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The notion of a Γ-ring was first introduced by Nobusawa.
The class of Γ-rings contains not only all rings but also
Hestenes ternary rings. Recently, the author proved the
following two theorems: THEOREM A. Let M be a Γ-ring
with right and left unities and R be the right operator
ring. Then, the lattice of two-sided ideals of M is isomor-
phic to the lattice of two-sided ideals of R. THEOREM B.
Let M be a Γ-ring such that x e MΓxΓM for every x e M.
If &{M) is the prime radical of the Γ-ring Λf, then
•^{Mm>n) = (-^ύ{M))m,n. If a Γ-ring M has no unit elements,
Theorem A is not, in general, the case. However, it is
possible to establish for any Γ-ring M, with or without
right and left unities, the result corresponding to Theorem
A for a special type of ideals, namely, prime ideals. In this
note, we prove Theorem 1. The set of all prime ideals of a
Γ-ring M and the set of all prime ideals of the right (left)
operator ring R(L) of M are bijective. Applying this result
to the matrix Γnm-rmg Mm>n, we obtain Theorem 2. The
prime ideals of the ΓWTO-ring Mm,n are the sets Pm,n corre-
sponding to the prime ideals P of the Γ-ring M, and Corollary
2. If £?(M) is the prime radical of the Γ-ring M, then
•^XMm,n) — (•^(M))m>n. This corollary omits the assumption
of Theorem B.

1* Preliminaries* Let M and Γ be additive abelian groups.
If for α, 6, c e M and γ, S e Γ the following conditions are satisfied,

( 1 ) ayb e M,
( 2 ) (a + b)yc — aye + bye, a(y + δ)b = ayb + aδb, ajφ + c) =

ajb + α/γc,
( 3 ) (ayb)δc = ayφδc),

then M is called a Γ-ring. If A and B are subsets of a Γ-ring M
and θ Q Γ, we denote by AΘB, the subset of M consisting of all
finite sums of the form Σ< <V>Άf where α^ei , fr^el? and 7*6 0. A
right (left) ideal of a Γ-ring M is an additive subgroup / of M
such that IΓM C I(MΓI^ I). If / is both a right and a left ideal,
then we say that I is an ideal or a two-sided ideal of M. An ideal
P of a Γ-ring M is prime if for any ideals A, B £ M, AΓB £ P
implies A g P o r £ £ P. The prime radical &*(M) is defined to be
the intersection of all prime ideals of M.

Let M be a Γ-ring and F be the free abelian group generated
by Γ x M. Then, A = {5^ nt(7i9 »<) 6 F | α 6 Λf => Σ* niay%xι = 0} is a
subgroup of ί\ Let i? = .F/A, the factor group, and denote the

375



376 SHOJI KYUNO

coset (7, x) + A by [7, x]. Clearly, every element of 22 can be
expressed as a finite sum Σ i \Γfu χi\ Also, for all x, y e M and a, β e
Γ, [x, a] + [x, β] = [x,a + β] and [x, α] + [y, a] = [x + y, a]. We
define a multiplication in 22 by

ZΛ laif xi\ 2-x YR39 Vj\ — ΣJ Yai> XiPjVj]
i 3 i>3

Then, 22 forms a ring. If we define a composition on Λf x 22 into
Λf by α Σ i [#i, nil = Σ i a«A for α 6 Λf, Σ i [«i, #J e ^» t h e n ^ ί s a

right 22-module, and we call 22 the right operator ring of the Γ-
ring Λf.

For the subsets N £ Λf, Φ Q Γ, we denote by [Φ, iV] the set of
all finite sums Σi [τ<, &<] in 22, where yt e Φ, ^ e N. Thus, in parti-
cular, 22 - [Γ, Λf].

For a subset Q £ 22 we define Q* = {αeΛf|[Γ, a] = [Γ, {α}] £Q}.
It follows that if Q is an ideal of 22, then Q* is an ideal of Λf.
For a subset P Q M, we define P*' = {r e22|Λfr £ P}. It follows
that if P is an ideal of Λf, then P*' is an ideal of Rf and [Γ, P] is
also an ideal of R.

Similarly, we can define the left operator ring L of Λf. For
NQM, Φζ^Γ, we denote by [N, Φ], the set of all finite sums
Σi [Xί, oct] in L with xt e JV and a< e Φ. In particular, L = [Λf, Γ].

For a subset S Q L we define S + = {αeΛf|[α, Γ] = [{α}, Γ]£S}.
If S is an ideal of L, then S+ is an ideal of Λf. For P £ Λf, we
define P + ' - {ίeL|ZM£ P}. If P is an ideal of Λf, then P + ' is an
ideal of L, and [P, Γ] is also an ideal of L.

Let a Γ-ring M be given. If Mm>n (resp. 2\m) is the additive
abelian group of all m by n (resp. w by m) matrices over Λf (resp.
Γ), Mm>n forms a .ΓΛjm-ring. Denote the right operator ring of Mm>n

by [Γn,m9 Λίm.nl Suppose 22M be the ring of all n by n matrices
over the right operator ring 22 of Λf. Then, by the straightforward
calculation on matrices one can verify that the right operator ring
[Γn,m, Mm>n] and the matrix ring Rn are isomorphic via the mapping

Φ Σ [(7#), « ] 1 > Σ ( Σ
i i \ t=l

Similarly, the left operator ring [ΛfWfn, Γntm\ of ΛfmfΛ is isomorphic
to the matrix ring Lm over the left operator ring L of Λf. There-
fore, it may be considered that the right operator ring of the
7\)m-ring Λfm,n is Rn and the left one Lm.

2+ Prime ideals in gamma rings*

LEMMA 1. Let P, Q and S be a prime ideal of a Γ-ring Λf, a
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prime ideal of the right operator ring R and a prime ideal of the
left operator ring L respectively. Then, P*' is a prime ideal of
R, P+r is a prime ideal of L, Q* and S+ are prime ideals of M.

Proof. Let [U, V be ideals of R such that ί / F g P * ' , where
P*' = {reR\Mr £ P}. Since U(V) is an ideal, UΓMV = URV £
UV, and then UΓMVQP*'. Thus, MUΓMV £ P, but since P is
prime, it follows that MU £ P or M F C P. Hence, U £ P*' or
F £ P * ' , which proves P*' is prime.

Similarly, it can be verified that P + ' is a prime ideal of L.
Let A, B be ideals of Λf such that AΓB gQ*, where Q* =

{a?eΛf|[Γ, a] £ Q}. Then, [Γ, A][Γ, B] = [Γ, AΓJ3]£Q, where [Γ, A],
[Γ, B] are ideals of Λ. Since Q is prime, [Γ, A] £ Q or [Γ, J5]£ζ),
which means A £ Q* or B £ Q*. This proves Q* is prime.

Similarly, it can be verified that S+ is prime.

We now prove the analogous result to Theorem 2 in [2].

THEOREM 1. The sets of all prime ideals of a Γ-ring M and
its right (left) operator ring R(L) are bijective via the mapping
P\—> P * ' ( P H - > P + ' ) , where P denotes a prime ideal of M.

Proof. Let P be a prime ideal of M. By the definitions of *'
and * we have

(P*')* = {χeM\[Γ, x] £P*'} - {xeM\MΓxQP} .

Since P is an ideal of M MΓP^P, and then P £ (P*')* On the
other hand, since MΓ(P*')* £ P and P is prime, M £ P or (P*')* £
P. Then, in either case, (P*')* £ P. Therefore, (P*')* = P.

Let Q be a prime ideal of R. Then we have

(Q*)*' = {rei2|Jlίr £ Q*} - {r e i21 [Γ, ΛΓr] C Q} .

Since Q is an ideal of R [Γ, ϋf]Q £ Q, and then Q £ (Q*)*' But,
since [Γ, Λf](Q*)*' = 22(Q*)*' £ Q and Q is prime, (Q*)*' £ Q. Hence,
(Q*)*' = Q. This proves that the sets of all prime ideals of M and
R are bijective.

Similarly, it can be verified that (P+ ')+ - P and (S+)+' - S,
where S is a prime ideal of L. Thus, the sets of all prime ideals
of M and L are bijective.

COROLLARY 1. Let R and L be the right operator ring and
the left one of a Γ-ring M respectively. Then, the sets of all prime
ideals of R and L are bijective via the mapping Q ι-» (Q*)+', where
Q is a prime ideal of R.
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Proof. Let Q and S be prime ideals of R and L respectively.
Then, (Q*)+r is a prime ideal of L. Set (Q*)+' = T. By Theorem 1,
we have (T + )* ' = Q, that is, (((Q*)+')+)*' - Q. Similarly, we have

(((S+)*')*)+' = S.

3* Prime ideals in matrix gamma rings* We note that
Lemma 1 and Theorem 1 hold also for the matrix ΓΛ,m-ring Mm>n.

For any ring R with or without an unit element, Sand proved
the following fact.

LEMMA 2 ([4] Theorem 1). The prime ideals of Rn are the sets
An corresponding to prime ideals A of R.

We prepare the following lemma.

LEMMA 3. Let Q he a subset of the right operator ring R of a
Γ-ring M. Then, (QJ* = (Q*)m,n.

Proof. Recall (QJ* = {(xi5) e Mm,n\ [I\tn, (xiS)] £ Qn} and Q* =
{xeM\\Γ, x] £ Q}.

For any Σ/Ui[(7^ ]), (Xut)\ e [Γn>m, (Q*) m > J, where (yif) e Γn>m and

(ffi*0 e (Q*)OTjΛ, 1 ^ k ^ g, we have

</ q / m \

V IΎΎ(/C)NI (ΎUCΛ\ — V ί V ΓΎ (A:) ^r(fc)1 ) P ΓΓΓ' 0*1^1 d Γ)
k = l \ ί=l

This means that [ / „ , ( Q \ J S Qw, which proves (Q*)m>w £ (QJ*.
Conversely, for any (xuυ)e(Qn)*, we have [Γn>m, (xuv)] £ QΛ. For any
γ e Γ , [(T)1'1*, fej] is a matrix of [JHΛ>W, (»ttt,)] which has the element
[7, %uυ] a s i^s (1, / y ) ^ component, where (j)ι'u denotes the matrix
which has 7 in the first row and nth column and zero elsewhere.
Hence, [Ύ,xuv]eQ. This is true for each element γ e Γ ; hence
[Γ,xuυ]S=Q, and then xuveQ*. Hence, (xuv) e (Q*)m,Λ, which proves
(QJ* £ (Q*)»,n Therefore, (QJ* - (Q*)Λ,n.

THEOREM 2. Γ/ιe prime ideals of the Γn>m-ring Mm>n are the
sets Pm,n corresponding to the prime ideals P of the Γ-ring M.

Proof. Let A be a prime ideal of Mm,n. Apply Theorem 1 to
the ΓΛ>TO-ring Mm>n. Then,

A = (A*')* (A*' is a prime ideal of Rn)
= (QJ* (by Lemma 2, A*' = Qn, where Q is a

prime ideal of i?)
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= (Q*)«, (by Lemma 3)
= Pm,n (Q* = P, and by Lemma 1 P is a prime

ideal of M).

Conversely, let P be a prime ideal of M. By Theorem 1, P = ( P * ' ) * ,
where P*' is a prime ideal of R. Set P*f — Q. Lemma 2 implies
Qn is a prime ideal of Rn. Then Lemma 1 yields (QJ* is a prime
ideal of Mn,n. By Lemma 3, (QJ* = (Q*)Λ i n - ((P*')*)»,» = !>»,«•
Hence, Pm>n is a prime ideal of Mm,n. This proves the theorem.

COROLLARY 2. // ^ ( M ) is the prime radical of the Γ-ring M,
then

Proof. If {P̂  I ί e S2ί} is the set of all prime ideals in M, Theorem

2 implies &>(Mmtn) - flie, (P*)»fΛ - ( Π i e . P ^ .

Corollary 2 omits the assumption of Theorem 8 in [1].
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