Using Kinect for hand tracking and rendering in wearable haptics
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ABSTRACT

Wearable haptic devices with poor position sensing are combined
with the Kinect depth sensor by Microsoft. A heuristic hand tracker
has been developed. It allows for the animation of the hand avatar
in the virtual reality and the implementation of the force rendering
algorithm: the position of the fingertips is measured by the hand
tracker designed and optimized for Kinect, and the rendering algo-
rithm computes the contact forces for wearable haptic display. Pre-
liminary experiments with qualitative results show the effectiveness
of the idea of combining Kinect and wearable haptics.

1 INTRODUCTION

Kinect [1] is a new game controller technology introduced by Mi-
crosoft in November 2010. Since its launch date it was evident
that Microsoft’s device is transforming not only computer gaming
but also many other applications like robotics and virtual reality,
thanks to its ability to track movements and voices, and even iden-
tify faces, all without the need for any additional devices [2]. Kinect
(Fig. 1) interprets 3D scenes from a continuously-projected infrared
structure. It has a webcam-like structure and allows users to con-
trol and interact with a virtual world through a natural user inter-
face, using gestures, spoken commands or presented objects and
images. The device includes a RGB color camera, a depth sen-
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Figure 1: The Kinect device by Microsoft with the Kinect or camera
reference frame. The z—axis is pointing out of the camera (courtesy
of Microsoft).

sor and a multi-array microphone. It provides full-body 3D motion
capture, facial and gesture recognition. The depth sensor consists
of an infrared laser projector combined with a monochrome CMOS
sensor, and allows the Kinect sensor to process 3D scenes in any
ambient light condition [1]. The depth sensor technology was de-
veloped by Israeli PrimeSense [3]. It interprets 3D scene infor-
mation from a continuously-projected infrared structured light. A
variant of image-based 3D reconstruction was used to recover the
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depth of the observed points in the 3D scene [4]. Kinect is able to
simultaneously recognize up to six people, including two moving
players, for motion analysis with a feature extraction of 20 joints
per active player.

To the best of our knowledge, the first attempt to use Kinect in
haptics was made in a demo developed at the BioRobotics Labo-
ratory of the University of Washington [5]. The demo consists of
using Kinect to build a depth image of 3D scenes with objects which
can be virtually touched using haptic devices like the PHANTOM
or other devices developed by the same research group.

The approach proposed in this paper is different. We want to
use the Kinect technology not to build a digital map of the envi-
ronment but as an inherent component of the haptic display itself.
In particular, we want to use the Kinect sensor to identify the po-
sition of the avatar in the virtual environment. In other words, we
are not focused on the object but on the organ involved in the touch
experience: the human hand.

The main objective of this study is to develop a wearable hap-
tic device which we consider one of the promising research areas
in haptics. To cite an example of wearable haptic device, consider
the gravity grabber developed in [6]. It is a wearable device with
two motors for force feedback at fingerpad contact point. The main
difference of this kind of device with respect to the more sophisti-
cated and involved exoskeletons [7] is that the kinesthetic feedback
is practically missed and the force feedback is mainly tactile [8].
The other disadvantage is that the sensing part of the human hand
or arm is poor.

Solving the problem of very poor sensing in wearable haptics is
what we want to do with the use of Kinect technology.

Sensing or tracking the human hand is paramount in haptics for
locating the avatar in the virtual environment and for implementing
the force rendering algorithm in haptic devices of the impedance
type as the one we are using in this work. Many solutions are possi-
ble in order to mitigate this problem, such as the use of sensorized
gloves or markers or cameras. However all these approaches were
found to be poor in terms of performance or very expensive, as in
the case of markers and motion trackers. Moreover, these solutions
make use of additional devices to be worn by the users thus making
the overall system cumbersome.

This paper presents one of the first attempts to use Kinect as
a sensor for wearable haptics. The example we focus on is the
virtual pinch grasp of an object with two contact points. It is worth
underlining that the advantages of wearable haptic devices are even
more evident when multi—point interaction is considered [9].

2 KINECT CALIBRATION PARAMETERS

Kinect has been developed for Xbox 360 and currently Microsoft
has not released the SDK, or an official driver. However, indepen-
dent developers offer solutions for using Kinect separate from the
game console and for the most common operating systems. Using
the CLNUI Platform [10] or the OpenNI Platform [11] (by Prime-
Sense), it is possible to use Kinect under Windows OS with all
libraries needed for data processing. In this paper, we used the
CLNUI Platform which has a simple set of functions to retrieve
data from the device (depth raw data, color depth data, color RGB
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data) and to control the motor of Kinect.

The most relevant data to this study are taken from Kinect’s
depth sensor. These are 11 bit values and represent the raw value
draw of the depth of a point p of the 3D scene. According to the
calibration procedure developed in [12, 13], one gets

d = Ktang(Hdyaw +L) — O

where H =3.5 10’4rad, K =12.36cm, O=3.7cmand L = 1.18rad
and d is the Kinect camera depth of p expressed in cm. This tan-
gential approximation has a sum of squared difference of 0.33cm?
for the calibration data. Once the depth has been obtained using the
calibration function above, we can recover the complete coordinate
vector for point p in the Kinect camera frame. Let (i, j) be the coor-
dinates (pixels) of the projection of point p onto the Kinect camera
frame (Fig. 1). Let (x,y,z) be the coordinates of the 3D point p in
the camera frame expressed in cm. In [14] the authors proposed the
following equations to compute vector (x,y, z) from projection (i, j)
and depth d for point p

(i - Cx)fxd
(Jj— Cy)fyd

X
y
Z

where f, = 0.5942143, f, = 0.5910405, ¢, = 339.3078 and c, =
242.739. Finally, let us report some consideration on accuracy. In
[14] the authors found that the accuracy for point p reconstruction
from the Kinect depth camera is lower than 1cm. For more details
on the accuracy of measurements that one can get with this sen-
sor we refer the reader to the Kinect node of the ROS project at
MIT [15].

3 THE HAND TRACKING ALGORITHM

The proposed hand tracking algorithm consists of the following
steps performed at each time sample:

1. read and process the depth image,

2. compute the bounding box of the hand,

3. extract the main hand points, like fingertip positions,
4. filter trajectories.

The tracking algorithm is implemented with the OpenCV library
[16]. OpenCV is a stable and advanced library for 2D and 3D im-
ages with a set of useful functions for object recognition and ge-
ometric interpretation. The main OpenCV functions necessary for
the algorithm implementation are presented.

Process the depth image

Read the Kinect depth map and build a grayscale image of the 3D
scene. For each point with image projection (i, j) the 11bits depth
variable read from the Kinect sensor is converted in an 8bits depth
variable. In Fig. 2 an example of the depth image is reported.

Compute the hand bounding box

From the depth image, find the bounding box including the hand
which is supposed to be the closest object to the Kinect sensor. In
haptic interactions with virtual environments, this assumption is not
a limitation because the user typically interacts with virtual objects
and consequently no object is interposed between Kinect and the
human hand to be tracked. To compute the bounding box of the
hand a threshold approach is used. With lower and upper thresh-
olds, depths of points too far or too close to the Kinect camera are
set to zero. In our experiments the optimal value for the hand dis-
tance resulted to be 70cm. It is a appropriate value since not too

Figure 2: Depth image obtained from the Kinect’s sensor with the
hand’s bounding box.

much details is lost regarding the hand’s points with the Kinect sen-
Sor.

An example of the bounding box of the hand is reported in Fig. 2.
Note that a 3D bounding box is considered here. In the next step
we will refer to the contour of the 2D image.

From 2D hand contour to fingertip positions

The contour of the hand in the image cropped by the bounding box
is evaluated. The function used to find the contour for objects in
OpenCV [16] is cvFindContours (): it takes a binary image
and returns the number of retrieved contours. The binary image is
computed from the cropped image. Once the contour is obtained, it
is possible to compute its convex hull using the OpenCV function
cvConvexHull (). The points of the hull represent the external
contour of the hand, from the wrist to the fingers if the hand is open
as in Fig. 3.

This set of points is necessary for the function used to identify
the fingers: cvConvexityDefects (). The routine takes the
contour and the convex hull and it computes the defects of convex-
ity returning for each defect a structure with the start point, corre-
sponding to the tip of a finger, the depth point and the end point,
corresponding to the tip of the adjacent finger. The end point is the
point where the convexity defect ends. The maximum distance of
the convexity from the hull is also returned. In Fig. 3 an example of
defects computation is reported.

Figure 3: An example of defects computation. The algorithm detects
the fingertips, in particular of the index and the thumb, which corre-
spond to the start and end points of a convexity defect.

Convexity defects provide relevant information for localizing the



hand in the 3D space. In particular the defects, which are closer to
the convex hull, determine the fingertip’s position. Other important
points are the center of mass of the hand and the two wrist points
at the vertices of the convex hull. These three points allow for the
localization of the palm and its reference frame in the virtual reality.
Fig. 4 reports a more detailed image of the main elements of the
proposed hand tracking algorithm.

Minimum enclosii

1 Bounding rect
circle

Oriented bounding rect

Figure 4: Tracking window: the algorithm computes the hand’s
bounding box, minimal enclosing circle, and the oriented bounding
box. The tips of the thumb and index finger and the hand’s center,
are also reported.

Filtering

All the relevant values obtained from the previous steps are filtered
and smoothed by a Kalman filter. The main OpenCV function in
this case is cvCreateKalman (). For a generic relevant point
p = (x,¥,2), the filter estimates the state vector s consisting of the
point position p and its velocity v. The dynamic and the measure-
ment (m) equations are given by

{s(k+l) = As(k)+w(k)
m(k) = Cs(k) k

where

1 At
A:{O I] and C=[1 0]

being Ar the time interval between two iterations (it is not lower
than 1/30, being 30fps the frame rate of the Kinect device) and w(k)
and v(k) represent the dynamics and measurement noise. They are
assumed to be independent from each other, white, and with nor-
mal probability distributions with covariance Q and R, respectively.
Details on the choice of covariance matrices and filter initialization
are reported in [17].

4 LIMITATIONS OF THE PROPOSED ALGORITHM

In this section the main limitations of the proposed algorithm are
discussed. The main error affecting the proposed tracking algo-
rithm regards the second step. The hand tracker is based on heuris-
tics. In order for the algorithm to work properly, it is important that
the largest part of the hand is visible. Several heuristics are used
for instance to define the finger’s identity and these may fail under
occlusions of the whole or part of one or more fingers. The worst
condition generating occlusions is when the fingers are perpendicu-
lar to the Kinect camera plane xy. In this case no depth information
can be retrieved for large part of the hand. The optimal distance be-
tween the hand to be tracked and the Kinect sensor is 70cm. Farther
away the hand starts to become too small, and some depth informa-
tion gets lost or becomes very poor in terms of accuracy.

Figure 5: Two Omega devices were used in [18] for 3D real-time
haptics interaction.

5 HAND ANIMATION AND HAPTIC FEEDBACK

The proposed hand tracking algorithm allows for the animation of
the hand avatar as discussed in [18] where two grounded haptic
devices are used to track the motion of the index and of the thumb
as in Fig. 5. Here we substitute the measurement of the fingertip
positions with data provided by the Kinect hand tracking algorithm:
the index and thumb tip measurements are provided by Kinect as in
Fig. 3. Of course in this case we have more measurements to better
track the human hand than those provided by the haptic interfaces
only. The kinematic model of the human hand avatar is the one
proposed in [18]. The biomechanical model of the hand avatar has
26 joints. The hand avatar is animated by the data provided by the
tracker. The center of mass of the hand and the measurement of the
wrist position allow for the position and rotation of the wrist in the
virtual environment.

In Fig. 6 the experimental setup is reported. The Kinect sensor
is on the desk pointed towards the hand. The user wore two wear-
able devices and the main application’s windows are shown on the
screen of the computer: in the right window the hand tracking is
reported and in the left window the rendering of the hand avatar.

Figure 6: The Kinect-based wearable haptics: the Kinect sensor is
in front of the hand. On the screen the rendered scene with the hand
avatar (left) and the main points of the tracking algorithm (right).

As far as haptic rendering is concerned, differently from [18]
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where the force feedback at the index and thumb was provided by
two grounded haptic devices, in this paper we use wearable de-
vices. These devices were developed at the University of Siena and
are similar to those developed by K. Minamizawa in [6]. The pro-
totypes of the new devices are those reported in Fig. 6. The force
feedback is applied at the contact point on the finger pad and is con-
trolled by three motors. Three independent contact force direction
at the contact can be controlled in our haptic devices which as the
ones developed in [6], provide cutaneous feedback only and lack of
kinesthetic feedback [8]. The haptic devices have no sensing.

As discussed in the introduction we believe that the Kinect tech-
nology will help spreading the use of wearable haptics in consumer
electronics. The complete analysis of haptic devices used is beyond
the scope of this paper. Description and characterization of the new
devices in Fig. 6 can be found in [19]. The hand tracking perfor-
mance in Section 3 is not affected by the presence of the haptic
devices worn by the user as in Fig. 6. These devices are small and
can be considered minimally invasive for the Kinect sensor when
compared to the whole hand. To improve the hand tracking with
the worn device, additional image pre-processing phases were re-
quired in order to remove parts in the image that did not belong to
the hand. This was done partly with color filtering techniques and
with erosion and smoothing techniques of images as implemented
by the cvErode () in OpenCV.

In the following we present a preliminary experiment showing
the viability of using the Kinect sensor in haptics and in particular
with wearable devices with or without poor position sensing. The
experiment consists of grasping and moving a cube as in Fig. 7,
with the thumb and the index. The cube whose edge length is [, =
10cm is assumed to have uniformly distributed mass m;, = 0.1Kg.
The Open Dynamics Engine (ODE) library [20] has been used to
simulate dynamics. The two contact points have been simulated
as point contacts with friction. A proxy algorithm [21] is used for
force rendering. The stiffness is the same along the three axes of
the reference frame at the two contacts and in particular for each
direction K = 60N/m. The friction coefficient for both contacts is
set to i = 0.5. The contact points on the finger are assumed to be at
the tips of the thumb and index fingers as measured by the tracking
algorithm.

4 Hand Rendering Application
File Help

Figure 7: Example of object grasping simulation: the colored lines
at the contact points are the force vectors proportional to the force
intensity.

A grasping task is described here with reference to the Kinect
camera frame. Once the user has reached the virtual object, she/he
grasps the object with the thumb and the index. Then the cubic
object is raised up for about 12cm from its original position. It

is moved to the right along the x-axis for about 20cm. Finally it
is moved down to the floor. The object’s trajectory is reported in
Fig. 8. During the experiment, the force rendering algorithm com-

Y {cmi

Figure 8: The trajectory of the object during the grasping simulation.

puted the forces to be displayed by means of the wearable devices
[19]. The intensity of the contact forces are reported in Fig. 9 for
the contact at the thumb and in Fig. 10 for the index finger.
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Figure 9: Rendered contact force at the thumb. The simulated con-
tact stiffness is 60 N/m.

The entire process: data acquisition from Kinect, hand tracking,
collision detection, force rendering, and 3D scene dynamics run in
real time at the frame rate of Kinect. The preliminary experiment
was performed with a Core 2 Duo CPU at 3.06Ghz, under Win-
dows 7. Note that there was a relevant computational margin since
the CPU’s use rarely exceeded 50% percent of its capabilities. In
Fig. 11, the execution time is reported for the first 70 iterations.
Note that the initial value of the execution time is higher because
of the initialization procedures of the software environment. After
the first couple of iterations, the range of execution times reaches
an average of 0.03 seconds.
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Figure 10: Rendered contact force at the index finger. The simulated
contact stiffness is 60 N/m.
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Figure 11: Execution time per iteration for the first 70 time samples.
On the y axis the execution time of each single iteration in seconds
is reported.

The hand’s avatar and the entire scene has been developed using
the Microsoft DirectX libraries. Further details on hand animation
are given in [17].

6 CONCLUSIONS

In this paper we propose a solution based on the new Kinect tech-
nology by Microsoft to compensate for the lack of position sensing
in wearable haptics. The qualitative results of the preliminary ex-
periments showed the viability of combining wearable haptics and
the Kinect technology using a hand tracking algorithm based on
some heuristics. We are convinced that the preliminary results of
this paper will open new horizons to the use of wearable haptics in
consumer electronics.
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