular method over-
riding.9 In our approach each explicit method call (base
level) will always select exactly one method. In no situation
the evaluation of guards will result in a run-time exception
signaling the inability to dispatch the method call.

Although this type safety in ObjectTeams/Java is achieved
by constraining the original idea of predicate dispatch, a
role class can be used in quite similar ways as a predicate
class. The difference is, that a base object does not com-
pletely change its type based on its state, but it may acquire
additional roles which can augment its state and adapt its
behavior.

5.3 Guards in Aspect-Oriented Programming
The Rondo model [18] defines aspect–like elements called
adjustments. In Rondo adjustments have an event and/or
a condition. Events are explicitly sent using a raise(...)

primitive. When the event associated with an adjustment is
fired, the adjustment is added to a given base module (an-
other adjustment). While this model has an explicit distinc-
tion between events and conditions, both parts are optional.
Also a strategy for evaluating conditions on demand is in-
cluded. Unfortunately, this model has not been followed up
after its definition.

AspectS [13] supports activation blocks by which method
wrappers can be configured to filter trigger events based on
program state. The examples seem to imply that activation
blocks are designed for the purpose of defining join-points
from a set of pre-defined activation blocks. While the con-
cept is actually quite similar to guard predicates in Object
Teams, AspectS supports activation blocks only at the level

9In ObjectTeams/Java, flow analysis is used to warn about
replace callin methods, that do not issue exactly one base
call on each control flow.

7

99

of method wrappers, thus leaving activation at the level of
larger program units to the discipline of the programmer10.

In the Composition Filters approach [2], filters are used to
achieve method interception. Filters can accept certain mes-
sages and thus intercept their execution. The matching pro-
cess is based on the target object, the message selector and
an optional condition. Conditions are reusable side-effect
free boolean methods, which offer an abstraction of the state
of the implementation object. They allow the separation of
the filter itself from the implementation details of the object.
Thereby the reusability of the filter is increased.

The successful application of predicates in the Composition
Filters approach suggests that predicates are indeed a de-
sirable concept for AOP languages. In Composition Filters,
filters are very specific entities, existing for the sole purpose
of filtering messages. Conditions serve the purpose of con-
trolling the flow of execution. By contrast, team and roles
in ObjectTeams/Java are regular classes producing regular
instances.

We could not find prior work concerning AOP where predi-
cates where used to control aspect instantiation as it is sup-
ported by base predicates in ObjectTeams/Java.

5.4 Context based programming
Teams define a context for all executions of role methods. It
is an advantage that this context is available already when
evaluating guards. When acting as a mediator between its
role objects, a team can be used to detect certain execution
patterns at the base level. Mediated by a team, a sequence of
callin triggers can be regarded as a situation, which includes
a memory of passed triggers as well as a place for storing
data that where collected along the path of execution. In
this setting, guards are used to filter events depending on the
current state of the team and on any data available at the
join points. Thus, Object Teams supports different levels
of designing program modes: Team activation defines which
team instances influence the system at a given point in time.
Guards allow an active team to focus on specific subsets of
emitted events. This could mean to consider certain base
objects only, it can exclude method calls based on their pa-
rameter values, or different role classes can be turned on and
off in different modes of a team.

Other approaches exist that allow to define behavior based
on some context information. Lasagne [15, 24] defines per-
client contexts for distributed applications. Also, context
relations [23] and environmental acquisition [7] share some
ideas with Object Teams. Caesar [17] and Chameleon [8]
are other programming models similar to Object Teams. Of
these approaches, only Lasagne supports a limited notion
of predicate dispatch. In Lasagne a deployment-specific in-
terceptor can be used for ”global predicate dispatch”. On
the other extreme, methods may be guarded by a precon-
dition for so-called ”local predicate dispatch”. An in-depth
comparison of our approach with the details of the recently
published thesis [24] will certainly be very instructive, but

10Being a MOP-based approach, AspectS certainly has the
flexibility to support many different styles, but it can give
no static guarantees like team-level predicates, e.g., can.

from a first look it seems, that predicates in Lasagne cannot
be used to control aspect instantiation.

It is a contribution of our approach to provide guards at four
different levels of granularity and at different points in the
control flow (at the base vs. at the role). Also among the
presented approaches the additional dispatch mechanism of
Object Teams (lifting) is unique. By their close connection
to the lifting mechanism, guards can also be used to con-
trol role instantiation, which is not parallelled in the other
approaches.

6. CONCLUSION
We have introduced guard predicates as a clean way to con-
trol the activation and instantiation of aspects. The fea-
ture has been implemented in the OTDT, the eclipse based
Object Teams Development Tooling[21]. First experiments
support the predicted benefits.

We are convinced that explicit support for guard predicates
in aspect languages helps to untangle language concepts,
thus leading to more orthogonal language designs. In this
sense, the introduction of guards as a separate construct al-
lows to construct a leaner join point language. It was an
important step of AOP to extract many conditionals from
the imperative code, because cluttered conditionals may be-
come a real danger to comprehending a program over its
evolution. We take extracting conditionals one step further
by introducing guard predicates at a prominent level in the
language.

The number of approaches that use guards as one of their
core concepts illustrates the fundamental importance of
guards. With explicit language support for guards, AOP
can actually be explained as a specific kind of ECA system.
Join points define events that are emitted whenever the con-
trol flow passes a certain point. Guards define the conditions
by which events are filtered. Action in aspect languages ac-
tually means an adaptation of an existing action in the base
program further specified as either before, after or replace.

Of course, role guards (when) could always be encoded by
weaving the condition into all relevant role methods. We
see three main reasons for raising guards to the level of a
language feature:

1. Guards at the level of classes (role and team) avoid
the scattering that would occur in the hand-coded so-
lution.

2. Guards as a language feature encourage programmers
to think in terms of modes, conditions, situations etc.

3. Base-level guards allow to prevent the creation of role
objects that should not exist, an effect that can only
be obtained by a close connection to the runtime se-
mantics of callin binding and lifting.

After the introduction of guard predicates, ObjectTeams/
Java now provides these styles of controlling aspect instan-
tiation: First, teams are instantiated and activated explic-
itly, which gives programmatic control not only over which

8

100

aspects have an effect on the system, but also on their rel-
ative priority. Second, role creation can be triggered by
constructor calls from within the team or by declared lift-
ing in team-level methods. Third, role creation caused by
a callin binding can be rejected by a guard. So the default
behavior for roles is implicit creation on demand, but client
code may explicitly add roles and prevent other roles from
being created.

6.1 Future work
After academic experiments have identified many situations
where guard predicates indeed facilitate very modular de-
signs, an industrial case study using ObjectTeams/Java is
currently in progress.

The language design of ObjectTeams/Java is not complete,
yet. To date, the only way to specify join points is to enu-
merate methods by name. Therefor, a full analysis of orthog-
onality and expressiveness can not yet be done. However,
we consider explicit support for guards more fundamental
than the exact choice of a query language by which join
points can be identified. With guards separated from join
points we can now focus on which events actually should be
observable.

7. REFERENCES
[1] M. Aksit, M. Mezini, and R. Unland, editors. Objects,

Components, Architectures, Services, and Applications
for a Networked World, International Conference
NetObjectDays, NODe 2002, Erfurt, Germany,
October 7-10, 2002, Revised Papers, volume 2591 of
Lecture Notes in Computer Science. Springer, 2003.

[2] Lodewijk Bergmans and Mehmet Aksit. Principles
and design rationale of composition filters. In
R. Filman, T. Elrad, S. Clarke, and M. Aksit, editors,
Aspect-Oriented Software Development.
Addison-Wesley, 2004. ISBN 0-32-121976-.

[3] Craig Chambers. Predicate classes. In Proc. of
ECOOP’93, 1993.

[4] M. Cilia, M. Haupt, M. Mezini, and A. Buchmann.
The convergence of aop and active databases:
Towards reactive middleware. In Proceedings of 2nd
International Conference on Generative Programming
and Component Engineering (GPCE), volume 2830 of
LNCS, pages 169–188, 2003.

[5] K. R. Dittrich, S. Gatziu, and A. Geppert. The active
database management system manifesto: A rulebase
of a ADBMS features. In Proceedings of the 2nd
International Workshop on Rules in Database
Systems, volume 985, pages 3–20. Springer, 1995.

[6] Rémi Douence, Olivier Motelet, and Mario Südholt. A
formal definition of crosscuts. Lecture Notes in
Computer Science, 2192:170–184, 2001.

[7] J. Gil and D. Lorenz. Environmental Acquistion — a
new inheritance like abstraction mechanism. In Proc.
of OOPSLA’96, pages 214–231. ACM, 1996.

[8] Kasper B. Graversen and Johannes Beyer. Chameleon,
August 2002. Masters thesis. IT-University of
Copenhagen.

[9] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[10] Stephan Herrmann. Object Teams: Improving
modularity for crosscutting collaborations. In Aksit
et al. [1].

[11] Stephan Herrmann. Confinement and representation
encapsulation in object teams. Technical Report
2004/06, Technical University Berlin, 2004.

[12] Stephan Herrmann. Translation polymorphism in
Object Teams. Technical Report 2004/05, Technical
University Berlin, 2004.

[13] Robert Hirschfeld. AspectS - aspect-oriented
programming with squeak. In Aksit et al. [1].

[14] Christine Hundt. Introducing Dynamic AOP to
Object Teams. Poster at European Interactive
Workshop on Aspects in Software EIWAS’04,
http://www.topprax.de/EIWAS04, 2004.

[15] B. Jørgensen and E Truyen. Evolution of collective
object behavior in presence of simultaneous
client-specific view. In Proceedings of the 9th
international Conference on Object-Oriented
Information OOIS’03, volume 2817 of LNCS, pages
18–32. Springer Verlag, 2003.

[16] G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, and
J. Palm. An overview of AspectJ. In Proc. of 15th
ECOOP, number 2072 in LNCS, pages 327–353.
Springer–Verlag, 2001.

[17] M. Mezini and K. Ostermann. Conquering aspects
with caesar. In Proc. AOSD’03, Boston, USA, March
2003. ACM Press.

[18] Mira Mezini. Variational Object-Oriented
Programming Beyond Classes and Inheritance. Kluwer
Academic Publisher, 1998.

[19] T. Millstein. Practical predicate dispatch. In
Proceedings of OOPSLA 2004, October 2004.

[20] Object Teams home page.
http://www.ObjectTeams.org.

[21] Object Teams Development Tooling download page.
http://www.ObjectTeams.org/distrib/otdt.html.

[22] Doug Orleans. Separating behavioral concerns with
predicate dispatch, or, if statement considered
harmful. In Workshop Advanced Separation of
Concerns in Object-oriented Systems at OOPSLA’01,
2001.

[23] L. Seiter, J. Palsberg, and K. Lieberherr. Evolution of
Object Behavior using Context Relations. IEEE
Transactions on Software Engineering, 24(1):79–92,
January 1998.

[24] Eddy Truyen. Dynamic and context-sensitive
composition in distributed systems. PhD thesis,
Katholieke Universiteit Leuven, October 2004.

9

101

