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This paper presents a computer vision system that successfully discriminates between weed patches and 
crop rows under uncontrolled lighting in real-time. The system consists of two independent subsystems, 
a fast image processing delivering results in real-time (Fast Image Processing, FIP), and a slower and 
more accurate processing (Robust Crop Row Detection, RCRD) that is used to correct the first subsystem's 
mistakes. This combination produces a system that achieves very good results under a wide variety 
of conditions. Tested on several maize videos taken of different fields and during different years, the 
system successfully detects an average of 95% of weeds and 80% of crops under different illumination, soil 
humidity and weed/crop growth conditions. Moreover, the system has been shown to produce acceptable 
results even under very difficult conditions, such as in the presence of dramatic sowing errors or abrupt 
camera movements. The computer vision system has been developed for integration into a treatment 
system because the ideal setup for any weed sprayer system would include a tool that could provide 
information on the weeds and crops present at each point in real-time, while the tractor mounting the 
spraying bar is moving. 

1. Introduction 

For some years now, governments, researchers and farmers 
have become increasingly conscious of the important role Precision 
Agriculture (PA) will play in the near future. With the current pro­
jections of expected world population growth and the subsequent 
decrease of available land and natural resources, there will be a 
pressing need for a cheaper, more efficient and environmentally 
friendly agriculture (Srinivasan, 2006). PA seeks to avoid applying 
the same management practices to a crop regardless of site condi­
tions and may be used to improve field management from several 
perspectives; for example, it can help to minimize the wastage of 
pesticides required for the effective control of weeds, diseases and 
pests and to ensure that crops receive adequate nutrients, leading 
to more efficient and greener agriculture (Kropff et al., 1997; Earl 
etal.,1996). 

Site-specific weed management practices using chemical tools 
propose to apply herbicide in the dosage strictly necessary based 
on both weed infestation and location or position. 

Research work in this area is difficult to classify and compare 
due to the variations among different crop and weed species and to 
the different approaches taken to collect field data (Thorp and Tian, 
2004). However, almost all existing weed detection methods pro­

cess the image in two steps: 1) segmentation of vegetation against 
the background (soil and/or harvest residues) and 2) detection of 
the vegetation pixels that represent weeds. 

The procedures for the segmentation of vegetation usually 
assume that all pixels belonging to vegetation can be easily 
extracted by some combination of the color planes on the RGB 
model (Woebbecke et al., 1995; Andreasen et al., 1997; Pérez et al., 
2000; Aitkenhead et al, 2003; Yang et al, 2003; Ribeiro et al., 2005; 
Van Evert et al., 2006). Other approaches propose the use of the HSI 
color model combined with classification methods such as Bayes 
networks and clustering (Lee et al., 1996,1999; Hemming and Rath, 
2001; Blasco et al., 2002; Zheng et al., 2009). Segmentation can also 
be performed by selecting texture features based on their similari­
ties with previous models encountered, stored in a database (Marti 
et al., 2001; Bosch et al., 2007). Moreover, segmentation can be 
performed by combining different cameras, such as conventional 
and NIR cameras (Gerhards and Christensen, 2003). An in-depth 
review of vegetation segmentation methods can be found in Meyer 
and Neto (2008). 

Once vegetation pixels have been identified, weed detection 
by computer vision methods is usually performed by combining 
information on differences in color, position, shape, texture, size or 
spectrum of weeds and crop. The use of only one or many of these 
characteristics depends on the way the photographic images are 
taken, the crop type, and the weed species involved. 

Some works present statistical studies of the features involved 
(Van Evert et al., 2006; Pérez et al, 2000; Andreasen et al, 1997). 
Others choose to distinguish between species by their different 



spectra, combining the information obtained from a conventional 
camera with a NIR camera, (Gerhards and Christensen, 2003; 
Gerhards and Oebel, 2006). In lettuce, plants and weeds can be 
clearly distinguished by differences in their sizes and position, 
Blasco et al. (2002). This is similar to the case of cauliflowers, where 
weeds can be located by their position and some shape character­
istics (Onyango and Marchant, 2003), or in carrots and cabbages, 
where weeds have distinct differences in color and size (Hemming 
and Rath, 2001). 

Other studies make use of classification or feature extraction 
methods, including as many characteristics as necessary. This is 
used, for example, in Bayes networks (Lee et al, 1996, 1999; 
Granitto et al., 2005), or neuronal networks (Aitkenhead et al., 2003; 
Astrand and Baerveldt, 2002; Burks et al., 2005; Yang et al., 2002; 
Vioix et al, 2002). Additionally, some studies process the images 
in the frequency domain (Tian et al, 1999; Tang et al., 1999; Vioix 
et al., 2002) or even using Fuzzy Logic Yang et al. (2003). 

In winter crops, the most common weeds (Avena sterilis and 
Lolium rigidum) are very difficult to distinguish from crops at early 
phenological stages due to similarities in their shape, texture and 
color. The only discriminatory characteristic left is the spatial posi­
tion occupied by each plant. Moreover, in those cases where the 
weed has characteristics that distinguish it from the crop (for exam­
ple, maize crops and weeds such as Sorghum, Cyperus, Xanthium 
and Datura), sometimes the image processing used to discriminate 
between them is computationally very expensive, so that discrimi­
nation in real time is not profitable. However, the problem becomes 
real-time approachable if weeds can be detected by their position. 

Formally, to detect weeds by position, the vegetation cover 
growing between two crop rows is considered to be weed cover 
(Hague et al., 2006; Ribeiro et al., 2005; Tellaeche et al., 2008a; 
Burgos-Artizzu et al., 2010). Therefore, the initial problem is con­
verted into another one: detecting crop rows and labeling as weeds 
the vegetation growing in between. 

Crop row location in real time is often an important goal in 
the autonomous guidance of agricultural vehicles (Billingsley and 
Schoenfisch, 1997; Keihcer and Seufert, 2000; Torii, 2000; Reid 
et al., 2000; Hague and Tillet, 2001; Gottschalk et al., 2008). How­
ever, in this context, the crop rows are roughly approximated by 
lines, while for weed patch detection the precision required is much 
higher. Some other works use the Hough transform (Gonzalez and 
Woods, 2003), to fully locate the crop rows and then label the 
rest of vegetation pixels as weeds (Leemans and Destain, 2006; 
Tellaeche et al., 2008b; Gée et al., 2008; Bakker et al., 2008). The 
drawback of this approach is the high computational complexity of 
the Hough transform, which makes it unsuitable for applications in 
which there is a need to process images in real-time, i.e. at 25 fps 
(frames per second), the standard video camera frame rate. Finally, 
some other studies deal with simpler images, taken closer to the 
ground and in such a way that perspective is eliminated, so that 
crop rows can be more easily located and the processing adapted 
to real-time (Olsen, 1995; Tillet and Hague, 1999; Hague and Tillet, 
2001; Sogaard and Olsen, 2003; Ribeiro et al., 2005). 

Unfortunately, none of these studies thus far have resulted in 
the commercialization of the technologies developed. The major 
obstacles to commercialization concern the high computing and 
economic costs involved, as well as the difficulties of correctly rep­
resenting all of the possible situations present in real and outdoor 
conditions, (Stafford, 2000; Slaughter and Downey, 2008). 

In this context, the ideal setup would be to have at our dis­
posal a tool providing real-time information on weed infestation 
and location at each point, which could then be used to activate a 
sprayer in response. This work presents an approach aimed at pre­
cisely extracting weed, crop and soil covers from each video frame, 
in real-time. The main challenge in terms of image analysis is to 
achieve an appropriate discrimination among weeds, crops and soil 

Fig. 1. The camera is placed directly on the roof of the tractor, at a height of 2.15 m 
from the ground, with a 10°pitch angle. 

under varying conditions of lighting, soil background texture, crop 
damage and weed infestation, within the strong processing time 
limitations imposed by the spraying operation. 

The rest of this paper is structured as follows. Section 2 describes 
the proposed real-time image processing. Section 3 discusses the 
results obtained. Section 4 outlines the conclusions and future 
work. 

2. Real-time image processing 

2.1. Camera placement and video acquisition 

The main goal of this work is to develop a system able to estimate 
weed seedlings and crop covers from video frames in real-time. 
These covers can then be used to decide the required herbicide 
dosage at each point (video frame) (Burgos-Artizzu et al., 2007), 
and its direct application in real-time can be achieved, for example, 
through the automation of a commercial spraying bar. 

The authors have recently automated a commercial spraying 
bar, model Hardi NK, of 10 m of length, distributed in five indepen­
dent sections of 2 m each (Burgos-Artizzu, 2009). To use the output 
of the present computer vision system to control this spraying bar, 
the images need to cover the 10 m width of the bar. Therefore, the 
camera is placed on the uppermost part of the tractor (the roof), at 
a height of 2.15 m from the ground, with a pitch angle of 10°, as is 
shown in Fig. 1. 

Using this setup, however, the resulting images span only 6.5 m 
of the field instead of the desired 10 m. Unfortunately, placing 
the camera higher would have other disadvantages, such as much 
lower precision or higher image blurriness, due to the major impact 
of tractor jolting. A possible solution could be to place a second 
camera on the other side of the roof and combine information from 
two cameras to cover the 10 m. In either case, the image process­
ing method used would be the same as the one presented in this 
paper. Two different conventional digital video cameras were alter­
natively tested, Sony DCR PCI 10E and JVC GR-DV700E. They both 
capture clear quality images with a resolution of 720 x 576 pixels. 

The videos were taken in 3 different maize fields in Madrid 
(Spain), on different days over the last 4 years, during the times of 
post-emergence herbicide applications (May). Field experiments 
were conducted in La Poveda Research Farm (Arganda, Central 
Spain). The climate of the site is Mediterranean Continental with 
cold winters, hot summers and limited precipitation of about 
400 mm. The fields used in this study follow the normal agricul­
tural practices in this culture. Fields had an average of 3.0 ha and 
were planted in early April with 0.75 m row spacing and a popu­
lation of 90,000 plants/ha. Fields were sprinkler irrigated, with the 



Fig. 2. Image frame examples. 

first irrigation applied 1 month after planting and weekly irriga­
tions thereafter. Weeds were assessed in May when maize was 
at the stage 14-16 of BBCH scale, Donald (2006). The fields have 
been rotated with winter barley, and showed a normal infesta­
tion of weeds with some patches of S. Halepense, X. Strumarium, 
Datura Stramonium L. and D. Ferox, with leaf sizes varying from 6 cm 
to 75 cm. Herbicide treatments, fertilization and other agricultural 
operations were also those commonly used in maize crops. The 
tractor speed was kept constant and was set around 7 km/h, the 
standard speed for weed spraying. 

Sampling was purposedly carried out with different weather 
and field conditions to have a video footage representing a broad 
variety of real conditions. Actual video database consists of more 
than 16 h of footage, from sunny and cloudy days with varying lev­
els of air humidity, and showing different weed/crop growth stage 
(within previously stated limits). Fig. 2 shows an example of the 
type of image frames obtained. As can be seen from the figure, 
the frames captured can vary greatly in illumination, soil back­
ground and crop/weed coverage, all of which are uncontrollable 
outdoor situations to which the image processing should be robust. 
Moreover, the image processing will have to deal with the issues 
raised by the displacement of the tractor through an irregular ter­
rain, which can cause blurry images and even sudden displacement 
of the angle of view. Finally and most importantly, the image pro­
cessing has to do all of this under great time limitations because the 
processing speed should be at least 25 fps considering that vehicle's 
treatment speed must be about 2 m/s (7 km/h). 

2.2. Real-time image processing 

Real-time image processing at 25 fps means that each frame has 
to be processed in 0.04 s. However, due to the difficulty of the task 
at hand, a simple exploration of the image will not be sufficient 
to extract all of the crop and weed pixels precisely. Therefore, the 
proposed image processing method is divided into two different 
steps. The first step (Robust Crop Row Detection, RCRD) includes 
all of the operations necessary to detect the crop rows correctly 
under all circumstances, regardless of the processing time needed. 
That information is then passed to the second step (Fast Image Pro­
cessing, FIP), which adapts its results to the current frame. RCRD is 
considered a fail-safe against possible changes that may occur in 
the middle of a run, like dramatic changes in vegetation conditions 
or any of the problems produced by the jolting of the tractor and the 
irregularities of the terrain (displacements, changes on the viewing 
angle, image blurriness). 

Fig. 3 shows the image processing flow diagram for each new 
frame. Both steps of the processing method start working simulta­
neously with the segmented binary image, where vegetation pixels 

are separated from non-vegetation ones. Because RCRD does not 
have to work in real-time, several frames will be captured while it 
is still working on previous data. All those frames are stored, and as 
soon as RCRD is ready to process new data, it retrieves all of them, 
combines them and performs its operations to detect crop rows, 
storing the final result in the Crop Rows reference image. Mean­
while, FIP processes each new frame independently, using the last 
Crop Rows image created by RCRD. In the following sections, each 
part is discussed separately. 

2.2.1. Vegetation segmentation 
The first step, which is common to almost all image processing 

weed detection methods, is the segmentation of the vegetation pix­
els. To discriminate vegetation pixels, a linear combination of the 
RGB planes with coefficients (r = - 0.884, g= 1.262, b = - 0.311) was 
performed. These coefficients were found using a genetic algorithm 
optimization, and proved to perform better than Excess Green coef­
ficients ( r = - l , g = 2, b = - 1) (Woebbecke et al., 1995), on similar 
images, Burgos-Artizzu et al. (2010). Then the threshold used for 
binarization is set automatically for each image. The automatic 
adjustment of the threshold value is crucial to achieving segmenta­
tion robust to changes in illumination, which occur frequently due 
to changing weather, especially in party cloudy days. 

Two different threshold adjusting methods were evaluated: 1) 
Otsu's widely used Otsu (1979) method and 2) setting the thresh­
old to the mean pixel intensity, following Eq. (1). Fig. 4 shows 
the result of both methods on two different input frames. Otsu's 
method tends to set the threshold value higher than the mean 
pixel intensity, causing vegetation to be slightly exaggerated. More­
over, Otsu's method is slower, so the mean intensity method was 
chosen instead. This choice is further validated by previous work, 
Burgos-Artizzu et al. (2010), where threshold values returned by a 
genetic algorithm optimization were much closer to the average of 
intensities than Otsu's, both in maize and winter cereal images. 

JV M 

^ ^ ( r * R(x, y) + g * G(x, y) + b * B(x, y)) 

Threshold— , , „, 
M*N 

where, r= - 0.884, g= 1.262, b = - 0.311. 

(1) 

2.2.2. Robust Crop Row Detection (RCRD) 
RCRD detects the crop rows pixels, creating a reference image, 

Crop Rows, which will then be used by FIP. This reference image is 
essential not only to guarantee the precision of the results but also 
to prevent all sorts of errors. 

Because RCRD is time-independent, several frames will be cap­
tured while RCRD is still busy processing previous frames. These 
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Fig. 3. Flow diagram of the proposed image processing method. 

frames are stored, waiting for RCRD to be ready for a new process­
ing. Then the first step of RCRD is to combine all of the stored binary 
frames into a single image with an AND operation. The AND opera­
tion yields an image where only the persistent vegetation pixels are 

kept. Vegetation pixels that persist over a set of consecutive frames, 
given the movement of the tractor, will mostly be crop rows pixels, 
except for some weed pixels if a large weed patch is encountered. 
Fig. 5 shows an example, where 8 consecutive frames are combined. 

input frame Otsu Mean intensity 
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Fig. 4. Comparison of the two automatic threshold value adjustment methods, Otsu's and mean intensity, tested on two different input frames. 



Fig. 5. AND operation on 8 consecutive frames to select crop rows, (a) First frame: (b) eighth and last frame: (c) AND result on all 8 consecutive frames. 

However, the AND operation alone will not be enough if large 
weed patches are present in the images, as can be seen in Fig. 6(a) 
and (b). To cope with these cases, RCRD performs a morphological 
opening of the image followed by region extraction and filter­
ing all those regions too small to be considered a full crop row. 
The morphological opening is used to clean the image, Fig. 6(c), 
prior to the region extraction. Then crop rows are easily recog­

nizable by their much larger areas than the rest of the regions 
(typically 7-10 times bigger than the remaining weed regions), 
Fig. 6(d). 

Fig. 7 shows three examples of the final result of RCRD, where 
crop rows are successfully detected. RCRD needs an average of 0.3 s 
per processing, which at 25 fps means that it will run once every 
eight frames. 

Fig. 6. RCRD operations, (a) Binary frame presenting large weed patches: (b) AND result with its 7 previous frames: (c) morphological opening: (d) region extraction and 
filtering by size, where regions with areas less than 2000 pixels are eliminated. 



Fig. 7. RCRD results on three different input frames (second and third image corresponding to Figs. 5 and 6. The results are superimposed in orange. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of the article.) 

2.23. Fast Image Processing (FIP) 
FIP is hugely limited by the response time needed for a real-time 

image processing at 25 fps. The image is divided into horizontal 
strips, and for each strip, a vector with as many components as the 
number of columns in the binary image is created and filled, at each 
component, with the number of white pixels in the corresponding 
column (inside the current horizontal strip), Eq. (2). 

strip-end 

V(x)= J2 lmaSe{x,y) (2) 
x=stripjstart 

Then, the vector is explored searching for several consecutive 
high values, and marking those positions as potentially being part 
of the crop rows. A value is considered high if it is higher than 
3/4 of the height of the strip (number of rows). Several consecu­
tive high values are considered to be a sequence of more than a 
given threshold number of consecutive high values. This threshold 
is calibrated initially using the minimum value of consecutive high 
values present in the bottom strip of the Crop Rows image created 
by RCRD. This threshold is, roughly, the expected minimum width 
of the crop rows at the bottom of the image. All steps in the proce­
dure are illustrated in Fig. 8, using as a threshold 5% of the image 
width (36 pixels in this case). 

To take into account the effect of perspective, which slightly 
reduces crop rows width in upper parts of the image an average of 
2.5% with current setup, the threshold is reduced for each strip by a 

factor of (0.025/n .strips). The size (height) of each strip, however, 
remains fixed throughout the image. The number of strips used 
can vary, but for the purpose of this paper it was fixed to 25 (16 
pixels/strip). This is the best setup found on trial and error on the 
videos processed for Section 3. 

The result of this procedure, dividing the image into 25 strips, 
can be seen in Fig. 9(a). As expected, all crop rows are clearly 
marked. However, medium and large sized weed patches are also 
marked. To distinguish between the crop rows and weeds, FIP uses 
the Crop Rows image created by RCRD. All sets of positions marked 
by FIP that coincide with at least one crop row pixel of the Crop 
Rows image will be kept, while all other sets of positions will be 
discarded. This can be seen in Fig. 9(b) and (c). Fig. 9(b) shows the 
union of the Crop Rows image (in blue) with the pixels marked by 
FIP (green). Fig. 9(c) shows the discarded sets (in red). 

Finally, once the crop rows are extracted, weed pixels can be 
determined simply as all other pixels that were part of the vegeta­
tion after segmentation and are not considered crop. Fig. 10 shows 
the final result of the whole system on 4 different input images 
(crops in green, weeds in red) that represent a variety of situations. 
The proposed methods were implemented in the C++ programming 
language and compiled as DirectShow filters, to enable their use in 
Windows platforms directly, using pre-installed applications like 
GraphEdit. All of the video capture and processing was performed 
using a mid-range laptop computer (Intel dual core T2400 CPU, 
1.83 GHz, 1Gb Ram). 
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Fig. 8. Fast Image Processing operations. 
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Fig. 9. Image Processing results, (a) FIP results (green), (b) Mixed FIP (green) and RCRD results (blue), (c) Correction of FIP results using the Crop Rows image created by RCRD 
(discarded sets in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.) 

3. Results and discussion 

Six video segments from different years and fields, thus rep­
resenting different situations, were chosen and processed using 
the system, recording the results obtained for each frame. Then 
the same frames were processed manually, labeling soil, crop and 
weed pixels using image editing software. The automatic and man­
ual identifications were then compared to evaluate the system's 
results. Each one of the 6 videos has an average 12 s duration (300 
frames), having therefore a total of 1800 frames. Due to the dif­

ficulty of manual labeling, of those 1800 frames, only 300 were 
manually labeled (50 per set, randomly chosen). 

Fig. 11 shows the result of the system on some illustrative frame 
examples, while Table 1 shows the full system results over all six 
video sets. The first three sets (Fairl, Fair2 and Fair3) contain the 
most common situations. A situation is considered fair when crop 
rows are clearly visible (there are no evident sowing errors) and 
weeds have a maximum horizontal size of 60 cm (they don't fill the 
whole space between two consecutive crop rows). An example of 
this standard situation can be seen in Fig. 11 (a). Three different fair 
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Fig. 10. Final weed (red) and crop (green) discrimination over different input frames presenting a variety of situations. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of the article.) 
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Fig. 11. System results over each video set. 

sets were chosen to represent a wide variety of illumination, soil 
humidity and weed/crop growth conditions that can be encoun­
tered. The other three sets (Sowing Errors, Patches and Movement) 
contain more difficult and uncommon situations, such as the pres­
ence of sowing errors, Fig. 11 (b), very large weed patches, Fig. 11 (c), 

Table 1 
Results of the system. 

or sequences with abrupt camera movements due to significant 
terrain irregularities, Fig. 11(d). 

The results are analyzed in terms of the mean percentage of 
crop and weed pixels correctly labeled (true positive or hits), false 
positives and false negatives. It is important to analyze both weed 

Fairl 
Fair2 
Fair3 
Sowing errors 
Patches 
Movement 

Average * 

Weed 

Hits (%) 

97.3 
93.4 
95.2 
64.9 
65 
74.8 

85.1 

False positives (%) 

1.7 
5.4 
4.1 

32.4 
4.8 

13.8 

11.4 

False negatives (%) 

0.9 
1.2 
0.7 
2.6 

31.2 
11.2 

3.3 

Crop 

Hits (%) 

77.6 
83.2 
81.7 
65.9 
70 
36.3 

68.9 

False positives (%) 

10.3 
6.3 
7 
8.2 

27.3 
31.3 

12.6 

False negatives (%) 

12 
9.5 

11.3 
25.8 
2.7 

32.3 

18.2 

Average is computed without taking into account Patches set. 



and crop detection because the crop density provides a measure of 
the weed infestation risk (Ribeiro et al., 2005). Additionally, weed 
false positives are preferable to weed false negatives because weed 
patches are less likely to be missed and uncontrolled. 

As can be seen both in Table 1 and Fig. 11 (a), in fair conditions the 
proposed image processing method yields very satisfactory results. 
The system is robust to varying illumination conditions, as well 
as to constant small changes in the viewing angle and/or image 
blurriness due to tractor jolting and small terrain irregularities. It 
achieves on average 95% and 80% weed and crop hits, respectively, 
keeping at all times a very low ratio of weed false negatives (around 
1%), the most undesirable error, and weed false positives (3.7% on 
average). As expected, crops are more difficult to adjust at a pixel 
level, due to the fact that FIP does not process every single crop 
pixel in the image separately. This results in higher levels of both 
crop false positives and negatives, 7.5% and 11 % in average, respec­
tively. Because the conditions labeled as fair are encountered over 
90% of the time in the video database, this results fully validate the 
image processing. However, more difficult and uncommon situa­
tions were also analyzed because they still represent real situations 
that can be encountered. 

When the system encounters dramatic sowing errors, as in 
Fig. 11(b), the system fails to recognize part of the crop due to 
its discontinuity, mistaking it for weeds, causing high weed false 
positives (32%) and crop false negatives (25%). If very large weed 
patches are encountered, as in Fig. 11(c), the issue is the opposite: 
the weed patch is mistaken for crop, causing high crop false pos­
itives (27%) and weed false negatives (31%). Finally, if during the 
run there is a very abrupt change in the direction of motion, as in 
Fig. 11(d), the synchronization between the last RCRD result and FIP 
each 8 frames is not fast enough, causing an erroneous crop detec­
tion (31% false positives, 32% false negatives) with subsequent high 
weed false positives (13%) and false negatives (11%). 

The weed false positives produced during sowing errors are 
acceptable errors, considering the difficulty presented in the 
images, where crop and weeds are difficult to distinguish even 
for human experts. The weed false negatives produced with large 
weed patches, however, are a more worrisome issue. To overcome 
it, images in which there is a high proportion of vegetation pixels 
after segmentation can be labeled directly as 100% weeds because 
they represent situations where herbicide will have to be sprayed 
at maximum dosage. For example, a threshold of 60% can be used 
(Fig. 11(c) has a 64% of vegetation pixels). 

The issues raised due to the movement of the tractor can only 
be overcome through video stabilization, either via hardware or 
software. However, most of the tractor movement is staggered in 
such a way that the synchronization between FIP and RCRD each 
8 frames is fast enough. It is only very rarely that such an abrupt 
displacement as the one observed in the Movement set is encoun­
tered, so the cost of implementing video stabilization would not be 
justified in a first approach, although it should be studied in detail 
in a future study. 

The average results of the system on all sets but Patches, which 
will always be labeled as 100% weeds, are very satisfactory, reach­
ing 85% of weed hits with only 3% of weed false negatives, and 69% 
of crop hits. 

4. Conclusions and future work 

To achieve site-specific management of weeds, the first and 
most important step is the location and density estimation of 
weeds. In this context, the development of real-time computer 
vision based weed detection methods can be of great help in con­
structing fully automatic and cheap weed sampling systems. The 
problem does not have a trivial solution, due to changing condi­

tions of illumination, humidity, vegetation growth, different weed 
species encountered, and due to the similarities presented, in many 
cases, by weeds and crops, making discrimination a complex task 
and an open field of research. 

In this paper, a real-time computer vision-based weed detec­
tion system is presented. The system is divided into two different 
and independent steps to achieve greater precision and robust­
ness to all possible situations encountered, while still being able 
to produce a real-time outcome. The first step, RCRD, performs all 
of the operations necessary (no matter how much time is needed) 
to extract the crop rows present in the image correctly, creating 
the Crop Rows reference image. The Crop Rows image is then used 
to correct the results of the real-time step, FIP, which due to its time 
limitations, is not able to perform a correct discrimination under all 
circumstances on its own. 

The combination of a fast processing system delivering results 
in real-time (FIP) with a more exhaustive and slower processing 
system (RCRD), results in a system that achieves very good results 
in real-time over a wide variety of conditions. Tested on several 
maize videos taken on different fields and during different years, 
the system successfully detects an average of 85% of weeds and 
69% of crops under different illumination, soil humidity and cam­
era displacement/blurriness conditions, even when presented with 
very difficult weed/crop growth states, such as when the crop rows 
are not visible due to sowing errors. When presented with fair 
images, that is small to medium sized weeds and clearly visible 
crop rows, which represent over 90% of the situations encountered 
in the recorded videos, the system successfully detects an average 
of 95% of weeds and 80% of crops, while maintaining a very low rate 
of weed false negatives (1%) at all times. 

The segmentation method proposed is the key to the robustness 
of the system to changing illumination conditions. The color indices 
used (r = - 0.884, g = 1.262, b = - 0.311) create a gray image that can 
then be easily binarized using a very simple and fast automatic 
threshold adjustment method (average intensity value), resulting 
in a very simple and robust segmentation method. 

These results were obtained using a conventional video camera 
placed on the roof of the tractor, and the video capture and pro­
cessing is performed using a standard laptop PC, so that the system 
is easy to set up and very inexpensive, two important requisites for 
its commercialization and use by farmers. 

In the near future, the system will also be tested directly on real 
fields, feeding its output to the fuzzy controller developed by the 
group (Burgos-Artizzu et al, 2007) which determines the optimum 
herbicide dosage using expert knowledge and controls the spraying 
bar in real-time accordingly. 
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