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Two multispectral maturity classifications for red soft-flesh peaches ('Kingcrest', 'Rubyrich' and 'Richlady' 
n = 260) are proposed and compared based on R (red) and R/IR (red divided by infrared) images obtained 
with a three CCD camera (800 nm, 675 nm and 450 nm). R/IR histograms were able to correct the effect of 
3D shape on light reflectance and thus more Gaussian histograms were produced than R images. As fruits 
ripened, the R/IR histograms showed increasing levels of intensity. Reference measurements such as firm
ness and visible spectra also varied significantly as the fruit ripens, firmness decreased while reflectance 
at 680 nm increased (chlorophyll absorption peak). 

1. Introduction 

A major issue in designing vision systems for maturity assess
ment in fruits is the identification of the most relevant wave
lengths for this goal. For monitoring ripening of peaches, 
reflectance at 450 nm and 680 nm can provide complementary 
information (Ruiz-Altisent et al., 2006). In the visible range, two 
areas have been addressed as the most important areas: 680 nm 
related to chlorophyll content, and 450 nm related to carotenoids 
content. Ruiz-Altisent etal. (2006) showed that both groups of pig
ments evolve independently for commercial peach varieties, also 
providing very different ranges of variation. Several research re
sults have considered the chlorophyll band (Tu et al., 1995 cited 
by Lu (2004), Lu and Peng (2006)) or water absorbance band (Mc 
McGlone et al., 1997 cited by Lu (2004)) as most relevant for matu
rity and firmness. Reflectance at 680 nm, related to chlorophyll 
content, presented the highest correlation with firmness in peach 
(Lu and Peng, 2006). 

Differences can be found between (a) selecting narrow wave
lengths as light sources while using standard panchromatic CCD 
cameras and (b) the use of panchromatic light with narrow filters 
for image acquisition. Thus, Tu et al. (1995) used He-Ne laser as a 
light source at 670 nm in peach and McGlone et al. (1997) used a 
diode laser at 864 nm as light source in kiwifruit. Instead, Lu and 
Peng (2006) made use of panchromatic light source. 

Multispectral imaging is a technology originally developed for 
space-based imaging which may capture light from wavelengths 
beyond the visible light range, such as infrared, allowing the 
extraction of additional information that the human eye fails to 
capture. Multispectral imaging can be used to address external fea
tures such as ripening (Lu, 2004) and external defects (Diaz et al., 
2000,2004; Leemans and Destain, 2004; Kleynen et al., 2003; Mehl 
et al., 2004; Tao and Wen, 1999; Singh and Delwiche, 1994; Unay 
and Gosselin, 2006) with higher sensitivity in comparison to the 
ordinary RGB imaging (Gomez-Sanchis et al., 2008; Aleixos et al., 
2002, 2007; Leemans et al., 2002; Kleynen et al., 2003). 

RGB vision is a simplified case of multispectral imaging, where 
broad wavelength ranges are used. Aleixos et al. (2002) described 
an on-line image system for sorting oranges which used an RGB 
camera together with a 750 nm image. Defect regions were 
detected, and ripeness was estimated using Bayesian discriminant 



algorithms. Laykin et al. (2002) used different algorithms that were 
applied to classify tomatoes employing RGB cameras, based on col
our, defects and colour homogeneity. Also in tomatoes, Jahns et al. 
(2001) found that the dominating wavelength calculated from RGB 
images increases for increasing maturity, and that a significant 
negative correlation was found between firmness stage (elasticity 
modulus) and such dominant wavelength. Sugar content of Iyokan 
orange was estimated (R2 = 0.6) by means of neural networks by 
making use of colour, shape and roughness extracted from RGB 
images by Kondo et al. (2000). 

When using several wavelengths for multispectral applications, 
the definition of ratios is a key target. Reflectance ratio 670 nm/ 
800 nm was earlier shown to be a good maturity index for sorting 
yellow clingstone peaches (Delwiche et al., 1987). The main advan
tage of using ratios is the compensation of lighting changes and 
shape effects. The Normalized Difference Vegetation Index 
NDVI = (R800-R680)/(R800 + R680) that uses two spectral bands, 
680 and 800 nm, is a parameter that has shown to compensate 
such changes even for very large lighting changes, such as those 
registered under remote sensing. The NDVI can be used for chloro
phyll content estimation in the image system presented by Vila 
et al. (2005). 

The reference properties that are used as a base for comparison 
towards vision systems are mainly firmness and soluble solids con
tent. Light backscattering has been related to firmness in several 
types of research in apple and peach. Lu (2004) used multispectral 
images at five spectral bands between 680 nm and 1060 nm, se
lected on literature review, to quantify light backscattering profiles 
of apple fruit for predicting firmness and soluble solids content. 
Using neural network methods, three different ratios that made 
use of four wavelengths gave the best predictions of fruit firmness. 
When only one ratio was used, 680 nm/940 nm gave the best firm
ness prediction. Tu et al. (1995) cited by Lu (2004) recorded reflec
tance images at 670 nm in peach. As firmness decreased, the red 
band histogram moved to the right, i.e. the intensity of the light re
flected by the fruit increased as firmness decreased. McGlone et al. 
(1997) cited by Lu (2004) reported that the intensity of light emit
ted from the kiwifruit increased with decreasing firmness. Further
more, Peng and Lu (2006) compared three mathematical models 
for scattering profiles in apples in order to improve firmness esti
mation. Qjng et al. (2007) employed laser-induced backscattering 
light to predict soluble solids content and firmness in apples. Re
lated to peach, Lu and Peng (2006) found that the backscattered 
light at 677 nm, characterised by four parameters extracted from 
its corresponding 'Lorentzian' profile, and also around 677 nm, 
had the highest correlation with peach firmness, using halogen 
lamp as light source. They also found that the region around one 
water absorption peak (950 nm) showed some correlation with 
firmness in some cultivars. Carlomagno et al. (2004) used a spec
trograph in combination with a CCD camera analyzing the spec
trum transmitted by peaches (detector positioned 120° with 
respect to the light) in the near infrared (730-900 nm). After de-
noising the signal, peaches were sorted based on their degree of 
ripeness, in terms of sugar content and firmness, with a minimum 
distance classifier method, obtaining 82.5% of correct classification 
with respect to the previous established classes. 

Most recent developments concerning image analysis in the 
food industry have been shown by Du and Sun (2006) and Zheng 
et al. (2006). Applications of different colour spaces for food quality 
evaluation were reviewed. Du and Sun (2006) presented the recent 
advances in learning techniques for food quality evaluation based 
on computer vision. In the case of fruits, the statistics learning is 
employed for segmentation, feature extraction and defects classifi
cation: Bayesian classification process, Bayesian and linear 
discriminant analysis together with Mahalanobis distance classifi
ers (Kleynen et al., 2003; Diaz et al., 2000, 2004). 

The main objective of the present work was to test the ability of 
multispectral images at two specific wavelengths (680 nm and 
800 nm) to classify peaches into maturity categories and to com
pare such classification with regard to reference measurements 
such as firmness and reflectance at 680 nm achieved with a visible 
spectrometer. For this, these images were achieved with a three 
CCD camera using narrow bandwidth filters centred at 450 nm, 
680 nm and 800 nm. The results corresponding to 680 nm and 
800 nm are the ones presented in this work. 

2. Materials and methods 

2J. Materials 

Three cultivars of red soft-flesh peaches ('Kingcrest', 'RubyRich' 
and 'Richlady') were analyzed (260 fruits, 2 replicates per fruit, 
from a variety of maturity stages collected at harvest). Samples 
(n = 30-40 fruits) were randomly selected from just-harvested 
fruits in a number of Murcia cooperatives, so that the whole matu
rity range was represented. Each sample was harvested on the 
same date, and was obtained from the same orchard. Samples were 
then sent to Madrid in refrigerated, isothermic boxes and after 12 h 
the temperature was increased (20 °C) for 4-5 h, and the fruit was 
then ready for experimentation. 

2.2. Reference and multispectral measurements 

Non-destructive reference tests (contact firmness and reflec
tance spectrometry) and images acquisition were applied to 100% 
of the fruits, while destructive reference tests (Magness-Taylor 
firmness and soluble solids content SSC) were carried out on 75% 
of fruits. Reference tests were used to compare with the classifica
tions based on the images obtained with the multispectral system. 
All measurements were carried out on both sides of the fruit (the 
most coloured side 'blush' and the opposite side 'ground'). Refer
ence parameters were measured in the following order: 

Contact firmness. Measured by means of Impactor response, the 
maximum impact acceleration (m/s2) and duration (ms) were 
measured using the 'LPF-Lateral Impact Sensor 2.0' furnished with 
a piezoelectric accelerometer ENDEVCO model 256-10 (ENDEVCO, 
SAN JUAN CAPISTRANO, CA 92675 USA); which was adapted for 
on-line use by Garcia-Ramos et al. (2003). Measurements were car
ried out in triplicate on each side of the fruit samples. 

Optical reflectance. Visible relative reflectance spectra were ob
tained with a portable spectrophotometer Minolta CM-50I (Konica 
Minolta Sensing, Inc., Japan), 450-700 nm, at 30-nm intervals. Se
lected wavelength values at 450 nm (R450J and at 680 nm (R680J 
were used as a reference with regard to multispectral information. 
Two measurements were taken on each fruit, one on each side. 

Firmness. Maximum penetration force, Magness-Taylor (firm
ness), in N, and force/deformation ratio (hardness), in N/mm, were 
measured using a force/deformation resistance meter, with an 
8-mm diameter rod, at a deformation rate of 20 mm/min using a 
Texture Analyzer XT2 (Stable Micro Systems Ltd., Godalming, 
UK). Measurements were taken on both sides of the fruit. 

Soluble solids SS, measured in °Brix, on a few drops of juice with 
a digital refractometer ATAGO PR-101 (ATAGO CO., LTD, USA). SS 
are correlated with the sweetness of peaches and basically consist 
of sucrose, glucose and fructose. The SS content was measured on 
both sides of each fruit. 

Spectral imaging. The imaging system consisted of a framegrab-
ber, National Instruments®, and a three CCD custom camera, Dun-
canTech/Redlake MS-3100® (Redlake Inc., USA) with three band
pass filters centred at 800 nm Infrared (IR), 675 nm Red (R) and 
450 nm Blue (B), with a bandwidth of 20 nm. The selection of these 



spectral bands was based on the previous research (Ruiz-Altisent 
et al., 2006) and also on several optical indices extracted from 
the literature (Zude, 2003; Merzlyak et al., 2003; Delwiche et al., 
1987). 

The light source was provided by six 100 W halogen lamps. 
Statistical analysis. The reference measurements were compared 

with the classifications based on the histograms of the images 
(Section 2.3.). One image was acquired from each side of the fruit. 
Non-supervised (Ward) classifications of fruits were carried out, 
made on both the individual varieties and the pooled samples. AN-
OVA was applied to the reference parameters and to the data ex
tracted from the image analysis. The analysis of the images and 
data (Ward classification algorithm, ANOVA, regressions) was car
ried out using Matlab® (version 7.0; Math Works, Inc., USA) and 
Statistica® (version 6, StatSoft, Inc., Tulsa, Oklahoma, USA). 
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Fig. 1. Average red histogram for each cluster with the number of fruits for each. 
Vertical lines indicate the range of largest variation of the average histograms. From 
left to right, cluster 1, cluster 2, cluster 3 and cluster 4 average histograms. 
(Increasing maturity stage from 1 to 4). 

2.3. Image analysis. Non-supervised classifications based on 
histograms 

Two non-supervised classifications based on the Ward method 
(Ward, 1963) were applied and compared to each other and to the 
reference measurements. Both classifications were applied on the 
histograms extracted from the region of interest, i.e. the skin of 
the peach. Ward method is a step by step agglomerative method 
that minimizes the intra variance of a group or cluster. Therefore, 
a cluster is a group of samples with similar characteristics. The Ward 
method finds at each step these two clusters whose pooling gives 
the minimum increase in the within group sum of squares. The 
Euclidean distance between each datum and the corresponding cen
troid of the group was used to calculate such sum of squares. In the 
present work, two images were acquired per fruit, one from each 
side. The classifications were applied to all images {i.e. two images 
per fruit were acquired considering blush and ground colour sides; 
260 fruits, 520 images). By studying the resulting dendrogram (not 
shown) with linkage distances between clusters, four clusters were 
considered in both non-supervised classifications presented. Once 
all the histograms for the four cultivars were grouped into the four 
clusters, the average histogram was calculated for each cluster. 

The first classification considered the red channel images and 
grey levels ranging from 36 to 255, which corresponded to the val
ues above the segmentation threshold of fruit with regard to the 
background. 

The second classification employed the histograms of the Red/ 
InfraRed images, corresponding to the peach. Previously the fruit 
was segmented from the background, by employing the Infrared 
images as threshold (under the particular illumination and acqui
sition conditions, fruits always corresponded to grey levels higher 
than 55 in every case). Internal validation of the Red/InfraRed 
images classification was performed by means of the calculus of 
the Euclidean distance between each anonymous histogram and 
the corresponding average of the four clusters. Each histogram 
was assigned to the cluster whose distance is the minimum of 
the four clusters. 
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Fig. 2. Representation of the four centroid peaches belonging to each non-supervised classification. From left to right, cluster 1, cluster 2, cluster 3 and cluster 4 
representative peaches (increasing maturity stage). First line corresponds to red channel, second to infrared and third to blue. Vertical colour bar represents intensity level of 
the images from 0 to 256. x and y axes represent the number of pixels of the images. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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Fig. 3. (a) Red/infrared images for the four centroid peaches. Vertical colour bar represents intensity level from 0 tol (scaled images); x and y axes represent the number of 
pixels of the images, (b) The averaged histograms of the red/infrared clusters. The number of fruits is indicated. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
The number of observations per cluster and cultivar based on Red/InfraRed 
classification. 

Cultivar 

Richlady 
Kingcrest 
Unknown 
RubyRich 

Total 

Cluster 1 

138 
2 
24 

-
164 

Cluster 2 

79 
7 
39 
5 

130 

Cluster 3 

20 
19 
41 
17 

97 

Cluster 4 

3 
32 
36 
58 

129 

Total 

240 
60 
140 
80 

520 

3. Results and discussion 

Three main results are presented in this study: classification 
based on red histograms, classification based on relative red/infra

red histograms and comparison of multispectral categories with 
regard to reference parameters such as firmness. 

3.1. Non-supervised classification based on red histograms 

The red channel (R) includes a chlorophyll absorption peak at 
675 nm. As fruits ripen, reflection increased in this band due to 
the chlorophyll degradation and so the histogram shifted toward 
brighter levels. These results are congruent with those of Tu 
et al. (1995). More recently, Lu and Peng (2006) indicated the fea
sibility of using backscattered light at 677 nm to classify firmness. 
It is important to note that these authors have focused on local 
backscattering, while the present study made use of direct lighting 
and global fruit imaging, which are simpler to incorporate as an 
on-line procedure. 

Table 2 
The number of fruits in each cluster of the camera classifications (considering pooled data for blush and ground). All fruits together n = 260. Classifications based on red/infrared 
histograms. 

Ground color side 

Cluster 1 
Cluster 2 
Cluster 3 
Cluster 4 

Total of fruits and its percentage of classification agreement 

Blush area 

Cluster 1 

54 
32 
9 
2 

97 (56%) 

side 

Cluster 2 

13 
28 
16 
9 

66 (42%) 

Cluster 3 

4 
17 
32 

53 (32%) 

Cluster 4 

2 
42 

44 (98%) 

Total fruits and percentage 

67(81%) 
64 (44%) 
44 (40%) 
85 (49%) 

260 

Table 3 
Comparison of ANOVA results based on red and red/infrared clustering for the reference parameters. 

Soluble solids (°Brix) Impact acceleration, (m/s2) Impact time (ms) MT firmness (N) Force/Deformation (N/mm) R 450 R680 

Red 
Red/infrared 
Red 
Red/infrared 

F (Fisher) 

p level 

2.6 
3.9 
0.05 
0.01 

18.3 
20.3 
0 
0 

44.8 
78.4 
0 
0 

46.8 
85 
0 
0 

51,1 
96,4 
0 
0 

6,3 
9,6 
0 
0 

257 
466 
0 
0 



Three or four naturally grouped clusters could be recognized in 
the fruit samples on the R image histograms using the Ward meth
od (blush and ground color sides). The clusters were numbered 
from the lowest to the highest mode on the histograms, reflecting 
increasing maturity levels (i.e. cluster 1 the unripest, cluster 4 the 
ripest). 

Fig. 1 represents the average histogram for each cluster num
bered based on expected maturity level. Histograms moved to
wards higher intensity values for increasing maturity stage. 
Histograms showed large differences between clusters in the range 
between 90 and 180 intensity levels. The number of fruits belong
ing to each cluster is indicated in the figure. A large number 
(n = 220) of fruits were included in the so-called ripest stage. 

Fig. 2 shows the images corresponding to the most representa
tive ('centroid') peach for each R cluster and for each channel, red 
(675 nm), infrared (800 nm) and blue (450 nm). R (first line) and IR 
images (second line) showed the effect of the shape of the fruit on 
the global intensity level recorded by the camera; reflectance was 
higher at the center of the fruit, which was closer and orthogonal 
to the camera. The blue channel provided very little information 
compared to the other channels. 

3.2. Combination of red (R) and infrared (IR) images for classifications 
purposes 

In order to compensate for the geometrical effect of the fruit, 
the R/IR ratio was computed and a new non-supervised classifica
tion of the R/IR image histogram (blush and ground color sides) 
was provided, and the classification computed following Ward 
method described in Section 2.3. Fig. 3 shows the 'centroid' fruit 
obtained by means of a rebuilt clustering process that makes use 
of R/IR images. The corresponding average histograms were more 
Gaussian as compared to those obtained with R histograms, that 
is to say the distortion of illumination was avoided. 

The number of fruits that belonged to each cultivar and cluster 
within the R/IR classification is shown in Table 1. Most cultivars 
provided fruits for the whole set of maturity stages, only 'Rubyrich' 
lacked fruits for cluster 1. 

In Table 2, a comparison of the agreement of the classifications 
of the fruits in each R/IR cluster based on the blush and ground col
or sides is made. Generally, all fruits were classified in the same or 
adjacent maturity clusters and thus there were a larger number of 
fruits around the principal diagonal. 

In the present case, no relationship was found between multi-
spectral classification and soluble solid content, which is detected 
by only one NIR band (800 nm), even though Carlomagno et al. 
(2004) reported promising results using NIR spectrometry centred 
on this band. This fact may be explained by the lower range of var
iability in commercial peaches produced in Murcia, Spain. 

Regarding the internal validation of the R/IR classification by 
means of assignment of a histogram of an image to one of the four 
clusters whose Euclidean distance was the minimum, the result 
was that a high percentage of well-classified fruits was obtained, 
when comparing the observed classification to the predicted clas
sification (90% of accordance). 

3.3. Comparison of multispectral categories with regard to reference 
parameters 

The most effective classification method (R or R/IR) was deter
mined by comparing the ANOVA analyses of the results for R and 
R/IR clustering using the reference measurements as shown in Ta
ble 3. A major feature was the increase in F (Fisher) value for R/IR 
clusters as compared to R clusters for all the parameters tested: 
soluble solids, impact acceleration, impact duration, Magness-Tay-
lor maximum penetration force, force/deformation ratio, reflec-

_>> 
E 
rt 
u 

"B 
.5? 

o E 
CI 

rt 
CI 

CI 

CI 

6 
rt 
CI 

Xj 

>> XJ 

-a CI 

S 
o 
£ 
E 
rt CI 

6 

_> 
3 
u 

X! 
u 
rt CI 

£ 
<D 
E 

X! 
.5 
x 

1 
E 
CI 

X 

o 
CI 3 
-a 
E 
rt 

CI 

rt 
6 
-a <A CI c 
E rt 
r3 ci 

^ E -a ci 
QJ CI 

c £ 
O Ci 
•a -° CI CI 

XJ Ci 
E Ci 

rt T3 
U j _ , 

En rt 

rt i c 

2/2 
Ci 'En 

3 't 
- CI 

% fj 
_> B. ci 
E X u ex (- £ 
o / ~ 
CI CI 

^ -tri 
e-2 rt +-> 
rt C 

o, & 4-- tii 
E « 2i ^ 

,CI . . 

JE m T J O 

t/i V 
E B, 

- 2 ~~~^ 

% S 
> -*-' 

-a _ i 

| l 
rt ;~ +-> P -

^ rt o 
<D < 

E ,r -E >> 
> "̂  

Tf ^ E 
a* rt £ 
3 fe £ ro > Ja 
H < -a 

a 
IN 
in 

,£_ 
!-<u 
•s <u 

3 
•S 

^ 

S" 
s II 

c 

t 
•c u 

s 

a CO 
II 

e 

"C 

"§ 

a to 
II 

c 
"tt 
J" 
b 
& 
£ 

1 en 

2 
2 
U 

r̂ 
CI 

E 

o 

m 
CI 

E 
U 

CI 

E; 

o 

1—1 

E 
U 

r̂ 
CI 

E 

o 
m 
CI 

E 
U 

IN 

CI 

E 

o 

CI 

E 
u 

r̂ 
CI 

E 

o 
m 
CI 

E 
U 

IN 

CI 

E 

o 
r̂ 

CI 

E 
O 

CI 

E 
U 

CN 

CI 

E 

o 

CI 

E 
U 

T-H m o m ai o 

E: IN o . 

(N T-i T-H e n T-i a i 
m m m ^ r ^ r m m t o 

o ^ r o m o m o ts< 

HJ HJ 

XJ HJ HJ 

CD 1-1 T-H 

HJ HJ 

a m a 



tance at 450 and at 680 nm. The classification capacity of images 
was improved by the use of relative R/IR images. Reflectance at 
680 nm showed the highest F value in both classifications (466 
and 257 for R/IR and R classifications, respectively). This is congru
ent with the fact that red images and also the relative R/IR images 
include the chlorophyll absorption peak at 675 nm. 

In Table 4, a comparison of the average reference values (solu
ble solids content, impact acceleration, Magness-Taylor firmness 
and reflectance at 680 nm) for each R/IR cluster and cultivar is 
made. Considering the pool of the four cultivar samples, firmness 
and reflectance at 680 nm varied significantly (significant differ
ences between means forp level below than 0.05) with increasing 
cluster number: firmness decreased while reflectance at 680 nm 
increased. Similar behaviour with respect to firmness and reflec
tance at 680 nm was found within each cultivar group except in 
the case of 'Rubyrich' samples where firmness parameters did 
not vary with cluster number, and in the case of 'Kingcrest' where 
variation in Magness-Taylor firmness was erratic for the ground 
color side. Soluble solids content did not appear to be related to 
the R/IR classification in any case, showing no significant variation 
between groups, in accordance with the low range of variability in 
observed reference values in °Brix (between 11 and 13 in 
averages). 

Fig. 4a shows Magness-Taylor firmness vs. impact duration with 
each point corresponding to one side of the fruit, 420 observations 
in total. The coefficient of correlation between both measurements 
R was 0.79. The standard error of estimation is 8.5 N, being 13.7 N 
the standard error of the observed Magness-Taylor firmness in the 
whole population. A nonlinear relationship was found between 
Magness-Taylor firmness and Impact response. Such nonlinear 
behaviour has also been referred to in the literature (Diezma-Igle-
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Fig. 4. (a) Magness-Taylor force (x axis) versus impact time (y axis). Each point 
corresponds to one side of the fruit, all measurements n = 420. (b) Average 
reflectance visible spectrum (Minolta) for each non supervised cluster of the camera 
(red/infrared images), n = 520. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

sias et al., 2006). Firmness decreased for an increasing number of 
clusters (1-4): Magness-Taylor firmness for almost all fruits 
(82%) belonging to cluster 4 was less than 25 N while that for 
87% of fruits from cluster 1 was larger than 25 N. 

Fig. 4b shows the average visible reflectance spectrum (420-
690 nm). In the interval between 630 nm and 690 nm, the average 
spectrum consistently increased with maturity cluster; this result 
is in accordance with the earlier results such as those reported 
by Ferrer et al. (2005) who also found higher reflectance values 
in the same range as in more mature peaches. 

4. Conclusions 

With the aim of classifying peaches at harvest into maturity lev
els, two multispectral camera classification procedures were estab
lished using red channel (red images, R) and a combination of red 
and infrared images (red divided by the corresponding infrared im
age, R/IR). The use of the R/IR ratio avoided the effect of fruit shape 
on light reflectance and thus improved the definition of multispec
tral maturity clusters. Both classification procedures (applied to 
the histograms of R and R/IR images, respectively) consistently 
showed increasing harvest maturity levels, from clusters 1 to 4, 
compared with firmness (which decreases with maturity level) 
and reflectance visible spectrum (which increased with maturity 
in the interval 420-690 nm). Image-based classification gave infor
mation similar to that obtained from the reflectance at 680 nm as 
measured with a portable spectrometer. Reflectance at 680 nm in
creased whereas firmness decreased, for increasing maturity levels 
from clusters 1 to 4, by considering all data together (n = 420 of 
three cultivars, 'Kingcrest', 'Rubyrich' and 'Richlady'). The image 
classification did not reflect variation in soluble solids content in 
accordance with the observed range of variability of the reference 
values in °Brix. In the near future, a combination (fusion) of non
destructive methods of standardizing firmness such as impact 
and multispectral image data, will improve the classification of 
peaches at harvest. Finally the nonlinear relationship between 
Magness-Taylor firmness and impact has been confirmed. 
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