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Abstract

Recent research has increasingly advocated a role for the North Pacific Ocean in modulating global climatic  

changes over both the last glacial cycle and further back into the geological record. Here a diatom  δ18O 

record is presented from Ocean Drilling Program Site 882 over the Pliocene/Quaternary boundary from 2.73 

Ma  to  2.52  Ma  (MIS  G6-MIS  99).  Large  changes  in  δ18Odiatom of  c.  4‰  from  2.73  Ma  onwards  are 

documented to occur on a timeframe broadly coinciding with glacial-interglacial cycles. These changes are 

primarily attributed to large scale inputs of meltwater from glacials surrounding the North Pacific Basin and 

the Bering Sea. Despite these inputs and associated change in surface water salinity, on the basis of existing 

opal and Uk
37 temperature data and new modelled water column densities, no evidence exists to suggests a  

removal of the halocline stratification or a resumption of the high productivity system similar to that which 

prevailed prior to 2.73 Ma. The permanence of the halocline suggests that the region played a key role in 

driving global climatic changes over the early glacial-interglacial cycles that followed the onset of major  

Northern  Hemisphere  Glaciation  by  inhibiting  deep  water  upwelling  and  ventilation  of  CO2 to  the 

atmosphere.
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In comparison to other sectors of the marine system such as the North Atlantic and Southern Oceans, the  

palaeoceanographic history of the North Pacific Ocean remains under-investigated. Research over the past 

decade has increasingly indicated that changes in the subarctic North West Pacific Ocean were critical in  

driving the global  climate system from the warm, stable,  conditions that  prevailed during the early/mid  

Pliocene to the glacial-interglacial  cycles that  characterise the late Pliocene/Quaternary era (Haug et al.,  

1999, 2005; Sigman et al., 2004; Swann et al., 2006; Reynolds et al., 2008). These changes are marked by  

the influx of large volumes of freshwater at the onset of major Northern Hemisphere Glaciation (NHG) at  

2.73 Ma, culminating in the transition from a mixed to a halocline, stratified, water column. With deep water 

in the region rich in  CO2,  the shift from an unstratified (upwelling) to stratified (no/minimal deep water 

upwelling) state has been associated with a significant reduction in surface water concentrations of  CO2 

(pCO2), reducing oceanic ventilation of CO2 to the atmosphere and further permitting glacial advancement 

across the Northern Hemisphere (Haug et al., 1999).

In spite  of  the  considerable  palaeoceanographic  research that  has  been undertaken in  understanding the 

changes from a unstratified to stratified water column at 2.73 Ma, comparatively little research has been  

carried out to investigate further water column re-organizations during the glacial-interglacial cycles which  

follow this interval during the late Piacenzian (3.60-2.59 Ma) and Gelasian (2.59-1.81 Ma). In part this can  

be attributed to the the absence of sufficient numbers of foraminifera and other carbonate fossils  in the  

sediment  record  for  isotope/geochemical  analyses.  Furthermore,  low  opal  MAR  and  other  record  of  

productivity  have  been  interpreted  to  indicate  that  a  stratified  water  column prevailed  largely,  but  not  

completely, without interruption from 2.73 Ma through to the modern day (Haug et al., 1999; Sigman et al.,  

2004; Gebhardt et al.,  2008). However, low resolution variations in diatom  δ18O (δ18Odiatom)  and Uk
37 Sea 

Surface Temperature (SST) of c. 5.0‰ and 9oC respectively from 2.73-2.61 Ma (Marine Isotope Stage (MIS) 

G6 to MIS 104) suggest that the region may have experienced marked changes in the post-2.73 Ma interval 

similar to those that occurred during the initial development of the halocline at 2.73 Ma (Haug et al., 2005; 

Swann et al., 2006).

2/20



Uncorrected copy

At present the origin, temporal variability and implication for these changes remain unknown, particularly  

with regards to their impact on the strength of the regional halocline. Any weakening/strengthening of the 

halocline would be significant in altering the flux of nutrients and CO2 rich deep water into the photic zone. 

Depending on the response of the biological pump, such changes could have altered the regional flux of CO 2 

between the oceans/atmosphere (c.f.  Gebhardt  et al.,  2008) and so altered the  global carbon budget and 

climatic  changes  over  the  Pliocene/Quaternary  boundary.  Here,  in  order  to  better  understand  the 

palaeoceanography of the subarctic North West Pacific Ocean, existing  δ18Odiatom records are extended and 

increased in  resolution for  the  interval  from 2.73 Ma to 2.52 Ma (MIS G6-MIS 99)  at  Ocean Drilling  

Program (ODP) Site 882.

2 Methods

Sediment samples from ODP Site 882 (Fig.  1) were prepared for diatom isotope analysis using techniques 

previously employed at this site (Swann et al., 2006; 2008). Samples were treated with 30% H 2O2 and 5% 

HCl to remove organic material and carbonates respectively before being repeatedly mixed with sodium 

polytungstate at a series of specific gravities from 2.10 g/ml to 2.25 g/ml prior to a final sieving with a 5 μm 

cellulose nitrate membrane filter to remove all non-diatom contaminants. Previous research has demonstrated 

a possible size/species vital effect in δ18Odiatom (Swann et al., 2007, 2008). Here such issues are circumvented 

by sieving and retaining solely the 75-150 μm size fraction for isotope analysis which is dominated by only 

two taxa (see Section 3). Sample purity was assessed through a combination of both light microscopy and  

Scanning Light Microscopy (SEM) with contaminated samples either re-cleaned or disregarded for isotope  

analysis. For light microscopy, sub-samples of the  purified diatoms were mounted on a coverslip using a 

Naphrax® mounting media and checked for contamination on a 100 μm x 100 μm grid graticule following 

the semi-quantitative method of Morley et al., (2004). Diatom biovolumes were simultaneously assessed for 

each sample following the recommendations of Hillebrand et al., (1999) to determine the species origin of  

the isotope signal (see Swann et al., 2008 for further details). SEM analysis to verify sample purity and the  
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reliability of the light microscopy observations were completed on randomly selected samples. Ages were 

calculated  using  a  linear  interpolation  of  sedimentation  rates  between  tie-points  derived  from  the 

astronomical  calibrated  of  high  resolution  GRAPE  density  and  magnetic  susceptibility  measurements 

(Tiedemann and Haug, 1995).

δ18Odiatom was analysed using the step-wise fluorination methodology described in Leng and Sloane (2008). In 

brief, δ18Odiatom was analysed with diatom -Si-OH layers stripped during a pre-fluorination outgassing stage in  

nickel reaction tubes using a BrF5 regent at 250oC  for six minutes. Remaining oxygen from the -Si-O-Si 

layer was subsequently dissociated overnight using an excess of reagent at 550 oC with oxygen subsequently 

converted to CO2 following the methodology of Clayton and Mayeda (1963). Following extraction, CO2 was 

analysed for δ18O using a Finnegan MAT 253 with values converted to the SMOW scale using a within-run 

laboratory diatom standard (BFCmod) calibrated against NBS28. Analytical reproducibility for  δ18Odiatom was 

0.3‰ (1σ).

3 Results

SEM and light microscopy observations indicate the lack of contamination within the analysed samples with  

sample purity constantly above 94% and typically between 98% and 100% (see Swann et al., 2006). Samples  

are dominated  by two taxa, Coscinodiscus marginatus (Ehrenb.) and Coscinodiscus radiatus (Ehrenb.), the 

relative  biovolumes  of  which  vary  throughout  the  core  (Fig.  2).  No  correlation  or  relationships  exists 

between δ18Odiatom and C. marginatus/C. radiatus from 2.73 Ma to 2.52 Ma (r = -0.06/0.07), indicating the 

absence of species disequilibrium/isotope vital effects.

Measurements  of  δ18Odiatom can  be  interpreted  in  the  same  way  as  δ18O measurements  of  planktonic 

foraminifera (δ18Oforam) (Swann and Leng, 2009). Accordingly, variations in δ18Odiatom reflect changes in global 

ice  volume,  SST and/or  changes  in  the  δ18O composition  of  the  ambient  water  within  the  photic  zone 

(δ18Owater). Following the development of the halocline stratification system at 2.73 Ma, marked by a decrease 
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in δ18Odiatom  of 4.6‰ (Swann et al., 2006), values of δ18Odiatom remain low at c. 39-40‰ before subsequently 

rising to 43.4‰ at 2.69 Ma (Fig.  3). Following this transition at MIS G6, cyclic changes are apparent in 

δ18Odiatom that are broadly in line with changes in glacial-interglacial conditions as monitored by a global  

stacked benthic δ18Oforam record (Lisiecki and Raymo, 2005). This is marked by δ18Odiatom values of ≥42.0‰ 

during interglacials,  similar to conditions prior to 2.73 Ma in a mixed water column, with lower values  

prevalent during glacials. Of note are the relatively low opal MAR and prevalence of warm, c. 15-18oC Uk
37 

SST through these transitions until MIS 103 when peak SST decrease below 10OC before rising again to 13-

15oC for MIS 102-99 (Haug et al., 2005) (Fig. 3).

Superimposed on these long-term changes in δ18Odiatom are a series of short-lived fluctuations of c. 1-2‰. This 

is most apparent during MIS G1 and MIS 103 and indicate that the region was characterised by significant  

environmental changes over relatively short timeframes.  The exception to this glacial-interglacial pattern 

occurs during MIS G5 and MIS 101-100. For MIS G5 the failure for  δ18Odiatom to increase above glacial 

values of c. 40.0‰ may simply reflect the extremely low resolution isotope record through this interval as  

well as the low magnitude nature of interglacial relative to other glacial-interglacial changes. However with 

the shift to higher δ18Odiatom values during MIS 101 occurring during the second half of the interglacial at 2.56 

Ma and continuing through the beginning of MIS 100, any link between  δ18Odiatom and glacial-interglacial 

cycles are tentative until investigation are conducted over longer time-frames and/or at other sites.

4 Discussion

The nature of the water column prior to 2.73 Ma, the transition to a halocline water column at this interval  

and the divergent trends in the  δ18Odiatom and planktonic  δ18Oforam records  have previously been described 

(Haug et al., 1999; 2005; Sigman et al., 2004; Swann et al., 2006; Reynolds et al., 2008). The discussion 

below is therefore restricted to examining the changes in δ18Odiatom following the 4.6‰ decrease in δ18Odiatom 

and development of the regional halocline at 2.73 Ma.
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4.1 Freshwater inputs

In the absence of a high resolution  δ18Odiatom record,  it  is  not  possible to  investigate leads/lags between 

changes in δ18Odiatom and benthic δ18Oforam/glacial-interglacial state. However the cyclic nature of the δ18Odiatom 

record from 2.73 Ma onwards that broadly occurs over glacial-interglacial cycles, combined with the large  

isotope changes of up to 6‰, suggest that the region experienced large scale palaeoceanographic changes  

during the late Pliocene/early Quaternary era. Typical glacial-interglacial change in SST over this interval, 

ranging  up  to  c.  3OC,  can  only  account  for  c.  0.6‰ of  the  change  in  δ18Odiatom when  using  a  diatom-

temperature coefficients of 0.2 ‰/oC (Brandriss et al., 1998; Moschen et al., 2005). Similarly, whole ocean 

changes in δ18O due to variations in global ice volume are on the order of 0.8‰ (Lisiecki and Raymo, 2005).  

As such the large fluctuations in δ18Odiatom of up to 6‰ over glacial-interglacial cycles must predominantly 

reflect a change in surface water  δ18Owater,  which can be calculated from  δ18Odiatom using a global stacked 

benthic  δ18Oforam record (Lisiecki and Raymo, 2005) and accounting for changes in SST using a Uk
37 SST 

record from ODP Site 882 (Haug et al., 2005) and a diatom-temperature coefficient of 0.2‰/ oC (Brandriss et 

al., 1998; Moschen et al., 2005) (Fig.  4a).  Whilst the initial decrease in  δ18Odiatom and shift to a halocline 

system at c.  2.73 may have been linked to the closure of the Panama Ocean gateway and an associated 

reduction in the Pacific Ocean deep water thermohaline circulation (Motoi et al., 2005), such a mechanism is 

not applicable to explain subsequent changes in δ18Odiatom after this interval. Similarly, increases/decreases in 

the  influx  of  water  from regions  south  of  ODP Site  882  are  unlikely  to  explain  the  large  changes  in  

δ18Owater/δ18Odiatom given that North West Pacific Ocean waters differ from the mid-latitude and tropical Pacific  

by only c. 1‰ (LeGrande and Schmidt, 2006). Although the expansion of sea-ice in the Bering Sea over the  

onset of major NHG may lead to variations in the δ18O of water flowing from the north into the subarctic 

North West Pacific Ocean (IODP Expedition 323, Scientists, 2010), such variations are likely to be low given 

fractionation factors of 1.0026–1.0035 (Majoube, 1971; Lehmann and Siegenthaler, 1991; Macdonald et al.,  

1995).  Accordingly,  two processes  exist  to  explain the  large changes in  δ18Owater and  δ18Odiatom.  First  are 

changes in Asian summer monsoon which may deliver freshwater both through direct changes in regional 

precipitation and/or via increased continental riverine inputs to the marine system via the Kuroshio current.  
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Such a process has previously been proposed to have driven the transition from a mixed to stratified water  

column between 2.83-2.75 Ma (Nie et al., 2008).  Second are increases in glacial meltwater to the region, 

which will be significantly enriched in 16O relative to 18O.

Records of SSS at ODP Site 1143 in the South China Sea suggest a progressive decrease in SSS from 2.73 

Ma to 2.50 Ma in response to increased monsoonal precipitation and fluvial inputs (Tian et al., 2004, 2006).  

However these local salinity changes, accounting for a c. 1‰ fluctuation in δ 18Owater over glacial-interglacial 

cycles, from an area strongly influenced by the East Asian monsoon are considerable smaller than those  

observed here at the more remote, open ocean, ODP Site 882. Consequently, it is difficult to envisage how  

sufficient fluvial quantities of monsoonal freshwater could have been delivered to ODP Site 882 to explain 

the changes in δ18Odiatom. The relative importance of monsoonal activity can be further assessed using records 

of accumulation and magnetic susceptibility at the Chinese Loess Plateau in addition to Hm/Gt ratios from 

ODP Site 1143 in the South China Sea as a proxy for Asian monsoon precipitation (Sun and An, 2005; Sun et  

al.,  2006; Zhang et al., 2009) (Fig,  2).  Again, no significant relationship can be observed between these 

records and changes in δ18Odiatom at ODP Site 882. Although lower δ18Odiatom values from MIS G6-G4 coincide 

with increased monsoon activity and vice-versa during MIS G3, changes subsequent to this fail to follow a  

similar pattern with intervals of higher/lower δ18Odiatom occurring during periods of both high and low, as well 

as increasing and decreasing, monsoon activity. Accordingly, although changes in monsoon activity can not 

be completely eliminated,  based on  the absence of  any clear  relationship and problems with delivering 

sufficient quantities of monsoonal freshwater to ODP Site 882, it is likely that its role in instigating the  

observed δ18Odiatom variations be minimal compared to other mechanisms.

Instead, it is proposed that decreases/increases in δ18Odiatom are primarily driven by increases/decreases in 

glacial meltwater input to the North Pacific Ocean over glacials/interglacials, as well as within the short term 

fluctuations in δ18Odiatom for individual marine isotope stages. Whilst  speculative, an advantage of such a  

mechanisms is  that  comparatively  less  water  is  needed to  drive  the observed changes  in  δ 18Odiatom than 
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monsoonal inputs due to the significantly more negative δ18O value of glacial sourced meltwater. Evidence 

from the North Atlantic Ocean showing that the δ18O of glacial ice in the Pliocene was lower than the late 

Pleistocene  provides  a  further  means  of  potentially  explaining  the  marked  decrease  in  δ18Odiatom during 

glacials (Bailey et al., 2010).  Numerous sites may be acting as the source for any glacial meltwater to the  

region including the Bering Sea Basin, the Okhotsk and Kamchatka regions of Siberia as well as possible 

inputs from the Aleutian Islands and Southern Alaska (e.g., Kotilainen and Shackleton, 1995; McKelvey et 

al., 1995; St John and Krissek, 1999; Bigg et al., 2008). Due to the unknown isotopic composition of these  

ice-sheets and without knowing the relative contributions of meltwater from each locality, it is not possible to 

accurately calculate the salinity:δ18O relationship for meltwater entering the region and so quantify actual 

changes in salinity. The range of possible Sea Surface Salinity (SSS) variability can, however, be estimated  

by using two extreme SSS:δ18O ratio end-members of 1 and 0.5.  Such end-member calculations,  which 

assumes  that  the  end-member  relationship  remains  constant  either  at  1  or  0.5  throughout  the  analysed 

interval, indicates that SSS may have varied by up to 8 psu over the analysed interval with typical glacial-

interglacial changes of 2-4 psu (Fig. 4b). These changes are comparable to SSS fluctuation of up to 4 psu in 

the North Atlantic Ocean during Heinrich events (Duplessy et al.  1993; Maslin et al., 1995; Seidov and 

Maslin, 1999), suggesting that similar magnitude meltwater events/ice surges may have marked the North  

Pacific Ocean over this interval. 

On the one hand is it  hard to envisage that ice-sheets around the North Pacific Basin would have been  

sufficiently developed during the late Pliocene to instigate a Heinrich equivalent event at ODP Site 882 given 

its  open ocean position  south  of  the  sea-ice  extent.  However,  strong evidence  exists  of  increased  IRD 

deposition at ODP Site 882 from 2.73 Ma, with changes broadly occurring in line with glacial-interglacial  

cycles and fluctuations in δ18Odiatom, suggests that regional ice-sheets were significantly developed over this 

interval (Krissek, 1995; Maslin et al., 1996; Haug et al., 1999) (Fig.  3). Evidence from the North Atlantic 

Ocean has also suggested a possible low threshold for ice-surging events in the Pliocene (Bailey et al., 2010).  

One scenario is that an initial strengthening of the water column stratification occurs at the beginning of each  
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glacial/SSS decrease following an initial meltwater surge or reduced deep water exchanges. With subsequent  

meltwater inputs further strengthening the halocline and reducing any mixing/dispersion of the low δ 18O 

waters  into  the  sub-surface  layers,  a  positive  feedback  mechanism  is  established  that  continues  until  

meltwater input ceases. Under this chain of events, considerable less meltwater input is required to generate  

the observed changes in SSS than would be expected at other open ocean sites around the globe.

Additional  short-term changes in meltwater input  to the region may have been further enhanced by the  

opening/closure of the Bering Sea Straits. Whilst Pliocene changes remain unconstrained, (Matthiessen et al.,  

2009), sea-level fluctuations of 40-80 m (Miller et al., 2005) suggest the status of the Bering Straits gateway 

may have undergone several changes over both long, glacial-interglacial, and shorter, millennial, timescales 

between MIS G6 and MIS 99. An open gateway would typically be expected to increase flow through the  

Bering Straits and into the North Atlantic Ocean (Marincovich and Gladenkov, 1999). Depending on the 

timing of the straits closure, increased export of fresher water from the North Pacific/Bering Sea into the  

North Atlantic Ocean during the initial, c. 4 psu, SSS decline at 2.73 Ma and subsequent interglacial/glacial  

transitions could have assisted in the permanent glaciation of Greenland by lowering SST and SSS in the  

East Greenland Current and reducing Meridional Overturning Circulation (MOC) (Sarnthein et al., 2009).  

Alone these changes would not significantly alter the SSS or δ18Owater at ODP Site 882. However in an open 

gateway state, models have demonstrated that the direction of Arctic throughflow can reverse following a 

MOC shut down, increasing the input of isotopically light water to the Bering Sea  and so North Pacific  

Ocean via flow across the Aleutian Island Arc and Kamchatka Straits (De Boer and Nof, 2004a,b; Hu and 

Meehl, 2005; Hu et al., 2007). Similarly in a closed state the reduced export of freshwater from the North 

Pacific/Bering Sea to the North Atlantic can increase MOC (Hu et al., 2010), potentially increasing glacier  

melting around the North Pacific/Bering Sea Basin and so further lower SSS at ODP Site 882. Whilst both 

these processes are short-lived, ranging from years to decades for reversed Arctic flow (De Boer and Nof,  

2004b) and centennial to millennial timescales for increased MOC/glacial melting (Hu et al., 2010), and so 

insufficient to explain the long-term glacial-interglacial changes in SSS at ODP Site 882, these processes 
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may be important  for  understanding the abrupt  short-term SSS variations  that  are  apparent  during both 

interglacial and glacial eras (Fig. 4b).

Although much of this discussion remains circumstantial and whilst  the relationship between changes in  

δ18Odiatom and glacial/interglacial state remains poorly constrained, invoking a glacial meltwater mechanism 

combined with possible additional inputs arising from changes in the Bering Straits gateway remains at this  

time the most pragmatic explanation for the observed changes in δ18Odiatom. Given the above assumptions in 

calculating changes in SSS and the lack of consideration for mixing processes which would have further 

altered  the  SSS:δ18O  end-member  during  the  transportation  of  fresh/meltwater  to  ODP Site  882,  the 

reconstructed values should not be regarded as absolute indication of SSS change. In addition, given that  

calculated changes in δ18Owater and SSS are closely driven by δ18Odiatom with only negligible contributions from 

changes in SST (Haug et al., 2005) and global ice volume (Lisiecki and Raymo, 2005), it is necessary for 

these findings to be replicated  at other sites including those in the Bering Sea.

4.2 Halocline water column

Repeated shift of δ18Odiatom during the interglacials of MIS G3, G1, 103 and 101 to values in excess of +42‰, 

equivalent to those in the interval prior to the onset of major NHG at 2.73 Ma would typically be expected to 

coincide  with  alterations  between  a  mixed  (interglacial)/stratified  (glacial)  water  column  if  rates  of  

decreased/increased  meltwater  input  were  sufficient  to  overturn/trigger  the  halocline.  This  would  be 

analogous to  the  initial  transition from a mixed to  stratified water  column at  2.73 Ma which has  been 

associated with a significant increase in freshwater input to the region (Sigman et al., 2004; Haug et al.,  

2005; Swann et al., 2006; Nie et al., 2008). Three lines of evidence, however, suggest that an uninterrupted 

halocline prevailed over the analysed interval.

Firstly, a switch to a mixed water column would be expected to culminate in the upwelling of cold as well as  

nutrient rich deep water to the surface, instigating increases in opal MAR and decreases in SST. Relatively 
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low opal MAR of 0-1.2 g/cm2/ka and warm SST of >10oC, except in MIS 103 and the end of MIS 101, 

therefore suggest that there was no reversal  to a mixed,  high productivity, system similar  to that which  

prevailed prior to 2.73 Ma (Haug et al., 1999; 2005) (Fig. 3). Given that diatom growth in the modern North 

Pacific Ocean is constrained by iron limitation (e.g.,  Harrison et al., 1999; Tsuda et al.,  2003; Yuan and 

Zhang,  2006),  it  is  plausible  that  similar  mechanisms prevailed  from MIS G5  onwards  to  prevent  any  

increase in opal concentrations in a mixed water column state. At open sites such as ODP Site 882 situated  

away from continental influences, Fe availability is primarily controlled by aeolian deposition (Duce and  

Tindale, 1991; Jickells et al., 2005) which in the North West Pacific Ocean predominantly originates from 

the Badain Juran Desert, China (Yuan and Zhang, 2006). Records at other sites in the North Pacific over the 

last 200 ka BP have documented changes in aeolian fluxes aligned with accumulation rates at the Chinese  

Loess Plateau (Kawahata et al., 2000). If changes in Chinese Loess MAR are similarly used over the interval  

from 2.73 Ma to 2.52 Ma as a tracer of aeolian and so iron flux to ODP Site 882, the influence of iron  

availability  on biological  productivity  can be discounted with no relationship between changes in  loess 

accumulation and opal MAR (Fig. 3). Accordingly, the absence of any significant rise in opal concentrations 

can be attributed to the change in SSS being insufficient to remove the halocline stratification rather than the  

presence of an iron limited mixed water column.

A second line of evidence to suggest a permanent halocline originates from comparisons of the δ 18Odiatom and 

planktonic δ18Oforam data from ODP Site 882. Modern day C. marginatus and C. radiatus diatom frustules in 

the region primarily bloom during autumn/early winter (Takahashi, 1986; Takahashi et al., 1996; Onodera et  

al., 2005). As such, in a stratified state, changes in the input of isotopically light/heavy waters would have 

affected conditions in the uppermost part of the surface ocean at depths extending down to the seasonal late  

summer-early winter thermocline at 50 m and potentially to the halocline at c. 100-150 m (Andreev et al., 

2002; Antonov et al 2006;  Locarnini et al., 2006).  Although planktonic δ18Oforam records are of insufficient 

resolution  to  provide  further  information  as  to  the  origin  of  the  isotopically  light/heavy water  (Fig.  3) 

(Maslin et al., 1996, 1998), it is notable that Globigerina bulloides and Neogloboquadrina pachyderma are 
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often found at  much lower  depths  within the  surface ocean including at  depths  below the modern day  

halocline (Kohfield et al., 1996; Kuroyanagi and Kawahata, 2004). The absence of any marked alteration in 

the low resolution planktonic δ18Oforam after 2.73 Ma, compared to δ18Odiatom, therefore imply that water inputs 

were restricted to the uppermost parts of the photic zone and did not extend into deeper sections of the 

surface ocean as would be expected in a mixed water column scenario (Fig. 3). Due to the extreme scarcity 

of preserved foraminifera in the sediment record, additional planktonic δ18Oforam measurements can not be 

made to further assess issues regarding the vertical penetration of any freshwater inputs.

Final,  quantitative,  evidence for  a  permanent  halocline  can be found be  calculating the  change in  SSS 

required to initiate an overturning of the stratification. Modern day waters above the halocline (c. 100-150  

m) around ODP Site 882 are marked by year round potential densities (σ θ for  ρ = 0) of <26.8 kg/m3 (c.f., 

Fofonoff and Millard 1983; Antonov et al., 2005; Locarnini et al., 2005). By assuming that a density of 26.8 

kg/m3 is also applicable for the halocline boundary in the Pliocene/early Quaternary and using a coccolith  

Uk
37 SST record from ODP Site 882 (Haug et al., 2005), the SSS required to obtain a potential density >26.8  

kg/m3 and so water column overturning can be back calculated using seawater equations of state (Fofonoff  

and Millard 1983). With regional fluxes of coccoliths similar to the analysed diatom taxa in being focused  

towards autumn/early winter (Ohkouchi et al., 1999; Harada et al., 2006; Seki et al., 2007 ), results will be  

representative of the months when overturning would be expected to occur. Results, however, show that the 

necessary SSS required to remove the halocline and generate deep water mixing, i.e., to increase the photic  

zone potential density to >26.8 kg/m3, is never reached except at 2.65 Ma (Fig. 4b). In particular, calculations 

show that where SSS is greater than that in the mixed water column prior to 2.73 Ma, e.g., at the onset of  

MIS G3, the higher SST that accompany these intervals are sufficient to counter-act these rises by lowering  

the potential density of the photic zone and so increase the salinity threshold needed to generate overturning.  

Changing the potential density of the halocline boundary used in these calculations from 24.8 kg/m 3 to 27.8 

kg/m3 alters the SSS threshold required for overturning by only 0.00-0.09 psu. Therefore it can be concluded  

that whilst significant, the reduced freshwater inputs to ODP Site 882 during interglacials from MIS G5 to 
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MIS 99 were insufficient to increase SSS to the levels required to generate deep water mixing.

With regards to why no evidence exists for a short-lived transition to a mixed water column at 2.65 Ma when 

SSS are greater than the modelled SSS threshold required for overturning, one possibility is that the net  

decrease in rates of freshwater influx to the region were not enough on a seasonal/annual timeframe to raise  

SSS beyond the necessary threshold. Additional consideration must also be given to the accuracy of the  

SSS:δ18O end-member used in the SSS reconstruction and the potential for the true end-member to be outside 

the range used in Section 4.1. Whilst the possible range and temporal variability of SSS:δ18O end-members 

for the North Pacific Basin are unknown over this interval, existing research has demonstrated that the δ 18O 

values of individual ice-sheets vary considerably in Eurasia and North America at the Last Glacial Maximum 

with values of −16‰ to −40‰ and −28‰ to −34‰ respectively (Duplessy et al., 2002). Further work is  

therefore required involving the use of regional ice-sheet/ocean circulation models to fully investigate the 

nature and origin of increased freshwater input to the North West Pacific Ocean and the exact magnitude of  

change in SSS. 

5 Conclusions

In spite of large changes in  δ18Odiatom indicating significant variations in freshwater influx to the subarctic 

North West Pacific Ocean over the late Pliocene/early Quaternary, no evidence exists to suggest that the 

halocline stratification boundary was ever removed. Such findings concur with evidence of low opal MAR 

from 2.73 Ma onwards which indicate a transition to a stratified system and the region shifting from a major 

net source to a minor net sink of CO2 potentially similar to the modern day (Haug et al., 1999; Honda et al., 

2002; Chierici et al., 2006). Given the magnitude of change in δ18Owater required to cause the observed shifts 

in δ18Odiatom and SSS, further research is needed through oceanic and climate models to assess the origin of  

the freshwater inputs to the region and to determine the extent  to which these inputs may have altered 

nutrient  fluxes  to  the  photic  zone  and  so  the  biological  pump.  The  most  logical  origin  for  increased 

freshwater input, given the magnitude of δ18Odiatom changes, is for a glacial meltwater source. Although little 
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is known about the extent and size of glaciers around the North Pacific basin, attributing the changes in 

δ18Odiatom to primarily originate from such a source would imply that regional glaciers were well developed in  

the late Pliocene following the intensification of major Northern Hemisphere Glaciation. Understanding such 

issues  are  increasingly  important  given  the  potential  role  of  the  Pliocene  in  providing  an  analogue  for 

investigating future climate scenarios under a warmer climate (Jansen et al., 2007; Haywood et al., 2009).
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Figure 1: Location of ODP Site 882 (50°22’N, 167°36’E) in the North West Subarctic Pacific Ocean. Map 

created using Ocean Data View version 4.1.3 (Schlitzer et al., 2009).

Figure 2: Relative diatom species biovolumes in purified samples analysed for δ18Odiatom.

Figure  3: Changes in  δ18Odiatom within the 75-150  μm fraction alongside existing ODP Site 882 records of 

magnetic susceptibility as a proxy for IRD (Haug et al., 1999),  Uk
37 SST (Haug et al., 2005), opal MAR 

(Haug et al., 1999; Sigman et al., 2004) and planktonic  δ18Oforam (Maslin et al., 1996, 1998) in addition to a 

global  stacked  benthic  δ18Oforam record  (Lisiecki  and  Raymo,  2005),  a  Chinese  Loess  Plateau  magnetic 

susceptibility (Sun et al., 2006) and Hm/Gt ratios from the South China Sea (Zhang et al., 2009).  δ18Odiatom 

data is a combination of samples analysed within this study (circles) and data published in Swann et al.  

(2006) (triangles). ODP Site 882 magnetic susceptibility records displays both the raw data (grey) and a loess 

curve (black). Chinese Loess Plateau magnetic susceptibility and Hm/Gt ratios used as proxy of monsoon 

activity/precipitation.  For  planktonic  δ18Oforam,  black  (triangles)  and  blue  (circles)  records  represents  G. 

bulloides and N. pachyderma (dextral) respectively. Following Reynolds et al. (2008) the age of the stacked 

benthic δ18Oforam record has been adjusted by +10 ka to position the Matuyama/Gauss boundary at 2.61 Ma on 

the orbital time scale (Deino et al., 2006). Shaded regions after the development of the halocline at 2.73 Ma 

indicates periods of high  δ18Odiatom values equivalent to those in the pre-2.73 Ma interval of mixed water 

column conditions.

Figure 4: A) Changes in surface water δ18Owater at ODP Site 882 calculated from δ18Odiatom by accounting for 

changes  in  SST using  a  Uk
37 SST record  (Haug  et  al.,  2005)  with  a  diatom-temperature  coefficient  of 

0.2‰/oC (Brandriss et al., 1998; Moschen et al., 2005) and using a  global stacked benthic  δ18Oforam record 

(Lisiecki and Raymo, 2005) to correct  for variations in global ice volume. Fluxes of both the coccolith  

derived  alkenones  and  analysed  diatoms  are  focused  towards  autumn/early  winter  (Takahashi,  1986; 

Takahashi et al., 1996; Ohkouchi et al., 1999; Onodera et al., 2005; Harada et al., 2006; Seki et al., 2007). B) 
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Changes  in  salinity  calculated  using  SSS:δ18O end-member  ratios  of  1-0.5 (polygon)  together  with  the 

modelled SSS threshold required to overturn the halocline boundary by increasing the potential density of 

the photic zone to >26.8 kg/m3 (dashed line). Shaded regions after the development of the halocline at 2.73 

Ma indicates periods of high δ18Odiatom/δ18Owater/SSS values equivalent to those in the pre-2.73 Ma interval of 

mixed water column conditions.
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