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4 Abstract: Transverse galloping is a type of aeroelastic instability characterized by large amplitude, low frequency, normal to wind oscillations
5 that appear in some elastic two-dimensional bluff bodies when subjected to a fluid flow, provided that the flow velocity exceeds a threshold
6 critical value. Such an oscillatory motion is explained because of the energy transfer from the flow to the two-dimensional bluff body. The
7 amount of energy that can be extracted depends on the cross section of the galloping prism. Assuming that the Glauert-Den Hartog quasi-
8 static criterion for galloping instability is satisfied in a first approximation, the suitability of a given cross section for energy harvesting is eval-
9 uated by analyzing the lateral aerodynamic force coefficient, fitting a function with a power series in tana (a being the angle of attack) to

10 available experimental data. In this paper, a fairly large number of simple prisms (triangle, ellipse, biconvex, and rhombus cross sections, as well
11 as D-shaped bodies) is analyzed for suitability as energy harvesters. The influence of the fitting process in the energy harvesting efficiency
12 evaluation is also demonstrated. The analysis shows that the more promising bodies are those with isosceles or approximate isosceles cross
13 sections. DOI: 10.1061/(ASCE)EM.1943-7889.0000817. © 2014 American Society of Civil Engineers.Q : A

14 Author keywords: Galloping; Energy harvesting; Wind tunnel.

15 Introduction

16 The potential use of different aeroelastic phenomena to extract en-
17 ergy from an incident flow, and through the oscillations of the ex-
18 cited structure, convert those oscillations into piezoelectric or
19 electromagnetic energy, is receiving the attention of more and more
20 researchers (St. Clair et al. 2010; Peng and Chen 2012). As a con-
21 sequence, numerous studies have been published recently on the use
22 of fluid-bodies instabilities interactions (the number of papers has
23 remarkably grown in the last 2 years). The focus of these papers has
24 been either on the particularities of oscillating systems (transverse
25 galloping,wake galloping,flutter, and vortex shedding) or on the use
26 of these oscillating systems for energy harvesting.
27 Besides the pioneer work of Glauert (1919), Den Hartog (1965),
28 Novak (1969), Novak and Tanaka (1974), and Luo et al. (1988),
29 among others, some relevant publications have appeared more re-
30 cently concerning transverse galloping instability (Naudascher and
31 Rockwell 1994;19 Luo et al. 1998; Barrero-Gil et al. 2010; Païdoussis
32 et al. 2010, Sewatkar et al. 2012, Alonso andMeseguer 2014; Ibarra
33 et al. 2014), whereas the use of transverse galloping for energy
34 harvesting purposes has been analyzed by Sirohi andMahadik (2011,
35 2012), Abdelkefi et al. (2012a, 2013a), Abdelkefi et al. (2013c, 2014),
36 and Zhao et al. (2012).
37 However, transverse galloping is not the only flow-induced os-
38 cillating phenomenon in energy harvesting devices, and some

39efforts have been devoted to using other instability sources, such as
40wake galloping (Jung et al. 2009; Akaydin et al. 2010; Jung and
41Lee 2011; Abdelkefi et al. 2013b, c), vortex-induced vibrations
42(Abdelkefi et al. 2012b; Grouthier et al. 2012; Hobbs and Hu 2012;
43Peng and Chen 2012; Mackowski andWilliamson 2013; Mehmood
44et al. 2013), and flutter of streamlined bodies (Peng and Zhu 2009;
45Tang et al. 2009; Zhu et al. 2009; Erturk et al. 2010; Bryant et al.
462011;Doaré andMichelin 2011; Zhu 2011;Abdelkefi et al. 2012c, d;
47Abdelkefi and Nuhait 2013; Bae and Inman 2014).
48Most of these studies focused on the analysis of the suitability of
49some specific mechanisms to efficiently harvest the energy through
50different energy converters (piezoelectric, electromagnetic, etc.). In
51contrast, some attempts have been made to develop methodologies
52to evaluate the energy harvesting efficiency of two-dimensional
53bluff bodies from a purely aeroelastic point of view.
54In this sense, Barrero-Gil et al. (2010) developed a simple ap-
55proach to evaluate the efficiency of the transverse galloping of bluff
56bodies as an energy harvesting mechanism. To do this, following an
57already published methodology (Ng et al. 2005), a first approxi-
58mation of the transverse galloping phenomenon can be explained
59by a one-degree of freedom (the transverse displacement, z) linear
60differential equation. The forcing aerodynamic coefficient cz is
61expanded in a power series of the transverse velocity, dz=dt,
62retaining for simplicity only, the two first terms in the cz series
63expansion, that is, cz 5 a1ðdz=dtÞ=U1 a3½ðdz=dtÞ=U�3. Barrero-Gil
64et al. (2010) demonstrates that, within this approximation, the
65maximum harvesting efficiency is hmax 52a21=ð6a3Þ. The criterion
66developed is applied to assess the energy harvesting efficiency of
67several two-dimensional bodies (square, isosceles triangle, and
68D-section) whose aerodynamic coefficients are taken from the
69existing literature. The conclusion drawn is that D-shaped, two-
70dimensional bodies are the most appropriate ones for energy har-
71vesting devices based on transverse galloping, because they provide
72the highest hmax value among the considered bodies.
73Further experiments conducted at IDR/UPM on families of
74bodies with different cross sections provided a better insight on the
75transverse galloping phenomenon, and allowed for improvement of
76the approach initiated by Barrero-Gil et al. (2010) to predict the
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77 energy harvesting efficiency of these structures by also providing
78 a larger set of experimental aerodynamic data to validate the meth-
79 odology. In particular, the transverse galloping stability of triangles
80 (Alonso et al. 2005, 2007; Alonso and Meseguer 2006), ellipses
81 (Alonso et al. 2010), biconvex, and rhombi (Alonso et al. 2009)were
82 thoroughly determined by wind tunnel testing of cylinders with
83 respective cross-sectional geometry and variable relative thickness.
84 By properly using the new and extended set of experimental
85 aerodynamic data, it is possible to further develop and improve the
86 methodology presented in Barrero-Gil et al. (2010) to evaluate the
87 transverse galloping energy efficiency of bluff bodies.
88 A brief summary of the theoretical foundation already published
89 in Barrero-Gil et al. (2010) is provided in the “Mathematical Model”
90 section, and a new and improved way to estimate hmax is presented.
91 The section “Analysis of the Energy Harvesting Properties of
92 Several Bluff Bodies” is devoted to the application of the hmax
93 criterion to a large amount of new cross-sectional shapes. Con-
94 clusions are outlined in the “Conclusions” section.

95 Mathematical Model

96 Theoretical foundations of galloping are well established and un-
97 derstood (Den Hartog 1965; Novak 1969, 1972). The simplest
98 model to analyze the translational galloping behavior of a bluff body
99 consists of a damped spring-mounted cylindrical body under the

100 action of an incoming smooth flow of velocity U, parallel to the
101 x-axis (Fig. 1). Other relevant magnitudes are the cylinder mass per
102 unit length, m, the mechanical damping ratio, z, the natural circular
103 frequency of oscillations,vn, thefluid density, r, and a characteristic
104 transversal length of the galloping two-dimensional body (as the
105 normal to wind length of its cross section, bm). Then, assuming the
106 body is slender enough to assure two-dimensional flow, the dy-
107 namics of the system is driven by

m

�
d2z
dt2

þ 2zvn
dz
dt

þ v2
nz

�
¼ fzðaÞ ¼ 1

2
rU2bmczðaÞ (1)

108 where z 5 vertical displacement; t 5 time; fz 5 instantaneous two-
109 dimensional lateral force (parallel to the z-axis); cz 5 instantaneous
110 two-dimensional lateral force coefficient; vn 5 undamped reso-
111 nance frequency; and z 5 damping coefficient.

112In a body reference frame, across-wind oscillation of the structure
113periodically changes the angle of attack of the incident wind. Such
114a variation in the angle of attack produces variation in the aero-
115dynamic forces acting on the structure (Fig. 1), which, in turn, affects
116the dynamic response of the structure. Therefore, transverse
117galloping can be explained as although the incident velocity U is
118uniform and constant, because of the lateral oscillation of the body,
119in a body reference system, the total velocity changes both its mag-
120nitude and directionwith time. Consequently, the body angle of attack
121also changes with time, hence, the aerodynamic forces acting on it.
122Consider that a structure at rest is oriented at a given angle of
123reference a0 with respect to the incident flow (Alonso et al. 2005;
124Alonso and Meseguer 2006). When the body oscillates along
125the z-axis direction within an uniform flow with velocity U,
126the relative velocity between the fluid and the body is Ur
1275

�
U2 1 ðdz=dtÞ2�1=2 5U

�
11 tan2 a

�1=2
, where the angle of at-

128tack caused by the oscillation is tana5 ðdz=dtÞ=U; therefore,
129Ur 5U=cosa. Drag, dðaÞ, and lift, lðaÞ, forces are, respectively,
130dðaÞ5 ð1=2ÞrU2

r bmcdðaÞ 3and lðaÞ5 ð1=2ÞrU2
r bmclðaÞ, where

131cdðaÞ stands for the drag coefficient, clðaÞ is the lift coefficient,
132r is the fluid density, and bm is the characteristic transversal length
133of the cylinder, as already stated.
134The projection of those forces in the z-axis direction is fzðaÞ
1355edðaÞsinae lðaÞcosa, and then Eq. (1) reads as

m

�
d2z
dt2

þ 2zvn
dz
dt

þ v2
nz

�
¼ 21

2
rU2

r bm½cdðaÞsinaþ clðaÞcosa�

¼ 21
2
rU2bm

cdðaÞtanaþ clðaÞ
cosa

¼ 1
2
rU2bmczðaÞ

(2)

136To solve Eq. (2), the function czðaÞ can be expanded in a power
137series of tana (Barrero-Gil et al. 2010; Ng et al. 2005) by fitting the
138function czðaÞ, measured, for instance, in wind tunnel tests, to
139a polynomial in tana as

czðaÞ ¼ P‘
j51

a2j21 tan
2j21 a (3)

140Only the antisymmetric part of czðaÞ around czða0Þ contributes to
141galloping. Therefore, only the antisymmetric part of czðaÞ is used to
142obtain the polynomial Eq. (3).As long asa is small enough, the linear
143term coefficient a1 reduces to the function dcl=da1 cd appearing
144in the Glauert-Den Hartog quasi-static criterion for galloping.
145Considering the movement is quasi-steady, because tana� 1,
146the lateral force coefficient becomes czðaÞ≅eðcda1 clÞ1Oða2Þ
14752ðcd 1 dcl=daÞa1Oða2Þ; hence, a1 5eðcd 1 dcl=daÞ.
148The usual dimensionless variables in aeroelastic analysis are now
149introduced: y5 z=bm, t5vnt,mp 5m=ðrb2mÞ, andUp 5U=ðvnbmÞ
150in Eq. (2), and substituting czðaÞ by its series expansion in Eq. (3),
151Eq. (2) yields

d2c
dt2

þ 2z
dc
dt

þ c ¼ Up2

2mp

P‘
j51

a2j21
1
Up

dc
dt

� �2j21

(4)

1524where y5 dimensionless vertical displacement; t 5 dimensionless
153time;mp 5 ratio of the mean density of the body to the density of the
154surrounding fluid; and Up 5 reduced velocity.
155Once the problem formulation has been established (the pre-
156ceding differential equation with suitable boundary and initial
157conditions), an approximation to the problem solution can be

Fig. 1. Two-dimensional body in galloping oscillation: clðaÞ, cdðaÞ, lift
and drag coefficients, respectively; czðaÞ, vertical force coefficient; D,
damper; dz=dt, vertical velocity caused by gallopingmotion; S, spring;U,
upstreamunperturbedflowvelocity;a, angleof attack,a0, reference angle14
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158 obtained by applying, for instance, the procedure already presented
159 inBarrero-Gil et al. (2010). Themethod consists of the application of
160 theKrylov-Bogoliubovmethod to this differential equation to obtain
161 the time variation of the dimensionless galloping amplitude. To

162solve the problem, it is assumed that the body motion can be
163expressed as c5ApðtÞcos½t1fðtÞ�, where ApðtÞ and fðtÞ are
164functions slowly varying with t. Then, the dimensionless amplitude
165becomes

dAp

dt
¼ 2 1

2p

ð2p
0

"
22z

dc
dt

þ Up2

2mp

P
j51

a2j21

Up2j21
dc
dt

� �2j21
#
sinðt þ fÞdt

¼ zAp2Up2

4mp
a1

Ap

Up
þ 3
4
a3

Ap

Up

� �3

þ 5
8
a5

Ap

Up

� �5

þ 35
64

a7
Ap

Up

� �7

þ 63
128

a9
Ap

Up

� �9

þ/

" #
(5)

166 The steady amplitude of the oscillations is given by the real and
167 positive roots of dAp=dt5 0. Independent of the number of terms
168 retained in Eq. (5), one of the roots is always Ap 5 0. The analytical
169 calculation of the other roots of Eq. (5) becomes more and more
170 complicated as the number of terms increases. If only a1 and a3 are
171 retained, the efficiency, or conversion factor, defined by the ratio of
172 the power extracted by the structure from the flow per unit length
173 and the total power in the flow per unit length, becomes hmax
174 52a21=ð6a3Þ, as already stated.
175 The power that can be obtained in a cycle from transverse gal-
176 loping oscillations, Pg, is obtained from the expression

Pg ¼ 1
T

ðT
0

fz
dz
dt

dt ¼ rU2b
2T

ðT
0

cz
dz
dt

dt (6)

177 where T 5 oscillation period.
178 In contrast, the power associated with the unperturbed flow is
179 Pf 5 rU3bm=2, and therefore, the energy harvesting efficiency is
180 h5Pg=Pf .
181 The direct integration of Eq. (6), after the introduction of the
182 dimensionless variables, to obtain Pg as performed in Barrero-Gil
183 et al. (2010), results in a value for the efficiency of

h ¼ 1
2

�
a1

Ap

Up

� �2

þ 3
4
a3

Ap

Up

� �4

þ 5
8
a5

Ap

Up

� �6

þ 35
64

a7
Ap

Up

� �8

þ 63
128

a9
Ap

Up

� �10

þ/

	
(7)

184 A different approach can be introduced here for the determination
185 of the efficiency in a simpler way. The idea is to evaluate the power
186 Pg, not the aerodynamic force used in Eq. (6), fz, but the dissipative
187 term in Eq. (1), that is, the left-hand side of Eq. (1). Eq. (6) for Pg
188 then becomes

Pg ¼ m
T

ðT
0

d2z
dt2

dz
dt

dt þ 2zvn

ðT
0

dz
dt

� �2

dt þ v2
n

ðT
0

z dz
dt

dt

2
64

3
75

¼ 2mzvn

T

ðT
0

dz
dt

� �2

dt (8)

189 Inwriting the last term of Eq. (8), it has been considered that, z being
190 a periodic function, the integrals of both ðd2z=dt2Þ3 ðdz=dtÞ and
191 z3 ðdz=dtÞ are zero in a cycle.

192Then, because it has been assumed that z5AðtÞcos½vnt1fðtÞ�,
193and the introduction of the dimensionless variables already
194having been defined, gives c5ApðtÞcos½t1fðtÞ�, and dz=dt
1955vnbmdc=dt52vnbmAp sinðt1fÞ, where it has been considered
196that the time variation of both ApðtÞ and fðtÞ is so slow that they
197can be considered constant in a cycle. Therefore

Pg ¼ z
mv3

nb
2
m

p

ð2p
0

dc
dt

� �2

dt

¼ z
mv3

nb
2
m

p

ð2p
0

f2Ap ðtÞsin½t þ fðtÞ�g2dt ¼ zmv3
nb

2
mA

p2 (9)

198Thus, the expression giving the efficiency now results in

h ¼ 2zmp

Up

Ap

Up

� �2

(10)

199where zmp is proportional to the Scruton number. Obviously, this
200last expression states that the only energy that is harvested out of
201the flow by the galloping motion is the energy dissipated by
202the structure.
203The analytical calculation of the maximum efficiency becomes
204too complex when more than the first two terms in the polynomial
205approximation to czðaÞ, Eq. (3), are considered. In that case, the
206problem solution is better achieved by a numerical method. The
207procedure used in the present work when more than two terms are
208used in Eq. (3) is the following:
2091. First, the coefficients a2je1 of the series expansion inEq. (3) are
210calculated by fitting this expression to available experimental
211data. Note that the values of the fitted coefficients depend on
212the number of terms considered in Eq. (3).
2132. Once the coefficients a2je1 are known, the corresponding
214functions dAp=dt, Eq. (5), are evaluated. It must be pointed
215out that the parameters involved in Eq. (5) areAp,Up, and zmp;
216therefore, in this process, two of them are fixed (namely, Ap

217and zmp), whereas the third one, Up, is considered to be an
218independent variable. The result depends on the values chosen
219for Ap and zmp (additional comments on this point are given
220later in this work).
2213. The roots of dAp=dt5 0 are then calculated; thus, the critical
222values of Up corresponding to the selected values of Ap and
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223 zmp are obtained (formally, the smaller value of the criticalUp

224 is the one of interest).
225 4. Then, the efficiency is determined by using either Eq. (7) or
226 Eq. (10) as a function of Up, Ap, and zmp.

227 Analysis of the Energy Harvesting Properties of
228 Several Bluff Bodies5

229 In the simplest approach, when only the first two terms (a1 and a3)
230 are considered in the series (6 3), themaximumefficiency occurswhen
231 hmax 52a21=ð6a3Þ. This expression gives a rough approximation to
232 the quality of a given two-dimensional body to extract energy
233 through transverse galloping oscillations. Despite the limited ap-
234 plication of this approximation, it seems clear that the more
235 promising bodies for power extraction are those whose cross sec-
236 tions provide large positive values of the coefficient a1 and small
237 negative values of a3. In a first approximation (small values of the
238 angle of attack), the coefficient a1 can be identified with the Glauert-
239 Den Hartog parameter for galloping, and it must be positive (the
240 body must be stalled), whereas a3 has to be negative, because this
241 parameter represents the capacity of the system to keep the amplitude
242 of the galloping oscillations between finite boundaries (limit cycle
243 oscillations).
244 Note also that when only two terms are considered, themaximum
245 efficiency does not depend on the parameters involved in Eq. (10).
246 This expression is not applicable, however, when more terms are
247 retained in Eq. (5).
248 Using sufficient terms in the series expansion of the force co-
249 efficient czðaÞ is important for properly predicting the energy har-
250 vesting efficiency of a given structure. In addition, when this force
251 coefficient is obtained from experimental data, the process of fitting
252 these data determines the accuracy of the results. The7 fitting process
253 is affected by the value of the reference angle a0 selected [formally,
254 only the antisymmetric part of czðaÞ obtained from experimental
255 data are considered] and by the number of data points taken around
256 the central one. In the fitting process of a given equation to a set of
257 experimental data, the first condition that should be fulfilled is that
258 the equation must be appropriate to reproduce the main features of
259 the experimental data (in the case of a power series, this is generally
260 achieved by retaining enough terms in the truncated series), oth-
261 erwise, very different conclusions can be reached from the con-
262 clusions that the experimental data show.
263 The main purpose of this work is to investigate how the ap-
264 proximation chosen to derive the force coefficient from the experi-
265 mental data for calculating the energy harvesting efficiency
266 determines the accuracy of the results. The criteria derived for that
267 approximation, together with the simpler approach to evaluate the
268 harvesting efficiency presented in the “Mathematical Model” sec-
269 tion, substantially improves the method presented in Barrero-Gil
270 et al. (2010). This improved method is applied to bodies with dif-
271 ferent cross sections.
272 The analysis is performed first on D-shaped cross sections,
273 whose efficiency is derived in Barrero-Gil et al. (2010) by choosing
274 a cubic polynomial for the force coefficient approximation from
275 experimental data available in the literature. To contrast these results
276 and apply the new findings to the energy harvesting efficiency
277 evaluation, new wind tunnel tests were performed at IDR/UPM on
278 a D-shaped cross-section body.
279 A prism with the cross section (Fig. 2) was built up, and its
280 aerodynamic properties were measured in the A9 wind tunnel at
281 IDR/UPM. This wind tunnel is an open circuit, closed test chamber
282 whose cross section is 1.8-m high and 1.5-m wide. Turbulence
283 intensity is approximately 2.5% at 20 m=s wind velocity. Themodel
284 span was 0.8 m, and there were two flat plates parallel to the flow at

285the ends of the prism to assure two-dimensional behavior. Aero-
286dynamic loads were measured through a six-component strain-
287gauge balance (ATI 8DELTA, ATI Industrial Automation, Apex,
288North Carolina), whereas the flow velocity was measured with a
289Pitot tube (model 3.3.311,AirflowSystems,Dallas, Texas), connected
290to a Schaewitz Lucas pressure transducer. The D-shaped model
291was mounted on a rotating platform NEWPORT RV120-PP-HL
292(Newport Corporation, Irvine, California), which, in turn, was
293mounted on the strain-gauge balance. The rotating platform can set
294the model angle of attack within 60:1� accuracy. The balance has
295a maximum measurement uncertainty of 1.25%. No provisions for
296blockage corrections of themeasured loads have been undertaken, as
297even in the worst case, the model front area (including end plates) is
298less than 8% of the test section flow area.
299Aerodynamic forces were measured from a0 5290� to a0
3005 190� at a 1� step. At each reference angle, the loadswere sampled
301at 200Hz during 30 s. The results obtained are shown in Fig. 2, in the
302same plot of the experimental data reported by Barrero-Gil et al.
303(2010). In Fig. 2, the symbols represent the experimental data
304reported by Barrero-Gil et al. (2010) (circles) and the data measured
305at IDR/UPM facilities (rhombi). The lines correspond to fitted
306equations in the experimental data reported by Barrero-Gil et al.
307(2010) (circles) by retaining only the first two terms in Eq. (3) (solid
308lines). The influence of the number of experimental points in the
309fitting process is as follows: line 1 represents the fitting result when
310only nine experimental points (white circles) are used; line 2 rep-
311resents thefitting result when 11 experimental points (white and gray
312circles) are considered, and line 3 is obtained when the whole set of
313experimental points reported by Barrero-Gil et al. (2010) is con-
314sidered in the fitting process [15 experimental points (white, gray,
315and black circles)]. Line 4 is the one given in Barrero-Gil et al.
316(2010), fitting with only two terms.
317The dependence on the considered number of experimental
318points used to fit lateral force coefficients to data presented in Fig. 2
319can be found in Table 1.
320There are some differences between the two sets of experimental
321data, which can be explained by keeping in mind the experiments
322described herein, that the noncircular part of the D-shaped body

Fig. 2.Variation with tana of the lateral force coefficient cz in the case
of D-shaped bodies (symbols and key lines are explained in the text)
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323 contour is not exactly a flat surface, but is formed by two planes,
324 creating an angle of 170� between them (instead of 180�). This
325 slightly modifies the aerodynamic behavior at large values of the
326 angle of attack (in this case, the relative thickness is 1.84 instead of 2).
327 The force coefficient curve is then fitted by taking different
328 numbers of experimental points measured during the IDR/UPM
329 wind tunnel tests to assess the influence of this parameter, and
330 thus, the fitting curves using the 9, 11, and 15 experimental points
331 are also represented in Fig. 2. Finally, the fitting curve given in
332 Barrero-Gil et al. (2010) is also included in Fig. 2. A9 close look at the
333 curves in Fig. 2 indicates how important it is to have the right choice
334 of the approximation to czðaÞ from the experimental data; specifi-
335 cally, if the range of experimental data points is large (this applies to
336 D-shaped cross sections but also to other bodies), then the curvature
337 variation of the function should not be so simple. As shown in Fig. 2,
338 the real behavior of the experimental data is characterized by an
339 almost zero slope at the origin, but if the data interval taken for the
340 curve fitting is too large, the extreme points of the interval are those
341 driving the value of the slope of the fitting curve. In this case, it is
342 possible to obtain a fitting curve with a slope at the origin larger than
343 that shownby the experimental data,whichmeans an overestimation
344 of the energy harvesting efficiency. The curvature of the curves at the
345 origin is also changed.
346 The new approach for the evaluation of the energy harvesting
347 efficiency is also applied to other two-dimensional bodies that may
348 be unstable and experience transverse galloping oscillations. During
349 the past several years, a research program devoted to studying the
350 transverse galloping characteristics of prismatic bodies with simple
351 basic cross-sectional shapes has been carried out at IDR/UPM.
352 Within this program, parametric experimental studies of bodies
353 like isosceles triangles, ellipses, biconvex aerofoils, and rhombi

354(Fig. 3) have been carried out by wind tunnel tests. The parameters
355that define the members of a given family of bluff bodies are the
356relative thickness, t, which is defined as the ratio of the maximum
357thickness, bm, of the reference body cross section to its chord, c. The
358reference body cross section is the one corresponding to a0 5 0
359(Fig. 3). Similar czðaÞ curves for these bodies, as the one depicted in
360Fig. 2, can be found in Alonso andMeseguer (2006), in Alonso et al.
361(2005, 2007) in the case of triangular cross section bodies, in Alonso
362et al. (2009) for biconvex cross section bodies, in Alonso et al.
363(2009) and in Ibarra et al. (2014) for rhomboidal cross-section
364prisms, and in Alonso et al. (2010) for elliptical cross-section
365beams. In all the preceding cases, the dependence of czðaÞ on the
366parameters defining the section geometry is considered.
367Obviously, to extract energy from galloping oscillations, the
368configuration must develop instability, which according to pub-
369lished information, only occurs at given values of the reference
370angle a0, which is different for each family of bodies. The differ-
371ent stability maps for the previously listed geometries have been
372published elsewhere. Information concerning triangular prisms can
373be found in Alonso et al. (2005, 2007, 2012), Alonso and Meseguer
374(2006), and Iungo and Buresti (2009); elliptical bodies are consid-
375ered in Alonso et al. (2010), and both biconvex and rhomboidal
376cross-section bodies are analyzed in Alonso et al. (2009).
377The corresponding values of the function czðaÞ5 ½cdðaÞtana
3781 clðaÞ�=cosa have been calculated from the available wind tunnel
379tests data on the aerodynamic coefficients of the bodies under
380consideration. These data are fitted to polynomials in tana, thus
381giving the values of the coefficients a2je1. Then, the maximum
382efficiencies are obtained according to Eq. (10) and the new approach
383presented in the “Mathematical Model” section.
384The geometry that shows the maximum efficiency now needs to
385be determined, aswell as which geometry (represented by its relative
386thickness) also shows the maximum efficiency for each family of
387bodies. Fig. 4 shows the variation with the relative thickness of the
388maximum efficiency of the different families of bluff bodies. The
389results represented in Fig. 4 correspond to the case Ap 5 2 and
390zmp 5 1ða0 ≅ 180�Þ, but, as has already been mentioned, these
391results will be different if other values of the parameters concerned
392are considered. Such behavior is shown in Fig. 5, where the variation
393of the maximum efficiency with the dimensionless amplitude Ap,
394in the case of isosceles triangular bodies with main vertex angle
395b5 30�, is shown. There are two families of curves in this plot.
396Those that are almost vertical straight lines come from Eq. (7) for
397the giving values of Up, whereas the curved lines are obtained from
398Eq. (10), assuming some fixed values of zmp.
399From this plot, it can be realized that once Up is fixed, the am-
400plitude of oscillations Ap for maximum efficiency is fixed, because

Fig. 3. Two-dimensional prism families whose energy harvesting suitability under galloping oscillations are considered: (a) triangle; (b) ellipse;
(c) biconvex; (d) rhombus

Table 1. Variation of the a1 and a3 Coefficients Appearing in Eq. (3) of
the Lateral Force Acting on D-shaped Bodies17

Line number
Number of experimental

points a118 a3

1 11 20:159 20:758
2 9 20:305 20:394
3 15 20:601 0.043
4 The same as line 3, but

(0,0) excluded
20:79 0.19

Note. czðaÞ5 a1 tana1 a3 tan3 a, as a function of the number of experi-
mental points used to fit the previous expression to experimental data
represented in Fig. 2. Line number identifies the fitting curve in Fig. 2. Line
4 corresponds to the results reported in Barrero-Gil et al. (2010).
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401 the maximum position is obtained by differentiation of Eq. (7), and
402 zmp does not have an influence. The maximum efficiency grows as
403 the parameter zmp grows [as deduced from Eq. (10)], and similar
404 conclusions can be obtained by considering any other order of the
405 parameters involved. The reference configuration (Ap 5 2, zmp 5 1)

406used to calculate the maximum efficiency of the different bluff
407bodies is represented by a circle in Fig. 5.
408By keeping in mind Eqs. (7) and (10), each geometrical con-
409figuration can be represented by a single point if the self-similar
410variables Ap=Up and hmaxU

p=ð2zmpÞ are used instead of Ap and
411hmax. In these self-similar variables, Fig. 5 reduces to Ap=Up 5 0:77
412and hmaxU

p=ð2zmpÞ5 0:35.
413The values of the self-similar variables change with the body
414shape, but it is remarkable that, within the validity range of this
415simplified model, the transverse galloping energy harvesting prop-
416erties of a given two-dimensional body can be summarized in
417a single point in the Ap=Up versus hmaxU

p=ð2zmpÞ plane.
418Concerning Fig. 4, in the case of triangular cross-section prisms,
419which are identified by the angle b of the main vertex, tanb
4205 bm=ð2cÞ, there are several instable regions in the a0-b plane
421(Alonso et al. 2005, 2007, 2009, 2010, 2012; Alonso and Meseguer
4222006; Iungo andBuresti 2009). One of these regions is in the vicinity
423of a0 5 180�, whereas another one appears at approximately a0
4245 60�. Obviously, to obtain energy from the galloping oscillations,
425the body under considerationmust undergo instability, whichmeans
426that at least the Glauert-Den Hartog criterion must be satisfied.
427Taking this fact into consideration, only those configurations that
428clearly meet this criterion (a0 ≅ 180�) have been considered in
429Fig. 4.
430According to Fig. 4, triangular cross-section bodies at a0 5 180�
431seem to be the more promising ones for energy harvesting from the
432galloping phenomenon.

433Conclusions

434An improved approach to estimate the energy harvesting efficiency
435from the transverse galloping of bluff bodies using experimental
436data has been presented. The importance of properly choosing the
437process of fitting the polynomial curve of the aerodynamic force
438coefficient to the experimental set of data has been demonstrated
439with existing experimental data from bodies with different cross
440sections and with data obtained from new experiments. It has been
441proven that, unless the aerodynamic force coefficient experimental
442curve is extremely simple, experimental data cannot be fitted by
443a cubic polynomial, and higher powered terms must be retained in
444the series expansion (3) 10to reproduce the real behavior.
445The inappropriate election of the polynomial used to fit the ex-
446perimental data would give an unrealistic and an even too optimistic
447capability of the given body to gather energy from wind flow, or,
448in contrast, lead to disregarding the given two-dimensional body
449shape. This is based on a wrong estimation of the energy harvesting
450capability, which seems to be the case of isosceles triangular cross-
451section bodies in Barrero-Gil et al. (2010).
452Another important conclusion is that, although there are many
453cross-section shapes that show transverse galloping instability in
454a range of angles of attack a0, from the point of view of energy
455harvesting, only a few of them seem to be appropriate to give
456reasonable values of the maximum efficiency associated with the
457extraction of energy from the incident wind. Values of themaximum
458efficiency of different families of prisms are provided and compared.
459The most promising configuration seems to correspond to the re-
460verse triangular cross-section prisms, and if the study is confined
461to isosceles triangles (identified by the angle b of the main vertex),
462the maximum efficiency is reached for triangles with a vertex angle
463close to b5 60�.
464Further experimental investigations concerning triangular bodies
465(Ibarra et al. 2014) demonstrated that inverted isosceles triangles
466develop galloping instabilities at Up ≅ 35; in the case of isosceles

Fig. 4. Maximum efficiency, hmax, versus relative thickness, t, of the
different families of prisms shown in Fig. 3; triangles at a0 ≅ 180�
(triangles); rhombi (rhombi), biconvex (squares), and ellipses (circles);
solid circles represent results of D-shaped bodies; vertical bars indicate
the estimated error15

Fig. 5. Variation of the maximum efficiency for energy harvesting,
hmax, with the dimensionless amplitude of galloping oscillations,Ap, of a
two-dimensional bluff body whose cross section is an isosceles triangle
with a main vertex b5 30�; results correspond to a0 5 180�; numbers
on the curves indicate the values of the reduced velocity, Up (vertical
lines) or the product of the reducedmass and the damping ratio, zmp; the
circle (Ap 5 2, zmp 5 1) represents the reference configuration selected
to compare the efficiency of different galloping bluff bodies (Fig. 416 )
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467 triangles with a main vertex b5 60�, where Up stands for the re-
468 duced velocity, Up 5U=ðvncÞ, where U is the air speed, vn is the
469 first natural body frequency, and c is a characteristic length. Before
470 galloping occurs, at lower wind velocities, Up ≅ 3, a vortex-induced
471 vibration (VIV) episode appears. However, this VIV episode is of
472 less interest from the point of view of wind energy harvesting,
473 because VIV takes place at low air velocity (thus, the wind energy to
474 be gathered is small) and because of the small amplitude of the body
475 oscillations.
476 In galloping oscillations, these two effects are enlarged. In the
477 experiments reported by Ibarra et al. (2014), the galloping phe-
478 nomenon appears for Up . 35, whereas VIV oscillations occur at
479 Up ≅ 3, as already stated, which implies the galloping wind kinetic
480 energy is more than 100 times greater than the one associated with
481 vortex shedding. The oscillation amplitudes are highly dissimilar,
482 and the ratio between galloping amplitude oscillation, AG, and
483 vortex-induced one, AV , can be up to AG=AV $ 4. In galloping
484 experimentation, the allowedmaximum oscillation amplitudes must
485 be limited, and the experimental sequences should be stopped when
486 such maxima of the oscillation amplitudes are reached, to avoid any
487 damage to the setup.
488 From a practical point of view, the advantages of energy har-
489 vesting by using inverted isosceles triangles are probably limited
490 by the drawbacks of large amplitude oscillations and the potential
491 destructive effects of galloping instabilities, but the aspects of these
492 problems are out of the scope of this paper.
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