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Abstract—In this paper, we focus on analyzing multi-location 

charging behaviors of plug-in electric vehicles (PEVs) under the 

Time-of-Use (TOU) pricing scheme. Trip chain model 

incorporating the information on start time, end time, driving 

distance, start location and end location of each trip is used to 

depict the sequence of daily driving missions. Statistical 

distributions of travel patterns are fitted from a real-world 

driving dataset. Then a method is developed to generate the 

complete trip chain of each individual PEV. Simulation results 

show that due to the TOU price, people prefer the overnight 

charging at home, although workplace charging can support 

PEVs with smaller battery capacities and long-distance commute 

trips. Furthermore, with a large enough battery capacity, 

charging at workplaces will not be necessary if vehicle-to-grid 

(V2G) technology is not considered. Although high charging 

power accelerates PEV’s charging processes during price-valley 

periods, it imposes higher requirements on the charging facilities 

and distribution grid. 

 
Index Terms—multi-location charging, PEV, charging load, trip 

chain, travel pattern 

 

I. INTRODUCTION 

PEV is considered to be a relief from the growing pressure 
caused by oil dependency, environment pollution and 
greenhouse gas emissions. It is predicted that between 6% and 
30% of vehicles in use will be PEVs by the year 2030 [1]. 
These PEVs will rely on the energy from the electricity grid, 
which suggests the uncertainty and variability in electricity 
demand. Recently, substantial studies have been carried out to 
evaluate the possible impact on power system due to PEV 
charging load. It is presented that many problems, such as 
power congestion [2], peak load increase [3], power losses [4] 
and voltage decrease [5], can arise from uncontrolled PEV 
charging. In [6], authors concluded that the major impact is on 
medium and low voltage distribution systems. The lack of 
accurate information about the charging demand can hinder 
optimized integration of PEVs into electrical grid and lead to 
excess infrastructure [7]. Therefore, it is necessary to evaluate 
the impact and impose some restrictions on the charging to 
alleviate impacts of PEVs on the distribution system. 
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Charging load profile is the key to predict and evaluate 
PEVs’ impact on the grid. It is directly determined by the PEV 
owner’s driving behavior and travel patterns including 
departure time, arrival time, driving distance and parking 
locations [8]. In [9], authors proposed a statistical modeling 
approach to generate daily driving mission sets. The temporal 
distributions of departure time and arrival time are modeled in 
the form of chi-square distribution and conditional normal 
distribution, respectively. In [6], the author used more than 44 
million GPS data from 76 representative vehicles to build a 
stochastic model of daily travel distance and arrival/departure 
time. However, these studies do not involve detailed 
information of start time, end time, start location and end 
location of each trip, which is required for a more accurate 
analysis of multi-location charging behavior.  

Furthermore, early publications often assumed that PEVs 
can be plugged into grid only at home [10-11]. There is only 
one departure and one arrival event per day. Only between the 
present departure time and last arrival time is PEV charging 
available. However, in a low voltage distribution grid, work 
places are also frequently parking locations. In [8] and [12], 
authors investigated the parking events at work places and 
found that people parked longest at work places with a mean 
value of more than 8 hours. It provides such a lucent 
opportunity for more flexible PEV charging strategies, which 
support a smaller battery capacity for daily commute, other 
than charging only overnight. 

In this paper, we investigate the impact of multi-location 
charging, which has not been studied in previous papers. PEVs 
can be connected to the grid both at home and work places. 
Statistical distributions of daily travel patterns are modeled 
from the 2009 National Household Travel Survey (NHTS) 
real-world data [13]. Based on the statistical results on daily 
travel patterns, a method is proposed to generate trip chains, 
which contains the detailed information of the start time, end 
time, start location, end location, and driving distance of each 
trip. With such information, the multi-location minimum-cost 
charging behavior of each PEV owner is formulated as a linear 
programming problem. In summary, the contributions of this 
paper are as follows: 

1) A fundamental study on PEV travel patterns is 
conducted based on the real-world dataset. Statistical 
distributions of several key factors are modeled and a method 
is developed to generate daily trip chains.  

2) The multi-location charging load is analyzed. The 
results are instructive for the design and instruction of charging 
infrastructure.  

The rest of the paper is organized as follows: In Section Ⅱ, 

real-world data are used to model daily travel patterns. We 

propose a method to generate trip chains in Section Ⅲ. The 

minimum-cost charging behavior is also depicted in this 
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section. Simulation results are shown in Section Ⅳ. Finally, 

conclusions are drawn in Section Ⅴ. 

II. DAILY TRAVEL PATTERNS 

Daily travel patterns cover the information about the 
parking location, parking duration, driving distance of each 
trip, etc. The PEV battery must be charged with enough energy 
for vehicle usage. Parking location determines whether it is 
available for PEVs to plug in. Parking duration decides the 
maximum charging period at this location. The amount of 
energy demand depends on the driving distance of each trip. 
Under the assumption that the energy consumption is in 
proportional to the driving distance [14], the energy 
consumption of PEVs can be easily calculated. So travel 
pattern models will provide basic information to accurately 
analyze the charging demand and evaluate the impact of 
charging load. In this section, the trip chain model is used to 
describe the sequence of PEV’s daily driving activities. 
Several distributions of travel pattern factors are derived from 
the NHTS dataset.  

A. Real-world Driving Data  

The NHTS dataset contains millions of data on both 
long-distance and local travel by the American public. The 
joint survey gathers trip-related data such as mode of 
transportation, duration, distance and purpose of trip. It also 
gathers demographic, geographic, and economic data for 
analysis purposes. The parking locations are classified into 
three categories: Home (H), Work Place (W) and Others (O). 
PEVs travel between either two of these places, as in Fig. 1.  

 

Figure 1. Travel modes of PEVs 

There are three travel modes: Home to Others or Others to 
Home (HOOH), Workplace to Others or Others to Workplace 
(WOOW) and Home to Workplace or Workplace to Home 
(HWWH). The change of parking location is modeled as a 
stochastic process { ( ); }X t t   where   is the time interval, 

for discrete time {0,1, , }T  . S={H, W, O} is the state space 

of X(t). The transition probability is defined as: 

, ( , ') { ( ') ( ) } ( , )y zp t t P X t z X t y y z S             (1) 

where y is the start location at time t and z is the end location at 
time t’. 

Since the NHTS dataset contains the detailed parking 
events both at home and at work places, it allows us to analyze 

the impact of multi-location charging load. From Fig. 2, it can 
be seen that besides parking overnight at home, people park 
the longest at work places, and the mean duration is 8 hours. 
This result indicates that if charging events could be possible at 
the work places, PEVs for the daily commute would be 
possible with a significantly smaller battery than in the case of 
charging only overnight. In this paper, we consider that work 
place is also available for PEVs to plug in. 

0 3 6 9 12 15 18 21 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(h)

N
o

rm
a
li

z
e
d

 C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n

 

 

Home

Work Places

Others

M
ea

n
:1

.6
8

M
ea

n
:8

.0
0

M
ea

n
:8

.7
6

 

Figure 2. Parking duration at different locations. 

B. Notion of Trip Chain 

In this paper, the trip chain is used to describe a sequence 
of trips that begins at home, involves one or more visits, and 
ends at home. It includes all information which determines 
available charging periods and energy demand for each PEV. 
The trip chain of each individual PEV is defined as: 

1 2 1 2

1 2 1 2 1 2

( , , , ; , , , ;

, , , ; , , , ; , , )

s e s e s s s e e e

n n

s s s e e e

n n n

T T T T T T

d d d L L L L L L

(T ,T ,d ,L ,L )
(2) 

1. . s e

j js t L L                                                         (3) 

Where s

jT = Start time of the jth trip; 

e

jT = End time of the jth trip; 

jd = Distance of the jth trip; 

s

jL = Start location of the jth trip; 

e

jL = End location of the jth trip; 

n  = Number of trips involved in PEV’s trip chain; 

Equation (3) represents that the end location of last trip is 
the start location of the next trip. This trip chain definition is 
introduced purely because of the presentational simplicity it 
offers, and the modeling framework is in principle applicable 
with a multi-location charging analysis which requires the 
parking location and duration. 

A PEV’s travel patterns vary from day to day. It is viewed 
in this study that this variation is random, and each possible 
pattern occurs with a certain probability. The approach taken 
in this study is to establish these probabilities from the NHTS 

dataset and generate s e s e
(T ,T ,d ,L ,L )  by simulation. Now, 

consider the following identity: 
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(4) 

Namely, the simultaneous probability associated with 
s e s e

(T ,T ,d ,L ,L )  can be expressed as a product of a series 

of conditional probabilities, 

1 2 1 1 2 1

1 2 1 1 2 1 1 2 1

Pr[ , , , , , , , ; , , , ;

, , , ; , , , ; , , ],

1,2, , .

s e s e s s s e e e

j j j j j j j

s s s e e e

j j j

T T d L L T T T T T T

d d d L L L L L L

j n

 

  



 (5) 

In this conditional probability, the attributes of the next trip 

are dependent on the past history (start time, 1 2 1, , ,s s s

jT T T  ; 

end time, 1 2 1, , ,e e e

jT T T  ; trip distance, 1 2 1, , , jd d d  ; start 

location, 1 2 1, , ,s s s

jL L L  ; and end location, 1 2 1, ,e e e

jL L L  ). 

C. Statistical Distributions of Several Key Factors 

To generate PEVs’ trip chains, distributions of travel 
patterns should be derived from the NHTS dataset. Since trip 
chains begin at home, we firstly need to obtain the distribution 
of the initial departure time from home. In our previous work 
[15], it is shown that the departure time distribution can be 
fitted in the form of chi-square distribution. 

, /2( 2)/2

,

, /2
( )

2 ( / 2)

depn it

depn i

DEP depn i

t e
P t



 






                      (6) 

where ,depn it  is the normalized departure time at the ith 

departure time window and defined as , /dep it  , and   is the 

discretized window size.   is determined to minimize the 

root-mean-square error of the response variable by applying 
sequential quadratic programming. The NHTS real-world data 
also verify the distribution, as shown in Fig. 3. 
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Figure 3. Distribution of the initial departure time. 

Then we study the distribution of trip duration. 
Distributions in three travel modes are shown in Fig. 4. It can 
be seen that the time distribution of trip between home and 
work place is more uniform with the biggest mean value of 
31.08min and the smallest variance of 16.80min. Due to the 
high uncertainty of start points and destinations of the other 
two modes (because “Others” contains various locations such 
as school, shopping mall, church, and etc.), their standard 
deviations are higher than that of HWWH mode. Most trips of 
these two modes are with short distance, which usually take 
5~30min and range smaller than those of HWWH mode.  

 
From a common sense, the trip distance is closely related to 

the trip duration. Long distance trips usually take long trip time. 
This correlation can be quantified by the   value defined as 

( , ) / ( )Cov y x Var x , where Cov(y,x) is the covariance between 

random variables y and x, and Var(x) is the variance of random 
variable x. The value for   ranges from -1 to 1, and if two 

variables are not correlated at all, i.e., completely independent 
each other, the value of   is zero. The   values of the three 

travel modes are calculated and shown in Table I.  

TABLE I.  VALUES OF  IN THREE TRAVEL MODES .  

Travel Modes HOOH WOOW HWWH 

  0.817 0.760 0.871 
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Figure 4. Distribution of trip duration in different travel modes. 
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Therefore, trip distance and trip duration are strongly and 
positively correlated. The trip distance distribution at a 
concerning travel time is expressed as a conditional 
probability. The conceptual illustration of the trip duration and 
trip distance distribution is shown in Fig.5. The trip distance 
distribution at the ith trip duration window is expressed as the 
Gaussian distribution. 
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where 
it  is the ith trip duration window, 

i  is the mean of 

the trip distance at the ith trip duration window, and 
i  is the 

standard deviation of the trip distance at the ith trip duration 
window.  
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Figure 5. The illustration of the trip duration and trip distance distribution. 

III. TRIP CHAIN GENERATION AND MINIMUM-COST 

CHARGING FORMULATION 

Based on the trip chain model and distributions of key 
factors obtained in Section II, daily driving missions can be 
reproduced with a relatively small number of cases. After we 
obtain the descriptive information of trip chains, including 
start time, end time, trip distance, start and end location, the 
multi-location charging behavior can be simulated and the 
impact can be evaluated. In this section, a simulation method is 
developed to generate the trip chain of each PEV. Then the 
minimum-cost charging behavior is formulated as a linear 
programming model. 

A.  Trip Chain Generation 

To perform a simulation, the transition probability 
described in (1) is required. However, it is not convenient to 
obtain these probabilities from the dataset through sampling. 
Instead, we define the transition direction probability as: 

0

( ) P{ ( ) ( ) } ( , )
T t

yz

t

p t X t t z X t y y z S


 

        (8) 

where t  is the trip duration. The PEV will leave location y 

for location z at time t if y z , while the PEV will stay at the 

same location if y=z. After the transition direction is 
determined, the trip duration will be generated according to the 
distribution of the specific travel mode. Then the trip distance 
will be generated according to the conditional distribution (7). 

For each PEV, the flow chart of trip chain generation is 
presented in Fig. 6. We firstly sample the initial departure time 
according to (6). Then the transition direction will be 
determined by the transition direction probability. We can then 
indicate whether the PEV stays at the same location or moves 
to other locations. If y z , it indicates the PEV will take a 

trip to other locations and the trip number will be updated. 
Then we generate the trip duration and trip distance according 
to the distribution presented in Section II-C. The trip duration 
will be added to the start time to calculate the end time of the 

trip. If y z ， it indicates that the PEV will stay at the same 

place during next period. We continue to determine the 
transition direction next time. With this process, we can obtain 
the detailed information about the trip chain, including start 
time, end time, trip distance, start and end locations. 
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Figure 6. Flow chart of trip chain generation. 

B. Minimum-cost Charging Formulation 

With the assumption that PEV owners are rational, they 
would like to charge their PEVs during lower price periods. To 
analyze the impact of multi-location charging, we formulate 
PEV owners’ charging behavior as a linear program problem, 
which aims to achieve the minimum charging cost under TOU 
price. For each PEV,  

1

min C=
h

H

h h
u

h

p l u


                                  (9)

1. . [ , ], [1,2, , ]a d

h h h k ks t S S u p h h h k K     (10) 

1
d a
k k

kh h
S E S



                                                (11) 

154



  

1

/ [1,2, , ]
kM

m

k k

m

E d k K


                           (12) 

max maxtS S S                                            (13) 
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u

else

   
 


                         (14) 

where C is the total charging cost; H is the number of time slots 
in the planning horizon of the problem; p is the constant 

charging power; l  is the length of a time slot; 
h  is 

electricity price at time slot h. We define 
hS  as the amount of 

battery storage for the PEV at h. K is the total number of 

parking events at available charging locations; a

kh  and d

kh  are 

the arrival time and departure time respectively for kth parking 

event at the available charging location; 
kE is the energy 

consumption by the vehicle between two parking events for 

charging; kM  is the number of trips between kth and k+1th 

parking events at home or work places; m

kd  is the distance of 

mth trip between kth and k+1th parking events. Electric drive 

efficiency is   km/kWh. 
maxS  is the capacity of battery.  is 

the lower bound of the battery storage to avoid over discharge. 

hu  is the binary decision variable indicating whether PEV is 

charging during time slot h. 

The objective (9) is to achieve the lowest charging cost. 
Constraint (10) and (11) update the battery storage during 
charging periods and travel periods, respectively. Constraint 
(12) defines the energy consumption between two charging 
events. Constraint (13) restricts the battery storage to stay 
between its upper and lower bounds. Constraint (14) ensures 
that PEVs can be charged only between arrival time and 
departure time at available charging locations.  

It should be noted the optimization model is used to describe 

PEV owner’s charging behavior and analyze the impact of 

multi-location charging, rather than providing a charging 

strategy to guide people’s charging behavior. 

IV. CASE STUDY 

In this section, trip chains of 100 PEVs are generated by 
simulation. The initial energy of these vehicles is uniformly 
distributed between 10% and 50% of the battery capacity. We 
examine the PEV charging during a day (24h) starting from 
0:00 to 24:00. It is assumed that all PEVs have the same 
specifications as “Nissan Leaf” [14], whose battery capacity is 
24kWh and electric drive efficiency is 6.7 km/kWh. To avoid 
excessive discharge of the battery, the state of charge (SOC) is 
required to be always beyond 10%. The charging power for all 
PEVs is set to 3kW.  

A. Charging Load Profile 

Because of the constant charging power, the charging load 
is proportional to the number of vehicles plugged into the grid. 
Thus, the charging load is expressed by the percentage of 
vehicles which are charged. Figure 7 shows the charging load 
profiles of two charging patterns including uncontrolled 
charging, minimum-cost charging. Uncontrolled charging 
means that the PEV is immediately connected to the grid to 
charge as soon as arriving home or work places. The charging 

process will not finish until when either the battery is full or the 
PEV must leave. For uncontrolled charging, although the load 
is less fluctuant and the peak is lower, the cost increased by 
361%, compared with the minimum-cost charging behavior.  

For the minimum-cost charging, the PEV owner charges 
the battery during lower price periods, as described in Section 
III-B. It can be seen that PEV owners adjust their charging 
behavior, responding to the TOU price. The load reaches a 
high peak at 23:00, because almost all PEVs are at home and 
the price comes to the valley from this moment. Besides, from 
8:00 to 19:00, people are reluctant to charge their batteries 
since the price is relatively high during this period. Thus, there 
are only a few charging activities at work places.  
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Figure 7. Charging load of two charging patterns. 

We examine trip chains of those PEVs which are charged 

at work places. The common feature is that the commute 

distance of these PEVs is usually more than 83km. Overnight 

charging cannot guarantee them to complete the daily driving 

missions. They have to gain a supplementary amount of energy 

at work places, even when the price goes much higher. 

B. Influence of Battery Capacity and Charging Power 

For PEVs, two factors have great influences on the 
charging behavior. They are battery capacity and charging 
power. With a higher charging power, PEVs can be charged 
more quickly during the price-valley time. With a larger 
battery capacity, PEVs can store more energy and the charging 
behavior can be more flexible.  

Charging load profiles with different battery capacities are 
shown in Fig 8. It can be seen that the charging load during 
price-valley period decreases with the growth of battery 
capacity, while the charging load during other periods 
increases. Since the electricity price is lowest from 23:00-7:00, 
PEVs try to obtain enough energy for the daily driving 
missions. However, for some PEVs with long distance trips, 
they have to charge at work places, when the battery capacity is 
not large enough and charging overnight at home cannot 
satisfy the energy demand of the whole trip chain. We find that 
when the battery capacity is larger than 32 kWh, charging 
during price-valley time can guarantee enough energy and no 
charging activities happen at work places. This implies that 
without introducing vehicle-to-grid (V2G) technology, 
massive construction of charging facilities at work places 
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would be not necessary from a pure economic perspective 
when the battery capacity is large enough.  
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Figure 8. Charging load profiles with different battery capacities. 

The influence of charging power is shown in Fig. 9. It can 
be seen that the load peak increases in proportion to the 
charging power. More charging activities occur at work places 
when the charging power is lower, since PEVs cannot gain 
enough energy through overnight charging before leaving 
home. We also find that even though a higher charging power 
can make the battery completely charged within a shorter 
period, there are still some PEVs which need to be charged at 
work places. All of these vehicles have long distance trips. 
Overnight charging during price-valley periods has completely 
charged the battery full, but it still cannot meet the energy 
demand for the whole trip chain. Besides, it should be noted 
that the high charging power imposes a great requirement on 
the charging facilities and distribution grid, since it may cause 
a high peak load which may be hazardous for the distribution 
grid. 
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Figure 9. Charging load profiles with different charging power. 

V. CONCLUSIONS 

In this paper, we study multi-location charging behaviors of 

PEVs. Several statistical distributions of travel patterns are 

derived from the NHTS dataset. To describe the sequence of 

daily travel activities, we present the trip chain model 

incorporating the detailed information of each trip, namely 

start time, end time, trip distance, start location and end 

location. Then we perform a simulation to generate trip chains. 

Finally a minimum-cost charging formulation is presented to 

describe the multi-location charging behavior. Conclusions are 

drawn as follows: 

(1) People prefer to charge at home after 23:00 due to the 

lower electricity price. Only a few charging activities happen 

at work places when certain PEVs have long distance trips and 

they need supplementary energy at work places.  

(2) When the battery capacity is larger than 32kWh, rare 

charging activity occurs at work places. This implies if the 

battery capacity is large enough and V2G technology is not 

considered, work place charging would not contribute to PEV 

owner’s economic interests. 

(3) Charging power also has a great influence on people’s 

charging behavior. High charging power can accelerate the 

charging process during the price-valley periods, but it may 

impose a higher requirement on the charging facilities and 

distribution grid.   
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