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Abstract. We present an architecture for scientific document retrieval. An
existing system for textual and math-ware retrieval Math Indexer and
Searcher MIaS is designed for extensions by modules for textual and
math-aware entailment. The goal is to increase quality of retrieval (pre-
cision and recall) by handling natural languge variations of expressing
semantically the same in texts and/or formulae.
Entailment modules are designed to use several, ordered layers of pro-
cessing on lexical, syntactic and semantic levels using natural language
processing tools adapted for handling tree structures like mathematical
formulae. If these tools are not able to decide on the entailment, generic
knowledge databases are used deploying distributional semantics meth-
ods and tools. It is shown that sole use of distributional semantics for
semantic textual entailment decisions on sentence level is surprisingly
good. Finally, further research plans to deploy results in the digital math-
ematical libraries are outlined.

Keywords: math-aware information retrieval, semantic textual entail-
ment, math entailment, distributional semantics, Gensim

1 Introduction

Semantic-based document filtering and search module is a key component
of any Information Retrieval (IR) system. Search is a gateway to the ever-
growing database of documents in digital libraries (DL) or on the web. Even
though keyword based IR systems became part of everyday life today, they
are not fully suitable for research search to DLs, for example. The more precise
results the information seeker might get are those expressed, queried, indexed,
and retrieved based on word, sentence, paragraph, or document meaning, e.g.
semantic features of the document content.

The variation in expressivity of natural languages, including the mathemati-
cal vernacular, to describe semantically similar ideas and elements is enormous.
Keyword-based information systems try to cope with it on lexical level by mor-
phology (indexing lemmas) or by synonymical expansion like Wordnet. There
is ‘semantic web’ and ontology-based approaches based on discrete, dichotomic
representations of words and relations between them. But they are often not
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enough to handle and uniformly represent document, paragraph, sentence or
formulae meaning in IR systems, e.g. for semantically fine-grained document
filtering and similarity computations.

On the other hand, distributional semantic approaches have deserved well-
grounded attention recently. They allow to represent word or phrase meaning
in continuous high-dimensional spaces, just based on unsupervised, and often
deep, learning methods [15]. Such representations can be used for purposes like
qualified guesses of semantic similarity of words, phrases, or even sentences or
formulae.

In this paper, we design an extension module for our math-aware informa-
tion system MIaS [21]. We argue that it will further increase current perfor-
mance [12,20] by better, semantic clustering of variably expressed content.

The motivation for new architecture design is discussed in Section 2.
We describe how distributional semantics may help to compute semanticaly
similar text chunks or formulae. In Section 3 the new entailment modules of
the architecture are described. We conclude by Section 4 by describing further
directions of research.

2 Motivation for a New Architecture

When checking precision of MIaS on results from [12,20], we have realized that
some documents are not found just because of minor rephrasing of formulae or
text in query with respect to the document. We need a robust way of computing
similarity for textual phrases and formulae terms. In STEM papers, the text is
full of formulae, where we cannot simply discard them as they convey very
important semantics in dense form: semantic textual similarity is needed.

2.1 Semantic Textual Similarity

The main goal of Semantic Textual Similarity (STS) task [1] is measuring the
degree of semantic equivalence between a pair of texts, e.g. sentences. This
task can applied in many areas as Information Extraction, Question Answering,
Summarization and in Information Retrieval area for indexing the semantically
same phrases or sentences. Three STS evaluation tasks were organised in
2012 [3], 2013 [2], and 2014 [1] at SemEval workshops. In that evaluation tasks,
the systems performance was evaluated using the Pearson product-moment
correlation coefficient between the participant system scores and the human
scores.

Textual similarity problem may be tackled by various techniques at lexical,
syntactic and semantic levels 1, as usual during NLP processing. Among lexical
techniques there are word overlap metrics or n-gram matching. Another way
is to compare dependency relations of two texts. In computations one can use
synonyms, hypernyms, etc. The higher processing level, the better performance
is usually achieved.
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Fig. 1: Natural language processing levels

There always remain some examples which cannot be decided by lexical,
syntactic nor semantical analysis, as full knowledge and meaning representa-
tion is needed for it. There is semantic gap between lexical surface of the text
and its meaning because same concepts are represented in different vocabulary,
languages, formalisms and notations. Updating knowledge databases with all
dialectical possibilities in supervised way is doomed to failure.

In distributional semantics approaches [5], similarities between linguistic
items could be computed from their collocativity and distributional properties
in large samples of language data in unsupervised way, as clearly seen from
visualization experiments [7]. Especially convincing are recent experiments
computed by Gensim framework [18] where words and phrases are computed
by Word2vec [14] language model. We have tried to use it for STS task.

2.2 Sentence Level Similarity Baseline Experiment

Our STS system will generate various kinds of features from each processing
level as shown in Figure 1. Finally, it will use machine learning to decide on the
similarity between two text chunks as shown in later on Figure 3 on page 113.

In a preliminary experiment we have used already pre-trained word and
phrase vectors available as part of Google News dataset [14] (about 100 billion
words). The LSA word-vector mappings model contains 300-dimensional vec-
tors for 3 million words and phrases.

Gensim [18] is a Python framework for vector space modelling. We have
used Gensim for this experiment, and computed the cosine distance between
vectors representing text chunks – sentences from SemEval tasks.

We have used English test data of Sematic Textual Similarity (STS) Task 6 [3]
from SemEval-2012, Task 6 [2] from SemEval-2013, Task 10 [1] from SemEval-
2014. Given two snippets of text, STS measures their degree of semantic
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equivalence. The SemEval organizers provided English sentence pairs of news
headlines (corpus named HDL), pairs of glosses (OnWN), image descriptions
(Images), DEFT-related discussion forums (Deft-forum) and news (Deft-news),
and tweet comments and newswire headline mappings (Tweets).

Table 1: SemEval-2014 Task 10: Multilingual Semantic Textual Similarity Test
Result

Corpus Winner score and team/run name Our score

Deft-forum 0.5305 NTNU-run3 0.42812
Deft-news 0.7850 Meerakat_mafia-Hulk 0.67999
Headlines 0.7837 NTNU-run3 0.60985
Images 0.8343 NTNU-run3 0.71402
OnWN 0.8745 MeerkatMafia-paringWords 0.79135
Tweet-news 0.7610 DLS@CU-run1 0.76571

Table 2: SemEval-2013 Task 6: Semantic Textual Similarity Test Result
Corpus Winner score and team/run name Our score

Headlines 0.7838 UMBC_EBIQUITY-saiyan 0.62501
OnWN 0.8431 deft-baseline 0.71165
FNWN 0.5818 UMBC_EBIQUITY-ParingWords 0.38353
SMT 0.6181 UMBC_EBIQUITY-ParingWords 0.32951

Table 3: SemEval-2012 Task6: Semantic Textual Similarity Test Result
Corpus Winner score and team/run name Our score

MSRpar 0.6830 baer/task6-UKP-run2_plus_postprocessing_smt_twsi 0.30103
MSRvid 0.8803 jan_snajder/task6-takelab-simple 0.68318
SMT-europal 0.5581 sranjans/task6-sranjans-1 0.54057
On-WN 0.7273 weiweitask6-weiwei-run1 0.68779
SMT-news 0.6085 desouzatask6-FBK-run3 0.51915

Tables 1, 2, and 3 show results of our minimalistic system based on dis-
tributional semantics language model compared to highest sentence similarity
scores of systems participating in SemEval-2014, 2013 and 2012. It is worth not-
ing that for Tweet-news subtask at SemEval-2014 our ‘baseline’ system using
only plain Word2vec with pretrained Google news data by LSA gave better re-
sult than the best system at SemEval-2014!

Just recently, another way of computing global distributional semantics has
been reported by Stanford’s GloVe [16]. We will compare its performance with
Word2vec. As our results on SemEval data indicate that training corpora is
very important, we have realized that Wikipedia knowledge to tackle the
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STS Similarity problem is crucial, including the named entities and formulae
available there.

2.3 Learning from Wikipedia Corpus

Wikipedia is an online encyclopedia that contains millions of articles on a wide
variety of topics with quality comparable to that of traditional encyclopedias.
In [22,17,23], Wikipedia has been used as a successful measure of semantic
relatedness between words or text passages.

We will build word and phrase vectors from Wikipedia articles1. This Wiki-
pedia dump contains more than 3 billion words. We will use Word2vec for learn-
ing high-quality word vectors from Wikipedia data sets with billions of words.
An example for vector representation could be as follows: vector(”King”) −
vector(”Man”) + vector(”Woman”) results in a vector that is closest to the vec-
tor representation of the word Queen. [15]

We will test on SemEval STS test data by using this generated vector from
Wikipedia articles. Finally, we will compare our results with our baseline
system. We will also participate in STS evaluation track at SemEval 2015
Task 22. Having good similarity measures on scientific text chunks, we may
use it for our math-aware information retrieval system.

3 New MIaS Architecture with Entailment Modules

Our top-level system architecture is shown in Figure 2. The architecture used
sofar is enriched by three modules: Text-Text Entailment (TE), Math-Math
Entailment (ME) and Text-Math Entailment (TME) modules.

Textual entailment is defined in [9] as: text T is said to entail hypothesis H if
the truth of H can be inferred from T. The task of Textual entailment is to decide
whether the meaning of H can be inferred from the meaning of the T.

For example, the text T = “John’s assassin is in jail” entails the hypothesis
H = “John is dead”; indeed, if there exists one’s assassin, then this person is
dead. On the other hand, T = “Mary lives in Europe” does not entail H = “Mary
lives in US”. Much effort is devoted by the Natural Language Processing (NLP)
community to develop advanced methodologies in TE which is considered
as a core NLP task. Various international conferences and several evaluation
track competitions on TE have been held, notably at PASCAL-Pattern Analysis,
Statistical Modelling and Computational Learning3, Text Analysis Conferences
(TAC)4 organized by the United States National Institute of Standards and
Technology (NIST), Evaluation Exercises on Semantic Evaluation (SemEval)5,
National Institute of Informatics Test Collection for Information Retrieval

1 http://dumps.wikimedia.org/enwiki/
2 http://alt.qcri.org/semeval2015/task2/
3 http://pascallin.ecs.soton.ac.uk/Challenges/
4 http://www.nist.gov/tac/tracks/index.html
5 http://semeval2.fbk.eu/semeval2.php
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Fig. 2: Scheme of the new MIaS system workflow, enriched by entailment
modules

System (NTCIR)6 since 2005. At each new TE competition, the participating
teams introduced several new features in their TE systems ranging from lexical
to syntactic to semantic methodologies from two-way (i.e. binary-class) to
multi-way (i.e. multi-class) textual entailment classifications in monolingual to
cross-lingual scenario in order to solve the TE problem.

In this work we will investigate into the use of entailment modules for IR.
We will show that Textual and Math entailment plays a significant role for
monolingual IR performance.

The general architecture of Textual Entailment system is shown in Figure 3
on the next page. Text and Hypothesis comparison is represented by compara-
tive analysis; and the entailment decision is made by a classifier that makes use
of a feature vector.

The Textual Entailment system is unidirectional but Semantic Textual Sim-
ilarity is mainly bidirectional. Table 4 on page 115 shows our system result of
Semantic Textual Similarity and compare to the Entailment.

In the MIaS system [21] search can be done by three ways e.g. only text
search, only mathematics formula search and text with mathematics formula

6 http://research.nii.ac.jp/ntcir/
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Fig. 3: General Textual Entailment architecture

search. During the searching phase, a query can match several terms in
the index. However, one match can be more important to the query than
another, and the system must consider this information when scoring matched
documents. An example of TE module is shown in Figure 4 on the next page.

ME module will compare between Math query and document that con-
tained math formula. For example, x2 + y2 = z2 entails a2 + b2 = c2. We will
implement Math Entailment in Formulae weighting module [21]. We will try to
use Math Entailment module in this phase to find appropriate terms. An exam-
ple of the ME module is shown in Figure 5 on the following page.

TME Module will compare text and math within documents. TME module
not only increases fairness of similarity ranking, but also helps to match a query
against the indexed form by adding new terms for indexing, e.g. formulae for
named entity used to name it. TME module is shown in Figures 4 and 5 on the
next page.

Entailment module will search not only for whole sentences (whole formu-
lae), but also for single words and phrases (subformulae down to single vari-
ables, symbols, constants, etc.). For calculating the relevance of the matched ex-
pressions to the user’s query, entailment module will use a matching technique
of indexed mathematical terms, which accordingly affects scores of matched
documents and thus the order of results.

In our TE system based on lexical similarity we will determine the similarity
between the two texts by our STS module. Additionally, we will compare the
dependency structure between the two texts.

The TE problem can be tackled by various ways like lexical, syntactic and
semantic. Sometimes lexical semantic similarity is not sufficient to solve the TE
problem. In Table 1, for pair Id 5 our lexical semantic similarity system have
given high score of 0.95 but the meaning of text1 and text2 is very different.
In this case dependency structure weighting verb as main decision factor may
solve the problem.

Tree structure of input sentences are widely used by many research groups,
since it provides more information with quite good robustness and runtime
than shallow parsing techniques. Basically, a dependency parsing tree contains
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nodes (i.e., tokens/words) and dependency relations between nodes. Some
approaches simply treat it as a graph and calculate the similarity between
the text and the hypothesis graphs solely based on their nodes, while some
others put more emphasis on the dependency relations themselves. The recent
approaches of syntactic or tree edit models are [10,13,19]. The approach in [11]
based on the tree edit distance algorithm, which contains three basic operators,
insertion, deletion and substitution. Insertion is defined as the insertion of a
node from the dependency tree of H into the dependency tree of T; deletion
is the removal of a node from the dependency tree of T, together with all
its attached children; and substitution is the change of the label of a node
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Table 4: Example of pairs from Task 1 at SemEval 2014
Id Text 1 Text 2 our STS Entailment
1 One young boy is climbing a

wall made of rock
A young child is climbing a
rock climbing wall which is
indoors

0.7871 No

2 A man is phoning A man is talking on the phone 0.8238 Yes
3 John was born on January 15,

1986 in Kolkata.
John was born in 1986 in the
city of Kolkata.

0.7996 No

4 A woman is performing a
trick on a ramp with a bicycle

A woman is jumping with a
bicycle

0.7839 No

5 A brown dog is attacking an-
other animal in front of the
man in pants

A brown dog is helping an-
other animal in front of the
man in pants

0.95 No

in the source tree (the dependency tree of T) into a label of a node of the
target tree (the dependency tree of H). Substitution is allowed only if the two
nodes share the same part-of-speech (POS). The approach in [4] presents a new
data structure, termed compact forest, which allows efficient generation and
representation of entailed consequents, each represented as a parse tree. Rule-
based inference is complemented with a new approximate matching measure
inspired by tree kernels, which is computed efficiently over compact forests.
The approach [24] built a model to solve the entailment problem by using
dependency syntax analysis (by Stanford Parser), lexical knowledge base (e.g.
WordNet), web information (e.g. Wikipedia) and probabilistic methods.

We will generate dependency tree for two texts. Then mapping can be done
in two ways e.g. directly (when entities from hypothesis dependency tree exist
in the text tree) or indirectly (when entities from text tree or hypothesis tree
cannot be mapped directly and need transformations using external resources).
Based on this step we will decide on our entailment resulting implementation.

4 Conclusion and Further Work
We have described an architecture for math-aware information retrieval that
employs textual and math entailment. We have described our further research
directions: distributional approaches that we will test for entailment modules.
We want also train distributional semantics representation for mathematical
formulae, and test to which extent their vectors may be used to approximate
their meaning. Finally, we plan to use SEPIA evaluation tool and NTCIR’s Math
task [12] data to evaluate the improvements, and eventually use it in the digital
mathematics libraries as EuDML [6] or planned GDML [8].
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