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Abstract—Unimodular (i.e., constant modulus) sequences with be the correlation function ofz, }N_,, where (-)* denotes
good autocorrelation properties are useful in several ares, the complex conjugate for scalars and the conjugate traespo
including communications and radar. The integrated sidelbe for vectors and matrices. and let
level (ISL) of the correlation function is often used to expess ’
the goodness of the correlation properties of a given sequee. N—-1
In this paper, we present several cyclic algorithms for the dcal ISL = Z |Tk|2 (3)
minimization of ISL-related metrics. These cyclic algorithms can
be initialized with a good existing sequence such as a Golomb
sequence, a Frank sequence or even a (pseudo)random sequenc be the integrated sidelobe level (ISL) metric. The main focu
To illustrate the performance of the proposed algorithms, ve of this paper is on algorithms for minimizing the ISL metric
present a number of examples including the design of sequees o |5 .related metrics, over the set of unimodular sequence

that have virtually zero autocorrelation sidelobes in a speified lag S L .
interval, and of long sequences that could hardly be handletby Note that the minimization of the ISL metric is equivalent to

means of other algorithms previously suggested in the litature.  the maximization of the merit factor (MF) defined as follows:

k=1

TS | R\ 4)
Index Terms—Waveform design, unimodular sequences, the — T N-1 ~91SL°
integrated sidelobe level, the merit factor, autocorrelaibn, cyclic Z |7'k|2
algorithms.
k=—(N-1)
k#0
|. INTRODUCTION AND PROBLEM FORMULATION Unimodular sequences with large MF values are desired

in many applications, including wireless communicationd a

N i - . . .
Let {,},—, denote the unimodular sequence to be dgs, e compression radar and sonar. In these applicatians, a

srllgned. Without introducing any restriction, we can assume,iaq (probing or training) sequence with a large MF resuc
that the risk that the received sequence of interest is drawn in
lzn| =1, n=1,...,N. 1 eor_releted multipath or clutter interferences. Addi_titbylathe
limitations of the sequence generation hardware (inclythe
To keep this paper as concise as possible, we will limi/D conversion parts) lead to the requirement that the ewhitt
the discussion to general unimodular sequences, but we neéguence be unimodular.
here that finite-alphabet unimodular sequences, such a&kMPS Owing to the significant theoretical and practical interest
sequences, can also be dealt with in our framework — sée,the design of unimodular sequences with good correlation
however, theRemarkfollowing Eg. (10). properties (in particular, with large MF values), it shoatime
Let as no surprise that the literature on this topic is extensige
N [1] —[21] and the many references therein.
T = Z Tph =17, k=0,...,N-1 (2) Because the ISL metric may be highly multimedel (?.e,
n=k+1 it may have multiple local minima), stochastic optimizatio
algorithms have been suggested for its minimization. How-
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and [20]), which we call CA-pruned (CAP). CAP deals wittwhereQ is a (2N — 1) x N semi-unitary matrix (i.e.Q*Q =

a weighted ISL (WISL) metric of the form I). The design problem associated with Eq. (9) can be stated
as follows:
N-1
_ 2 2
WISL = 3 wielral? Q min |x - vAQ| (10)
k=1 {z.}0_1:Q
wkZO, kzl,...,N—l, StQ*Q:I

corresponding to a particular set of weigHt;}5 ' (see lzn| =1, n=1,...,N.

Section Il for details). Such weighted ISL metrics are im-
portant in applications where we want to reduce, as much
possible, the interference due to a known multipath or a kno
clutter discrete. CAP requires the singular value decoiitipos
(SVD) of a matrix of dimension on the order 6f, so it might

gte that the problems of minimizing Eqg. (8) and, respeétive

g. (9) are not equivalent (these two problems may well have
different solutions{x.,,}), yet they are “almost equivalent” in
the sense that if the criterion in Eq. (9) takes on a smallejalu

be difficult to run on a PC for values @ much larger than then so does Eq. (8)' and vice versa. More spgcifically, it. s
N ~ 103. With this problem of CAP in mind, we introducedear that Eq. (8) is equal to zero if .an(.j only if Eq. (9.) IS
a new CA called CAN (CA-new) that can be used for th qual to.zgro. Consequently, by.contml_uyy arguments, af th
local minimization of the unweighted ISL metric (i.e., E§) ( global minimum \_/a_lut_e .Of Eq. (8) is sufﬁuently small” ten
with w,, = 1). CAN is based on FFT operations and caﬂ’Ie sequences minimizing Eq. (8) and, respect_wely, Eq:e_()
be used virtually for any practically relevant values fup e expected to be close to one another. Put differently,éh su

to N ~ 10° | We al difv CAN thaft Case the sequence minimizing Eq. (8) leads to a small value
° 0" or even larger. We also ]I;]nf)l ity >0 aof Eq. (9), and vice versa. However, as already mentioned, th

it can tackle arbitrary weights, i.e{w;},_—;" in Eqg. (5) can o :
) . = WO sequences that minimize Eq. (8) and, respectively, 8q. (
be chosen as any non-negative real numbers. The resultW\l’ﬁin general be different from one another. Furthermane,

algorithm, which is called WeCAN (weighted CAN), require

N times more computations than CAN and it can be run cal minima of the two criteria will in general be different
a PC forN up to N ~ 104 In particular they can occur at sequences that are not the sam

for Eqg. (8) and for Eq. (9). A more quantitative mathematical
analysis of the global and local minima of the two criterig, a

Il. CAP well as of the way in which they relate to each other, appears

Let to be a difficult task that falls beyond the scope of this paper
) } Remark:As already pointed out in Section I, the case of

1 0 finite-alphabet sequences can also be dealt with in our frame

: . work. However, the performance of the resulting algorithms

X — IN - ©6) might not be as satisfactory as that corresponding to the

general unimodular case. One possible explanation of #lgis f

: is related to the above discussion on Eq. (8) and (9): when
L O IN] aN_1)xN we add more constraints of, }, such as a finite alphabet
requirement, the minimum value of the criterion in Eq. (8)
may increase quite a bit and therefore the “almost equicalen
ro  TF o Th, between_ Eq. _(8) and (9) may cease to hold tru_e. Another
explanation might be that the number of local minima of the

and observe that

X*X = | ™ T (7) ISL (or WISL) metric tends to increase as more constraints
rt are imposed oz, } (with the binary case being the most
r constrained one). Consequently, it becomes more difficult t
N-1 ! "o | NN

find a sequencdz,} such that the criterion in Eq. (8) or
BecauseX*X ~ NI for a sequence with good autocorrelatiorf9) takes on a small value when a finite-alphabet constraint i
properties, we can think of designidg., }_, by minimizing enforced. |

the following criterion: In contrast to Eq. (8), the derivation of a CA for Eqg. (10)
is relatively straightforward ([19]-[21]). However, this not

to say that the derivation of a CA for the criterion in Eq. (8)
is infeasible. In fact such a CA can be derived, as we show

over the set of unimodular sequences; herealftef, denotes . the forth . 291 that deals widect
the Frobenius matrix norm. However, the above criterion is'(? e forthcoming paper [22] that deals witiector sequence

quartic function of{x,} that is relatively difficult to tackle. esign. The problem with such an algorithm for Eq. (8) is that

With this fact in mind, the paper [21] (see also [19] and [Zog‘ue to the more complicated form of the crit.erion, it ig of_ten
has suggested replacing Eq. (8) with the following simpl ruc:h slower than a CA for the “almost equivalent” criterion

|X*X — NT||?, (8)

criterion (which is a quadratic function of the unknowns): n \I/EVc; \fvlil(lj)ﬁot discuss explicitly a CA for Eq. (10) because
HX _ \/NQ‘ 2 ©) it considers all correlation lagg;.}~ ', which is somewhat
’ infrequently required in applications and therefore rssinl an
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unnecessary increase of the computational burden. Indeed|X*X — NI||2. WhenQ@ = P, we have

many cases the maximum difference between the arrival times . I

of the sequence of interest and of the interferences is (nuch 0 ! L

smaller than the duration of the emitted sequence (see, e.qg. %~ | ™ ro . : (15)
[16][17][21][23]). Consequently, in such cases the inseties o : . . ’

in making{|r|}.—; small, for someP < N, instead of trying ' ' "1

to make all correlation sidelobefr,|}n—,' small; here the P—1 T To Ipyxp

value of P is selected based on a priori knowledge about théhich shows that in this case CAP implicitly assumes the

and where theP x Q matrix T is made from(Q selected

application at hand (for instance, in wireless communiceti weight of wy, = 2(P — k) for r;, (k = 1,...,P — 1) in
it is usually known that significant channel tap coefficientie WISL metric in Eq. (5), and) weights for the other
can occur up to a certain maximum delay, and so we cabrrelation lags. Whe < P, X*X is no longer a Toeplitz
chooseP as the said delay). More generally, we may haugatrix and a general expression fof does not exist anymore.
a priori information that not even al{|r|};—', but only Roughly speaking, the number of times that(together with

some of them, need to be made small. In such a case, instegdappears in the matriX*X determines the corresponding

of considering the “all-lag”X in Eq. (6), we consider the weight wy. [ ]
following “pruned” matrix: Regarding the minimization problem in Eq. (14), we note
the following facts. For giverX, let
X =XT (11) X* = U, SU; (16)
of dimension(N + P —1) x Q, whereQ < P < N andX is denote the SVD oiX* (hereU, is a@ x @ unitary matrix,
a truncated version of thX in Eq. (6) Uy is a (N + P — 1) x @ semi-unitary matrix, and is a
Q x Q diagonal matrix). Then the solutidd of Eq. (14), for
e 0 fixed X, is given by (see [19] or the references there and in
[20)):
U =U,U;. a7)
X — 1 2 . L .
X = ) ) (12)  Next note that, for givefJ, the minimization of Eq. (14) with
TN : respect to{z, }_; also has a simple closed-form solution.
: To see this, letr denote an arbitrary element of the sequence
{z,}_,. Then it follows from Eq. (14) that the generic form
0 TN n=1: """ i .
- - (N+P-1)xP of the minimization problem with respect to the elements of
{wn} iy ist

columns of theP x P identity matrix, for example, Q )
min Y |z — il (18)
1 0 0] k=1
where {1 }2_, are the elements of the matriXN'U whose
0 10 positions are the same as the positionszoin X. (As an
example, let us assume th@ = P and therefore thakK =
T= : - (13) X. Then, forz = ., the corresponding sequenée; i,
1 0 is given by the(n — 1 + i,i)"-elements ofy/NU, for i =
1,...,P.) Becausdz| = 1, the criterion in Eq. (18) can be
' rewritten as:
0 0 1 pro 0 o
2 *
The above@ columns correspond to th@ correlations of ; o = p|” = const—2Re [x;uk]
interest chosen fromy,r1,...,rp_1. With the above nota- Q Q
tion, the design problem of interest is obtained by modifyin  — const—2 |3 " | - cos [arg(x) —arg() ,Uk)] - (19)
Eq. (10) as follows: 1 P

3 9 Hence the minimizex of the criterion in Eq. (18) is given by
min HX - \/NUH (14)
{$71}5:]§U

st. U'U=1

|z, =1, n=1,...,N,

Q
r=e?  ¢=arg(d ) (20)
k=1

The CAP for the cyclic minimization of the criterion in

Eq. (14) follows from the above discussion as a natural
whereU is an(N + P — 1) x Q semi-unitary matrix. corollary:

Remark: Eq. (14) is “almost equivalent” to minimizing CAP
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e Step 0 and use the correlogram-based expressio®far) in Eq. (21)
Set the matrixX to an initial value (e.9.{z,}_; can to verify that:
be set to{e/2"%=}N_, where {0, })_, are independent )
random variables uniformly distributed if0, 2n], or 2N 2N N1 _
{z,}Y_, can be initialized by a good existing sequence Z =3 | D (= Nope Ik
such as a Golomb sequence [12]). p=1 | k=—(N-1)

o« Step 1
Compute the semi-unitary matri¥U that minimizes = Z Z (Tk = Nég)(ry — Nog)”
Eq. (14) for{z,}}_, fixed at its most recent value (see =~ k=—(N-1) f=—(N—
Egs. (16) and (17)). 2N )

. Step 2 lzem“’ﬂ] . (29)
Compute the sequende,, } Y_; that minimizes Eq. (14), =1
under the constrainfz,,| = 1, for U fixed at its most

recent value (see Eg. (20)). Because, foik — k| < 2N -2,

« lIteration 2N 5 _ - e—a2m(k—k) _q
Repeat Steps 1 and 2 until some stop criterion is satisfied Z e—dwp(k=k) _ o—iFF(k=k) —
e.g.||x — x| < ¢, wherex( is the sequence ob- o e Ian(k=k) _q
tained at the'” iteration, anck is a predefined threshold =2N6._jys (25)
(see theRemarkin Section V-C for a brief discussion
about how to choose the value of we obtain from Eq. (24) the following equation:
The SVD of theQ x (N + P — 1) matrix X* in Eq. (16) | 2N , 1 N
is relatively computationally intensive for large valuefs /é N [®(wp) — N|” = 3 Z |y — Nog|?
and Q. As a rough rule of thumb, on a regular PC the use p=1 k=—(N—-1)
of CAP may be limited to values oV ~ 10 depending N-1
on how many correlation lags are considered. In the next = | |> = ISL, (26)
section, we introduce a new CA (CAN = CA-new) for the k=1

local minimization of the unweighted ISL metric that does$ nQynich is Eq. (22). Using the periodogram-based expression

have such a limitation: indeed CAN can be used with valugs, d(w) (see Eq. (21)) in Eq. (22) shows that the problem of

of N~ 10° or even larger if so desired. minimizing the ISL is equivalent to the minimization of the
following frequency-domain metric:

Il. CAN 2N N ‘ 2 2
Z Z Tpe Pt — N . (27)
The derivation of CAN involves several steps, the first of p=1 | In=1

which consists of expressing the ISL metric in the frequen

domain. It is well known that, for any € [0, 2], Phis equivalence result has an obvious intuitive inteigtien:

minimizing the ISL makes the sequence behave like white
N1 noise, and consequently its periodogram should be nearly
_ —jwk A constant in frequency.
N Z ke = (W) (21) The next point to note is that the criterion in Eq. (27) is
a quartic function of{x,,}. However, using the same type of
grgument as the one that led from Eg. (8) to Eq. (9), we can
readily verify that the minimization of Eq. (27) with respéc
{z,} is “almost equivalent” to the following simpler problem

2

—jwn
n€

k=—(N-1)

(see, e.g., [24]). Furthermore, it can be shown that the |
metric in Eq. (3) can be equivalently written as:

1 2N (whose criterion is a quadratic function £, }):
2
ISL = m2[¢(wp) —~ NJ?, (22) . 2
p= —Jjwpn __ /N JYp (28)
min In€ € .
. . . {In}g 13 {vp}? p= 1 Zl nzl
where{w, } are the following Fourier frequencies: =
Let
21w . ‘
wp = ﬁp, p=1,...,2N. (23) a; _ [e—gwp . e—JQpr} 7 (29)

(Note that Eq. (22) is a Parseval-type equality.) To proJet A* be the following unitary2V x 2N FFT matrix:
Eqg. (22), lets,, denote the Kronecker delta:

*

1, fork=0 = o N I
p— ’ 2N
O { 0, fork+#0, ajy

(30)
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and letz be the sequencgr,, }V_; padded withN zeros: IV. WECAN
g — [:cl o a0 O}SNXI' (31) Similarly to the proof of Eq. (22) in Section Ill, we can

derive the following expression for the WISL metrig.(below
Then the criterion in Eq. (28) can be rewritten in the follogi s related to the weightv,, in Eq. (5) asw;, = 7%);
more compact form (to within a multiplicative constant):

N—-1
1A%z — V||, (32) WISL = > 47 ril? (38)
k=
where ) ' IN
Lo wan T =15 2_[®(wp) = 0N (39)
= [ei¥r ... eiYen]T 33 p) = YoV,
V=% [e elvan] (33) IN &
For given{z, }, the minimization of Eq. (32) with respect towhere
{p} is immediate: let } A Nl ‘
f_ A'g (34) Qwp) = D ke IR, (40)
o k=—(N—1)
denote the FFT o%; then o, :22_]7\2]9’ p=1.... 2N,
Yp =arg(fp), p=1,...,2N. (35)

and where{;};," are real-valued (withy, = ~v_;). Note

that by choosing{~;}+_;' appropriately, we can weigh the
g=Av (36) correlation lags in Eq. (38) in any desired way. Regarding
which does not enter into Eq. (38), it will be chosen to ensure
that the matrix

Similarly, for givenv, let

denote the IFFT of. Becausg|A*z — v||? = ||z — Av|?, it
follows that the minimizing sequender,, } is given by:

. Yo 7o UN-1
Ty =800 =1 . N. (37) . .
| . r—_|m o wo (41)
The CAN for the cyclic local minimization of the ISL-related v : -
metric in Eq. (28) can now be summarized as follows: : ' o
CAN IYN—-1 M1 Yo
« Step 0 is positive semi-definite, which we denote Wy > 0. This

Set the{z,}_, to some initial values (e.g4z,}~_, can be done in the following simple way: [Etbe the matrix
can be randomly generated or given by a good eX|st|n)tgF with all diagonal elements set @ and let\,,;, denote
sequence, as mentioned in the CAP algorithm in Seée minimum eigenvalue of’; thenT' > 0 if and only if
tion II). 7 + Amin > 0, & condition that can always be satisfied by
e Step 1 selectingyo.
Compute the{¢p}21jl that minimize the metric for Next we will derive a criterion that is “almost equivalent”
{z,}V_, fixed at their most recent values (see Eq. (35)§¢ Ed. (39) and which depends quadratically on the unknowns
« Step 2 rn}N_,, similarly to what we have done in the previous
Compute the sequende:, }\_, that minimizes the met- Sections. To do so, we must apparently obtain a square root of
fic, under the constrairftr,,| = 1, for {14,}2Y, fixed at ®(w,) in Eq. (40) thatis linear ifz:, } ;. Note the following

their most recent values (see Eq. (37)). DFT pairs:
o lteration - - o {Tk} - @(w) _ |X(w)|2
Repeat Steps 1 and 2 until a pre-specified stop criterion ~ 5
is satisfied e.g.|x" — x(*V|| < ¢, where x( is {wri} <= (W) =I(w) * [X (W)[, (42)
the sequence obtained at th@& iteration, ande is a where
predefined threshold, such a8~3. N—1
Owing to its simple (I)FFT operations, CAN can be used X (w Zx e Tw)= Y. me?F (43)
for very large values ofV, such asV ~ 106. k=—(N-1)

In the next section, we present an extended version of CAN
which can deal with the WISL metric (with arbitrarily choser}
weights) as defined in Eq. (5). The extended algorithm igdalll

and wherex is the convolution operator. Thu(w,) can be
expressed as

WeCAN (vyeighted CAN). The price paiq forWeCAN’s ability(i)(wp) _ i /F T(w, — )| X ()[? dio (44)

to deal with a general WISL metric is an increased com-

putational burden compared to CAN. Specifically, as will be

shown in the next section, each iteration of WeCAN reqwres — pe IR Zx e~ Imv Zx eI dy)

N computations of2N-point (I)FFT’s; thus the number of T k= (N 1)

flops required by WeCAN is roughl¥ times larger than that N-1 N N 1/

of CAN. Nonetheless, WeCAN can still be used for relatively= >~ Y "> "z, {—/ ejw(’“_””‘)dw} e Iwnk
4 2 J_

large values ofV, such asV ~ 10%. k=—(N—1) n=17=1 ™
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It is easy to verify that Next we show that, for giver{ap}gﬁl, the minimization
1 ) problem in Eq. (49) with respect oz, }/V_, also has a closed-
— [ eETR) Y = 5y (45) form solution. Leta,; denote thek™ element ofa, and let
27 . p . . X b
o a; be given by Eq. (29). Using this notation, the criterion in
Thus Eq. (49) can be written as
N N
b(w,) = T x s e Iwr (M) <l N Al N 2
) ;;7 . Z”CXp_ap”Q:ZZ‘aka—Oépﬂ
~ % ~ =1 k=1p=1
= Xp(’YOI‘)Xpa (46) ! N pN
where =D Az = Bill* =) llzi — ABLlI*.  (55)
2 — [ e—dwp —j2w, . —iNe 1T (a7 =1 =1
Xp [xle Toe rye } 47 where
andT is defined in Eq. (41). Therefore the WISL metric in 1 T
i = — |« @ , k=1,...,N. (56
Eq. (39) can be written as B Wi [k 2N k] (56)
2N
WISL — 7_3 [%:T%, — N}Q. (48) For a generic element ofz,,})_,, denoted asr, Eq. (55)
AN = -7 becomes

This expression suggests that the following problem can b N 9 N . .
expected to be “almost equivalent” to the minimization af th E lurz —vi|” = const —2 Re Z“kuk @ |, (87)
k=1 k=1

WISL metric:
IN where ., andyy, are given by the corresponding elements in
min Z |Cx, — ap”? (49) zr and A, respectively. Under the unimodular constraint,
{en}il 06 2E, T the minimizerz of the criterion in Eq. (57) is given by
stla,|>=N, p=1,...,2N, _ N
@] =1, n=1,...,N, v=¢?, ¢=arg (ZHZVk>- (58)
k=1
v(\ér%e(;e the x N matrix C is a square root of’, i.e., I' = This observation concludes the derivation of the main stéps

A cyclic algorithm for Eq. (49), which we will call WeCAN, the WeCAN algorithm, whose summary is as follows:

can be derived as follows. For givefw,}Y_;, Eq. (49) WeSCtJANO
° ep

decouples int®2 N independent problems each of which has

the following form: Set the{r,}Y_, to some initial values and select the

desired weightgy; }2—'; also choosey, such that the

min ||, — a,|? (50) matrix I" in Eq. (41) is positive semidefinite.
) ) o Step 1
sthepl” =N Compute the{a,}2Y, that minimize the criterion in
where theN x 1 vectorf, = Cx, is given. Note that under Eqg. (49) for {z,},_, fixed at their most recent values
the constraint|a,||> = N we have (see Eq. (52)).
9 . o Step 2
I, — cp[|” = const —2 Re{f, o } Compute the sequende:,, }2Y_, that minimizes the cri-
> const — 2||f,||||a,|| = const — 2N||f,]], (51) terion in Eq. (49) for{a,,}2Y, fixed at their most recent
where the equality is achieved if and only if values (see Eq. (58)).
« lIteration
a, = \/Nf_P (52) _Repegt _Steps 1 and 2 until a pre-specified_ stop criterion
[1£5l is satisfied (see the CAP algorithm in Section I1).

This is therefore the solution to the minimization problem i In the case of non-uniform weighting, we define the modi-

Eq. (49) for given{x,}Y ;. Note that the computation of fied merit factor (MMF) using the weighted ISL as follows:

{f,}2Y, can be done by means of the FFT. Indeed,clgt ) N2

denote the(k,n)" element ofC and define MMF = Iro® _ , (59)

2WISL 2 5Ly |rg |2
We have observed empirically that WeCAN increases the
and MMF systematically when initialized by CAP, and vice versa.
X This motivates us to use CAP to initialize WeCAN, then

F=VINA"-[z1 22 -2n]yy,y (54) " ise WeCAN to initialize CAP, and so on. The so-obtained

where the unitar N x 2N FFT matrix A* has been defined combined iterative method is called WeCAN+CAP. As will

in Eq. (30). Then it is not difficult to see that the transpoke de shown in Section V, when the maximum lag considered

the vectorf, is given by thep” row of F. is smaller than half of the sequence length, WeCAN, CAP

T
Zp = [ckizy - Iy 0 - 0](2N><1) (53)
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and their combination WeCAN+CAP can generate sequendesuses om, ..., ro5 andryg, . .., r79 and therefore uselB =
that have virtually an “infinite” MMF; the same is true evergo, @ = 36 and the following matrixT":
when the number of lags considered is smaller than half
. . I26 0
of the sequence length, provided the maximum lag under

consideration is not too close W (see the next section for T — 0 : (63)

more details on this aspect). 0
0 Tio] gonse
V. NUMERICAL EXAMPLES wherel x denotes thé( x K identity matrix. The third method
A. ISL Design is the WeCAN algorithm for Eq. (48) and (49), with the

) following weights used in the matrik in Eq. (41):
We compare the merit factors of the Golomb sequence

([22]), of the Frank sequence ([15]), and of the CAN sequence Yo = { 1, ke L,25 U[70,79] . (64)

initialized by one of these two types of sequences (denoted 0, k & [26,69]U[80,99]

as CAN(G) and CAN(F), respectively). A Golomb sequenag, is chosen to ensure the positive semi-definitenesk;of

{g(n)}N_, of length N is defined as more exactly we choosg) = 12.05 following the discussion
right after Eq. (41).)

g(n) == =1 N, (60) In this scenario, the MMF is as defined in Eq. (59) with
whereN can be any positive integer. Frank sequences are only Wy =2 = { 1, ke|[1,251U][70,79 (65)
defined for lengths that are perfect squares. Foe= M2, a 0, k€ [26,69]U[80,99]
Frank sequence can be written as All three methods mentioned above are initialized by a ran-

domly generated sequence (see Step 0 of the CAP algorithm
in Section I1). The correlation levels of the designed seges
(Note that the above sequences can be easily computed forare shown in Figure 3. The WeCAN sequence has correlation
) quences Sily P ' §¥lobes that are practically zero at the required lagd, an
value of N of possible practical interest, with the only restric- hich are much smaller than the sidelobes of the CA or CAP

tion that N must be a perfect square in the case of Eq. (61)5 quence and those of the Golomb or CAN(G) sequence in

We compute the merit factors of the above four types : .

e last subsection (see Figure 2(a) and 2(b)). Table | ptese
sequences (Golomb, Frank, CAN(G) and CAN(F)) for the fo he corresponding E\/IMF v%lues (T)he MI\/I(F))of the WQCAN
lowing lengths:N = 32, 52,102, 152, 202, 302, 702 and 1002. '

The results are shown in Figure 1 using a log-log scale. Fsc?quence (which is practically infinite) is significantlydar

all sequence lengths we consider, the CAN(G) and CAN( )an the other MMF values in the table.

sequences give nearly the same merit factors; both are much TABLE |

larger than the merit factors given by the Golomb or Frank ~ MMF VALUES FOR THE WEIGHTS INEQ. (65)AND N = 100
sequence. WheV = 10%, the CAN(G) sequence provides Golomb | CAN(G) | CA CAP WeCAN
the largest merit factor 01839.76, which is more than ten MME | 32.55 142.64 | 68.07 | 229.02 | 1.06 x 10°T
times larger than that given by the Golomb sequence (which
is 157.10). We also show the correlation levels of the Golomb 1o matrixX*
and CAN(G) sequences of lengthé = 102,103 and10? in
Figure 2. The correlation level is defined as

f(nM + k+1) = ¥k/M ke —0,1,...,M —1. (61)

g X employed by CAP in this example (where
X is given by Eq. (11)) is composed ofj,...,ry; and

r70, ..., 779, DUt @ISO Ofrys, . .., rg9. Therefore, although not
_ - of direct interest to us;ys, . . . , 769 are minimized as well (see
correlation levek= 20log,, |—|, k=1,...,N —1. (62) Figure 3(b)), which increases the difficulty of the problem.
"o If we consider fewer correlation lags (e.gs,...,r9 and
We note that the correlation sidelobes of the Golomb seguento, - - -, 779 only), CAP is also able to provide practically zero

are comparatively large fdr close to0 and N —1 (the same is correlation sidelobes at the required lags. On the othed fifin

true for the Frank sequence), while the CAN(G) sequence Hasre correlation lags are taken into account, then coioelat

relatively more uniform correlation sidelobes hsincreases Sidelobes of either CAP or WeCAN become higher; the reason

from0to N — 1. is that fewer and fewer degrees of freedom of the sequence
{z,}N_, can be used to contrdt,| as k increases beyond
N/2 (in particular note thal'y —1| = 1 can not be decreased).

B. WISL Design - A First Example

Consider the design of a data sequence of leagts 100. C- WISL Design - A Second Example
Suppose that we are interested in suppressing the cooredati Consider, once again, the design of a data sequence of
r1,...,T25 andryg, ..., 79. Three methods are used to desigtength N = 100 but now with the aim of suppressing the
the sequence. The first method is the original CA for Eq. (1&orrelationsry, ..., r3. We compare the CAP sequence and
in which all correlation levels fromr; to ro9 are taken into the WeCAN+CAP sequence, both obtained using random ini-
account. The second method is the CAP for Eq. (14) whidialization. The CAP sequence is generated using @ = 40
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Merit Factor

Frank

Golomb
CAN(F)
CAN(G)

10

(N
+ O x O

10°

10

Fig. 1. The merit factors of the Golomb, Frank, CAN(G) and GANsequences of lengths fro8% up to 1002.

and thusX = X in Eq. (11). The WeCAN+CAP sequence is Remark:The WeCAN algorithm is also able to provide an

generated as outlined at the end of Section IV. To constrdatfinite” MMF in this example, although we do not show its

the matrixT" in Eq. (41), we define results here for brevity. Another fact worth pointing outhsit
both CAP and WeCAN algorithms require a proper value of

1, kell,39 o i

e = , the stop criterion parametern(see Section Il) to perform well.

0, k€ [40,99] ) ; :

) When the number of considered correlation lags is less than

wy =7, k=1,...,99, (66) (N +1)/2 and N is relatively small (such a&v ~ 102), a

sufficiently smalle should be used (e.ge, = 10713 in the

Figure 4 shows the correlation levels of the so-obtainéd@MPples in this and the last subsection) to permit enough
CAP and WeCAN+CAP sequences, and Table Il presents fHany |terat.|ons, which drive ttle correlat'|on S|del_obes&mz
corresponding MMF values (the CAN(G) sequence is includd@ b(_e run, in other cil?e_s, a “moderate(depending on the

in the table for the sake of comparison). Both sequences hé\F@"Cﬁ“Of_h SQCh aB() ) is preferable to pre_zvent the program
practically 0 correlation sidelobes from, to rp_;, and the fr_om running indefinitely without suppressing the corrielat _
corresponding MMF can be considered to be infinity (thd/d€lobes anymore. In contrast with this, WeCAN+CAP is

smallest correlation level in Figure 4 is arourd20dB, i.e,, duite insensitive to the choice ef (¢ = 10~ is appropriate
10-16, which is the smallest number that can be properl9" WeCAN+CAP in all cases that we have tested) and it

~outperforms CAP in terms of MMF, especially for large values

and choosey, such thafl’ > 0.

handled in MATLAB and can thus be considered as “zero”).

A point worth mentioning here is that the CAP and weof V- [

CAN+CAP algorithms are able to provide an “infinite” MMF
in this example ifP < 50. The reason is that the number ob' FIR Channel Estimation

degrees of freedom in this exampleNs— 1 = 99 (there are ) ) ol
N — 1 free phases as the initial phase does not matter) and=onsider an FIR channel impulse respofisg},, -, whose

our goal is to matci2(P — 1) real numbers (i.e., the real andeStimation is our main goal (the number of channel téps
imaginary parts of, ..., r»_1). Consequently the matching'S assumed to be known). Suppose we transmit a probing

is possible in principle only wheg(P — 1) < N — 1, which Sequencez, };_; and obtain the received signal

leads toP < (N + 1)/2. In the next subsectior® is fixed to pPo1

40 and N is varied fromloo to 500, in which case the CAP ,, _ Z hptn_p+en, n=1,... N+P—1, (67)
or WeCAN+CAP algorithm consistently generates sequences =0

that have an “infinite” MMF.

where{e, }Y ! is an i.i.d. complex Gaussian white noise
sequence with zero mean and variarde Eq. (67) can be
written in the following more compact form:

TABLE 1l
MMF VALUES FOR THE WEIGHTS INEQ. (66) AND N = 100

CAN(G) CAP WeCAN+CAP _
MMF | 126.27 | 1.08 x 1023 | 2.37 x 1020 y=Xh+e (68)
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Fig. 2. Correlation levels of the Golomb and CAN sequencelermths N = 102,102 and 10, designed under the ISL metric. (a) The Golomb sequence,
N = 102, (b) the CAN(G) sequencey = 102, (c) the Golomb sequencey = 103, (d) the CAN(G) sequencey = 103, (e) the Golomb sequence,

N =104, and (f) the CAN(G) sequencéy = 10%.
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Fig. 4. Correlation levels of the CAP and WeCAN+CAP sequeraelength N = 100, designed under the WISL metric with weights in Eq. (66). Tag

CAP sequence and (b) the WeCAN+CAP sequence.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 07:27 from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

CA, N=100

S — — at200 ando? is varied from10~6 to 1. For each paitN, o2),

500 Monte-Carlo trials are run (in which the noise sequesice
is varied) and the mean-squared error (MSEfldsI; recorded.
Figure 6 shows the MSE dh in the two situations. Due to
better autocorrelation properties, the CAP sequence gtser
consistently smaller MSE than the Golomb sequence. In
particular, it is interesting to observe from Figure 6(batth

-100[— -

correlation level (dB)
iR
@
S
T
|

200 i as o2 decreases, the MSE df corresponding to the CAP
sequence is decreasing linearly (and it becomas o2 goes
- o e TN to 0), while the performance of the Golomb sequence is limited
k to a certain level because of its non-zero correlation slukes,
(@) which induce an estimation bias.
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Fig. 5. The magnitude of the simulated channel impulse mesph.

VI. CONCLUDING REMARKS

~100f— —

We have presented several cyclic algorithms, namely CAP,
CAN, WeCAN and WeCAN+CAP which can be used to
design unimodular sequences that have good autocorrelatio

I
i
a
S

correlation level (dB)

200 i properties. CAN can be used to design very long sequences
" v’ (of length N up to 10°), a design problem that can hardly
B G —T W gw — be handled by other algorithms proposed in the previous
k literature. CAN deals with the ISL metric, i.e., it consiger
(c) all unweighted correlation lags from up tory_;, whereas

) _ CAP, WeCAN and WeCAN+CAP aim to minimize weighted-
Fig. 3. Correlation levels of the CA, CAP and WeCAN sequerafdsngth . . .
N = 100. (a) The CA sequence, (b) the CAP sequence and (c) the WeCF{§L mEtr'CS- We have shown that’ n pamCUIar' the Iattee@h
sequence designed under the WISL metric with weights in &&). ( algorithms can be used to design sequences that have Wirtual
zero autocorrelation sidelobes in a specified lag inte@AP,
WeCAN and WeCAN+CAP can be used to design sequences

whereX is as defined in Eq. (12), and of lengths N ~ 10? or larger, depending on how many lags
_ [ ]T h— [h i h }T are considered. A number of numerical examples have been
y=1 YN+P-1 - 0 pP=1] provided to demonstrate the good autocorrelation progerti
e= [61 eN+p_1] . (69) of the unimodular sequences designed using the proposed
algorithms.

Let x,, denote thep'" column of the matrixX. We usex, as
a "matched filter” to determing, from y, which leads to the
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