2018年度 愛媛大学理学部

集中講義:量子物理学

- 量子系のエンタングルメントと幾何学-

講師:松枝宏明(仙台高等専門学校教授)

はじめに

この原稿は、愛媛大学理学部において、2018年度学部3・4年生向けに集中講義 として開講される「量子物理学」の講義ノートである.講義題目は「量子系のエ ンタングルメントと幾何学」であり、同タイトルで一昨年度出版した拙著の内容 を中心に、多彩に展開する現代量子物理学の情報論的・幾何学的視点について講 義する予定である [1-4].特に、「エンタングルメント」「ホログラフィー」などの 概念を丁寧に説明しながら、物性・素粒子・原子核などの分野の垣根を飛び越え て、今の物理学が抱えている根本的な問題に直接アプローチする思考法や方法論 をお伝えしたいということが本講義の狙いである.世話人の中村正明先生から依 頼を受けて昨年度集中講義を実施し、今年度は2回目の集中講義となる.昨年度 の経験を活かしながら、よりよい講義にできればと考えている.

最近は物理学に限らず,異分野の知見も積極的に導入しながらこれまで狭い専 門分野では解決できなかった問題に取り組もうという機運が各所で高まっている. 物理においてその基盤を成すのが情報理論であるということは如何にも現代的で あるが,AIやIOTの利活用だけではなく,量子論・相対論の一歩先にあるであろ う自然の基礎法則を探る問題にさえ,情報理論が本質的な役割を果たしそうであ るということは非常に心躍る状況である.自然法則をどのような量・どのような フォーマットで記述するかという情報論的な問いは,考えてみれば物理の基礎方程 式を導出する前に最も注意深く考えなければならないことのように思われる.情 報物理学の近年の流行は,勿論過去の膨大な研究成果の上に成り立つものである が,それをクリアに整理する効果だけでなく,理論物理学全体の持つ数理構造の 認識や研究者自身の物理観の醸成に大きな影響を与えたということが評価すべき 価値の一つと言えるのかもしれない.

本講義ノートの概要は以下の通りである.先ず第1章では,本論に進むうえで 必要となる視点を交えながら,量子スピン系の速習コースを実施する.その準備 の上で第2章(特異値分解の数理に潜むホログラフィーくりこみの構造)・第3章 (エンタングルメントとテンソル積変分理論)・第4章(ブラックホールとエンタ ングルメントの深いかかわりに関する問題)に進み,最後の第5章でゲージ重力 対応とその情報幾何的構造について議論する.第2章全体,第3章の一部,第5章 の後半が私のオリジナル研究に基づいており,講義と合わせて原著論文も参考に していただきたい.

2

目 次

第1章	量子スピン系の物理入門	5		
1.1	.1 量子スピン系			
	1.1.1 基本的な性質	5		
	1.1.2 Jordan-Wigner 変換	9		
1.2	統計物理における量子古典変換................	11		
	1.2.1 ハウスドルフの公式	11		
	1.2.2 鈴木-Trotter 変換	13		
1.3	古典スピン系に対する転送行列法	15		
第2章	特異値分解によるくりこみ群理論の再構築	17		
2.1	特異値分解	17		
2.2	くりこみの画像処理的解析....................	19		
	2.2.1 スケール分解の基本的な考え方	19		
	2.2.2 厳密なフラクタルに対する解析	22		
2.3	スピン模型に対する応用	24		
	2.3.1 Typicality としての画像:スピン構造の特異値分解	24		
	2.3.2 特異値分解の連続極限: Mellin 変換	25		
第3章	エンタングルメントとテンソル積変分理論 29			
3.1	エンタングルメント・エントロピー	29		
	3.1.1 エンタングルメント・エントロピーのスケール則	29		
	3.1.2 具体的な模型での計算例	31		
3.2	変分関数のクラス I:PEPS クラス	35		
	3.2.1 スピン一重項状態の持つエンタングルメント構造	35		
	3.2.2 行列積による状態の因子化	36		
	3.2.3 有限 χ スケーリング	42		
	3.2.4 PEPS 形式	43		
	3.2.5 テンソル積状態	44		
3.3	量子可積分性とのつながり.......................	46		

3.4	変分関]数のクラス II:MERA クラス	48	
	3.4.1	テンソルの階層化.......................	48	
	3.4.2	エンタングルメントくりこみ仮説(MERA)	51	
	3.4.3	因果円錐	52	
	3.4.4	MERA ネットワークと AdS 空間の測地線の対応......	54	
	3.4.5	二重ヒルベルト空間と熱的真空状態..........	54	
	3.4.6	有限温度 MERA	57	
第4章	ブラッ	クホール熱力学	60	
4.1	Becker	nstein-Hawking の法則	60	
4.2	Unruh	」効果	62	
	4.2.1	一様加速度運動	62	
	4.2.2	Rindler 時空	62	
	4.2.3	自由スカラー場	63	
	4.2.4	Bogoliubov 変換と Unruh 温度	64	
4.3	ホーキ	ング放射の計算の概要	65	
第5章	情報幾何的アプローチによるゲージ重力対応の研究 66			
5.1	双曲的]時空におけるバルク境界対応	66	
	5.1.1	AdS/CFT 対応	66	
	5.1.2	GKP-Witten 関係式	67	
	5.1.3	笠–高柳の公式	69	
5.2	情報幾	何によるゲージ重力対応の研究	71	
	5.2.1	情報幾何の基礎とエンタングルメント熱力学.......	71	
	5.2.2	ガウス分布の幾何学	73	
	5.2.3	時空間座標とカノニカル変数の間の変換則,エントロピー公		
		式の導出	74	
	5.2.4	双対性とバルク境界対応	76	

第1章 量子スピン系の物理入門

古くから蓄積されている古典・量子スピン系の多彩な研究を紐解くと,現在流 行している量子情報物理の源泉が見えてくる.限られた項目であるがその一端を 学習することで(特に量子古典変換に着目して),本講座全体のウォーミングアッ プとする.

1.1 量子スピン系

1.1.1 基本的な性質

これ以降,具体的な例題として,反強磁性的相互作用する量子スピン系(*S* = 1/2) を繰り返し取り扱うので,まずここで基本的な性質を充分に理解してほしい.後 に最も重要な概念となる「エンタングルメント」ということが暗に理解できるよ うにしたいということが目的である.

先ずはスピン系のテンソル積表現を導入しよう.まずスピン演算子は

$$\vec{S} = \frac{1}{2}\vec{\sigma} = \frac{1}{2}\left(\sigma^x, \sigma^y, \sigma^z\right) , \ \left[\sigma^\mu, \sigma^\nu\right] = 2i\epsilon_{\mu\nu\lambda}\sigma^\lambda \tag{1.1}$$

で定義されるが ($\mu = x, y, z$), 単位行列およびパウリ行列は

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(1.2)

である.これらの演算子は、2次元複素ベクトル空間V上に作用する.Vの基底は

$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \; |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
(1.3)

であり、一般的な状態は $\alpha, \beta \in \mathbf{C}$ を用いて

$$\alpha \left|\uparrow\right\rangle + \beta \left|\downarrow\right\rangle \in V \tag{1.4}$$

と表される.即ち,局所的なスピン状態を表すのが*V*である.量子計算の分野では,*V*を計算基底とよぶ.そのときはスピンの↑,↓を0,1のビットに対応させる.

2スピン系の基底は、テンソル積空間*V*⊗*V*の要素である.即ち、2サイトの基 底を以下のように表すことができる.

$$|\uparrow\uparrow\rangle = |\uparrow\rangle \otimes |\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$
(1.5)

$$|\uparrow\downarrow\rangle = |\uparrow\rangle \otimes |\downarrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\\frac{1}{0}\\0 \end{pmatrix}$$
(1.6)

$$\left|\downarrow\uparrow\right\rangle = \left|\downarrow\right\rangle \otimes \left|\uparrow\right\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
(1.7)

$$|\downarrow\downarrow\rangle = |\downarrow\rangle \otimes |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
(1.8)

ここで,各サイト上のスピン演算子は

$$\vec{\sigma}_1 = \vec{\sigma} \otimes \mathbf{1} , \ \vec{\sigma}_2 = \mathbf{1} \otimes \vec{\sigma} \tag{1.9}$$

と表されるので、V⊗V上の演算子という視点では以下のように書くことができる.

$$\sigma_1^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & | 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & | 0 & 0 \end{pmatrix}$$
(1.10)

$$\sigma_1^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & | -i & 0 \\ 0 & 0 & 0 & -i \\ \hline i & 0 & 0 & 0 \\ 0 & i & | & 0 & 0 \end{pmatrix}$$
(1.11)

$$\sigma_1^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(1.12)

 $ec{\sigma}_2$ についても同様に

$$\sigma_2^x = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
(1.13)

$$\sigma_2^y = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}$$
(1.14)

$$\sigma_2^z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(1.15)

となる. 異なるサイトのスピン演算子は可換である.

$$[\sigma_1^{\mu}, \sigma_2^{\nu}] = 0 , \ \mu, \nu \in \{x, y, z\}$$
(1.16)

以上の表示で、例えば σ_1^z を状態 $|\downarrow\downarrow\rangle$ に作用する場合には、4 成分行列を取り扱わなくとも

$$\sigma_1^z |\downarrow\downarrow\rangle = (\sigma^z \otimes \mathbf{1}) |\downarrow\rangle \otimes |\downarrow\rangle = (\sigma^z |\downarrow\rangle) \otimes (\mathbf{1} |\downarrow\rangle) = - |\downarrow\rangle \otimes |\downarrow\rangle = - |\downarrow\downarrow\rangle \quad (1.17)$$

と計算することができる.

以上の準備のもとに、2サイトの Heisenberg ハミルトニアンは、以下のように 表される.

$$H = J\vec{S}_1 \cdot \vec{S}_2 - \frac{J}{4}\mathbf{1} \otimes \mathbf{1}$$
$$= \frac{J}{4} (\vec{\sigma}_1 \cdot \vec{\sigma}_2 - \mathbf{1} \otimes \mathbf{1})$$

$$= \frac{J}{4} \left(\sigma_{1}^{x} \sigma_{2}^{x} + \sigma_{1}^{y} \sigma_{2}^{y} + \sigma_{1}^{z} \sigma_{2}^{z} - \mathbf{1} \otimes \mathbf{1} \right)$$

$$= \frac{J}{4} \left(\sigma^{x} \otimes \sigma^{x} + \sigma^{y} \otimes \sigma^{y} + \sigma^{z} \otimes \sigma^{z} - \mathbf{1} \otimes \mathbf{1} \right)$$

$$= \frac{J}{2} \left(\begin{array}{c|c} 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ \hline 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$
(1.18)

演算子の添え字にサイトの番号がついている表現は通常のものである. テンソル 積表現ではテンソル積の順序が場所の順序に対応しているので,演算子にはサイ トの添え字はもうつけない. このハミルトニアンは直接対角化でき,固有状態は シングレットとトリプレットで,粒子の置換に対してパリティの違いで分類され る. したがって,次の置換行列が重要な働きをする.

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.19)

これは下記のように、二つのベクトルのテンソル積の順序を入れ替える.まず

$$|x\rangle \otimes |y\rangle = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \otimes \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1y_1 \\ x_1y_2 \\ x_2y_1 \\ x_2y_2 \end{pmatrix}$$
(1.20)

と計算し、ここに左から Pを作用すると

$$P(|x\rangle \otimes |y\rangle) = \begin{pmatrix} x_1y_1\\ x_2y_1\\ x_1y_2\\ x_2y_2 \end{pmatrix} = \begin{pmatrix} y_1x_1\\ y_1x_2\\ y_2x_1\\ y_2x_2 \end{pmatrix} = |y\rangle \otimes |x\rangle$$
(1.21)

となる. 逆にこの性質から, 置換演算子 Pの固有状態は明らかに

$$|\uparrow\uparrow\rangle$$
, $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle\pm|\downarrow\uparrow\rangle)$, $|\downarrow\downarrow\rangle$ (1.22)

であるから,特に ($|\uparrow\downarrow\rangle \pm |\downarrow\uparrow\rangle$)/ $\sqrt{2}$ は2スピンがもつれており,これを後にエンタングルメントと呼ぶ.つまり *P*にエンタングルメントを作り出す働きがあることが分かる.演算子 *P*を用いると,ハミルトニアンは

$$H = \frac{J}{2} \left(P - \mathbf{1} \otimes \mathbf{1} \right) \tag{1.23}$$

と表される.それで実際に固有状態は P の固有状態でもあることが分かる.多体 系においても置換演算子は非常に重要で,組紐関係式や Yang-Baxter 関係式は可 解模型の方法において中心的な役割を演じることが知られている.

最後に補足であるが,対称性という観点からは,系のエネルギーは具体的に対 角化をしなくても,SU(2)対称性から理解できる.まず全スピン演算子

$$\vec{S} = \frac{1}{2} \left(\vec{\sigma} \otimes \mathbf{1} + \mathbf{1} \otimes \vec{\sigma} \right) = \frac{1}{2} \vec{\sigma} \oplus \vec{\sigma}$$
(1.24)

を導入する(⊕は直和を表す).この2乗を計算すると,

$$\vec{S}^{2} = \frac{1}{4} (\vec{\sigma} \otimes \mathbf{1} + \mathbf{1} \otimes \vec{\sigma})^{2}$$

$$= \frac{1}{4} (\vec{\sigma}^{2} \otimes \mathbf{1} + 2\vec{\sigma} \otimes \vec{\sigma} + \mathbf{1} \otimes \vec{\sigma}^{2})$$

$$= \frac{1}{2} \vec{\sigma} \otimes \vec{\sigma} + \frac{3}{2} \mathbf{1} \otimes \mathbf{1}$$
(1.25)

これより

$$H = \frac{J}{2} \left(\vec{S}^2 - 2\mathbf{1} \otimes \mathbf{1} \right) \tag{1.26}$$

となるが,

$$\vec{S}^2 \left| S, S^z \right\rangle = S(S+1) \left| S, S^z \right\rangle \tag{1.27}$$

なので、S = 0のときE = -J、S = 1のときE = 0となることが分かる.

1.1.2 Jordan-Wigner 変換

エンタングルした状態の一体問題化法として,非局所変換の方法はエンタングル メントの概念と密接に関わっており非常に重要である.以下では Jordan-Wigner 変換を例として見ていく.

最初に導入した1次元 Heisenberg 模型

$$H = \sum_{i} \left[\frac{J}{2} \left(S_i^+ S_{i+1}^- + S_{i+1}^- S_i^+ \right) + J_z S_i^z S_{i+1}^z \right]$$
(1.28)

について考えよう $(J \neq J_z \text{ cobs}, XXZ$ 模型とも呼ばれる). これは先ほど 説明したように典型的な量子もつれ状態を生成する. 2 スピン系は容易に対角化 できたが、多スピン系になると初等的な解法は難しく、Bethe 仮説法などの厳密 解の高度な手法が必要である. 厳密解のエンタングルメント構造を深く理解する ことは後々の課題として、ここでは先ずスピンが非局所的に相関して、ストリン グ的な励起を作るであろうことを念頭に置いて、その相関を取り込んだ演算子を 導入すれば自由フェルミオン模型が構成できることを見ておきたい.この変換は Jordan-Wigner 変換と呼ばれている.

前述のように全てのサイトのスピンが↓である状態を真空状態と定義すると,↑ スピンはそのサイトにフェルミオン的粒子を付け加えたことに相当する.したがっ て,そのフェルミオンのサイト*i*における生成消滅演算子と粒子数演算子をそれ ぞれ c_i^{\dagger}, c_i, n_i と表すと,

$$S_i^z = n_i - \frac{1}{2} \tag{1.29}$$

と置き換えすることができる. 一方,スピンの昇降演算子 S_i^{\pm} はスピンの向きを反転させるので,それぞれ $S_i^{+} \sim c_i^{\dagger}, S_i^{-} \sim c_i$ と対応するように思われるが,正確には

$$S_i^+ = \exp\left(-i\pi\sum_{j=1}^{i-1}n_j\right)c_i^\dagger \tag{1.30}$$

$$S_i^- = c_i \exp\left(i\pi \sum_{j=1}^{i-1} n_j\right) \tag{1.31}$$

ととるべきであり、非局所的な因子 $K_i = e^{i\pi\sum_{j=1}^{i-1} n_j}$ が必要となる.この因子はストリング演算子と呼ばれる.ストリング演算子の存在により、 S_i^+ と S_j^- の交換関係は、i < j に対して

$$\begin{bmatrix} S_i^+, S_j^- \end{bmatrix} = \exp\left(-i\pi \sum_{k=1}^{i-1} n_k\right) c_i^\dagger c_j \exp\left(i\pi \sum_{l=1}^{j-1} n_l\right) -c_j \exp\left(i\pi \sum_{l=1}^{j-1} n_l\right) \exp\left(-i\pi \sum_{k=1}^{i-1} n_k\right) c_i^\dagger = c_i^\dagger \exp\left(i\pi \sum_{i \le l < j} n_l\right) c_j - c_j \exp\left(i\pi \sum_{i \le l < j} n_l\right) c_i^\dagger$$
(1.32)

となるが,第2項においてストリング演算子 $e^{i\pi\sum_{i\leq l < j} n_l}$ と c_i^{\dagger} の交換でフェルミオンの符号が現れることに注意する.この結果

$$\left[S_i^+, S_j^-\right] = \left\{a_i^\dagger, a_j\right\} \exp\left(i\pi \sum_{i \le l < j} n_l\right) = 0 \tag{1.33}$$

となり,正しくスピンの代数を満たすことが分かる.このときスピンの揺らぎの 項は

$$S_{i}^{+}S_{i+1}^{-} = \exp\left(-i\pi\sum_{j=1}^{i-1}n_{j}\right)c_{i}^{\dagger}c_{i+1}\exp\left(i\pi\sum_{l=1}^{i}n_{l}\right)$$
$$= c_{i}^{\dagger}e^{i\pi n_{i}}c_{i+1}$$
$$= c_{i}^{\dagger}c_{i+1}$$
(1.34)

となって,フェルミオンのホッピング項に変換される.以上の変換の結果,ハミ ルトニアンは

$$H = J \sum_{i} \left(c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i \right) + J_z \sum_{i} \left(n_i - \frac{1}{2} \right) \left(n_{i+1} - \frac{1}{2} \right)$$
(1.35)

と表される.とくに XY 模型の極限 ($J_z = 0$) では自由フェルミオン場に変換されている.相互作用系に自由場的な表現を持ち込むためには,先に述べたように,内部自由度にエンタングルメント効果を押し付けるということが必須となる.それを今の場合にはストリング演算子という形で顕わに扱っていると見ることもできる.

1.2 統計物理における量子古典変換

1.2.1 ハウスドルフの公式

分配関数や時間発展演算子を取り扱う場合,非可換演算子が指数の肩に乗っているが、そのような形の演算子をうまく取り扱う方法を考えよう. $[X,Y] \neq 0$ の場合,

$$e^{X+Y} \neq e^X e^Y \tag{1.36}$$

であり、単純に X のみの演算子と Y のみの演算子に分解することはできない.こ れをうまく分解するには

$$e^{X+Y} = \lim_{M \to \infty} \left(e^{X/M} e^{Y/M} \right)^M \tag{1.37}$$

という関係式を用いることができる.これを物理の分野ではTrotter 公式,分解で現れたパラメータ *M* を Trotter 数と呼ぶ.

これを理解するために、Hausdorffの公式(Baker-Campbell-Hausdorffの公式)

$$e^{X}e^{Y} = \exp\left(X + Y + \frac{1}{2}\left[X,Y\right] + \frac{1}{2}\left[X - Y,\left[X,Y\right]\right] + \cdots\right)$$
 (1.38)

を証明することから始めよう.右辺が交換関係のみで表されることがポイントである.交換子の積のようなより複雑な演算子は現れない.はじめに

$$e^{tX}e^{tY} = \left\{ 1 + tX + \frac{1}{2}(tX)^2 + \frac{1}{6}(tX)^3 + \cdots \right\}$$
$$\times \left\{ 1 + tY + \frac{1}{2}(tY)^2 + \frac{1}{6}(tY)^3 + \cdots \right\}$$
$$= 1 + t(X + Y) + \frac{1}{2}t^2 \left(X^2 + 2XY + Y^2 \right) + \cdots$$
(1.39)

および

$$e^{tX}e^{tY} = e^{h(tX,tY)} \tag{1.40}$$

という関係式を導入する. ここで

$$h(tX, tY) = \sum_{\nu=1}^{\infty} t^{\nu} h_{\nu}(X, Y)$$
(1.41)

と展開する.このとき

$$\exp\left(\sum_{\nu=1}^{\infty} t^{\nu} h_{\nu}(X,Y)\right) = 1 + \sum_{\nu=1}^{\infty} t^{\nu} h_{\nu}(X,Y) + \frac{1}{2} \left(\sum_{\nu=1}^{\infty} t^{\nu} h_{\nu}(X,Y)\right)^{2} + \cdots$$
$$= 1 + h_{1}(X,Y) + \frac{1}{2} t^{2} \left\{2h_{2}(X,Y) + h_{1}^{2}(X,Y)\right\} + \cdots$$
(1.42)

となるが,式(1.39)と式(1.42)を比較すると,

$$h_1(X,Y) = X + Y (1.43)$$

および

$$2h_{2} = X^{2} + 2XY + Y^{2} - h_{1}^{2}$$

$$= X^{2} + 2XY + Y^{2} - (X + Y)^{2}$$

$$= [X, Y]$$
(1.44)

より

$$h_2(X,Y) = \frac{1}{2} [X,Y]$$
(1.45)

であることが分かる. 高次の $h_{\nu}(X,Y)$ も上記の方法で逐次的に求めることができる.

Hausdorff の公式を

$$e^{\frac{X}{M}}e^{\frac{Y}{M}} = \exp\left(\frac{1}{M}\left(X+Y\right) + \frac{1}{M^2}\frac{1}{2}\left[X,Y\right] + \frac{1}{M^3}\frac{1}{2}\left[X-Y,[X,Y]\right] + \cdots\right) (1.46)$$
と書き換えすれば, *M* が大きい極限で Trotter 公式が導出できる.

1.2.2 鈴木-Trotter 変換

Trotter 公式を用いると、短距離相互作用をしている空間 d 次元量子系の問題 を、空間 (d+1) 次元の古典系へ変換することができる.このとき、新しい空間 方向は Trotter 数で特徴づけられ、それを Trotter 軸とよぶ.この対応原理は、鈴 木-Trotter 変換と呼ばれており、量子モンテカルロ法など広い応用範囲を持って いる.

ここでは具体的に、一次元横磁場 Ising 模型

$$H = -J \sum_{i=1}^{L} \sigma_{i}^{z} \sigma_{i+1}^{z} - \lambda \sum_{i=1}^{L} \sigma_{i}^{x}$$
(1.47)

の変換を考えよう. σ_i^z 及び σ_i^x は Pauli 行列である. 以下では, 或る特定のスピン配置 $\{\sigma^1\}$ に対する密度行列

$$\rho(\{\sigma^1\}) = \left\langle \{\sigma^1\} \right| e^{-\beta H} \left| \{\sigma^1\} \right\rangle \tag{1.48}$$

を鈴木-Trotter 分解を用いて変形する.変形にあたって、特定のスピン配置の状態 $|\{\sigma^k\}\rangle$ に σ_i^z が演算するとき

$$\sigma_i^z \left| \left\{ \sigma^k \right\} \right\rangle = \sigma_i^k \left| \left\{ \sigma^k \right\} \right\rangle \tag{1.49}$$

と表すことにする. はじめに $\rho({\sigma^1})$ を鈴木-Trotter 分解すると,

$$\rho(\{\sigma^1\}) = \left\langle \{\sigma^1\} \right| \left[\exp\left\{ a \sum_{i=1}^L \sigma_i^z \sigma_{i+1}^z \right\} \exp\left\{ b \sum_{i=1}^L \sigma_i^x \right\} \right]^M \left| \{\sigma^1\} \right\rangle$$
(1.50)

となる.ただし、 $a = \beta J/M, b = \beta \lambda/M$ とした.分解の各項の間に完全系

$$\sum_{\{\sigma^k\}} \left| \{\sigma^k\} \right\rangle \left\langle \{\sigma^k\} \right| = \mathbf{1}$$
(1.51)

を挿入すると

$$\rho(\{\sigma^{1}\}) = \sum_{\{\sigma^{2}\}} \cdots \sum_{\{\sigma^{M}\}} \prod_{k=1}^{M} \langle \{\sigma^{k}\} | \exp\left\{a\sum_{i=1}^{L} \sigma_{i}^{z} \sigma_{i+1}^{z}\right\} \exp\left\{b\sum_{i=1}^{L} \sigma_{i}^{x}\right\} | \{\sigma^{k+1}\} \rangle$$
$$= \sum_{\{\sigma^{2}\}} \cdots \sum_{\{\sigma^{M}\}} \prod_{k=1}^{M} \exp\left\{a\sum_{i=1}^{L} \sigma_{i}^{k} \sigma_{i+1}^{k}\right\} \langle \{\sigma^{k}\} | \exp\left\{b\sum_{i=1}^{L} \sigma_{i}^{x}\right\} | \{\sigma^{k+1}\} \rangle$$
(1.52)

となることが分かる.ただし、周期境界条件を仮定して $|\{\sigma^1\}\rangle = |\{\sigma^{M+1}\}\rangle$ とした. Trotter 数方向を座標的に表現する場合,Trotter 軸と呼ぶことにする.ここで

$$e^{b\sigma^x} = 1 + b\sigma^x + \frac{1}{2!}(b\sigma^x)^2 + \frac{1}{3!}(b\sigma^x)^3 + \cdots$$
 (1.53)

より

$$\langle \uparrow | e^{b\sigma^{x}} | \uparrow \rangle = \cosh b$$

$$= \sqrt{\frac{1}{4}(e^{b} + e^{-b})^{2}}$$

$$= \sqrt{\frac{1}{4}(e^{b} - e^{-b})(e^{b} + e^{-b})(e^{b} + e^{-b})\frac{1}{e^{b} - e^{-b}} }$$

$$= A\sqrt{\coth b}$$

$$= A\exp\left(\frac{1}{2}\ln\left(\coth b\right)\right)$$

$$\langle \uparrow | e^{b\sigma^{x}} | \downarrow \rangle = \sinh b$$

$$(1.54)$$

$$e^{b\sigma^{a}} |\downarrow\rangle = \sinh b$$

= $\sqrt{\frac{1}{4}(e^{b} - e^{-b})^{2}}$
= $\sqrt{\frac{1}{4}(e^{b} + e^{-b})(e^{b} - e^{-b})(e^{b} - e^{-b})\frac{1}{e^{b} + e^{-b}}}$
= $A\sqrt{\tanh b}$
= $A\exp\left(\frac{1}{2}\ln(\tanh b)\right)$ (1.55)

が成り立つ.ただし

$$A = \sqrt{\frac{1}{2}\sinh 2b} \tag{1.56}$$

とおいた. これより以下の恒等式が成り立つ $(\sigma, \sigma' = \pm 1)$.

$$\langle \sigma | e^{\frac{\beta}{M}\lambda\sigma^{x}} | \sigma' \rangle = A \exp\left\{-\frac{1}{2}\sigma\sigma' \ln\left(\tanh\frac{\beta}{M}\lambda\right)\right\}$$
 (1.57)

したがって密度行列は

$$\rho(\{\sigma_1\}) = \sum_{\{\sigma^2\}} \cdots \sum_{\{\sigma^M\}} A^M \prod_{k=1}^M \exp\left\{\frac{\beta}{M} J \sum_{i=1}^L \sigma_i^k \sigma_{i+1}^k\right\} \times \exp\left\{-\frac{1}{2} \sum_{i=1}^L \sigma_i^k \sigma_i^{k+1} \ln\left(\tanh\frac{\beta}{M}\lambda\right)\right\}$$
(1.58)

となり、有効ハミルトニアンは

$$H_{\rm eff} = \sum_{i=1}^{L} \sum_{k=1}^{M} \left(J_1 \sigma_i^k \sigma_{i+1}^k + J_2 \sigma_i^k \sigma_i^{k+1} \right)$$
(1.59)

で与えられる. 有効相互作用 J₁, J₂ は

$$\begin{cases} J_1 = -\frac{J}{M} \\ J_2 = \frac{1}{2\beta} \ln\left(\tanh\left(\frac{\beta}{M}\lambda\right) \right) \end{cases}$$
(1.60)

となる.これは二次元異方的古典 Ising 模型である.これで一次元量子系が Trotter 軸を新たな座標とする二次元古典系に変換された.

1.3 古典スピン系に対する転送行列法

この章の最後に,テンソルネットワークに進む前段階として,転送行列の方法 について触れておく.一次元古典 Ising 模型を考える.ハミルトニアンは

$$H = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1} \tag{1.61}$$

と表わされる. $\sigma_i = \pm 1$ である.ここでは周期境界条件を仮定し,

$$\sigma_{N+1} = \sigma_1 \tag{1.62}$$

とおく. このとき状態和は

$$Z(N) = \operatorname{Tr} e^{-\beta H} = \sum_{\sigma_1} \cdots \sum_{\sigma_N} e^{-\beta H} = \sum_{\sigma_1} \cdots \sum_{\sigma_N} \prod_i e^{\beta J \sigma_i \sigma_{i+1}}$$
(1.63)

となる.この式は行列を用いて簡単に表わすことができる.行列要素 $A_{\sigma\sigma'} = e^{\beta J \sigma \sigma'}$ (但し $\sigma, \sigma' = \pm 1$)によって定義される行列

$$A = \begin{pmatrix} e^{\beta J} & e^{-\beta J} \\ e^{-\beta J} & e^{\beta J} \end{pmatrix}$$
(1.64)

に対して

$$Z(N) = \sum_{\sigma_1} \cdots \sum_{\sigma_N} A_{\sigma_1 \sigma_2} A_{\sigma_2 \sigma_3} \cdots A_{\sigma_{N-1} \sigma_N} = \operatorname{tr} \left(A^N \right)$$
(1.65)

となる.各サイト等価な行列の積で表わされているので,これを一様行列積と呼 ぶ.したがって,問題は局所的に定義された行列 *A* の固有値問題と等価である(つ まりゼロ次元の量子力学の問題).行列 *A* の固有値は

$$\lambda_{\pm} = e^{\beta J} \pm e^{-\beta J} \tag{1.66}$$

となるため,

$$Z(N) = \lambda_+^N + \lambda_-^N \tag{1.67}$$

が導かれる.従って、 $\lambda_+ > \lambda_-$ より

$$Z = \lim_{N \to \infty} Z(N) = \lim_{N \to \infty} \lambda_+^N = (2 \cosh \beta J)^N$$
(1.68)

が得られる.前節の横磁場(量子)Ising 系との違いは,量子揺らぎがないので, 行列の成分が2に圧縮されていることである.次元コントロールの方法は,行列 表示では次元に押し込まれることが分かる.

第2章 特異値分解によるくりこみ群 理論の再構築

2.1 特異値分解

正方行列の対角化と同様に,一般の長方行列A(M×N)に対してもスペクト ル分解が存在し,

$$A = U\Sigma V^* \tag{2.1}$$

あるいは成分表示で

$$A_{ij} = \sum_{n=1}^{\text{rank}A} U_{in} \sqrt{\lambda_n} V_{jn}$$
(2.2)

と表すことができる.これらを A の特異値分解 (Singular Value Decomposition, SVD) と呼ぶ.以前から主成分解析ではよく使われてきているが,近年,物理の様々な分野,特に臨界現象の統計力学との密接な関わりが分かってきている.その多彩な展開を理解するための出発点として,特異値分解の基本的な数理をまとめよう.

 $A \in M \times N$ 行列とし,行列 A^*A 及び AA^* を導入する.記号 * は複素共役転置を意味する.これらはそれぞれ N 次及び M 次エルミート行列であり.

$$(A^*A)^* = A^*(A^*)^* = A^*A$$
(2.3)

を満たす.いま,行列 A^*A の固有値を λ (エルミート行列の固有値はすべて実数), 固有ベクトルを $|v\rangle$ とすると,

$$(A^*A) |v\rangle = \lambda |v\rangle \tag{2.4}$$

であるが, 左から $\langle v |$ を作用して, ベクトル $A | v \rangle$ のノルムを $|A | v \rangle |$ と表すと,

$$\lambda = \langle v | A^* A | v \rangle = |A | v \rangle|^2 \ge 0$$
(2.5)

なので、固有値は常に非負である.このような行列は準正定値行列とよばれる.

Aの階数をr = rankAとする. このとき上記の表現から、 A^*A のゼロでない固 有値は重複度も含めてr個存在することは明らかである. それらは AA^* のゼロ でない固有値と重複度も含めて一致する. 実際に、式(2.4)の左からAを作用す ると

$$A(A^*A) |v\rangle = (AA^*)A |v\rangle = \lambda A |v\rangle$$
(2.6)

であり、 λ は *AA*^{*} の固有値でもあり、対応する固有ベクトルは *A*|*v* であること が分かる.エルミート行列の異なる固有値に属する固有ベクトルは直交するから、 $|v_1\rangle, ..., |v_r\rangle$ と同様、*A*| $v_1\rangle, ..., A$ | $v_r\rangle$ も互いに直交する.

*A***A*は非負定値エルミート行列であるから,ある*N*次ユニタリー行列*V*が存在し,以下のように対角化できる.

$$V^*(A^*A)V = \begin{pmatrix} \lambda_1 & 0 & \\ & \ddots & & \\ 0 & & \lambda_r & \\ \hline & O & & O \end{pmatrix}$$
(2.7)

ここでゼロでない固有値は

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0 \tag{2.8}$$

と並べているものとする.

次に

$$V = (|v_1\rangle, ..., |v_r\rangle, |v_{r+1}\rangle, ..., |v_N\rangle)$$
(2.9)

および

$$|u_j\rangle = \frac{1}{\sqrt{\lambda_j}}A |v_j\rangle \quad (j = 1, 2, ..., r)$$
(2.10)

とおく. $|v_{r+1}\rangle,...,|v_N\rangle$ はグラム・シュミットの直交化で構成する. $|u_{r+1}\rangle,...,|u_M\rangle$ も同様である.Vと同様に

$$U = (|u_1\rangle, ..., |u_r\rangle, |u_{r+1}\rangle, ..., |u_M\rangle)$$

$$(2.11)$$

と表す. ここで $|u_i\rangle$ $|u_j\rangle$ の内積を計算すると

$$\langle u_i | u_j \rangle = \frac{1}{\sqrt{\lambda_i \lambda_j}} \langle v_i | A^* A | v_j \rangle = \frac{\lambda_j}{\sqrt{\lambda_i \lambda_j}} \langle v_i | v_j \rangle = \delta_{ij}$$
(2.12)

となる.これを用いて U*AV を計算すると、以下の結果が得られる.

$$U^*AV = \begin{pmatrix} \langle u_1 | \\ \vdots \\ \langle u_M | \end{pmatrix} (A | v_1 \rangle , ..., A | v_N \rangle)$$

$$= \begin{pmatrix} \langle u_1 | A | v_1 \rangle & ... & \langle u_1 | A | v_r \rangle \\ \vdots & \ddots & \vdots & | O \\ \hline (u_r | A | v_1 \rangle & ... & \langle u_r | A | v_r \rangle \\ \hline O & | O \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{\lambda_1} & 0 \\ \vdots & \ddots & | O \\ \hline (0 & \sqrt{\lambda_r} & | O \\ \hline O & | O \end{pmatrix}$$
(2.13)

以上の変形を特異値標準形とよぶ.また正の固有値の平方根 $\sqrt{\lambda_1}, \sqrt{\lambda_2}, ..., \sqrt{\lambda_r}$ を 特異値とよぶ.特異値は A により一意的に定まるが,特異値分解を与えるユニタ リー行列 U, V の表現は必ずしも一意的ではないことには注意を要する.このあと 系の普遍的な性質を調べるうえで,特異値の普遍性が重要な性質となる.

2.2 くりこみの画像処理的解析

2.2.1 スケール分解の基本的な考え方

近年の研究で、特異値分解には空間スケールの異なる情報を自動的に分解する 機能が備わっていることが分かっている.端的には、行列とその転置行列をかけ る操作が相関関数を計算することに直結しているということである.この状況を 図示すると非常に意味が分かりやすいので、この節では少し話題を変えて画像の 問題を考える.画像の問題を考えるには、画像データを $M \times N$ 行列 A と考え、 A(x,y) がピクセル (x,y) における色の値を表すものとする.画像が白黒の場合、 行列要素は (0,1) あるいは (+1,-1) とすればよい.グレースケールの場合には $0 \sim 255$ の間の整数値をとる.縦横のサイズ M,N は一般には異なっていても構 わない.

初めに画像データを特異値分解を用いて異なる要素に分解する. すなわち

$$r = \operatorname{rank} A \tag{2.14}$$

とおくと,

$$A(x,y) = \sum_{n=1}^{r} U_n(x) \sqrt{\lambda_n} V_n(y) = \sum_{n=1}^{r} A^{(n)}(x,y)$$
(2.15)

と表す. ここで

$$A^{(n)}(x,y) = U_n(x)\sqrt{\lambda_n}V_n(y)$$
(2.16)

である.データの分解で現れた添え字 *n* は,分解の「階層構造」を特徴づけるパ ラメータと呼ぶことにする.その意味はあとで説明する.この中で重要な成分は $\sqrt{\lambda_n}$ が大きい *n* である.そのため $\lambda_1 > \lambda_2 > \cdots > \lambda_{\chi}$ に対して ($\chi \leq r$)

$$A_{\chi}(x,y) = \sum_{n=1}^{\chi} A^{(n)}(x,y)$$
(2.17)

を導入すると、これが A(x,y) に対する最適の χ 次近似となる.

図 2.1: 大きな構造と小さな構造が共存する 2×4 格子模型

特異値分解に隠れたスケール制御の機構を調べよう. 図 2.1 に示された 2×4 ピ クセルのサンプル画像を例にとる. 色のついたピクセルによって構成されている 部分を便宜上「構造」とよぶ. 図では左半分に大きな構造 (2×2の正方形) があ り. 右上にはそれよりも小さな構造がある. 色のついたピクセルを A(x,y) = +1, それ以外のピクセルを A(x,y) = -1 で代表させると, サンプル画像は

$$A = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix}$$
(2.18)

と表される.ここで画像の部分密度行列 ρ_X および ρ_Y を次のように計算する.

$$\rho_X = A^t A = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}, \ \rho_Y = {}^t A A = \begin{pmatrix} 2 & 2 & -2 & 0 \\ 2 & 2 & -2 & 0 \\ -2 & -2 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
(2.19)

これらのゼロでない固有値は一致しており、それぞれ

$$\lambda_1 = 6 , \ \lambda_2 = 2 \tag{2.20}$$

となる. ここで考えている模型では, ρ_Y がブロック対角化されていることが分か る. その意味合いを考えてみると, ゼロとなっている非対角項は,小さい構造を 含んだ4列目のベクトルと大きな構造に含まれる列ベクトルの内積から来ており, お互いの内積を計算した場合に,符号の変化によって値が打ち消してしまうこと になっている. 3×3のブロックは,符号の一定したベクトル同士の内積から生ず るので,ブロック内の非対角要素も,対角要素と絶対値は等しい.したがってこ れで対角化を行うと,バンド理論におけるエネルギー準位の混成と同様に,固有 値が大きなものとゼロにスプリットする.

具体的に画像の再構成を行おう. 部分密度行列 ρ_X の固有ベクトルは

$$\vec{U}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \ \vec{U}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$
(2.21)

であり、部分密度行列 ρ_Y の固有ベクトルは

$$\vec{V}_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ 1\\ -1\\ 0 \end{pmatrix} , \ \vec{V}_2 = \begin{pmatrix} 0\\ 0\\ 0\\ 1 \end{pmatrix}$$
(2.22)

である.元画像を再構成するための各階層の情報は次の行列で表され,スケールの異なる成分に分離していることが分かる.

$$m^{(1)} = \sqrt{6}\vec{U}_1^{\ t}\vec{V}_1 = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \end{pmatrix}, \qquad (2.23)$$

$$m^{(2)} = \sqrt{2}\vec{U}_2^{\ t}\vec{V}_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(2.24)

以上の和が元の行列

$$\sum_{n=1}^{2} m^{(n)} = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix} = m$$
(2.25)

となる.

2.2.2 厳密なフラクタルに対する解析

フラクタル画像は厳密なスケール変換により定義されるので,特異値分解の性 質を理解するのに特に都合がよい.ここではフラクタル画像の情報エントロピー が持つ意味について考えよう [5,6].後のエンタングルメントの議論との相補性を 考慮して,以下のようにテンソル積を用いてフラクタルを定義する.

図 2.2: シェルピンスキーのカーペット

はじめに,フラクタルの単位格子を $h \times h$ 行列Hとする.例えばシェルピンス キーのカーペットに対してはh = 3として

$$H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
(2.26)

である.これを単位格子として, *N* 回スケール変換を施すと,それによって生成 されるフラクタル画像(行列 *M*)は

$$M = \underbrace{H \otimes H \otimes \dots \otimes H}_{N \text{ (III)}}$$
(2.27)

とテンソル積で表すことができる. テンソル演算を繰り返していけばフラクタル のより細かい構造が生成される. 行列 M を $L \times L$ 行列とすると $L = h^N$ となる. 今,単位格子行列のゼロでない固有値は二つあり,それらは $1 \pm \sqrt{3}$ となっている ことが分かる.

特異値分解をするため、テンソル積で因子化された行列 M の二乗を作ると

$$M^{2} = \underbrace{H^{2} \otimes H^{2} \otimes \cdots \otimes H^{2}}_{N \text{ (ff)}}$$
(2.28)

と表すことができる.ちなみに *N* = 2 の場合で演算の詳細を述べておくと,先ず テンソル積の成分表示が

$$(H \otimes H)_{(im)(jn)} = H_{ij}H_{mn} \tag{2.29}$$

と定義されているので,

$$(M^2)_{\alpha\beta} = \sum_k M_{\alpha k} M_{k\beta}$$
(2.30)

$$= \sum_{k} \left(H \otimes H \right)_{\alpha k} \left(H \otimes H \right)_{k\beta} \tag{2.31}$$

$$= \sum_{k=(ab)} (H \otimes H)_{(\alpha_1 \alpha_2)(ab)} (H \otimes H)_{(ab)(\beta_1 \beta_2)}$$
(2.32)

$$= \sum_{a,b} H_{\alpha_1 a} H_{\alpha_2 b} H_{a\beta_1} H_{b\beta_2} \tag{2.33}$$

$$= (H^2)_{\alpha_1\beta_1} (H^2)_{\alpha_2\beta_2} \tag{2.34}$$

$$= (H^2 \otimes H^2)_{\alpha\beta} \tag{2.35}$$

と評価できる.

M²の固有値は,行列 H²の固有値のあらゆる組み合わせで与えられる. ゼロで ない固有値はやはり二つあり,後々のために規格化すると

$$\gamma_{\pm} = \frac{1}{2} \pm \frac{\sqrt{3}}{4} \tag{2.36}$$

となる. すなわち

$$\gamma_{-} = 1 - \gamma_{+} \tag{2.37}$$

が成り立つ.このとき,固有値は

$$\lambda_j = \gamma_+^j \gamma_-^{N-j} = \gamma_+^j \left(1 - \gamma_+\right)^{N-j}$$
(2.38)

となる. 但し各 j の縮重度は二項係数で与えられる.

このとき特異値を確率分布とみなして計算できるシャノンの情報エントロピーは,

$$S = -\sum_{j=1}^{N} {}_{N}C_{j}\lambda_{j}\log\lambda_{j} = \left(-\sum_{i=\pm}\gamma_{i}\log\gamma_{i}\right)N \propto \log L$$
(2.39)

となることが確かめられる.すなわち,画像のエントロピーの大きさは,その画 像中に異なるスケールの情報が何通り含まれているかを表している.上記で得ら れた特異値分布は,実は一次元自由電子系のエンタングルメントスペクトルと同 等のものであり,このエントロピーは量子古典変換の立場から見た場合の量子も つれの度合いを表している.このことは本講義の後半で述べるゲージ重力対応や エンタングルメントくりこみ理論と深いかかわりがあるため覚えておいてほしい.

2.3 スピン模型に対する応用

2.3.1 Typicality としての画像:スピン構造の特異値分解

先に述べた画像処理の方法を臨界点での物理の問題に応用することは非常に興 味深いことである.例えば、2次元イジング模型の臨界点でのモンテカルロ・ス ナップショットを考えよう.臨界点ではスナップショットがフラクタル的であり、 様々なサイズのクラスターが分布している.システムサイズが充分大きいと仮定 して、ある有限サイズの部分系を色々な位置から充分沢山取り出すことを考える. 元のスナップショットがフラクタル的であれば各部分系もフラクタルであるが、取 り出す位置が異なれば画像自体は各々異なる.したがって、その有限サイズ系の データセットは近似的に分配関数の自由度を持つと考えられる.つまり元の大き な画像一枚で、ある有限系の分配関数の自由度を持つということになる.したがっ て一枚の画像から臨界点の情報(例えば臨界指数など)が取り出せるはずである. これは最近はやりの「Typicality」とも符合するような概念である.システムサイ ズが *L*×*L* の場合、スピン配置は全部で 2^{L²}通りあるが、言い方を変えると、こ の情報がたった一枚の画像で表現可能ということになり、情報の超圧縮とは何か ということを考える上でも非常に興味深いこととなっている.

この方法を2次元古典イジングスピンのスナップショットに応用し,そこから系 の臨界的性質が抽出できるか調べた結果は,参考文献 [7–10] に詳しく述べられて いる.特に臨界点でのスナップショットはフラクタル的であるため,様々なスケー ルの秩序化したクラスターが混在している.そのため,特異値分解により分解さ れたデータは,典型スケールが連続的に変化する3次元的データとして表現する ことができる.このことは,臨界点のデータはより簡便な形である種の計量を持っ た高次元空間上で表現されうることを示唆しており,その空間の幾何学を調べる ことで元のデータの特徴を理解することができると考えられる.

分解方向の特異値スペクトルの挙動を調べることで,一枚のスナップショットから臨界指数を抽出することができる.実際に

$$\lambda_n \propto \frac{1}{n^{1-\eta}} \tag{2.40}$$

あるいは

$$p(\lambda) = \sum_{n} \delta(\lambda - \lambda_n) \propto \lambda^{-\alpha} , \ \alpha = \frac{2 - \eta}{1 - \eta}$$
(2.41)

というスケーリング特性を示すことが分かっている. $\eta = 1/4$ はイジング模型の 異常次元である.

2.3.2 特異値分解の連続極限: Mellin 変換

臨界系のスナップショット・データの特異値分解に内包されるくりこみ群的構造 について調べよう [11]. 2次元の強磁性イジング模型を考える.

$$H = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j \tag{2.42}$$

モンテカルロ法でスナップショットを一枚作り、それを $L_x \times L_y$ の行列 M(x,y) と見なして特異値分解しよう.

$$M(x,y) = \sum_{n=1}^{L} U_n(x) \sqrt{\lambda_n} V_n(y)$$
(2.43)

但し $L = \min(L_x, L_y)$ で $U_n(x)$ と $V_n(y)$ はユニタリー行列である. $U_n(x)V_n(y)$ を n 番目の層データを呼ぶことにする. これは特異値を $\lambda_1 \ge \lambda_2 \ge \cdots \lambda_L$ と並べた ときに n 番目に大きなスピン・クラスターの情報である. 次に部分密度行列を次 のように定義する.

$$\rho(x, x') = \sum_{y} M(x, y) M(x', y) = \sum_{n=1}^{L} U_n(x) \lambda_n U_n(x')$$
(2.44)

重要なことは、部分密度行列 $\rho(x,x') = \rho(x',x)$ が本質的には 2 点相関関数 C(l)(ただし l = |x - x'|) に対応することである. これはスピン配置の行列の積を取 ることからも容易に類推されるだろう.より詳細には、一枚の画像では並進対称 性がないので、サンプル平均を取ってサンプル依存性を落とす必要がある.幸い なことに、特異値スペクトルの漸近形はサンプルに依存しないことが数値的に確 かめられているので、

$$C(l) = \rho_{\eta}(l) = \langle \rho(x, x') \rangle = \sum_{n=1}^{L} \langle U_n(x)U_n(x') \rangle \lambda_n$$
(2.45)

が成り立つ.以降, $\langle U_n(x)U_n(x')\rangle$ を $R_n(l)$ と表す.

先に述べたように、臨界点画像に対する特異値スペクトルの代数的減衰 $\lambda_n = \lambda_1 n^{-\Delta}$ が明らかとなっている.そこで添え字が熱力学極限で

$$\lambda_n = \frac{\lambda_1}{n^{\Delta}} \to \lambda(z) = \frac{\lambda_1}{z^{\Delta}} \tag{2.46}$$

と連続変数 z ($0 \le z < \infty$) で表せると仮定する.また $R_n(l)$ を R(l,z) と表す. このとき

$$\rho_{\Delta}(l) = \lambda_1 \int_0^\infty dz R(l, z) z^{-\Delta}$$
(2.47)

となる.特に 2 次元イジング模型の臨界点では,指数 Δ が異常次元 $\eta(=1/4)$ を 用いて

$$\Delta = 1 - \eta \tag{2.48}$$

と表せることが数値計算の結果から分かっているので,

$$\rho_{\eta}(l) = \lambda_1 \int_0^\infty dz R(l, z) z^{\eta - 1} \tag{2.49}$$

が得られる.

ここで一つ注意すべきは,式 (2.46)の規格化の問題である. 今 $\Delta = 1 - \eta \le 1$ のために積分が発散してしまう. 数値計算の結果を注意深く検討して,ある減衰関数 f(z)を用いて

$$\lambda(z) = \frac{f(z)}{z^{1-\eta}} \tag{2.50}$$

とするのが良い. このとき, 規格化条件

$$\int_{0}^{\infty} f(z) z^{\eta - 1} dz = 1.$$
(2.51)

に対して

$$\rho_{\eta}(l) = \int_{0}^{\infty} dz R(l,z) f(z) z^{\eta-1} \equiv \int_{0}^{\infty} dz \mathcal{R}(l,z) z^{\eta-1}$$
(2.52)

を考えることになる.この逆変換がユニークに定まれば、 $\rho_{\eta}(l)$ から $\mathcal{R}(l,z)$ の明示公式が直接得られる.規格化条件から、減衰関数 f(z)は

$$f(z) = \frac{\beta^{\eta}}{\Gamma(\eta)} e^{-\beta z}$$
(2.53)

とガンマ関数を用いて表されるべきである.この形は、もしも $z = \xi^{-1}$ 及び $\beta = l$ と仮定すれば、臨界点から離れた時に指数関数的に減衰する 2 点相関を表現して いるように思われる.

ポイントは,式 (2.52)の積分をくりこみフローに関わるデータの和と見なすことである.この場合,ある特定の zに対するデータは,ある有限相関長 ξ の相関関数に対応する.後により一般的な場合を考察するが,先ずは単純に $z \propto \xi^{-1}$ としてみる.なぜかと言うと,zの小さい領域のデータは大きなクラスターの情報に対応するためである.一般に臨界点近傍の 2 点相関関数は Ornstein-Zernike 公式は

$$C(l) = \frac{A}{l^{d-2+\eta}} e^{-l/\xi} = \frac{A}{l^{\eta}} e^{-l/\xi}$$
(2.54)

で与えられる.ここで d は空間次元, A は適当な定数である.この公式に従えば,

$$\mathcal{R}(l,z) = \frac{Ae^{-zl}}{(zl)^{\eta'}} \tag{2.55}$$

となることが容易に期待される $(\eta' \rightarrow \eta)$. このとき部分密度行列は実際に次のように与えられ, 臨界点での 2 点相関に一致する.

$$\rho_{\eta}(l) = \frac{A}{l^{\eta'}} \int_{0}^{\infty} dz e^{-zl} z^{\eta - \eta' - 1} = \frac{A}{l^{\eta}} \Gamma\left(\eta - \eta'\right)$$
(2.56)

現状では η' は現象論的パラメータであり,積分の収束のために η' は厳密には η に一致していないとしておく. その意味はもう少し検討の余地がある. ガンマ関数の存在は,このあと逆変換を考えるときに重要になる.

あらためて重要な結果を述べよう.くりこみのフローを与える変数は相関長と 次のように関係している:

$$z = \frac{1}{\xi} \tag{2.57}$$

従って、特異値分解は異なる相関長を持つデータの集合であると言える.

式 (2.52) は関数 $\mathcal{R}(l,z)$ の Mellin 変換と呼ばれる. その特徴は,異常次元 η 自体がスケール・パラメータ z に共役な量となっていることである. z に共役な η 空間を考えることは,共形場理論における Zamoldchikov の定理のように,固定 点に向かって指数 η がどのようにフローするかという重要な情報を与えると期待 さ入れる. そこで我々の目的は, Mellin 逆変換を実行することである. この目的 のために, $\rho_{\eta}(l)$ を解析接続して,複素変数 η の関数と見なす. Mellin 逆変換は Bromwich 積分

$$\mathcal{R}(l,z) = \lim_{p \to \infty} \frac{1}{2\pi i} \int_{c-ip}^{c+ip} z^{-\eta} \rho_{\eta}(l) d\eta$$
(2.58)

の形で表される. 留数定理を適用して積分するためには, ガンマ関数は次のよう な無限積公式で表すと都合がよい:

$$\Gamma(z) = \lim_{n \to \infty} \frac{(n-1)! n^z}{z(z+1)(z+2) \cdots (z+n-1)}$$
(2.59)

これはゼロと負の整数のところに一位の極を持つ. それらの留数は

$$\operatorname{Res}(\Gamma, -n) = \lim_{z \to -n} (z+n)\Gamma(z) = \frac{(-1)^n}{n!}$$
(2.60)

と表すことができる (n = 0, 1, 2, ...). これより

$$\mathcal{R}(l,z) = \frac{1}{2\pi i} \oint_C z^{-\eta} \frac{A}{l^{\eta}} \Gamma(\eta - \eta') d\eta$$

$$= \sum_{n \ge 0} \frac{A}{(lz)^{\eta}} \operatorname{Res}(\Gamma, -n) \delta(\eta - \eta' + n)$$

$$= \frac{A}{(lz)^{\eta'}} e^{-lz}$$
(2.61)

が得られる. 但し積分路 *C* は全ての極を囲う. これは式(2.55) に一致すること が分かる.

第3章 エンタングルメントとテンソ ル積変分理論

3.1 エンタングルメント・エントロピー

3.1.1 エンタングルメント・エントロピーのスケール則

初めに全系の状態 $|\psi\rangle$ を導入し、これを部分系 X と環境 Y に分ける.「分ける」 という操作がその間の相関を調べる出発点となる. 部分系と環境の基底をそれぞ れ $|x\rangle$, $|y\rangle$ とすると、 $|\psi\rangle$ は

$$|\psi\rangle = \sum_{x,y} \psi(x,y) |x\rangle \otimes |y\rangle$$
(3.1)

と表される.ここで波動関数 $\psi(x,y)$ を特異値分解し,

$$\psi(x,y) = \sum_{n} U_n(x) \sqrt{\lambda_n} V_n(y)$$
(3.2)

と表すと $(\sqrt{\lambda_n}$ は特異値, $U_n(x)$ および $V_n(y)$ はユニタリ行列),

$$|\psi\rangle = \sum_{x,y} \sum_{n} U_n(x) \sqrt{\lambda_n} V_n(y) |x\rangle \otimes |y\rangle = \sum_{n} \sqrt{\lambda_n} |U_n\rangle \otimes |V_n\rangle$$
(3.3)

が得られる. ただし $|U_n\rangle = \sum_x U_n(x) |x\rangle, |V_n\rangle = \sum_y V_n(y) |y\rangle.$ 式 (3.3) は Schmidt 分解と呼ばれる. 特異値 $\sqrt{\lambda_l}$ が部分系 X と環境 Y の量子的もつれの大きさに対 応する.

この特異値の二乗は,部分系或いは環境を縮約した密度行列の固有値となる.す なわち,密度行列を

$$\rho_X(x,x') = \sum_y \psi(x,y)\psi^*(x',y) = \sum_n U_n(x)\lambda_n U_n^*(x')$$
(3.4)

$$\rho_Y(y,y') = \sum_x \psi(x,y)\psi^*(x,y') = \sum_n V_n(y)\lambda_n V_n^*(y')$$
(3.5)

と定義すると、明らかに λ_n が ρ_X と ρ_Y の固有値になっていることが分かる.また ρ_X と ρ_Y の固有値は要素数が違ってもゼロでない部分は互いに一致する.

これらの縮約密度行列を用いて,システム *X* にいる観測者にとってのエンタン グルメント・エントロピー *S_X* を

$$S_X = -tr_X(\rho_X \log \rho_X) = -\sum_n \lambda_n \log \lambda_n \tag{3.6}$$

と定義する(特異値は規格化する).定義より明らかに

$$S_X = S_Y \tag{3.7}$$

が成り立つ.この関係式は極めて重要で,エンタングルメント・エントロピーが示量的ではないことを示している.なぜかというと,一般に空間 *d* 次元の全系において,大きさの異なる部分系と環境の間で共通している量は「*d* – 1 次元的境界」だからである.

エンタングルメント・エントロピーは、一般的にはシステムサイズ L と空間次 元 d の増加関数である.系の性質に応じてスケーリング関係式が変わってくるた め、その関数形を決めることが重要である.非臨界系では L が「相関長 ξ 」を越 えるあたりで頭打ちになる.またシステムサイズ L が相関長 ξ 以下であれば、

$$S \sim L^{d-1} \tag{3.8}$$

となる [12,13]. この振る舞いは先ほど述べたように,我々の空間 3 次元において, 通常エントロピーは示量変数であるために部分系の体積に比例するところが,次 元が一つ減った「面積」の次元,即ち部分系間の境界の面積がやり取りする情報 量を決めるということから,「面積則(Area Law)」と呼ばれている. また臨界状 態であっても空間二次元以上の系では,エントロピーの主要項はやはり面積則に 従うということが示されている. 一方,一次元臨界系やフェルミ面を持つ系(任 意の空間次元)では対数補正がついて

$$S \sim L^{d-1} \log L \tag{3.9}$$

となることが知られている [13-20].特に一次元臨界系に関しては,共形場理論から比例係数まで含めて正確な表現が得られており,中心電荷 *c* (境界を往来するボソン的な励起モードの数と考えてよい)を用いて

$$S = \frac{c}{6} \mathcal{A} \log L \tag{3.10}$$

あるいは臨界点から離れると

$$S = \frac{c}{6} \mathcal{A} \log \xi \tag{3.11}$$

という変形を受けることが分かっている. Aは境界の数である. 公式 (3.10) は Holzhey, Larsen, Wilczek の論文で最初に証明されたが [21], Calabrese と Cardy がより汎用性のある方法で詳細に解析したので, これらは Calabrese-Cardy の公 式と呼ばれることもある [22]. より正確には,有限の長さ N の1次元系において, サイズ L の部分系がそれ以外の領域とやり取りする量子情報は,

$$S(L) = \frac{c}{6} \log\left(\frac{N}{\pi a} \sin\left(\frac{\pi L}{N}\right)\right)$$
(3.12)

で与えられる (ただし *a* は格子定数, A = 1). ここで $N \to \infty$ とすれば, 式 (3.10) が得られる. このとき

$$S(N-L) = S(L) \tag{3.13}$$

ということが示せる.つまり,特異値分解によって得られた面積則の条件式(3.7) は,対数補正がある場合にも成立していることが分かる.従って,特異値分解か ら得られる $S_X = S_Y$ という公式は非常に象徴的なものである.いずれにしても, 情報のやり取りは部分系間の境界で起こることが本質的である.

なおトポロジカルに非自明な状態を見出すために,エンタングルメント・エン トロピーを用いることができる.この場合,通常の秩序変数を用いた解析ができ ないので,情報理論的解析が非常に有用である.エントロピーの主要項である面 積則に加えて,負の定数項が表れることがその特徴である.

3.1.2 具体的な模型での計算例

前述のスケーリング特性をきちんと調べるためには精密な数値計算が必要であ る.また場の理論的に部分トレースを取ることも容易ではない.ここでは幾つか の簡単な系を扱うにとどめるが,それでもエンタングルメント・エントロピーの 特徴はラフに見積もることができると思われるので,手を動かして計算をして頂 きたい.

例1:スピン一重項状態(2スピン)

反強磁性ハイゼンベルグ模型の基底状態はスピン一重項であった:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right) \tag{3.14}$$

この一方のサイト自由度を縮約すれば,他方の部分系における縮約密度行列が作れる:

$$\rho_1 = tr_2 |\psi\rangle \langle\psi| = \frac{1}{2} |\uparrow\rangle \langle\uparrow| + \frac{1}{2} |\downarrow\rangle \langle\downarrow| \qquad (3.15)$$

これより、エンタングルメント・エントロピーは

$$S = -tr_1 \left(\rho_1 \log \rho_1\right) = \log 2 \tag{3.16}$$

となる. $S \neq 0$ であることがエンタングルした状態・量子もつれの度合いを表わ している. 他方, 直積状態・セパラブルな状態は, 例えば $|\uparrow\uparrow\rangle = |\uparrow\rangle_1 \otimes |\uparrow\rangle_2$ であ るが, それに対しては $\rho_1 = |\uparrow\rangle \langle\uparrow|$ より $S = -\log 1 = 0$ が得られるため, 量子的 なもつれは生じていないことが分かる.

例2: R V B 状態(4 スピン): 分割位置による依存性について

前述の2スピンの問題を4スピンに拡張すると,重要な性質 $S_X = S_Y$ について 調べることができる.基底状態は

$$\sqrt{12} |\psi\rangle = |\uparrow\uparrow\downarrow\downarrow\rangle - 2 |\uparrow\downarrow\uparrow\downarrow\rangle + |\uparrow\downarrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\downarrow\rangle - 2 |\downarrow\uparrow\downarrow\downarrow\rangle + |\downarrow\downarrow\uparrow\uparrow\rangle \qquad (3.17)$$

となる.これはシングレット対の共鳴状態(RVB)である.ここでサイト2・3・ 4の状態を縮約した密度行列は

$$\rho_1 = tr_{234}\rho = \frac{1}{2} \left|\uparrow\right\rangle \left\langle\uparrow\right| + \frac{1}{2} \left|\downarrow\right\rangle \left\langle\downarrow\right| \tag{3.18}$$

と表わされ,

$$S_1 = -tr_1 \left(\rho_1 \log \rho_1\right) = \log 2 \tag{3.19}$$

が得られる.ここではサイト1のみの情報を見ているが,サイト2あるいはサイト4とのシングレット相関があるので,その情報量を見ていることになる.一方,サイト1の状態を縮約した密度行列は非対角要素があるので多少面倒であるが,計算の結果,やはり

$$S_{234} = \log 2 = S_2 \tag{3.20}$$

が得られる.したがって $S_1 = S_{234}$ が成り立っている.

ちなみに2サイトを縮約した場合のエンタングルメント・エントロピーは

$$S_2 = 2\log 2 - \frac{1}{2}\log 3 \tag{3.21}$$

となる.第1項は領域分割の継ぎ目に乗っているシングレットの情報量,第2項は 乗っていない基底からの補正を表わしている.

例3:Rindler 時空上の自由スカラー場理論

平坦なミンコフスキー時空上の場の理論を,アクセス領域が制限された座標系 で表わすと,縮約密度行列が熱的分布となる例が知られている.この場合,その 座標系での熱エントロピーを計算して元の座標系に戻すと,それがエンタングル メント・エントロピーと同じスケーリング公式を示す.これは直接エンタングル メントを計算しているわけではないので,ここで述べるのが適切か少し躊躇する ところではあるが,アクセス不可能な領域の存在は,エンタングルメントの定義 における外界のトーレスアウト効果と同等のものである.この後も類似の概念が 表れるのでここで議論をしておこう.

1+1次元のスカラー場の理論を考える.作用は

$$S = \int dt dx \left\{ \frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} (\partial_x \phi)^2 \right\}$$
(3.22)

と表わされる. ここで

$$t = \rho \sinh(\kappa \tau), \ x = \rho \cosh(\kappa \tau)$$
 (3.23)

と一般座標変換を行う. パラメータの範囲は $\rho>0, -\infty<\tau<\infty$ である. この座標は

$$x^2 - t^2 = \rho^2 > 0 \tag{3.24}$$

なる条件を持つので,右側ウェッジしか覆っていない.したがって,それ以外の領 域にはアクセスできない座標系である.計量を変換すると

$$ds^{2} = -dt^{2} + dx^{2} = d\rho^{2} - (\rho\kappa d\tau)^{2}$$
(3.25)

となり、 τ をウィック回転すれば極座標表示に移れるが、その時空間がコニカル特 異点を持たないようにするためには、 $i\tau = \theta \ln 2\pi/\kappa$ の周期性が要求される.変数 変換のヤコビアンは $dtdx = \rho\kappa d\rho d\tau$ となるため、作用は

$$S = -\int \kappa d\tau \int \rho d\rho \left\{ -\frac{1}{2} \frac{1}{\rho^2} \left(\frac{\partial \phi}{\partial(\kappa\tau)} \right)^2 + \frac{1}{2} (\partial_\rho \phi)^2 \right\}$$
(3.26)

と表わされ,最終的に

$$iS = -\int_0^{\pi/\kappa} \kappa d\theta \int \rho d\rho \left\{ \frac{1}{2} \frac{1}{\rho^2} (\partial_{\kappa\theta} \phi)^2 + \frac{1}{2} (\partial_\rho \phi)^2 \right\} = -\frac{\pi}{\kappa} H_R \tag{3.27}$$

とまとめることができる. *H_R*はリンドラーハミルトニアンと呼ばれ,双曲回転の 生成子と関係がある. このとき波動関数は

$$\langle vac | \phi_L \phi_R \rangle = \int_{t=0,\phi=(\phi_L,\phi_R)}^{t \to \infty,\phi=(0,0)} \mathcal{D}\phi e^{iS}$$
 (3.28)

$$= \int_{\theta=0,\phi=\phi_R}^{\theta=\pi,\phi=\phi_L} e^{-(\pi/\kappa)H_R}$$
(3.29)

$$= \langle \phi_L | e^{-(\pi/\kappa)H_R} | \phi_R \rangle \tag{3.30}$$

と表わされるので、 ϕ_L あるいは ϕ_R を縮約すれば、縮約密度行列は温度

$$T = \frac{\kappa}{2\pi} \tag{3.31}$$

の熱分布とみなすことができる.

そこでこの温度での熱エントロピーを計算することを考える. 座標変換

$$\rho = \frac{1}{\kappa} e^{\kappa \xi} \tag{3.32}$$

を行って ξ 座標で見る. この座標系での線素は

$$ds^2 = e^{2\kappa\xi} \left(-d\tau^2 + d\xi^2 \right) \tag{3.33}$$

であり、共形平坦な座標である.これは $t = 0, \tau = 0, x = \rho = (1/\kappa)e^{\kappa\xi}$ に対応し、 最終的なエントロピーの表式が見かけの加速度 κ に依存しない座標となる.ここ で座標変換前後の部分系サイズの対応を見るために

$$x_i = \frac{1}{\kappa} e^{\kappa \xi_i} \to \xi_i = \frac{1}{\kappa} \log\left(\kappa x_i\right) \tag{3.34}$$

として,元のミンコフスキー座標における部分系サイズがLとなるように

$$\xi_1 = \frac{1}{\kappa} \log(\kappa L) , \ \xi_2 = \frac{1}{\kappa} \log(\kappa a)$$
(3.35)

で ξ₁, ξ₂ を定義する. a はUVカットオフである. このとき

$$l = \xi_2 - \xi_1 = \frac{1}{\kappa} \log\left(\frac{L}{a}\right) \tag{3.36}$$

となって,最終的に

$$S = \frac{\pi}{3}lT = \frac{\pi}{3}\frac{1}{\kappa}\log\left(\frac{L}{a}\right)\frac{\kappa}{2\pi} = \frac{1}{6}\log\left(\frac{L}{a}\right)$$
(3.37)

が得られる.これは解放端条件の場合の c=1 CFT による結果と一致している.

3.2 変分関数のクラス I: PEPS クラス

3.2.1 スピンー重項状態の持つエンタングルメント構造

量子エンタングルメントおよびそのエントロピーのスケール性を明確に表す波 動関数の表現を模索する.再び2サイト・スピン *S* = 1/2 の反強磁性ハイゼンベ ルグ模型を例にとって議論を進めよう.

$$H = J\vec{S}_1 \cdot \vec{S}_2 = \frac{J}{2} \left(S_1^+ S_2^- + S_1^- S_2^+ \right) + JS_1^z S_2^z$$
(3.38)

基底状態はシングレット

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right) \tag{3.39}$$

である.はじめに,この状態は二つの電子がエンタングルしているために,平均 場或いは局所近似に分解することはできないことを確認しておこう.例えば或る 直積状態(実効的には局所近似と呼んでもよい)を

$$|\phi\rangle = \sum_{s_1} c_{s_1} |s_1\rangle \otimes \sum_{s_2} d_{s_2} |s_2\rangle$$
(3.40)

$$= \sum_{s_1, s_2} c_{s_1} d_{s_2} |s_1 s_2\rangle \tag{3.41}$$

$$= c_{\uparrow}d_{\uparrow} |\uparrow\uparrow\rangle + c_{\uparrow}d_{\downarrow} |\uparrow\downarrow\rangle + c_{\downarrow}d_{\uparrow} |\downarrow\uparrow\rangle + c_{\downarrow}d_{\downarrow} |\downarrow\downarrow\rangle \qquad (3.42)$$

と書くと,これが一重項状態となる条件

$$c_{\uparrow}d_{\uparrow} = c_{\downarrow}d_{\downarrow} = 0 , \ c_{\uparrow}d_{\downarrow} = \frac{1}{\sqrt{2}} , \ c_{\downarrow}d_{\uparrow} = -\frac{1}{\sqrt{2}}$$
(3.43)

を満たす係数の組が存在しないことは容易に確かめられる.従って式(3.40)では 厳密な波動関数である式(3.39)を表現しきれない.そこで特異値分解の機能を念 頭に置いて,波動関数を以下のように表現してみる.

$$|\psi\rangle = \frac{1}{\sqrt{2}} \sum_{s_1, s_2=\uparrow,\downarrow} A^{s_1} B^{s_2} |s_1 s_2\rangle = \frac{1}{\sqrt{2}} \sum_{s_1, s_2} (a^{s_1} b^{s_1}) \begin{pmatrix} c^{s_2} \\ d^{s_2} \end{pmatrix} |s_1 s_2\rangle \qquad (3.44)$$

ここで A^{s_1} はサイト 1 上に定義された行ベクトル (スピン状態 s_1 に依存する), B^{s_2} はサイト 2 上に定義された列ベクトル (スピン状態 s_2 に依存する) で,例え ばベクトルの次元を 2 として

$$A^{\uparrow} = \begin{pmatrix} 1 & 0 \end{pmatrix}, \ A^{\downarrow} = \begin{pmatrix} 0 & -1 \end{pmatrix}, \ B^{\uparrow} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ B^{\downarrow} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(3.45)

と取ると、これらは正しくシングレットの状態を記述することが分かる.ベクト ルの成分が仮想的な内部自由度を表わしている.ここで自由なパラメータは8個 あるのに対し、拘束条件は

$$a^{\uparrow}c^{\uparrow} + b^{\uparrow}d^{\uparrow} = 0 \tag{3.46}$$

$$a^{\downarrow}c^{\downarrow} + b^{\downarrow}d^{\downarrow} = 0 \tag{3.47}$$

$$a^{\uparrow}c^{\downarrow} + b^{\uparrow}d^{\downarrow} = \frac{1}{\sqrt{2}}$$
(3.48)

$$a^{\downarrow}c^{\uparrow} + b^{\downarrow}d^{\uparrow} = -\frac{1}{\sqrt{2}} \tag{3.49}$$

の 4 つである.残りの自由度は,基底変換に対応する.実際に,逆行列を持つ任 意の 2 × 2 行列 *Q* を導入して,

$$|\psi\rangle = \sum_{s_1,s_2} \left(\begin{array}{c} a^{s_1} & b^{s_1} \end{array} \right) QQ^{-1} \begin{pmatrix} c^{s_2} \\ d^{s_2} \end{pmatrix} |s_1 s_2\rangle = \sum_{s_1,s_2} \left(\begin{array}{c} a'^{s_1} & b'^{s_1} \end{array} \right) \begin{pmatrix} c'^{s_2} \\ d'^{s_2} \end{pmatrix} |s_1 s_2\rangle$$
(3.50)

と変換すれば、理論形式は不変である.

さて式(3.44)と式(3.40)を比べてみよう.両方とも各サイト上に定義された 局所的因子の積で表現されており,形はそっくりである.このため式(3.44)は一 見すると局所近似に見える.しかしながら式(3.44)の場合,*A*^{s1},*B*^{s2}はベクトル であるためにベクトルの成分という内部自由度を持っており,「掛けて足す」とい う内積操作が自然に二つのサイト間の状態をもつれさせる効果を持っている.も う少し繰り返すと,式(3.39)の波動関数はサイト1とサイト2の状態の単純な 直積では表現できず,互いにエンタングルしている.このような非局所相関を式 (3.44)のように内部自由度を持った局所量の積に変換できるということが,ここ で述べている理論の大きなポイントである.余剰の自由度を導入して古典表現を 求める考え方は,鈴木・トロッター変換においても現れていた.鈴木・トロッター 変換の場合には余剰次元は虚時間と呼ばれたが,行列積の理論における余剰次元 の大きさは,実は系の相関長に相当することが後の議論で明らかとなる.これは 先に述べた特異値分解の機能とも対応している.そのことを念頭に置いて議論を 進めていこう.

3.2.2 行列積による状態の因子化

前節で述べたシングレットのエンタングルメント構造を参考にして,一般的な 量子状態

$$|\psi\rangle = \sum_{\{s_j\}} T^{s_1 s_2 \cdots s_n} |s_1 s_2 \cdots s_n\rangle \tag{3.51}$$

図 3.1: MPS 状態: (a) 開放端条件, (b) 周期境界条件

の係数 T^{\$1\$2…\$n} が持つべき性質を調べよう.まず,系のエンタングルメント構造 を反映した形とは,つまり面積則(あるいは対数補正も含む)が満たされる形で ある.数値的変分法を考える場合があるので,数値計算がしやすい形に分解でき るのであれば望ましい.新たな自由度を導入してそこに量子揺らぎの効果を押し 込める,というのが我々の基本的なスタンスなので,この係数を先ずは局所的場 に分解し,その代わり量子揺らぎを表わす新たな内部自由度を導入するというこ とが目標となる.

空間一次元の場合、相互作用が隣接サイト間で支配的な場合には

$$T^{s_1 s_2 \cdots s_n} = \sum_{\alpha, \beta, \dots, \omega} (B_1^{s_1})_{\alpha} (A_2^{s_2})_{\alpha\beta} (A_3^{s_3})_{\beta\gamma} \cdots (A_{n-1}^{s_{n-1}})_{\psi\omega} (B_n^{s_n})_{\omega}$$
(3.52)

という分解が適切であると考えられる.ここで量子相関を表わす仮想的なインデックス(補助場とも呼ばれる) $\alpha, \beta, \gamma, ...$ を行列の足と見ると,分解後の係数 $A_{2^2}^{s_2}, A_{3^3}^{s_3}, ...$ は行列の積で表わされている.従ってこのような状態は行列積状態(Matrix Product State, MPS)と呼ばれる [23–28].行列 $A_{\alpha_j\alpha_{j+1}}^{s_{j}}$ は,物理的状態 s_j (例えばスピン 1/2 の系であれば \uparrow, \downarrow)と補助場の双方に依存しているため,「補助場とリアルな空間の情報を結ぶ関係」であり,隣接サイトが補助場を介してつながっていることで,実空間の情報としては局所的に見えるところに大きなポイントがある.開放端の場合には端の $B_{1^1}^{s_1}, B_n^{s_n}$ のみベクトルで表わされる.前節で説明したように,2サイト系のみベクトル積となる.バルクと端の整合性を取るには,適当な左境界状態 $\langle \alpha_0 |$ および右境界状態 $|\alpha_{n+1} \rangle$ が存在し,ベクトルの代わりに行列 A_1, A_n を用いて

$$B_1^{s_1} = \langle \alpha_0 | A_1^{s_1} , B_n^{s_n} = A_n^{s_n} | \alpha_{n+1} \rangle$$
(3.53)

としておけばよい.以降では行列は $\chi \times \chi$ 次元であるとする.この値は,先のシン グレットの例では $\chi = 2$ と決まったが,量子多体系の具体的な模型に対して MPS を変分関数として用いる場合には,望みの数値精度を与える χ が適切な値という ことになる.したがって χ は行列のランクであるが,それが第一原理的に決められ るかどうかはモデルの臨界性に依存しており,この後の節で議論する.式(3.52) は局所的な分解であるが,単純な局所近似やスカラー積への分解とは明らかに異な る.行列の次元を高くすると様々な相関を取り込む自由度が増えると期待できる.

空間一次元系で境界が周期的である場合には、全て行列を使って

$$T^{s_1 s_2 \cdots s_n} = \sum_{\alpha, \dots, \omega, \omega'} (A_1^{s_1})_{\omega' \alpha} (A_2^{s_2})_{\alpha \beta} \cdots (A_{n-1}^{s_{n-1}})_{\psi \omega} (A_n^{s_n})_{\omega \omega'}$$
(3.54)

$$= \operatorname{Tr} \left(A_1^{s_1} A_2^{s_2} \cdots A_n^{s_n} \right) \tag{3.55}$$

と書くことができる.行列のトレースが含まれているので,この波動関数は行列 の巡回に対して不変で,これは系の並進対称性に対応している.なお周期境界条 件を課していても,有限系の場合には行列自身は並進対称にはならないことには 注意を要する.そのため, $A_j^{s_j}$ がサイト *j* に依存していることを明示した.行列 積のトレースがあくまで各基底の重みとなってそれが物理的に意味のある量とな るが,これは波動関数の特異値分解において特異値がユニークに決まってもカラ ム・ユニタリー行列が一般には不定であることと対応する.

システムの境界は系の周期性や許される波数のモードに強い制限を与えるので 重要な意味を持つ.そこで一般には式(3.55)を

$$|\psi_Q\rangle = \sum_{\{s_j\}} \operatorname{Tr} \left(A_1^{s_1} A_2^{s_2} \cdots A_n^{s_n} Q \right) |s_1 s_2 \cdots s_n\rangle$$
(3.56)

として、Qを境界演算子と呼ぶ.Qも $\chi \times \chi$ 行列であり、 χ 次元の境界状態 $|b\rangle$ の完全系で展開して

$$Q = \sum_{a=1}^{\chi} \sum_{b=1}^{\chi} Q_{ab} \left| b \right\rangle \left\langle a \right| \tag{3.57}$$

とするとき,

$$|\psi_Q\rangle = \sum_{s_1,\dots,s_n} \sum_{a=1}^{\chi} \sum_{b=1}^{\chi} Q_{ab} \langle a | A_1^{s_1} A_2^{s_2} \cdots A_n^{s_n} | b \rangle | s_1 s_2 \cdots s_n \rangle$$
(3.58)

となる.したがって,仮想的な境界状態も含めた (n+1) 重ベクトル $|b\rangle \otimes |s_1 s_2 \cdots s_n\rangle$ が,系のエンタングルメント構造を記述する基本的な空間の要素ということにな る.この場合の見方としては,行列 $A_j^{s_j}$ は仮想空間 V_0 に作用する行列で,その成 分が $V^{\otimes n}$ の j 番目の局所ベクトル空間に作用するということになる.状態空間の テンソル積を $V_0 \otimes V^{\otimes n}$ と表して V_0 を左においておけば,テンソル積の定義から, その構造は理論に自然に入ることが分かる.この構造は実は代数的 Bethe 仮説法 から基礎づけされることが分かる.

式(3.52)に戻ってそのエンタングルメント構造をもう少し調べておく.その前 に新しい記号を定義しておく.状態ベクトルを

$$|\psi\rangle = \sum_{s_1,\dots,s_n} \langle \alpha_0 | A^{s_1} \cdots A^{s_n} | \alpha_{n+1} \rangle | s_1 \cdots s_n \rangle$$

$$= \langle \alpha_0 | \left(\sum_{s_1} A^{s_1} | s_1 \rangle \right) \dot{\otimes} \left(\sum_{s_2} A^{s_2} | s_2 \rangle \right) \dot{\otimes}$$

$$\cdots \dot{\otimes} \left(\sum_{s_{n-1}} A^{s_{n-1}} | s_{n-1} \rangle \right) \dot{\otimes} \left(\sum_{s_n} A^{s_n} | s_n \rangle \right) | \alpha_{n+1} \rangle$$
(3.59)
$$(3.59)$$

と変形する.ここで記号 ⊗ の定義は,状態ベクトルを成分として持つ行列の掛け 算であり,全体の行列演算としては通常の行列積 · で,その成分を状態のテンソ ル積 ⊗ とするような演算である.演算の状況が明確な場合には省略するが,以降 ではなるべく明示することを心がける.重要な因子は各サイト上に定義された

$$\sum_{s} A^{s} |s\rangle = \begin{pmatrix} a_{11}^{\uparrow} |\uparrow\rangle + a_{11}^{\downarrow} |\downarrow\rangle & \cdots & a_{1\chi}^{\uparrow} |\uparrow\rangle + a_{1\chi}^{\downarrow} |\downarrow\rangle \\ \vdots & \ddots & \vdots \\ a_{\chi 1}^{\uparrow} |\uparrow\rangle + a_{\chi 1}^{\downarrow} |\downarrow\rangle & \cdots & a_{\chi\chi}^{\uparrow} |\uparrow\rangle + a_{\chi\chi}^{\downarrow} |\downarrow\rangle \end{pmatrix}$$
(3.61)

という行列型演算子である.これは局所的なインデックスを持っているが,系の 大域的な情報も同時に担っている.仮想空間の次元 χ がより詳しくどのような物 理的意味かということは非常に興味のあるところである.以下でそれについて議 論する.

系のエンタングルメントに最も重要な要素は、まずは $\chi > 1$ であるということ である、そこで試みに $\chi = 2$ とし、

$$\sum_{s=\uparrow,\downarrow} A^s |s_i\rangle = \begin{pmatrix} a_{11}^{\uparrow} |\uparrow\rangle + a_{11}^{\downarrow} |\downarrow\rangle & a_{12}^{\uparrow} |\uparrow\rangle + a_{12}^{\downarrow} |\downarrow\rangle \\ a_{21}^{\uparrow} |\uparrow\rangle + a_{21}^{\downarrow} |\downarrow\rangle & a_{22}^{\uparrow} |\uparrow\rangle + a_{22}^{\downarrow} |\downarrow\rangle \end{pmatrix}$$
(3.62)

としてみる. $\chi = 2$ という仮定はサイズの大きな系では正確ではないが,エネル ギーの値をラフに見積もるには悪くない近似である.ここで

$$\sum_{s} A^{s} |s\rangle = \begin{pmatrix} a |\uparrow\rangle & b |\downarrow\rangle \\ 0 & |\uparrow\rangle \end{pmatrix}$$
(3.63)

という少し特殊な組み合わせを考えてみる.この組み合わせは実は代数的 Bethe 仮説法で基礎となる状態の記法でもある(Lax 演算子と似ている).対角要素がリ

ファレンス状態,非対角要素がエンタングルメントを記述する.すなわち,行列 積を作ったときに,非対角にシングレットやトリプレットなどが現れるような組 を表現したものである.ここで係数に対する条件は,

$$\sum_{s} A^{s} A^{s\dagger} = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{*} & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ b^{*} & 0 \end{pmatrix}$$
(3.64)
$$= \begin{pmatrix} |a|^{2} + |b|^{2} & 0 \\ 0 & 1 \end{pmatrix}$$
(3.65)

$$|a|^2 + |b|^2 = 1 \tag{3.66}$$

である.逆に言うと,式(3.63)は,局所的な行列に課される条件と整合的になる ように選んだものということもできる.

以上の表記を用いると MPS は

$$\begin{aligned} |\psi\rangle &= \langle \alpha_0 | \begin{pmatrix} a_1 |\uparrow\rangle & b_1 |\downarrow\rangle \\ 0 & |\uparrow\rangle \end{pmatrix} \dot{\otimes} \begin{pmatrix} a_2 |\uparrow\rangle & b_2 |\downarrow\rangle \\ 0 & |\uparrow\rangle \end{pmatrix} \dot{\otimes} \\ &\cdots \dot{\otimes} \begin{pmatrix} a_{n-1} |\uparrow\rangle & b_{n-1} |\downarrow\rangle \\ 0 & |\uparrow\rangle \end{pmatrix} \cdots \dot{\otimes} \begin{pmatrix} a_n |\uparrow\rangle & b_n |\downarrow\rangle \\ 0 & |\uparrow\rangle \end{pmatrix} |\alpha_{n+1}\rangle (3.67) \end{aligned}$$

となる. 例えば、n=3の場合を具体的に書き下してみると、

$$\begin{pmatrix}
a_{1} |\uparrow\rangle & b_{1} |\downarrow\rangle \\
0 & |\uparrow\rangle
\end{pmatrix} \dot{\otimes} \begin{pmatrix}
a_{2} |\uparrow\rangle & b_{2} |\downarrow\rangle \\
0 & |\uparrow\rangle
\end{pmatrix} \dot{\otimes} \begin{pmatrix}
a_{3} |\uparrow\rangle & b_{3} |\downarrow\rangle \\
0 & |\uparrow\rangle
\end{pmatrix}$$

$$= \begin{pmatrix}
a_{1}a_{2} |\uparrow\uparrow\rangle & a_{1}b_{2} |\uparrow\downarrow\rangle + b_{1} |\downarrow\uparrow\rangle \\
0 & |\uparrow\uparrow\rangle
\end{pmatrix} \dot{\otimes} \begin{pmatrix}
a_{3} |\uparrow\rangle & b_{3} |\downarrow\rangle \\
0 & |\uparrow\rangle
\end{pmatrix}$$

$$= \begin{pmatrix}
a_{1}a_{2}a_{3} |\uparrow\uparrow\rangle & a_{1}a_{2}b_{3} |\uparrow\uparrow\downarrow\rangle + a_{1}b_{2} |\uparrow\downarrow\uparrow\rangle + b_{1} |\downarrow\uparrow\uparrow\rangle \\
0 & |\uparrow\uparrow\rangle
\end{pmatrix} (3.68)$$

となる.計算の途中で、非対角要素にエンタングルした状態 $a_1b_2|\uparrow\downarrow\rangle + b_1|\downarrow\uparrow\rangle$ が現れているのが見える.ここで境界状態を

$$\langle \alpha_0 | = \begin{pmatrix} 1 & 0 \end{pmatrix}, \ |\alpha_4 \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (3.69)

と仮定すると、↑が2個、↓が1個の状態を取り出すことができる.

$$\begin{aligned} |\psi\rangle &= a_1 a_2 b_3 |\uparrow\uparrow\downarrow\rangle + a_1 b_2 |\uparrow\downarrow\uparrow\rangle + b_1 |\downarrow\uparrow\uparrow\rangle \\ &= a_1 a_2 b_3 |\uparrow\rangle \otimes |\uparrow\downarrow-\downarrow\uparrow\rangle + a_1 a_2 b_3 |\uparrow\downarrow\uparrow\rangle + a_1 b_2 |\uparrow\downarrow\uparrow\rangle + b_1 |\downarrow\uparrow\uparrow\rangle \quad (3.71) \end{aligned}$$

境界演算子は, 粒子数を確定する役割を持っているようである. 後で用いる表記 では

$$Q = \left(\begin{array}{cc} 0 & 0\\ 1 & 0 \end{array}\right) \tag{3.72}$$

とおいて,

$$|\alpha_4\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0&0\\1&0 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = Q |\alpha_0\rangle$$
(3.73)

と表す.これは(熱力学極限で)系の反転対称性に基づく条件である.ここで

$$a_1b_2 = 0, \ b_1 = -a_1a_2b_3$$
 (3.74)

と仮定すると,

$$b_2 = 0 , \ |a_2| = 1 \tag{3.75}$$

が成り立つ必要があるので、上の式は

$$|\psi\rangle = a_1 b_3 \left(|\uparrow\rangle \otimes |\uparrow\downarrow - \downarrow\uparrow\rangle + |\uparrow\downarrow - \downarrow\uparrow\rangle \otimes |\uparrow\rangle\right)$$
(3.76)

となって、RVB(resonating valence bond)的な状態を記述することが分かる.

これをそのままn = 4に拡張すると、今の近似がどのような状態を記述可能か がよりはっきりする.すなわち、

$$\begin{pmatrix}
a_1 a_2 a_3 |\uparrow\uparrow\rangle & a_1 a_2 b_3 |\uparrow\uparrow\downarrow\rangle + a_1 b_2 |\uparrow\downarrow\uparrow\rangle + b_1 |\downarrow\uparrow\uparrow\rangle \\
0 & |\uparrow\uparrow\rangle \\
= \begin{pmatrix}
a_1 a_2 a_3 a_4 |\uparrow\uparrow\uparrow\uparrow\uparrow\rangle & * \\
0 & |\uparrow\uparrow\uparrow\uparrow\rangle \\
\end{pmatrix}$$
(3.77)

ここで * は

$$* = a_1 a_2 a_3 b_4 \left|\uparrow\uparrow\uparrow\downarrow\rangle + a_1 a_2 b_3 \left|\uparrow\uparrow\downarrow\uparrow\rangle + a_1 b_2 \left|\uparrow\downarrow\uparrow\uparrow\rangle + b_1 \left|\downarrow\uparrow\uparrow\uparrow\rangle\right.$$
(3.78)

となる.これは一つの↓スピンを励起する状態のみを記述しているようである.

二つ以上の \downarrow スピン励起を作り出すためには, $\chi \ge 3$ とすることが必要である. 係数は省略して状態の特徴を抽出すると, 例えば n = 3 の場合には

$$\begin{pmatrix} |\uparrow\rangle & |\downarrow\rangle & 0\\ 0 & |\uparrow\rangle & |\downarrow\rangle\\ 0 & 0 & |\uparrow\rangle \end{pmatrix} \dot{\otimes} \begin{pmatrix} |\uparrow\rangle & |\downarrow\rangle & 0\\ 0 & |\uparrow\rangle & |\downarrow\rangle\\ 0 & 0 & |\uparrow\rangle \end{pmatrix} \dot{\otimes} \begin{pmatrix} |\uparrow\rangle & |\downarrow\rangle & 0\\ 0 & |\uparrow\rangle & |\downarrow\rangle\\ 0 & 0 & |\uparrow\rangle \end{pmatrix}$$

$$= \begin{pmatrix} |\uparrow\uparrow\rangle & |\uparrow\downarrow+\downarrow\uparrow\rangle & |\downarrow\downarrow\rangle \\ 0 & |\uparrow\uparrow\rangle & |\uparrow\downarrow+\downarrow\uparrow\rangle \\ 0 & 0 & |\uparrow\uparrow\rangle \end{pmatrix} \dot{\otimes} \begin{pmatrix} |\uparrow\rangle & |\downarrow\rangle & 0 \\ 0 & |\uparrow\rangle & |\downarrow\rangle \\ 0 & 0 & |\uparrow\uparrow\rangle \end{pmatrix}$$
(3.79)
$$= \begin{pmatrix} |\uparrow\uparrow\uparrow\uparrow\rangle & \underline{|\uparrow\uparrow\downarrow+\uparrow\uparrow\downarrow\uparrow+\downarrow\uparrow\uparrow} \\ 0 & |\uparrow\uparrow\uparrow\uparrow\rangle & \underline{|\uparrow\downarrow\downarrow+\downarrow\uparrow\downarrow\uparrow\downarrow+\downarrow\downarrow\uparrow\downarrow} \\ \downarrow,\chi,\ell'\times 1 \text{ (I)} & \underline{|\uparrow\uparrow\downarrow\downarrow+\downarrow\uparrow\downarrow\uparrow\downarrow\downarrow\uparrow\downarrow\downarrow\uparrow\downarrow\downarrow\uparrow\downarrow} \\ \downarrow,\chi,\ell'\times 2 \text{ (I)} \\ 0 & 0 & |\uparrow\uparrow\uparrow\uparrow\rangle \end{pmatrix}$$
(3.80)

となる.行列の右上に進むほど,励起される↓スピンの数が増えていき,スピン 数の異なる状態が階層的に因子化されていることが分かる.↓スピン数の固定条 件は,相変わらず境界状態が担っている.ここでの議論は限定的なものであった が,具体例を調べることで,行列次元の機能が直観的に明らかになったであろう.

3.2.3 有限 χ スケーリング

エンタングルメント・エントロピーの面積則 $S \sim L^{d-1}$ に従うと,一次元の非 臨界系ではエントロピーが定数となるため,適当な有限の χ で MPS が必ず精度 の良い変分関数となる.一方,一次元臨界系の場合には,Calabrese-Cardy の式で 特徴づけられる程度 ($S \sim \log L$)の自由度を取り込む必要がある.臨界系の場合, Calabrese-Cardy の式にちょうど対応する式が MPS においても知られている.そ れは有限 χ スケーリングと呼ばれるものである [29–33].

臨界点近傍において,系の状態を行列次元が χ の MPS で近似した場合,その 近似的状態で表現できるエンタングルメント・エントロピーは

$$S_{\chi} = \frac{c\kappa}{6} \log \chi \tag{3.81}$$

で与えられる.ここで c は中心電荷,また κ は有限エンタングルメント臨界指数 と呼ばれており,

$$\kappa = \frac{6}{c\left(\sqrt{\frac{12}{c}} + 1\right)} \tag{3.82}$$

で定義される.これらの関係式は共形場理論から証明されており、また数値的に 様々な系に対して確認されている.一方、Calabrese-Cardyの式に従うと、臨界点 近傍で相関長が *ξ* の系が持つエンタングルメント・エントロピーは

$$S = \frac{c}{6} \mathcal{A} \log \xi \tag{3.83}$$

で与えられる. 但し *A* は,部分系と境界を分けるポイントの数で,有限-χ スケー リングは半無限系に対して導出されるので,ここでは *A* = 1 ととる. 共形場理論 と MPS から推測される二つのエントロピーが互いに等しいとすると,

$$\xi = \chi^{\kappa} \tag{3.84}$$

が導かれる.このことが意味しているのは、MPS の行列次元は系の相関関数という長さスケールに対応しているということである. χ は一次元量子系を二つに分断したときの境界での状態数なので、一見すると長さスケールとは全く関係ないように感じられるかもしれないが、ここが理論の肝となる部分であることを強調しておく.ここで κ の大きさを見ておくと、イジングスピンの場合には c = 1/2なので、

$$\kappa = \frac{12}{\sqrt{24} + 1} \simeq 2.034 \tag{3.85}$$

一方, ハイゼンベルグスピンの場合には c = 1 なので,

$$\kappa = \frac{6}{\sqrt{12} + 1} \simeq 1.344 \tag{3.86}$$

となる. すなわち,イジングスピンの場合には χ の値を少しでも大きくとると, ほぼ2乗で計算精度が向上していくのに対し,ハイゼンベルグスピンの場合には そこまでの精度向上は見込めないことが分かる.つまり系の臨界性の強さと MPS の近似精度が密接に関係していることが分かる.

3.2.4 PEPS 形式

MPS に現れる行列積 $(A_j^{sj})_{\alpha\beta} (A_{j+1}^{s_{j+1}})_{\beta\gamma}$ には,仮想的なインデックス β で最隣 接スピン間のエンタングルメントを表現して,それを物理的空間 s_j, s_{j+1} にマップ する働きがある.したがって,先に仮想的なエンタングルメント対を各ボンド上に 作っておいて,そのあとに物理的空間に射影するという見方をとることもできる. 以前に VBS 状態の研究において既に現れていた概念であるが [34–38],この見方 で構成された状態は Projected Entangled-Pair State (PEPS) と呼ばれる [39–41]. MPS の高次元への拡張や DMRG の周期境界条件における計算精度の向上に際し て,この見方は非常に重要である.エンタングルメント対はシングレットだけで なくより抽象性の高い状態でも構わないものとする.PEPS を数学的に表現する ためには,まずサイト*i*とサイト*i*+1のリンク上に maximally entangled state

$$|\phi\rangle_{i,i+1} = \sum_{\alpha=1}^{\chi} \frac{1}{\sqrt{\chi}} |\alpha\rangle_i \otimes |\alpha\rangle_{i+1}$$
(3.87)

を導入する.仮想自由度でエンタングルメントを表現するということは非常に基本的な操作であるともいえる.一方の仮想自由度を縮約したときに,他方の仮想自由度の部分密度行列から定義されるエンタングルメント・エントロピーは

$$S = -\sum_{\alpha=1}^{\chi} \frac{1}{\chi} \log \frac{1}{\chi} = \log \chi \tag{3.88}$$

となる.これが局所的なエントロピーの上限を与える.次にサイト *j* 上の二つの 仮想的自由度を物理空間に射影する演算子 *P_i* を以下のように定義する.

$$P_j = \sum_{s=1}^d \sum_{\alpha,\beta=1}^{\chi} (A_j^s)_{\alpha\beta} |s\rangle_j \otimes \langle \alpha |_j \otimes \langle \beta |_j$$
(3.89)

これらを用いて MPS は次のテンソル積状態で表される.

$$|\psi\rangle = \sum_{s_1,\dots,s_N} tr\left(A_1^{s_1}\cdots A_N^{s_N}\right)|s_1\cdots s_N\rangle$$
(3.90)

$$= \chi^{N} \left(P_{1} \otimes P_{2} \otimes \cdots \otimes P_{N} \right) |\Phi\rangle$$
(3.91)

ただし

$$|\Phi\rangle = \underbrace{|\phi\rangle_{1,2} \otimes |\phi\rangle_{2,3} \otimes \cdots \otimes |\phi\rangle_{N-1,N} \otimes |\phi\rangle_{N,1}}_{N \not\boxtimes}$$
(3.92)

と略記した. 例えば P_2 を $|\phi\rangle_{1,2} \otimes |\phi\rangle_{2,3}$ に作用すると

$$P_{2} \otimes |\phi\rangle_{1,2} \otimes |\phi\rangle_{2,3} = \sum_{s=1}^{d} \sum_{\alpha,\beta=1}^{\chi} (A_{2}^{s})_{\alpha\beta} |s\rangle_{2} \otimes \langle\alpha|_{2} \otimes \langle\beta|_{2}$$
$$\times \left\{ \sum_{\gamma=1}^{\chi} \frac{1}{\sqrt{\chi}} |\gamma\rangle_{1} \otimes |\gamma\rangle_{2} \otimes \sum_{\delta=1}^{\chi} \frac{1}{\sqrt{\chi}} |\delta\rangle_{2} \otimes |\delta\rangle_{3} \right\} (3.93)$$
$$= \frac{1}{\chi} \sum_{s=1}^{d} \sum_{\alpha,\beta=1}^{\chi} (A_{2}^{s})_{\alpha\beta} |\alpha\rangle_{1} \otimes |s\rangle_{2} \otimes |\beta\rangle_{3} \qquad (3.94)$$

となっている.この操作を各サイト上で行っていけばよい.

3.2.5 テンソル積状態

MPS の高次元への自然な拡張としてテンソル積状態(Tensor Product State, TPS)あるいはテンソル・ネットワーク状態(Tensor Network State, TNS)が考えられる. 一般的な空間 d 次元の場合には,各サイト j 上から伸びるボンド数 z_i

と等しい階数をもつテンソル $\left(A_{j}^{s_{j}}\right)_{m_{1}m_{2}\cdots m_{z_{j}}}$ のセットを定義し,波動関数 $T^{s_{1}s_{2}\cdots s_{n}}$ をそれらの積で表現する.すなわち,

$$|\psi\rangle = \sum_{\{s_j\}} T^{s_1 s_2 \cdots s_n} |s_1 s_2 \cdots s_n\rangle = \sum_{\{s_j\}} C(\{A_j^{s_j}\}) |s_1 s_2 \cdots s_n\rangle$$
(3.95)

ここで *C* はテンソル $(A_j^{s_j})_{m_1m_2\cdots m_{z_j}}$ の縮約を取ることを意味する.また各変数 m_1, m_2, \ldots は,それぞれ χ 自由度を持つとする.テンソルの次元 χ は MPS の場 合と同様に非物理的な内部自由度である.しかしながら,テンソルの要素が変分 パラメータであると見なせば,やはり χ を系統的に増加することで変分波動関数 の精度をコントロールすることができると期待される.

例えば二次元正方格子 9 サイト系(開放端条件)の場合の TPS は, 縮約の部 分も略さずに丁寧に書くと

$$|\psi\rangle = \sum_{\{s_j\}} T^{s_1 s_2 \cdots s_9} |s_1 s_2 \cdots s_9\rangle$$
 (3.96)

に対して

$$T^{s_1 s_2 \cdots s_9} = \sum_{a,b,\dots,l} A^{s_1}_{ab} A^{s_2}_{bcd} A^{s_3}_{ce} A^{s_4}_{efl} A^{s_5}_{dfgh} A^{s_6}_{agi} A^{s_7}_{ij} A^{s_8}_{hjk} A^{s_9}_{kl}$$
(3.97)

となる. 各テンソルの添え字の付け方は, 最隣接サイト間でエンタングルメント 対ができるように取ることになる.

TPS の構造と面積則の関係を図 3.2 に示す.二次元正方格子を考え,点線で囲まれた領域が部分系,その外側がトレースアウトする環境自由度であるとする. PEPS の考え方に従うと,各ボンド上には最大限エンタングルしたペア

$$|\phi\rangle = \frac{1}{\sqrt{\chi}} \sum_{\alpha=1}^{\chi} |\alpha\rangle \otimes |\tilde{\alpha}\rangle \tag{3.98}$$

が導入されており、そのエントロピーは $\log \chi$ である. このとき境界の長さは、ちょうど点線で分断されたエンタングルメント対の数 N_{bond} となる. このためエンタングルメント・エントロピーは

$$S \sim N_{bond} \log \chi \tag{3.99}$$

で与えられる. ここで

$$N_{bond} \sim L^{d-1} \tag{3.100}$$

図 3.2: TPS の構造と面積則との対応: 非臨界系の面積則に合うようにエンタング ルメント・ボンドが配置されている.即ち,点線で囲まれた領域 ($L = 2, L^2 = 4$) に対して,部分系を区切ったことによって切れたエンタングルメント・ボンドの 本数 $N_{bond} = 4L = 8$ が領域の長さを与える.またそれによるエントロピー変化は $N_{bond} \log \chi$ となる.

は部分系の境界で分断されるエンタングルメント対の数を表わしており,自然に 面積則

$$S \sim L^{d-1} \log \chi \tag{3.101}$$

を導く. 但し TPS も MPS 同様,フェルミ面を持つ系の場合には $\chi \sim L$ となら ざるを得ないので,基本的には非臨界系にむいた計算ということになる. TPS を 変分最適化して強相関電子系の色々な問題にアタックできるかということは目下 の大きな問題の一つでもある.

3.3 量子可積分性とのつながり

再び *S* = 1/2 反強磁性ハイゼンベルグ模型を例にとろう.全てのサイトのスピンが↑である強磁性状態を真空(あるいは最高ウェイト状態)

$$|\psi_0\rangle = |\uparrow\uparrow\cdots\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1\\0 \end{pmatrix}$$
 (3.102)

と呼ぶ. サイト $n_1, ..., n_M$ $(1 \le n_1 < \cdots < n_M \le N)$ 上の M 個のスピンが \downarrow に反転した状態を

$$|n_1 \cdots n_M\rangle = S_{n_1}^- \cdots S_{n_M}^- |\psi_0\rangle \tag{3.103}$$

と表すと、一般的な状態ベクトルは次のように表される:

$$|\psi_M\rangle = \sum_{1 \le n_1 < \dots < n_M \le N} \psi(n_1, \dots, n_M) |n_1 \cdots n_M\rangle$$
(3.104)

ここで波動関数 $\psi(n_1, ..., n_M)$ が

$$\psi(n_1, ..., n_M) = \sum_{P \in S_M} A(P) \exp\left(i \sum_{j=1}^M k_{P(j)} n_j\right)$$
(3.105)

と因子化される解を考え、これを Bethe 波動関数と呼ぶ. S_M は次数 M の置換群 で、P はその要素である. j に対する置換操作 P を P(j) と表す. 置換演算の存在 が、エンタングルメントの存在を暗に示している. $k_1, ..., k_M$ は異なる M 個の運動 量であるが、Bethe 波動関数が正しい解になるように自己無撞着に決める. 通常 の結晶運動量とは異なって、相互作用の効果が取り込まれているので、擬運動量 と呼ぶ.

座標 Bethe 仮説と行列積が同等のものであることは,比較的簡単な代数で証明 できる.この方法を行列積仮説解(Matrix Product Ansatz, MPA)と呼ぶ [42-47]. 例えば2粒子の場合,Bethe 波動関数を以下のように因子化する:

$$|\psi_{\Omega}\rangle = \sum_{1 \le x_1 \le x_2 \le L} \psi_{\Omega}(x_1, x_2) |x_1, x_2\rangle,$$
 (3.106)

$$\psi_{\Omega}(x_1, x_2) = \operatorname{Tr} \left(E^{x_1 - 1} A E^{x_2 - x_1 - 1} A E^{L - x_2} \Omega \right)$$
(3.107)

ここで2粒子は x_1 および x_2 の位置にいるものとし、そのサイトには散乱・位相シフトを表す行列 A、粒子がいないサイトには行列 E が定義されている。 Ω は適当な境界演算子である。これが厳密解になるように、 $A \ge E$ の満たす条件を見出すことが目的となる。

9

そこで, 行列 E と A は以下の非可換な代数に従うと仮定してみる:

$$A = \sum_{j=1}^{2} A_{k_j} E \tag{3.108}$$

$$EA_{k_j} = e^{ik_j}A_{k_j}E aga{3.109}$$

$$A_{k_1}A_{k_1} = A_{k_2}A_{k_2} = 0 (3.110)$$

$$A_{k_2}A_{k_1} = s(k_2, k_1)A_{k_1}A_{k_2} (3.111)$$

境界条件は

$$E\Omega = e^{-ip}\Omega E , \ p = \sum_{j=1}^{2} k_j \tag{3.112}$$

とする.式(3.109)は並進操作,式(3.110)は最大・最小ウエイト状態の自然な 表現,式(3.111)は2体散乱を表す.以上の交換関係が成り立つとき, ψ は明ら かに Bethe 波動関数になることが分かる:

$$\psi = \operatorname{Tr}\left(E^{x_1-1}\sum_{j=1}^2 A_{k_j}E^{x_2-x_1}\sum_{l=1}^2 A_{k_l}E^{L-x_2+1}\Omega\right)$$

= Tr $\left(A_{k_1}A_{k_2}E^L\Omega\right)e^{-ip}\left\{e^{i(k_1x_1+k_2x_2)}+s(k_2,k_1)e^{i(k_2x_1+k_1x_2)}\right\}$ (3.113)

式(3.108)-(3.111)を満足する E 及び A の行列表示は,

$$E = \begin{pmatrix} 1 & 0 \\ 0 & e^{-ik_1} \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & e^{-ik_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-ik_2} & 0 & 0 \\ 0 & 0 & e^{-ik_1} & 0 \\ 0 & 0 & 0 & e^{-i(k_1+k_2)} \end{pmatrix}$$
(3.114)

$$A_{k_1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes id = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(3.115)

$$A_{k_2} = \begin{pmatrix} s(k_2, k_1) & 0\\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & s(k_2, k_1) & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(3.116)

と取ることができる. Bethe 波動関数は, E の形から分かるように先ず個々の励起モードを平面波で展開し,その後にそれらの散乱を A_{k_1}, A_{k_2} によってエンタングルメントという形で取り入れる.実際に散乱行列 $s(k_2, k_1)$ が A_{k_2} の非対角要素に入っていることからそれが分かる.

3.4 変分関数のクラス II: MERA クラス

3.4.1 テンソルの階層化

MPS, TPS といったテンソル積波動関数は,テンソル次元 χ を十分大きくしていけば原理的には任意の状態を精密に記述することができる.一方で臨界系の

計算には大きな χ の値が要求され,計算機のパワーが必要となるので現実的では ない、また複雑化したエンタングルメント構造の物理的意味を紐解くことは難し くなっていく、そこで新たに加える余剰の次元方向にテンソルを細かく分割して いくことでその構造を明確化し、かつ豊富な機能を付加させることができる。そ のようにしてテンソル積波動関数の最も進化した形態が「マルチスケール・エン タングルメントくりこみ仮説 (Multiscale Entanglement Renormalization Ansatz, MERA)」である [48]. テンソル積波動関数を導入した時点で,「変分波動関数の持 つエンタングルメント構造が面積則に適合しているかどうか?」という意識は既 にあった訳であるが、いつも対数補正がうまく表現できないということが問題で あった. MERA ではそのような長距離の相関を明確な形で取り込むような工夫が されている. つまり局所テンソルの積から出発して, 相関関数の正確なベキや相 転移近傍の状態を取り扱うことが出来るかということがここでの問題となる.実 は MERA はストリング理論の分野で研究されている「ホログラフィックくりこみ 群」の具体的な例となっている [49].「ホログラフィックくりこみ群」とは、漸近 的に AdS 計量を持つ時空の動径座標が、その時空の境界に定義された共形場理論 のくりこみフローのパラメータに等しいことに基づいている.後に述べるように, MERA のブロック変換のフローが AdS 時空に乗っているということが臨界現象 を正確に記述する裏付けとなる、以上のことを踏まえて、以下では階層的テンソ ルネットワークとしての MERA とその幾何学的背景を中心に議論する.

これまで行ってきたことは、一般的な波動関数

$$|\Psi\rangle = \sum_{s_1=1}^d \sum_{s_2=1}^d \cdots \sum_{i_N=1}^d c^{s_1 s_2 \cdots s_N} |s_1 s_2 \cdots s_N\rangle$$
 (3.118)

の係数 *c*^{s1s2…sN} をテンソル積に分解することである. PEPS の考え方に従うと,そ こでは各格子点上に物理的なインデックスと格子点から延びるリンクの本数に相 当する非物理的なインデックスを持ったテンソルを導入し,隣接サイト間で非物 理的インデックスをエンタングルさせるということがポイントであった. このよ うにすると,局所的な量を扱いながら非局所相関を取り入れることがでることは 既に説明してきたことである. ここで「実空間くりこみ」という視点を導入する ことを考える. どういうことかと言うと,臨界系ではくりこみ群的視点は必須の ものであるにもかかわらず,テンソル積の方法は変分法なので,そこに何らかの 対応をつけようということである.

実空間くりこみの構造を導入するということは、テンソル積を階層的にするということである。例えば図 3.3 に示したように (バックグラウンドの□は粗視化 スケールの目安である),2 サイトを有効的なシングルサイトに粗視化するという

図 3.3: ツリー・テンソル・ネットワーク

操作を考える. この操作は二分木構造のように表わされており、ツリー・テンソ ル・ネットワーク(Tree Tensor Network, TTN)と呼ばれる. 図 3.3 では、粗視 化を黒の三角形で表わしている. この三角形は、粗視化前後のインデックスそれ ぞれを β_1, β_2 及び α として、 $(w)^{\alpha}_{\beta_1\beta_2}$ というテンソルで表される. このテンソル は isometric で

$$\sum_{\beta_1,\beta_2} (w)^{\alpha}_{\beta_1\beta_2} (w^{\dagger})^{\beta_1\beta_2}_{\alpha'} = \delta_{\alpha\alpha'}$$
(3.119)

という関係式を満たす. このような isometory テンソルの縮約をとったものが波 動関数の係数 $c^{s_1s_2\cdots s_N}$ となる. ここで α の次元は,ネットワークの一番下の階層 では厳密には d^2 であるが,これを $\chi(< d^2)$ に近似する.これで情報の縮約・粗視 化が起こる.上の階層に進むにつれて, $\chi^2 \rightarrow \chi$ という情報の粗視化が進行する. 一般には p 個のサイトを一つに粗視化することも可能なので,その場合にはテン ソルが $(w)_{\beta_1\cdots\beta_p}^{\alpha}$ となって,

$$\sum_{\beta_1 \cdots \beta_p} (w)^{\alpha}_{\beta_1 \cdots \beta_p} (w^{\dagger})^{\beta_1 \cdots \beta_p}_{\alpha'} = \delta_{\alpha \alpha'}$$
(3.120)

を満たすように取ることになる.

意識的に「階層」という言葉を使っているが、単純な MPS, TPS から発展して、 テンソル・ネットワークが階層的あるいは *d* + 1 次元的になったことがお分かり だろうか?「くりこみ操作」は「テンソル・ネットワークを階層化する」ことに対 応するといえる.ここで興味深いのは、木構造は遠くの枝の部分が幹の部分を経 由して間接的に繋がっているということである.これが長距離相関を取り入れる キーポイントである.ただし、今のままでは不十分で、例えば、*s*_{*i*-1} と *s*_{*i*} の相関 は取り込むと、 $s_i \ge s_{i+1}$ の間の相関はうまく取り込まれない. MERA に進むと きにこの点をクリアにしようということが具体的な目的となる. 図に示した D の ようなテンソルが必要である.

3.4.2 エンタングルメントくりこみ仮説(MERA)

図 3.4: MERA ネットワーク

図 3.4 が基本的な MERA ネットワークである. これは TTN の各ライン間に■ で示されたユニタリー変換を挟んだものである(TTN と MERA の関係をよく見 ること). このユニタリー変換の働きは,図の下から上方向に粗視化を進めるよう にして眺めると,情報の粗視化の前に周囲とのエンタングルメントがなるべく少な い基底に変換してから粗視化するというものである.問題を解くために適切な基底 を選ぶことはいつでも非常に重要であるが,それをエンタングルメントという視 点から繰り込み操作に適合するようにしたものと言える. このユニタリー変換は 「周囲とのエンタングルメントを(部分的に)解く」と言う意味で「disentangular」 と呼ばれている. disentangular は

$$\sum_{\alpha,\beta} (u)^{\mu\nu}_{\alpha\beta} (u^{\dagger})^{\alpha\beta}_{\mu'\nu'} = \delta_{\mu\mu'} \delta_{\nu\nu'}$$
(3.121)

という関係を満たす.この階層性で興味深いのは,短距離の相関はわざと切りな がら繰り込みを行い始めたのに,結果的に長距離の相関は取り込むことができて いるという点である.従って臨界系を解析するのに向いている.

具体的な例を考えよう.4スピン系のツリー・テンソル・ネットワークは

$$|\psi\rangle = \sum_{s_1, s_2, s_3, s_4} \sum_{\beta_1, \beta_2} (w_1)_{\beta_1}^{s_1 s_2} (w_2)_{\beta_2}^{s_3 s_4} T^{\beta_1 \beta_2} |s_1 s_2 s_3 s_4\rangle$$

$$= \sum_{\beta_1,\beta_2} T^{\beta_1\beta_2} |\beta_1\rangle \otimes |\beta_3\rangle \tag{3.122}$$

と表される. ただし

$$|\beta_j) = \sum_{s_1, s_2} (w_j)_{\beta_j}^{s_1 s_2} |s_1 s_2\rangle$$
(3.123)

と定義した.一方,途中に disentangler を挿入したネットワークは

$$|\psi\rangle = \sum_{s_1, s_2, s_3, s_4} \sum_{\beta_1, \beta_2} \sum_{\gamma, \delta} \left(w_1 \right)_{\beta_1}^{s_1 \gamma} \left(w_2 \right)_{\beta_2}^{\delta_{s_4}} D_{\gamma \delta}^{s_2 s_3} T^{\beta_1 \beta_2} \left| s_1 s_2 s_3 s_4 \right\rangle$$
(3.124)

と表される. disentangler テンソルを次のように特異値分解することを考える:

$$D_{\gamma\delta}^{s_2s_3} = D_{(\gamma s_2)(\delta s_3)} = \sum_{i=1}^{\chi} U_i(\gamma s_2)\lambda_i V_i(\delta s_3)$$
(3.125)

このとき

$$|\beta_1\rangle_i = \sum_{s_1, s_2, \gamma} U_i(\gamma s_2) (w_1)^{s_1 \gamma}_{\beta_1} |s_1 s_2\rangle$$
(3.126)

$$\left|\bar{\beta}_{2}\right)_{i} = \sum_{s_{3},s_{4},\delta} V_{i}(\delta s_{3}) \left(w_{2}\right)_{\beta_{2}}^{\delta s_{4}} \left|s_{3}s_{4}\right\rangle$$
(3.127)

とおくと、状態ベクトルは

$$\left|\psi\right\rangle = \sum_{\beta_1,\beta_2} T^{\beta_1\beta_2} \sum_{i=1}^{\chi} \lambda_i \left|\beta_1\right\rangle_i \otimes \left|\bar{\beta}_2\right\rangle_i \tag{3.128}$$

と表される.したがって、くりこんだ有効サイト間に非自明な相関が生じている. このことで、くりこみ操作におけるサイトの取り扱いの非対称性を緩和している ことが分かる.このとき、disentanglerの機能としては、相関を切るというよりは むしろ単純な実空間くりこみによって失われてしまう量子相関をうまく取り入れ るということであり、entangler と呼ぶ場合もある.

3.4.3 因果円錐

図 3.5 の黄色線で示したコーンの上の領域は包含的因果円錐(inclusive causal cone)と呼ばれており、言葉の意味通り、着目しているオリジナルサイトを原因として生ずるくりこみ後の状態を示している.したがって、二つの離れたサイト間の量子相関は、二つのコーンが交わる領域の最小の距離で特徴づけられるといっ

図 3.5: 因果円錐

てよい.くりこみで有効サイトは指数関数的に減少するので,2サイト間の距離が L であれば、コーンが交わる層までの距離は log L のオーダーである.これが面 積則の対数的破れと関係していることが期待される.また二つのコーンで囲まれ る領域は排他的因果円錐(exclusive causal cone)と呼ばれている.

因果円錐の概念を用いて MERA ネットワークにおけるエンタングルメント・エントロピーのスケーリング関係式を考えよう.空間1次元系の量子臨界系に対しては Calabrese-Cardy の公式より

$$S = \frac{c}{6} \mathcal{A} \log L + \gamma \tag{3.129}$$

また2次元以上では面積則が成り立って,

$$S \sim L^{d-1} \tag{3.130}$$

ということが様々な計算から確認されていることは既に説明した.この解釈をす るためには、くりこみの各層が元の部分 A の異なるスケールの情報であることに 注目する.その場合には、排他的因果円錐の境界面がエントロピーに寄与するこ とになる.以上の結果は、拡張された空間でエンタングルメント・エントロピー に対する面積則を考えれば、対数補正をする必要がないことを示唆している.逆 に対数補正が必要ない系(ギャップのある系)では、単純に MPS や TPS をつく ればいいので、ここまで複雑なことをする必要はない.

実際に,空間一次元系の場合で具体的に計算してみると,

$$S = \underbrace{1+1+1+\dots+1}_{\log L \ \overrightarrow{B}} \sim \log L \tag{3.131}$$

となり、対数補正が現れる.一方,空間二次元系の場合には、周長 L の正方形か

ら出発すると

$$S_n = L + \frac{1}{2}L + \left(\frac{1}{2}\right)^2 L + \dots + \left(\frac{1}{2}\right)^n L = 2L - \left(\frac{1}{2}\right)^n L \to 2L \qquad (3.132)$$

また三次元系では,一辺 L の立方体から出発すると

$$S_n = 6L^2 + 6\frac{1}{4}L^2 + 6\left(\frac{1}{4}\right)^2 L^2 + \dots \to 8L^2$$
(3.133)

となり,確かに対数補正は現れず,面積則 *S* ~ *L*^{*d*-1} を満たしている.この計算の 連続版は,実はストリング理論で非常に重要で,笠・高柳の公式あるいはホログ ラフィック・エンタングルメント・エントロピーと呼ばれている.

3.4.4 MERA ネットワークと AdS 空間の測地線の対応

MERA ネットワークと双曲空間との対応を考えてネットワーク形状を多少変形 したものが図 3.6 である.エンタングラーの存在により,エンタングルメントのつ ながりが,双曲空間の測地線的な形状をしていることが分かる.このことがホロ グラフィックにエンタングルメント・エントロピーを測地線の計算により導出する 笠・高柳公式との類似点である.

3.4.5 二重ヒルベルト空間と熱的真空状態

続いて,熱場ダイナミクス (Thermofield Dynamics, TFD)の話題に移ろう. TFD は,有限温度場の量子論の一形式である [50].有限温度では通常,物理量をボル ツマン分布による期待値で表現する.したがって混合状態を扱う.これを等価な 真空表現(熱的真空と呼ぶ)に変換する.これにより,絶対零度の場の理論の手 法が有限温度の場合に容易に拡張されるだけでなく,その状態の持つエンタング ルメント構造を調べることが可能となる.真空表現は状態空間を倍加することで 実行される.ここでも「理論の内部自由度を増やして問題を簡潔に表現する」と いう思想が現れている.

はじめにヒルベルト空間の一つの完全系を {|*n*⟩} とする.これと完全に同形な空間を導入し,チルダ空間と呼ぶ.チルダ空間の完全系を {|*ñ*⟩} と表す.チルダ空間 は線形性を保つが,以下のような演算関係が定義されているものとする.

$$(u |m\rangle + v |n\rangle) = \bar{u} |\tilde{m}\rangle + \bar{v} |\tilde{n}\rangle$$
(3.134)

$$(AB)^{\tilde{}} = \tilde{A}\tilde{B} \tag{3.135}$$

$$(c_1A + c_2B) = \bar{c}_1\tilde{A} + \bar{c}_2\tilde{B}$$
(3.136)

図 3.6: MERA ネットワークと双曲空間における測地線の類似

Identity 状態 $|I\rangle$ を次のように定義する.

$$|I\rangle = \sum_{n} |n\rangle \otimes |\tilde{n}\rangle = \sum_{n} |n\tilde{n}\rangle$$
(3.137)

これは最大限エンタングルした状態である.¹前述のように作用素のほうを混成させるのではなくて、状態そのものの混成を積極的に用いている.

状態 |*I* / を用いると,元のヒルベルト空間の状態に作用する演算子 A のトレースが

$$\operatorname{Tr} A = \langle I | A \otimes \tilde{\mathbf{1}} | I \rangle \tag{3.138}$$

と表されることになる.通常の教科書などでは,作用素 A ⊗ 1 は元のヒルベルト 空間に作用する演算子であるとして,単に A と書くことが多いが,テンソル代数 の節の定義にならって正確に書くと,上記のようになる.実際に以下のように証 明できる.

$$\langle I | A \otimes \tilde{\mathbf{1}} | I \rangle = \sum_{m,n} \langle m | A | n \rangle \langle \tilde{m} | \tilde{n} \rangle = \sum_{m} \langle m | A | m \rangle = \text{Tr}A \qquad (3.139)$$

途中の変形で $\langle \tilde{m} | \tilde{n} \rangle = \delta_{\tilde{m}\tilde{n}}$ という関係を用いた.

Identity 状態 |I) が表示によらないことを示す.まず

$$|I\rangle = \sum_{n} |n\tilde{n}\rangle = \sum_{n,i,j} U_{n,i}\bar{U}_{n,j} \left|i\tilde{j}\right\rangle = \sum_{i,j} \left(\sum_{n} U_{n,i}\bar{U}_{n,j}\right) \left|i\tilde{j}\right\rangle$$
(3.140)

であるが $(U^* = {}^t \overline{U}$ はエルミート共役),

$$\sum_{n} U_{n,i} \bar{U}_{n,j} = \sum_{n} (U^*)_{j,n} U_{n,i} = \delta_{ji}$$
(3.141)

より

$$|I\rangle = \sum_{i,j} \delta_{ji} \left| i\tilde{j} \right\rangle = \sum_{i} \left| i\tilde{i} \right\rangle \tag{3.142}$$

となる.これを一般化表現定理とよぶ.行列のトレースが表示に依らないことは 明らかであるが,TFD の場合には表示そのものも不変であることが一つの特徴で ある.

¹チルダ演算の定義で、状態はチルダ共役になるのに対して数は複素共役としている.このこと により一般化表現定理が成り立つので、それが熱場の理論における最大エンタングルメント状態の 存在を保証している.

密度行列 $\rho = \exp(-\beta H)$ の正値性を利用して, $\rho^{1/2} \delta (\rho^{1/2})^2 = \rho$ となるように 定義する.これを用いて熱的真空状態を

$$|O(\beta)\rangle = \rho^{1/2} |I\rangle \tag{3.143}$$

と定義する.この状態を用いると,

$$\langle O(\beta) | A | O(\beta) \rangle = \operatorname{Tr}(\rho^{1/2} A \rho^{1/2}) = \operatorname{Tr}(\rho A)$$
(3.144)

となり、演算子 A の統計平均が熱的真空による真空期待値で表現された.

3.4.6 有限温度 MERA

MERA ネットワークを有限温度に拡張するために TFD を応用することができる [51]. *L* サイト系に対する TFD の状態は一般に

$$|\Psi\rangle = \sum_{\{m_j\}} \sum_{\{\tilde{n}_j\}} \Psi^{m_1 m_2 \cdots m_L \tilde{n}_1 \tilde{n}_2 \cdots \tilde{n}_L} |m_1 m_2 \cdots m_L \tilde{n}_1 \tilde{n}_2 \cdots \tilde{n}_L\rangle$$
(3.145)

と表すことができるが,波動関数 Ψ^{m1m2…mLñ1ñ2…ñL} を,テンソルの分解定理(あるいは特異値分解)に基づいて次のように分解することを考える.

$$\Psi^{m_1 m_2 \cdots m_L \tilde{n}_1 \tilde{n}_2 \cdots \tilde{n}_L} = \sum_{\alpha=1}^{\chi} A_{\alpha}^{m_1 m_2 \cdots m_L} A_{\alpha}^{\tilde{n}_1 \tilde{n}_2 \cdots \tilde{n}_L}$$
(3.146)

ここで A は χ 次元ベクトルで,これは非物理的な自由度を表す.この値がどの ような意味を持つかということはこの後考える.ベクトルの成分 α 以外の添え字 m_1, m_2, \dots, m_L が物理的なスピンの自由度である.元のヒルベルト空間とチルダ 空間が同型であることから, Ψ は同じ二つの A に分解される.ここで, $A_{\alpha}^{m_1m_2\dots m_L}$ および $A_{\alpha}^{\tilde{n}_1 \tilde{n}_2 \dots \tilde{n}_L}$ が,絶対零度における通常の MERA が有限温度のために変形さ れた結果生じたものと見る.到達可能な最低エネルギースケールがその温度で制 限されるので,余分な添え字 α はそのことを表すものと考えられる.

以上の結果が図 3.7 である. 完全な MERA ネットワークの上部がトランケート されており、 w_0 層のみからなる. 最下層の UV 極限を出発点として、 w_0 は 0 か ら数えると約束する. また最上位層の isometry テンソルが A 個あり、そのランク が m であるとする. このとき

$$\chi = m^A \tag{3.147}$$

および

$$\frac{L}{2^{w_0}} = A$$
 (3.148)

図 3.7: 低エネルギー状態をトランケートされた MERA ネットワーク

が成り立つ.ところで変数 χ は,元のヒルベルト空間とチルダ・ヒルベルト空間の エンタングルメントの大きさと見ることができる.すなわちそのエントロピーは

$$S_0 = \log \chi \tag{3.149}$$

と見積もることができる.式(3.147)と式(3.148)をこの式に代入すると

$$S_0 = A \log m = \frac{L}{2^{w_0}} \ln m \tag{3.150}$$

が得られる.変数変換 $z = 2^w$ を行うと式 (3.150) は

$$S_0 = \frac{L}{z_0} \ln m \tag{3.151}$$

と表される.ここで $z_0 = 2^{w_0}$ とした(場の理論サイドはこの座標系で計算するため).共形場理論によってエンタングルメント・エントロピーは

$$S_{EE} = \frac{c}{3} \ln\left(\frac{\beta}{\pi\epsilon} \sinh\left(\frac{\pi L}{\beta}\right)\right)$$
(3.152)

となることが分かっている. ここで S_0 と S_{EE} で L のオーダーを同一視すると

$$z_0 \propto \beta \tag{3.153}$$

となることが分かる. すなわち, MERA ネットワークの上部をトランケートして *z*₀ が小さくなるほど温度の高い状況を表している. このことは, ネットワークの 上の方ほど低エネルギーの物理を記述していることを意味している.

最終的に全波動関数は二つの等価なネットワークを接続させて構成される(図 3.8). この構造は BTZ ブラックホールを持つ時空構造と対応している.二つのネット ワークの接続面がブラックホールのイベント・ホライゾンである.本節で計算し たエントロピーはブラックホールの熱エントロピーの面積則を表している.

図 3.8: 最大拡張された有限温度 MERA ネットワーク

第4章 ブラックホール熱力学

4.1 Beckenstein-Hawkingの法則

以降では,重力・時空物理とエンタングルメントの関わりについて見ていく.ブ ラックホールの熱エントロピーは面積則を示し,エンタングルメント・エントロ ピーと同様の性質を持つ.この事実を調べるところから始めよう.実は,時空物 理としては,ブラックホールの研究過程で有効モデルとしてエンタングルメント が導入されてきた経緯がある.

本節では Schwartzshild 計量から出発する.

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega^{2} , \ f(r) = 1 - \frac{r_{0}}{r}$$

$$(4.1)$$

ただし $r_0 = 2GM$ である.時間成分をウィック回転し, $t = i\tau$ としてユークリッド化しておく.f(r)をホライズン $r = r_0$ の周りで展開して

$$f(r) \simeq f'(r_0)(r - r_0)$$
 (4.2)

とすると,

$$ds^{2} = f'(r_{0})(r - r_{0})d\tau^{2} + \frac{dr^{2}}{f'(r_{0})(r - r_{0})} + r^{2}d\Omega^{2}$$
(4.3)

となる. ここで R 座標を

$$dR = \frac{dr}{\sqrt{f'(r_0)(r - r_0)}} \to R = \int \frac{dr}{\sqrt{f'(r_0)(r - r_0)}} = \frac{2}{\sqrt{f'(r_0)}}\sqrt{r - r_0} \quad (4.4)$$

で定義すると,

$$ds^{2} = dR^{2} + R^{2} \left(\frac{1}{2}f'(r_{0})d\tau\right)^{2} + r^{2}d\Omega^{2} = dR^{2} + R^{2}d\Theta^{2} + r^{2}d\Omega^{2}$$
(4.5)

と極座標的に表せる.

式(4.5)は、 〇 座標が周期 2π を持てば 2 次元部分が通常の極座標なので時空 が正則であるが、そうでなけでは原点でコニカル特異点を持ってしまう. コニカ ル特異点とは、円錐の先のような特異点で、測地線をそこから先に延ばすことが できない状態である.特異点を避けるためには、虚時間の周期が

$$\tau = \frac{4\pi}{f'(r_0)} = 4\pi r_0 = 8\pi G M \tag{4.6}$$

であることが要請される(以降では $c = 1, \hbar = 1, k_B = 1$ とする). この状態は、統計力学的には

$$T = \frac{1}{8\pi GM} \tag{4.7}$$

という有限温度系であることを意味する. これを Hawking 温度と呼ぶ. ニュート ン重力の式 $F = GMm/r^2$ より, $r = r_0$ におけるブラックホールの表面重力 κ は

$$\kappa = G \frac{M}{(r_0)^2} = G \frac{M}{(2GM)^2} = \frac{1}{4GM}$$
(4.8)

であることから, Hawking 温度は

$$T = \frac{\kappa}{2\pi} \tag{4.9}$$

と表せる.ブラックホールに温度が定義されることから熱力学的な記述が可能で あるとすると,熱力学の第一法則から

$$dU = TdS \tag{4.10}$$

であるが、内部エネルギー U をブラックホールの静止エネルギー M と同一視し、 Hawking 温度を代入すると

$$dS = 8\pi GM dM \tag{4.11}$$

となる.したがって積分を実行すると

$$S = 4\pi G M^2 \tag{4.12}$$

が得られる.ブラックホールのホライズンにおいては $r = r_0 = 2GM$ であるから,

$$S = \frac{A}{4G} \tag{4.13}$$

となる. ただし $A = 4\pi (r_0)^2$ はブラックホールのホライズン面積を表す. すなわち, ブラックホールのエントロピーは示量的ではなく面積に比例している. この関係式は Beckenstein-Hawking の法則あるいは面積則と呼ばれている. 単位系を省略せずに書くと $S = Ak_Bc^3/4G\hbar$ となっており,基礎物理定数 c, k_B, \hbar が全て現れることが分かる. エントロピーの物理的理解のためには,重力の量子論的特性の解明が重要であることを示唆している.

4.2 Unruh 効果

ウンルー効果とは、ミンコフスキー時空上の加速度運動している観測者が熱的 な粒子のスペクトルを観測するという現象である.ホーキング放射と同様、時空 と情報の深いかかわりを調べる上で重要な性質であるので、ここでその基本的な 事項についてまとめておく.

4.2.1 一様加速度運動

2次元ミンコフスキー時空

$$ds^2 = -dt^2 + dx^2 = \eta_{\alpha\beta} dx^{\alpha} dx^{\beta}$$
(4.14)

を考える. 観測者のトラジェクトリー $(x^0, x^1) = (t, x)$ に対して速度および加速度を

$$u^{\alpha}(\tau) = \frac{dx^{\alpha}(\tau)}{d\tau} , \ a^{\alpha} = \frac{d^2x^{\alpha}(\tau)}{d\tau^2}$$
(4.15)

と表す(τはプロパー時間). 観測者のトラジェクトリーが

$$t = \frac{1}{\alpha}\sinh(\alpha\tau)$$
, $x = \frac{1}{\alpha}\cosh(\alpha\tau)$ (4.16)

である場合,

$$x^2 - t^2 = \frac{1}{\alpha^2} , \ \eta_{\alpha\beta} a^{\alpha} a^{\beta} = \alpha^2$$

$$(4.17)$$

となることから,これは一定加速度運動を表しており,双曲的に運動する軌跡で あることが分かる.

4.2.2 Rindler 時空

上記の議論を拡張して,右側ウェッジを覆う座標系として,次のリンドラー座標 を導入する:

$$t(\tau, \chi) = \frac{1}{\alpha} e^{\alpha \chi} \sinh(\alpha \tau) , \ x(\tau, \chi) = \frac{1}{\alpha} e^{\alpha \chi} \cosh(\alpha \tau)$$
(4.18)

計量テンソルは

$$ds^2 = e^{2\alpha\chi} \left(-d\tau^2 + d\chi^2 \right) \tag{4.19}$$

と変換されることから共形的に平坦になっている.この座標系と同様に左側ウェッジ内に制限されたリンドラー座標系も取ることができる.左右のウェッジはお互いに情報通信不可能な関係にあり、エンタングルメントやブラックホールと同等の物理が潜んでいることが期待される.

4.2.3 自由スカラー場

1+1次元自由スカラー場の理論を考える. ミンコフスキーとリンドラーの両 座標系に対して,作用積分は

$$S = \frac{1}{2} \int dt dx \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 \right] = \frac{1}{2} \int d\tau d\chi \left[(\partial_\tau \phi)^2 - (\partial_\chi \phi)^2 \right]$$
(4.20)

となる.両座標系のライトコーン座標を

$$(u,v) = (t - x, t + x), \ (U,V) = (\tau - \chi, \tau + \chi)$$
(4.21)

ととると作用が

$$S = \int du dv \partial_u \phi \partial_v \phi = \int dU dV \partial_U \phi \partial_V \phi \tag{4.22}$$

となるため,場の運動方程式はそれぞれ

$$\partial_u \partial_v \phi = 0 , \ \partial_U \partial_V \phi = 0 \tag{4.23}$$

となり, 方程式の解は

$$\phi(u, v) = A(u) + B(v) , \ \phi(U, V) = C(U) + D(V)$$
(4.24)

という形で与えられることが分かる.左右の運動が混ざらないので,特に断らない限りは一方のモード(右向きモードのみ)に着目して解析を進めることにする.

以降では、両座標系における場の変換則について調べる.場のモード展開

$$\phi = \int_{0}^{\infty} \frac{d\omega}{\sqrt{2\pi}} \frac{1}{\sqrt{2\omega}} \left(e^{-i\omega u} a_{\omega} + e^{i\omega u} a_{\omega}^{\dagger} \right) + (\text{left moving})$$
$$= \int_{0}^{\infty} \frac{d\Omega}{\sqrt{2\pi}} \frac{1}{\sqrt{2\Omega}} \left(e^{-i\Omega U} b_{\Omega} + e^{i\Omega U} b_{\Omega}^{\dagger} \right) + (\text{left moving})$$
(4.25)

を考え、生成消滅演算子はそれぞれボソンの交換関係に従うとする.

$$\left[a_{\omega}, a_{\omega'}^{\dagger}\right] = \delta(\omega - \omega') , \ \left[b_{\Omega}, b_{\Omega'}^{\dagger}\right] = \delta(\Omega - \Omega')$$
(4.26)

それぞれの演算子の真空は異なるので、それぞれを

$$a_{\omega} |0; M\rangle = 0 , \ b_{\Omega} |0; R\rangle = 0$$

$$(4.27)$$

と表す.

4.2.4 Bogoliubov 変換と Unruh 温度

二つの座標系の関係はボゴリューボフ変換

$$b_{\Omega} = \int_{0}^{\infty} d\omega \left[\alpha_{\Omega}(\omega) a_{\omega} - \beta_{\Omega}(\omega) a_{\omega}^{\dagger} \right]$$
(4.28)

で与えられる. 生成消滅演算子に対する交換関係より,係数の規格化条件は

$$\int_0^\infty d\omega \left[\alpha_\Omega(\omega) \alpha_{\Omega'}(\omega)^* - \beta_\Omega(\omega) \beta_{\Omega'}(\omega)^* \right] = \delta \left(\Omega - \Omega' \right)$$
(4.29)

となる. ボゴリューボフ変換を場のモード展開の定義式に代入すると

$$\frac{1}{\sqrt{\omega}}e^{-i\omega u} = \int_0^\infty \frac{d\Omega'}{\sqrt{\Omega'}} \left[\alpha_{\Omega'}(\omega)e^{-i\Omega'U} - \beta_{\Omega'}(\omega)^* e^{i\Omega'U} \right]$$
(4.30)

が満たされるべきであることが分かる. これに $\exp(\pm i\Omega U)$ をかけて積分すると

$$\int_{-\infty}^{\infty} dU e^{i(\Omega - \Omega')U} = 2\pi\delta(\omega - \Omega')$$
(4.31)

より,

$$\begin{pmatrix} \alpha_{\Omega}(\omega) \\ \beta_{\Omega}(\omega) \end{pmatrix} = \frac{1}{2\pi} \sqrt{\frac{\Omega}{\omega}} \int_{-\infty}^{\infty} e^{\mp i\omega u + i\Omega U} dU$$
(4.32)

を得る.リンドラー座標のUをミンコフスキー座標のuに変換して積分を評価すると,最終的に

$$|\alpha_{\Omega}(\omega)|^{2} = e^{2\pi\Omega/\alpha} |\beta_{\Omega}(\omega)|^{2}$$
(4.33)

が成り立つことが分かる.

最後にミンコフスキー時空における真空でボゴリューボフ粒子の粒子数の期待 値を調べる:

$$\langle 0; M | b_{\Omega}^{\dagger} b_{\Omega} | 0; M \rangle = \int d\omega \left| \beta_{\Omega}(\omega) \right|^2 = \frac{1}{e^{2\pi\Omega/\alpha} - 1}$$
(4.34)

この結果は温度

$$T = \frac{\alpha}{2\pi} \tag{4.35}$$

の熱分布を表している.これを Unruh 温度と呼ぶ.

4.3 ホーキング放射の計算の概要

ブラックホールからのホーキング放射は、ウンルー効果と類似の計算によって 調べることができる.ポイントは異なる真空状態を接続してボゴリューボフ変換 を行うことである.

はじめにシュバルツシルトブラックホールにおける亀座標を、条件

$$dr_* = \frac{dr}{f(r)} \tag{4.36}$$

より

$$r_* = \int \frac{dr}{f(r)} = r - r_0 + r_0 \log\left(\frac{r - r_0}{r_0}\right)$$
(4.37)

で定義する.このとき計量は

$$ds^{2} = f(r) \left(-dt^{2} + dr_{*}^{2} \right) + r^{2} d\Omega$$
(4.38)

となり,共形平坦な座標系である.したがって,ライトコーン座標を張れば,ここから先の議論はウンルー効果の場合と同様である.ここで採用した座標系は*r* > *r*₀の領域でしか定義されてないので,時空の一部(シュバルツシルトブラックホールの外部領域)しか覆っていない.ウンルー効果と同様の計算を行うためには,ブラックホールの地平線は見かけの特異性であることから,イベントホライズンを跨いで特異性のない座標系を導入し,それとのボゴリューボフ変換を考えればよい.

上記の議論に対応するのは Kruskal-Szekeres 座標である.まず亀座標のライト コーンを

$$\tilde{u} = t - r_*, \ \tilde{v} = t + r_*$$
(4.39)

ととり,

$$ds^{2} = -\frac{r_{0}}{r}e^{f(r)}e^{\tilde{v}/2r_{0}}e^{-\tilde{u}/2r_{0}}d\tilde{u}d\tilde{v}$$
(4.40)

と変換する.更に

$$u = 2r_0 e^{-\tilde{u}/2r_0} , \ v = 2r_0 e^{\tilde{v}/2r_0}$$
(4.41)

と変換すれば

$$ds^2 = \frac{r_0}{r} e^{f(r)} du dv \tag{4.42}$$

が得られる.式(4.41)における *u*,*v* は *u*,*v* > 0 の領域で定義されているが,式 (4.42)自体はそれ以外の領域に解析接続できる形をしているので,これでブラッ クホールの内外を特異性のない座標系で覆えることが分かる.したがって,クル スカル座標⇔ミンコフスキー座標,亀座標⇔リンドラー座標と対応させればよい.

第5章 情報幾何的アプローチによる ゲージ重力対応の研究

5.1 双曲的時空におけるバルク境界対応

5.1.1 AdS/CFT 対応

MERA においては、ネットワークの端に元の量子系の自由度が定義されており、それを一次元高い空間のテンソルネットワークで表現した.また同じ量子系を PEPS で表したときの適切な内部自由度 χ に比べれば、MERA で必要な χ の 値は非常に小さなものなので、より古典的なエンタングルメントの弱い系にマップするということも MERA の重要な性質と言える.更に言えば、ネットワークの形状が元の量子系の臨界性に起因しているということである.

実はこれらの物理はストリング理論分野でも大きな注目を集めており,「ゲージ・ 重力対応」あるいは「AdS/CFT 対応」などと呼ばれている [52–55]. これは,

「時空 *d*+1 次元の量子臨界系(CFT)が,負曲率を持つ曲がった *d*+2 次元時空上の一般相対論と等価である」

ということを主張する対応原理である. AdS 空間とはその負曲率の時空間で, その isometry が共形対称性とマッチしているところにポイントがある.

AdS 空間のメトリックは(ポアンカレ座標)

$$ds^{2} = \frac{l^{2}}{z^{2}} \left(dz^{2} - dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + \cdots \right)$$
(5.1)

と表され ($x_0 = t$ は時間), l は曲率半径, z は動径方向と呼ばれる. z = 0 をこ の空間の境界と呼ぶ.曲がった幾何学を考えない通常の場の理論では, ミンコフ スキー空間の等長変換であるポアンカレ変換に対する普遍性が重要である.これ は,並進 $x^{\mu\prime} = x^{\mu} + a^{\mu}$ とローレンツ変換 $x^{\mu\prime} = \Lambda^{\mu}_{c}x^{\nu}$ からなっている.これらの 変換不変性に加えて,このメトリックはスケール変換と特殊共形変換に対しても 不変であり,非常に高い対称性を備えている.実際に,この時空の境界に共形場 の理論が誘導される可能性は様々な計算から導出することができる.

5.1.2 GKP-Witten 関係式

AdS/CFT 対応を具体的に使う有名な処方箋の一つに GKP-Witten 関係式がある.これは,鈴木・トロッター公式と同様に,バルク理論・境界理論両者の分配関数が一致することを主張する関係式である.すなわち

$$\left\langle \exp\left(i\int\phi^{(0)}\mathcal{O}\right)\right\rangle = e^{iS(\phi^{(0)}=\phi|_{z\to 0})}$$
(5.2)

ここで左辺が境界における CFT の分配関数で、Oが CFT の演算子、 $\phi^{(0)}$ がそれ とカップルする共役な外場である。一方、右辺がバルクの重力理論の分配関数か ら来ており、運動方程式の解の $z \to 0$ における成分を $\phi^{(0)}$ とするものである。こ の関係を応用して、一般に計算の難しい量子側の物理量を古典的な重力理論を用 いて解析することができる。

一点関数の計算

簡単な例として,自由スカラー場に対する一点関数の計算を行おう.簡単のため,以降の計算はAdS₃/CFT₂対応で行う.バルクの古典的作用は

$$S = \int dt dx dz \sqrt{-g} \left(-\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right)$$
(5.3)

$$= \frac{1}{2} \int dt dx dz \frac{l}{z} \left((\partial_t \phi)^2 - (\partial_x \phi)^2 - (\partial_z \phi)^2 \right)$$
(5.4)

と表される.更に簡単化のために、時空間に対して一様、スケール方向にのみ依 存する解 $\phi = \phi(z)$ を考える.運動方程式は変分原理から

$$\left(\frac{1}{z}\phi'\right)' = 0\tag{5.5}$$

となり(ダッシュは*z* での微分),これを用いて作用をバルクとオン・シェルに分 解する.それは以下の変形で簡単に実行できて

$$S = -\frac{1}{2}l \int dt dx dz \frac{1}{z} \left(\phi'\right)^2 \tag{5.6}$$

$$= -\frac{1}{2}l \int dt dx dz \left[\left(\frac{1}{z} \phi' \phi \right)' - \left(\frac{1}{z} \phi' \right)' \phi \right]$$
(5.7)

となり、第2項は運動方程式を代入すると消えることが分かる. これより

$$S = \frac{1}{2}l \int dt dx \left[\frac{1}{z}\phi'\phi\right]_{z\to 0}$$
(5.8)

が得られる.運動方程式に戻ってその解を求める.解の形を $\phi = z^{\Delta}$ とおくと $\Delta = 0,2$ が得られるので、一般解は

$$\phi = \phi^{(0)} \left(1 + \phi^{(1)} z^2 \right) \tag{5.9}$$

と表すことができる. $\Delta = 2$ が CFT のスケール次元に対応する. これを作用に代入すると

$$S = \frac{1}{2}l \int dt dx \left[\frac{1}{z}\phi'\phi\right]_{z\to 0} = l \int dt dx \left(\phi^{(0)}\right)^2 \phi^{(1)}$$
(5.10)

となる. 一点関数を計算するための GKP-Witten 関係式は

$$\langle \mathcal{O} \rangle = \frac{\delta S[\phi^{(0)}]}{\delta \phi^{(0)}} = 2l\phi^{(0)}\phi^{(1)}$$
(5.11)

となる. これより場は

$$\phi = \phi^{(0)} + \frac{1}{2l} \left\langle \mathcal{O} \right\rangle z^2 \tag{5.12}$$

と表される.式(5.11)は線形応答の関係式と等価であり, -2*l*φ⁽¹⁾ が遅延グリーン関数に対応する.

二点関数の計算

二点関数の計算のために、古典場の空間依存性も含めて取り扱う. 運動方程式は

$$\phi'' - \frac{1}{z}\phi' + \partial_x^2\phi = 0 \tag{5.13}$$

となる.バルクの場を境界の場で次のように展開する:

$$\phi(z,x) = \int dx' K(z,x,x') \phi^{(0)}(x)$$
(5.14)

これを運動方程式に代入すると、カーネル関数は $z \rightarrow 0$ において

$$K(z, x, x') = \left\{\frac{z}{(x - x')^2 + z^2}\right\}^2$$
(5.15)

と振る舞うことが分かる.全体の冪2がスケール次元∆に対応する.一点関数の 場合と同様に,GKP-Witten関係式から

$$\langle \mathcal{O}(x)\mathcal{O}(x')\rangle = \frac{\delta^2 S}{\delta\phi^{(0)}(x)\delta\phi^{(0)}(x^{\alpha})} \propto \frac{1}{(x-x')^{2\Delta}}$$
(5.16)

が得られる.

5.1.3 笠-高柳の公式

CFT 側のエンタングルメント・エントロピーを AdS サイドの古典的物理量で 表現する公式が笠・高柳の公式である [4,56–58]. CFT 側の領域 A を囲む AdS 側 の極小曲面 γ_A の面積を Area(γ_A) とする.また重力側のニュートン定数を G と する.このとき部分系 A におけるエンタングルメント・エントロピー S_A は,

$$S_A = \frac{\operatorname{Area}(\gamma_A)}{4G} \tag{5.17}$$

で与えられる.

BTZ ブラックホール時空(2+1 次元負曲率の系におけるアインシュタイン方程 式のブラックホール解)を例にとって考えよう(これは有限温度の量子臨界系に 対応する):

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + dx^{2} \right)$$
(5.18)

ただし

$$f(z) = 1 - \left(\frac{z}{z_0}\right)^2 = 1 - az^2$$
(5.19)

で, *z*₀ はイベントホライズンの位置を表す.時間一定面を考え,次の長さを計算 する:

$$L = \int \frac{dz}{z} \sqrt{\frac{1}{f(z)} + \left(\frac{dx}{dz}\right)^2} = \int dz \mathcal{L}(z; x, \dot{x})$$
(5.20)

これを変分して測地距離を計算する. ラグランジアン \mathcal{L} はxに陽に依存していないので,

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{1}{z} \frac{\dot{x}}{\sqrt{f(z)^{-1} + (\dot{x})^2}} = \frac{1}{z_*}$$
(5.21)

という保存則が成り立つ(z* は運動の恒量).式(5.21)をxについて解くと,

$$\dot{x} = \frac{dx}{dz} = \pm \frac{z_0 z}{\sqrt{(z_0^2 - z^2)(z_*^2 - z^2)}}$$
(5.22)

が得られる. ここで

$$0 < z < z_* < z_0 \tag{5.23}$$

とする. パラメータ *z*_{*} は最終的に測地線が最もイベントホライズン *z*₀ に近づいた ときの *z* の値である.

境界の部分系Aが領域 $-l \leq x \leq l$ において定義されているとする.このとき

$$\frac{l}{z_0} = -\int_0^{z_*} \frac{zdz}{\sqrt{(z_*^2 - z^2)(z_0^2 - z^2)}} = \frac{1}{2} \log\left(\frac{z_0 + z_*}{z_0 - z_*}\right)$$
(5.24)

これを z_{*} について解くと

$$z_* = z_0 \tanh\left(\frac{l}{z_0}\right) \tag{5.25}$$

が得られる.

いま考えている空間次元で $\operatorname{Area}(\gamma_A)$ は測地線の長さに対応する:

$$\operatorname{Area}(\gamma_A) = 2 \int_{\epsilon}^{z_*} \frac{Rdz}{z} \sqrt{\frac{1}{f(z)} + (\dot{x})^2}$$
(5.26)

ここで ϵ は UV カットオフである.式 (5.22) を式 (5.26) に代入すると,

Area
$$(\gamma_A) = 2R \int_{\epsilon}^{z_*} \frac{dz}{z} \frac{1}{\sqrt{(1-az^2)(1-bz^2)}}$$
 (5.27)

が得られる. ただし

$$b = \frac{1}{z_*^2}$$
(5.28)

である.以下の座標を導入

$$z = \frac{1}{r}, r^2 = u, v = u - \frac{1}{2}(a+b), v_0 = \frac{1}{2}(b-a) = \frac{1}{2}\left(\frac{1-az_*^2}{z_*^2}\right)$$
 (5.29)

積分を実行すると,以下の結果が得られる:

$$\frac{\operatorname{Area}(\gamma_{A})}{R} = 2 \int_{1/z_{*}}^{1/\epsilon} \frac{r dr}{\sqrt{(r^{2} - a)(r^{2} - b)}} \\
= \int_{b}^{1/\epsilon^{2}} \frac{du}{\sqrt{(u - a)(u - b)}} \\
= \int_{v_{0}}^{1/\epsilon^{2}} \frac{dv}{\sqrt{v^{2} - v_{0}^{2}}} \\
= \left[\log \left(v + \sqrt{v^{2} - v_{0}^{2}} \right) \right]_{v_{0}}^{1/\epsilon^{2}} \\
= \log \left(\frac{2}{\epsilon^{2}} \frac{1}{v_{0}} \right)$$
(5.30)

ここで

$$z_0 = \frac{\beta}{2\pi} \tag{5.31}$$

と同一視し, 更に Brown-Henneaux の公式 [59-61]

$$c = \frac{3R}{2G} \tag{5.32}$$

を用いると

$$S_A = \frac{\operatorname{Area}(\gamma_A)}{4G} = \frac{c}{3} \log\left(\frac{\beta}{\pi\epsilon} \sinh\left(\frac{2\pi l}{\beta}\right)\right)$$
(5.33)

を得るが,これは場の理論的に得られたエンタングルメント・エントロピーの公 式と等価である.

5.2 情報幾何によるゲージ重力対応の研究

5.2.1 情報幾何の基礎とエンタングルメント熱力学

最後に私の近年の研究を紹介する [62,63]. 情報幾何的手法でエンタングルメント・ホログラフィックくりこみ・ゲージ重力対応の本質がどこまで捉えられるかを 調べている.

初めにある量子系の純粋状態 $|\psi\rangle$ が与えられたとする(任意の混合状態は熱場 ダイナミクスのように補助場を入れ純化できる). それを部分系 A と環境 \bar{A} に分 け,特異値分解で以下のように表現する:

$$|\psi\rangle = \sum_{n} \sqrt{\lambda_n} |n\rangle_A \otimes |n\rangle_{\bar{A}}$$
(5.34)

状態の規格化条件を課せば、特異値の二乗 λ_n は確率分布としての意味を持つ.すなわち

$$\sum_{n} \lambda_n = 1 \tag{5.35}$$

このときエンタングルメント・スペクトル γ_n は

$$\lambda_n = e^{-\gamma_n} \tag{5.36}$$

と定義される. ここでスペクトルは以下のような指数分布族に従うと仮定する:

$$\gamma_n(\theta) = \psi(\theta) - \theta^{\alpha} F_{n,\alpha} \tag{5.37}$$

 θ^{α} はカノニカル変数と呼ばれ、元の量子モデルのパラメータの関数である。 ψ は ヘッセ・ポテンシャルと呼ばれ、情報幾何では重要な役割を果たす。もともと純粋 状態を取り扱っているのであるが,環境自由度を縮約した部分系を取り扱うのが エンタングルメントの特徴であるから,自然に熱的な効果が入るため,有限温度 の分布関数同様,指数型の関数形の仮定は自然であると思われる.より具体的に は次のような表記を導入すれば,統計力学との対応が明確であろう:

$$\psi = \log Z , \ Z = \sum_{n} e^{\theta^{\alpha} F_{n,\alpha}} , \ \lambda_n = \frac{1}{Z} e^{\theta^{\alpha} F_{n,\alpha}}$$
(5.38)

スペクトル γ_n の平均はエンタングルメント・エントロピーである:

$$S = \langle \gamma \rangle = \sum_{n} \lambda_n \gamma_n \tag{5.39}$$

これは次のようにも表せる:

$$S = \psi - \theta^{\alpha} \langle F_{\alpha} \rangle = \psi - \theta^{\alpha} \partial_{\alpha} \psi \tag{5.40}$$

式(5.34)の幾何学的な表現は,式(5.37)から出発して得られる.ここで考える計量は,相対エンタングルメント・エントロピーの主要項で,情報幾何の言葉としてはフィッシャー情報量と呼ばれる.定義は

$$g_{\mu\nu} = \langle (\partial_{\mu}\gamma)(\partial_{\nu}\gamma) \rangle \tag{5.41}$$

であり、これはまた

$$g_{\mu\nu} = \langle \partial_{\mu} \partial_{\nu} \gamma \rangle = \partial_{\mu} \partial_{\nu} \psi \tag{5.42}$$

とも書き換えられる. 線素は

$$ds^2 = \kappa q_{\mu\nu} d\theta^\mu d\theta^\nu \tag{5.43}$$

と表させる. 係数 κ は,後に物理的なユニットを正しく表現するために導入する. 我々がここで導入した古典的な計量 g_{μν} は,ヘッセ・ポテンシャルから定義され ており,それは元々ある量子系のエンタングルメント・スペクトルから来ていた. 従って,自然な形で量子古典変換を記述していることが分かる. ただし,何らか のバルク境界対応が内包されているかということは良く分からないので,前節で 議論した AdS/CFT 対応と同等の物理を表しているかどうかは研究する必要があ る. それが本節での大きな目的である.

情報幾何では双対性という概念が非常に重要で,偶然であるがこれがゲージ重 力対応の双対性と関係しているのではないかという傍証が得られていることを最 後に述べる.カノニカル変数の双対変数 η_α は,以下のように定義される:

$$\eta_{\alpha} = -\partial_{\alpha}\psi \tag{5.44}$$
このとき双対ポテンシャルは

$$\varphi = \theta^{\alpha}(\partial_{\alpha}\psi) - \psi = -S \tag{5.45}$$

で与えられる.

5.2.2 ガウス分布の幾何学

ガウス分布の情報幾何が双曲になることは非常に有名な例題であり,本研究で も重要な役割を果たす.分布関数を

$$p(X) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(X-\mu)^2}{2\sigma^2}\right\}$$
(5.46)

と表す. これを指数分布族の形

$$p(X) = \exp\left\{\theta^{\alpha}F_{\alpha}(X) - \psi(\theta)\right\}$$
(5.47)

に変換する.

$$F_1 = X \tag{5.48}$$

$$F_2 = -\frac{1}{2}X^2 (5.49)$$

を仮定すると,

$$\psi = \log\left(\sqrt{2\pi}\sigma\right) + \frac{1}{2}\left(\frac{\mu}{\sigma}\right)^2 \tag{5.50}$$

$$\theta^1 = \frac{\mu}{\sigma^2} \tag{5.51}$$

$$\theta^2 = \frac{1}{\sigma^2} \tag{5.52}$$

となることが分かる. 逆変換は

$$\mu = \frac{\theta^1}{\theta^2} \tag{5.53}$$

$$\sigma = \frac{1}{\sqrt{\theta^2}} \tag{5.54}$$

となり、このときポテンシャルは

$$\psi = -\frac{1}{2}\log\theta^2 + \frac{1}{2}\log 2\pi + \frac{1}{2}\frac{(\theta^1)^2}{\theta^2}$$
(5.55)

となる.以上のパラメータを用いると、以下のように双曲幾何を導くことができる:

$$ds^{2} = \frac{1}{\theta^{2}} (d\theta^{1})^{2} - 2\frac{\theta^{1}}{(\theta^{2})^{2}} d\theta^{1} d\theta^{2} + \left\{ \frac{1}{2} \frac{1}{(\theta^{2})^{2}} + \frac{(\theta^{1})^{2}}{(\theta^{2})^{3}} \right\} (d\theta^{2})^{2}$$
$$= \frac{d\mu^{2} + 2d\sigma^{2}}{\sigma^{2}}$$
(5.56)

このときエントロピーは

$$S = -\frac{1}{2}\log\theta^{2} + \frac{1}{2}\log(2\pi) + \frac{1}{2}$$

= $\log\sigma + \frac{1}{2}\log(2\pi) + \frac{1}{2}$ (5.57)

となる.この式はエンタングルメント・エントロピーの対数破れの公式と密接な 関わりがある.そのことを理解するために,次の調和振動子を考える:

$$H = -\sigma \frac{d^2}{dX^2} + \frac{(X-\mu)^2}{4\sigma^3}$$
(5.58)

シュレディンガー方程式を解くと、基底状態 $\psi_0(X)$ は

$$\psi_0(X) = \sqrt{\frac{1}{\sqrt{2\pi\sigma}}} e^{-(X-\mu)^2/4\sigma^2}$$
(5.59)

で与えられ, $p(X) = |\psi_0(X)|^2$ を得る. ここでポテンシャルが粒子をコンファイン しているので, σ が実効的に部分系サイズに対応していることが分かる.

5.2.3 時空間座標とカノニカル変数の間の変換則,エントロピー公 式の導出

情報幾何の手法で,現在までのところ,以下の結果を示すことができている.

- 有限温度 CFT₂のエンタングルメントと BTZ ブラックホールの双対性を表現するヘッセポテンシャルとカノニカル変数が存在すること(具体的な量子模型のシュミット係数に要求される必要条件としての現象論の構築)
- 笠・高柳公式と同等の表現形式を備えていること
- エンタングルメント・エントロピーの時間発展うやホーキング放射の情報が 得られること
- 自由フェルミオン模型のエンタングルメント・スペクトルがこの理論と整合 的であること

- 情報幾何のフォーマリズムには陽にバルク・境界対応は含まれていないが、 量子側の部分系サイズがホログラフィーの動径方向と一対一対応することに よって、その情報が自然に理論に入ること
- 情報幾何の双対性もバルク・境界対応に関係があること

以下ではその概要について述べる.

BTZ 計量はガウス分布を拡張して求めることができる,そのために次の変換を 導入する:

$$t = \frac{\theta^0}{\theta^2 - a} \tag{5.60}$$

$$x = \frac{\theta^1}{\theta^2} \tag{5.61}$$

$$z = \frac{1}{\sqrt{\theta^2}} \tag{5.62}$$

ここで時間座標は

$$t = \frac{\theta^0}{\theta^2 - a} = \frac{z^2}{1 - az^2} \theta^0$$
(5.63)

となるので, $z \rightarrow z_0$ に対して $t \rightarrow \infty$ となる. これは時間発展がホライズン近傍 でゆっくりになることを表している.

以上のパラメータを用いると計量は

$$ds^{2} = \frac{1}{z^{2}} \left(-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + dx^{2} \right)$$

$$= -\frac{1}{\theta^{2} - a} (d\theta^{0})^{2} + 2\frac{\theta^{0}}{(\theta^{2} - a)^{2}} d\theta^{0} d\theta^{2} + \frac{1}{\theta^{2}} (d\theta^{1})^{2} - 2\frac{\theta^{1}}{(\theta^{2})^{2}} d\theta^{1} d\theta^{2}$$

$$+ \left\{ \frac{1}{4} \frac{1}{\theta^{2}(\theta^{2} - a)} + \frac{(\theta^{1})^{2}}{(\theta^{2})^{3}} - \frac{(\theta^{0})^{2}}{(\theta^{2} - a)^{3}} \right\} (d\theta^{2})^{2}$$
(5.64)

と表されるが、これを導くヘッセ・ポテンシャルは

$$\psi = \frac{1}{4a} \left\{ (\theta^2 - a) \log(\theta^2 - a) - \theta^2 \log^2 \theta^2 \right\} + \frac{1}{2} \frac{(\theta^1)^2}{\theta^2} - \frac{1}{2} \frac{(\theta^0)^2}{\theta^2 - a} \\ = \frac{1}{4} \log\left(\frac{z^2}{1 - az^2}\right) + \frac{1}{4} \frac{1}{az^2} \log\left(1 - az^2\right) + \frac{1}{2} at^2 + \frac{1}{2} \frac{x^2 - t^2}{z^2} \quad (5.65)$$

で与えられる.このときエントロピーは次のように与えられる:

$$S(\theta) = \psi(\theta) - \theta^{\alpha} \partial_{\alpha} \psi(\theta)$$

= $-\frac{1}{4} \log(\theta^2 - a) - \frac{1}{2} a \left(\frac{\theta^0}{\theta^2 - a}\right)^2$
= $\frac{1}{4} \log\left(\frac{z^2}{1 - az^2}\right) - \frac{1}{2} a t^2.$ (5.66)

式 (5.66) において

$$z = z_0 \tanh\left(\frac{l}{z_0}\right) \tag{5.67}$$

と置けば、笠・高柳公式と等価な計算をしていることが分かる.この条件は、どれ くらいの空間スケールの情報が関わっているかということに関係していて、ちょ うど測地線が最もホライゾンに近い位置の*z*座標である.

*z*₀ および時間に依存する負のエントロピー項の存在は,ホーキング放射との深い関わりを連想させる.これは目下の研究課題である.

5.2.4 双対性とバルク境界対応

ルジャンドル変換後の新しい座標は

$$\eta_0 = \frac{\theta^0}{\theta^2 - a} \tag{5.68}$$

$$\eta_1 = -\frac{\theta^1}{\theta^2} \tag{5.69}$$

$$\eta_2 = -\frac{1}{4a} \left\{ \log(\theta^2 - a) - \log^2 \theta^2 \right\} - \frac{1}{2} \frac{(\theta^0)^2}{(\theta^2 - a)^2} + \frac{1}{2} \frac{(\theta^1)^2}{(\theta^2)^2}$$
(5.70)

となる.この逆変換は

$$\theta^0 = a \frac{e^V}{1 - e^V} \eta_0 \tag{5.71}$$

$$\theta^{1} = -a \frac{1}{1 - e^{V}} \eta_{1} \tag{5.72}$$

$$\theta^2 = a \frac{1}{1 - e^V}$$
(5.73)

で,

$$V(\eta) = -4a\left(\eta_2 + \frac{1}{2}(\eta_0)^2 - \frac{1}{2}(\eta_1)^2\right)$$
(5.74)

を用いた. 双対ポテンシャル φ は

$$\varphi = -\theta^{\alpha} \eta_{\alpha} - \psi
= \frac{1}{4} \log(\theta^{2} - a) + \frac{1}{2} a \frac{(\theta^{0})^{2}}{(\theta^{2} - a)^{2}}
= -\frac{1}{4} \log(1 - e^{V}) + \frac{1}{4} \log a + \frac{1}{4} V + \frac{1}{2} a(\eta_{0})^{2}$$
(5.75)

で与えられる. 双対パラメータと通常の時空変数の変換ルールは

$$t = \eta_0 \tag{5.76}$$

$$x = -\eta_1 \tag{5.77}$$

$$z = \sqrt{\frac{1}{a}(1 - e^V)}$$
(5.78)

で与えられる. 式 (5.78) は

$$e^{V} = f = 1 - az^{2} \tag{5.79}$$

と書き換えでき,双対ポテンシャルは

$$\varphi = -\frac{1}{4} \log\left(\frac{z^2}{1 - az^2}\right) + \frac{1}{2}at^2$$
(5.80)

と表される.式(5.75)は本質的には自由ボソンの自由エネルギーの形をしている ので(より正確には自由ボソン系のエンタングルメント・ハミルトニアンも自由 ボソン系で,ただしスペクトルは異なっている),従って双対ポテンシャルは境界 のエンタングルメント・ハミルトニアンに対するエンタングルメント熱力学ポテ ンシャルとなっていることが分かる.

以上の観点からエントロピー公式を

$$S = -\frac{1}{2} \log \left\{ \frac{1}{\frac{\beta}{\pi} \sinh\left(\frac{2\pi l}{\beta}\right)} \right\} - \frac{1}{2} a t^2$$
(5.81)

と表してみると、これは2点相関関数の対数を取ったものに見えるので、確かに Calabrese-Cardy による共形場理論のアプローチとの整合性が感じられる [22].

関連図書

- [1] 松枝宏明,「量子系のエンタングルメントと幾何学 ホログラフィー原理に基づく異分野横断の数理」,森北出版 (2016).
- [2] 松枝宏明,「エンタングルメントで見る時空の幾何学構造とテンソル積波動関数」,物性研究 96 (2011).
- [3] 堀田昌寛,「量子情報と時空の物理 量子情報物理入門」,数理科学SGC ライ ブラリ **103** (2014).
- [4] 高柳匡,「ホログラフィー原理と量子エンタングルメント」,数理科学SGC ラ イブラリ **106** (2014).
- [5] Ching Hua Lee, Yuki Yamada, Tatsuya Kumamoto, and Hiroaki Matsueda, "Exact Mapping from Singular Value Spectrum of Fractal Image to Entanglement Spectrum of One-Dimesional Quantum Systems", J. Phys. Soc. Jpn. 84, 013001 (2015).
- [6] Hiroaki Matsueda and Ching Hua Lee, "Exact Mapping from Singular Value Spectrum of a Class of Fractal Images to Entanglement Spectrum of One-Dimensional Free Fermions", AIP Conf. Proc, 200003 (2015).
- [7] Hiroaki Matsueda, "Holographic Entanglement Entropy in Suzuki-Trotter Decomposition of Spin Systems", *Phys. Rev. E* 85, 031101 (2012).
- [8] Hiroaki Matsueda and Dai Ozaki, "Proper encoding for snapshot-entropy scaling in two-dimensional classical spin models", *Phys. Rev. E* 92, 042167 (2015).
- [9] Hiroaki Matsueda, Ching Hua Lee, and Yoichiro Hashizume, "Comment on "Snapshot spectrum and critical phenomenon for two-dimensional classical spin systems", J. Phys. Soc. Jpn. 85, 086001 (2016).

- [10] Ching Hua Lee, Dai Ozaki, and Hiroaki Matsueda, "Random Fractal Ansatz for the configurations of Two-Dimensional Critical Systems", *Phys. Rev. E* 94, 062144 (2016).
- [11] Hiroaki Matsueda, "Inverse Mellin Transformation of Continuous Singular Value Decomposition: A Route to Holographic Renormalization", J. Phys. Soc. Jpn. 85, 114001 (2016).
- [12] Mark Srednicki, "Entropy and area", Phys. Rev. Lett. 71, 666 (1993).
- [13] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, "Entanglement in Quantum Critical Phenomena", *Phys. Rev. Lett.* **90**, 227902 (2003).
- [14] M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, "Entropy, Entanglement, and Area: Analytical Results for Harmonis Lattice Systems", *Phys. Rev. Lett.* 94, 060503 (2005).
- [15] T. Barthel, M. -C. Chung, and U. Schollwöck, "Entanglement scaling in critical two-dimensional fermionic and bosonic systems", *Phys. Rev. A* 74, 022329 (2006).
- [16] A. Riera and J. I. Latorre, "Area law and vacuum reordering in harmonic networks", *Phys. Rev. A* 74, 052326 (2006).
- [17] Weifei Li, Leitan Ding, Rong Yu, Tommaso Roscilde, and Stephan Haas, "Scaling behavior of entanglement in two- and three-dimensional free-fermion systems", *Phys. Rev. B* 74, 073103 (2006).
- [18] Michael M. Wolf, "Violation of the Entropic Area Law for Fermions", Phys. Rev. Lett. 96, 010404 (2006).
- [19] Brian Swingle, "Entanglement Entropy and the Fermi Surface", Phys. Rev. Lett. 105, 010404 (2010).
- [20] Dimitri Gioev and israel Klich, "Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture", Phy. Rev. Lett. 96, 100503 (2006).
- [21] Christoph Holzhey, Finn Larsen, and Frank Wilczek, "Geometric and Renormalized Entropy in Conformal Field Theory", Nucl. Phys. B424, 443 (1994).

- [22] Pasquale Calabrese and John Cardy, "Entanglement entropy and quantum field theory", J. Stat. Mech. 0406, P002 (2004).
- [23] Steven R. White, "Density matrix formulation for quantum renormalization groups", *Phys. Rev. Lett.* 69, 2863 (1992).
- [24] Steven R. White, "Density-matrix algorithms for quantum renormalization groups", *Phys. Rev. B* 48, 10345 (1993).
- [25] Ingo Peschel, Xiaoqun Wang, Matthias Kaulke, Karen Hallberg (Eds.), "Density-Matrix Renormalization: A New Numerical Method in Physics", Workshop, Dresden, Germany 1998, Springer.
- [26] S. Ostlund and S. Rommer, "Thermodynamic Limit of Density Matrix Renormalization", Phys. Rev. Lett. 75, 3537 (1995).
- [27] S. Rommer and S. Ostlund, "Class of ansatz wave functions for onedimensional spin systems and their relation to the density matrix renormalization group", *Phys. Rev. B* 55, 2164 (1997).
- [28] F. Verstraete, D. Porras, and J. I. Cirac, "Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective", *Phys. Rev. Lett.* **93**, 227205 (2004).
- [29] Martin Andersson, Magnus Boman, and Stellan Ostlund, "Density-matrix renormalization group for a gapless system of free fermons", *Phys. Rev. B* 59, 10493 (1999).
- [30] L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, and J. I. Latorre, "Scaling of entanglement support for matrix product states", *Phys. Rev. B* 78, 024410 (2008).
- [31] Frank Pollmann, Subroto Mukerjee, Ari Turner, and Joel E. Moore, "Theory of Finite-Entanglement Scaling at One-Dimensional Quantum Critical Points", *Phys. Rev. Lett.* **102**, 255701 (2009).
- [32] Ching-Yu Huang and Feng-Li Lin, "Multiparticle entanglement measures and quantum criticality from matrix and tensor product states", *Phys. Rev. A* 81, 032304 (2010).

- [33] Tzu-Chieh Wei, "Entanglement under the renormalization-group transoformations on quantum states and in quantum phase transitions", *Phys. Rev. A* 81, 062313 (2010).
- [34] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki, "Valence bond ground states in isotropic quantum antiferromagnets", *Comm. Math. Phys.* 115, 477 (1988).
- [35] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki, "Rigorous Results on Valence-Bond Ground States in Antiferromagnets", *Phys. Rev. Lett.* 59, 799 (1987).
- [36] 田崎晴明,「量子スピン系の理論」,物性研究 58,121 (1992).
- [37] Roman Orus, "Geometric entanglement in a one-dimensional valence-bond solid state", *Phys. Rev. A* 78, 062332 (2008).
- [38] Heng Fan , Vladimir Korepin, and Vwani Roychowdhury, "Entanglement in a Valence-Bond Solid State", Phys. Rev. Lett. 93, 227203 (2004).
- [39] F. Verstraete and J. I. Cirac, "Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions", arXiv:0407066 (2004).
- [40] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, "Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States", *Phys. Rev. Lett.* **96**, 220601 (2006).
- [41] V. Murg, F. Verstraete, and J. I. Cirac, "Variational study of hard-core bosons in a 2-D optical lattice using Projected Entangled Pair States (PEPS)", *Phys. Rev. A* 75, 033605 (2007).
- [42] Francisco C. Alcaraz and Matheus J. Lazo, "The Bethe ansatz as a matrix product ansatz", J. Phys. A 37, L1, (2004).
- [43] Francisco C. Alcaraz and Matheus J. Lazo, "Exact solutions of exactly integrable quantum chains by a matrix product ansatz", J. Phys. A: Math. Gen. 37, 4149, (2004).
- [44] Francisco C. Alcaraz and Matheus J. Lazo, "Generalization of the matrix product ansatz for integrable chains", J. Phys. A 39, 11335, (2006).

- [45] Hosho Katsura and Isao Maruyama, "Derivation of Matrix Product Ansatz for the Heisenberg Chain from Algebraic Bethe Ansatz", J. Phys. A: Math. Theor. 43, 175003 (2010).
- [46] V. Murg, V. E. Korepin, and F. Verstraete, "Algebraic Bethe ansatz and tensor networks", *Phys. Rev. B* 86, 045125 (2012).
- [47] Isao Maruyama and Hosho Katsura, "Continuous Matrix Product Ansatz for the One-Dimensional Bose Gas with Point Interaction", J. Phys. Soc. Jpn. 79, 073002 (2010).
- [48] G. Vidal, "Entanglement Renormalization", Phys. Rev. Lett. 99, 220405 (2007).
- [49] Brian Swingle, "Entanglement renormalization and holography", Phys. Rev. D 86, 065007 (2012).
- [50] H. Umezawa, H. Matsumoto, and M. Tachiki, "Thermo Field Dynamics and Condensed States", North-Holland (1982).
- [51] Hiroaki Matsueda, Masafumi Ishihara, and Yoichiro Hashizume, "Tensor network and a black hole", *Phys. Rev. D* 87, 066002 (2013).
- [52] Juan Maldacena, "The Large N limit of suercomformal field theories and supergravity", Adv. Theor. Math. Phys. 2, 231 (1998).
- [53] Ofer Aharony, Steven S. Gubser, Juan M. Maldacena, Hiroshi Ooguri, and Yaron Oz, "Larve N Field Theories, String Theory and Gravity", *Phys. Rept.* 323,183 (2000).
- [54] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, "Gauge Theory Correlators from Non-Critical String Theory", *Phys. Lett. B* 428, 115 (1998).
- [55] Edward Witten, "Anti De Sitter Space And Holography", Adv. Theor. Math. Phys. 2, 253 (1998).
- [56] Shinsei Ryu and Tadashi Takayanagi, "Holographic Derivation of Entanglement Entropy from the anti-de Sitter Space/Conformal Field Theory Correspondence", *Phys. Rev. Lett.* 96, 181602 (2006).

- [57] Shinsei Ryu and Tadashi Takayanagi, "Aspects of Holographic Entanglement Entropy", JHEP 0608, 45 (2006).
- [58] Tatsuma Nishioka, Shinsei Ryu, and Tadashi Takayanagi, "Holographic Entanglement Entropy: An Overview", J. Phys. A 42, 504008 (2009).
- [59] J. D. Brown and M. Henneaux, "Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three Dimensional Gravity", *Comm. Math. Phys.* **104**, 207 (1986).
- [60] Marc Henneaux and Claudio Teitelboim, "Asymptotically Ante-de Sitter Spaces", Comm. Math. Phys. 98, 391 (1985).
- [61] M. Bañados, "Global charges in Chern-Simons theory and the 2 + 1 black hole", Phys. Rev. D 52, 5816 (1995).
- [62] Hiroaki Matsueda and Tatsuo Suzuki, "Banados-Teitelboim-Zanelli Black Hole in the Information Geometry", J. Phys. Soc. Jpn. 86 (2017).
- [63] Hiroaki Matsueda, "Information-Geometrical Derivation of the Ryu– Takayanagi Formula from the Banados–Teitelboim–Zanelli Black Hole", submitted to J. Phys. Soc. Jpn.