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Abstract Chlorophyll (Chl) is a distinctive component of autotrophic organisms, often used as an
indicator of phytoplankton biomass in the ocean. However, assessment of phytoplankton biomass from Chl
relies on the accurate estimation of the Chl:carbon(C) ratio. Here we present global patterns of Chl:C ratios in
the surface ocean obtained from a phytoplankton growth model that accounts for the optimal acclimation
of phytoplankton to ambient nutrient, light, and temperature conditions. The model agrees largely

with observed/expected global patterns of Chl:C. Combining our Chl:C estimates with satellite Chl and
particulate organic carbon (POC), we infer phytoplankton C concentration in the surface ocean and its
contribution to the total POC pool. Our results suggest that the portion of POC corresponding to living
phytoplankton is higher in subtropical latitudes and less productive regions (~30-70%) and decreases to
~10-30% toward high latitudes and productive regions. An important caveat of our model is the lack of
iron limiting effects on phytoplankton physiology. Comparison of our predicted phytoplankton biomass
with an independent estimate of total POC reveals a positive correlation between nitrate concentrations and
nonphotosynthetic POC in the surface ocean. This correlation disappears when a constant Chl:C is applied.
Our analysis is not constrained by assumptions of constant Chl:C or phytoplankton:POC ratio, providing

a novel independent analysis of phytoplankton biomass in the surface ocean. These results highlight the
importance of accounting for the variability in Chl:C and its application in distinguishing the autotrophic
and heterotrophic components in the assemblage of the marine plankton ecosystem.

1. Introduction

Marine ecosystems contribute substantially to global biogeochemical fluxes by transporting photosyntheti-
cally fixed organic carbon (C) and related nutrient elements from the sunlit surface layer to the deep ocean.
Photosynthesis by phytoplankton constitutes the principal supply route of organic carbon into the marine
system. Understanding spatial and seasonal variations in phytoplankton biomass is a necessary requirement
to assess the role of the ocean as a major regulator of the partitioning of carbon among atmosphere and
ocean [Raven and Falkowski, 1999].

Phytoplankton carbon biomass is often inferred from chlorophyll measurements (Chl). However, Chl is a small
and variable component of phytoplankton biomass and its ratio with respect to C (Chl:C) varies from < 0.01
to > 0.1 g Chl g C" in phytoplankton cultures [Geider, 1987, 1993]. Nutrient and light (co)limitation induces
physiological changes in phytoplankton composition, which is reflected in the Chl:C ratio [Geider, 1987;
Maclintyre et al., 2000; Arteaga et al., 2014]. Inadequate representation of the physiological variability of the
Chl:C ratio can result in poor estimates of marine productivity inferred from Chl [Siegel et al., 2001; Campbell
et al., 2002; Behrenfeld et al., 2002]. Furthermore, deficient estimates of phytoplankton C biomass can lead
to inaccurate descriptions of the trophic composition of the upper ocean, affecting the estimation of car-
bon export [Emerson, 2014], metabolic rates [Ducklow and Doney, 2013] and how anthropogenically induced
climate change affects marine ecosystems [Polovina et al., 2008].

In situ observations of phytoplankton Chl:C are scarce. Methods such as flow cytometry depend on informa-
tion derived from fluorescence and scattering. These optically based estimates have associated uncertainties
related to variable Chl a fluorescence yields and a variable relationship between light scatter and carbon
composition [Stramski and Reynolds, 1993]. More recently, optically based methods to estimate Chl:C and
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phytoplankton C biomass have been applied to data from satellite sensors and profiling floats, providing a
more comprehensive description of the global surface ocean and the vertical variability of these biological
quantities [Behrenfeld et al., 2005; Boss et al., 2015; Graffet al., 2015].

The diverse physiological effects of nutrient and light limitation on Chl:C can be represented in mechanistically
founded phytoplankton models [Geider et al., 1998; Pahlow, 2005]. Cell quota models have the potential to
represent variable phytoplankton elemental composition (e.g., C, nitrogen (N), phosphorus (P), and Chl), while
optimality-based models provide the mechanistic foundation to describe physiological acclimation of phy-
toplankton to a variable physicochemical environment [Smith et al., 2011]. The term optimality-based refers
here to formulations describing the optimal allocation of resources (i.e., nutrients and energy) in order to max-
imize cellular growth. Mechanistic models have been successfully employed to describe variations in the Chl:.C
ratio of phytoplankton cultures subject to nutrient and light stress [Geider et al., 1997; Pahlow, 2005; Pahlow
and Oschlies, 2009; Pahlow et al., 2013]. However, to our knowledge, mechanistically-based global patterns of
phytoplankton Chl:C ratio have not yet been inferred for the global surface ocean.

Here we estimate global surface Chl:C ratios employing a physiological phytoplankton growth model which
maximizes growth by optimizing the net nutrient and energy balance of nutrient acquisition and light harvest-
ing [Pahlow et al., 2013]. Model-based Chl:C estimates thus result from phytoplankton acclimation to nutrient
and light availability. We force our model with monthly satellite-based temperature and light, model-based
nitrate, and modelled mixed-layer depth information. When combined with independent satellite-based
observations of surface Chl and particulate organic carbon (POC), we can then quantify global phytoplankton
biomass and, for the first time, its contribution to total POC in the surface ocean.

2. Methods

We combine satellite-derived data with an optimality-based model of phytoplankton growth [Pahlow et al.,
2013] (Figure 1) to obtain 1° global monthly mixed layer phytoplankton Chl:C estimations for the period
January 2005 to December 2010. The model defines the physiological roles of nitrogen and phosphorus
via their association with specific functional cellular compartments [Sterner and Elser, 2002]. Growth is maxi-
mized via optimal allocation of cellular N and energy among requirements for nutrient acquisition and light
harvesting [Pahlow et al., 2013; Arteaga et al., 2014]. Thus, net C fixation is directly limited by cellular N,
whereas phosphorus constrains nitrogen assimilation in the ribosomes and thereby limits nitrogen acquisi-
tion. However, as phosphorus has been previously identified as a secondary limiting nutrient with respect to
nitrogen in the global ocean surface layer (over time scales <1000 years) [Tyrrell, 1999; Arteaga et al., 2014], we
restrict nutrient limitation in this study only to nitrogen and implicitly assume phosphate replete conditions
throughout.

We use monthly satellite-based data to define temperature (sea surface temperature (SST)), light, and nitrate
for the surface mixed layer [Arteaga et al., 2015]. Light is represented by the median mixed layer light level
(). which approximates the average light intensity experienced by phytoplankton cells in the surface mixed
layer (Iy) [Behrenfeld et al., 2005],

= 15 -PAR - e¥490%5? M
I depends on the day-length fraction (D, the fraction of the day where light is available for photosynthe-
sis), surface photosynthetically active radiation (PAR) (E m~2 d~'), the diffusive light attenuation coefficient
estimated at 490 nm (K490) (m~') and mixed layer depth (MLD) (m). D varies as a function of the time of
the year. Monthly SST, K490, and PAR inputs are obtained from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) (9 km, Level 3) (http://oceancolor.gsfc.nasa.gov). Monthly MLD is obtained from
the Ocean Productivity site of Oregon State University (http://orca.science.oregonstate.edu/1080.by.2160.
monthly.hdf.mld.hycom.php). We employ always the most recent—and presumably improved —available
MLD model output for our study period. For the period January-June 2005, monthly MLD is produced by
an isothermal layer depth (ILD) model of the Thermal Ocean Prediction System (TOPS), which is a model
of the Fleet Numerical Meteorology and Oceanography Center (FNMOC), Monterey, California, [Clancy and
Martin, 1981; Clancy and Pollak, 1983; Clancy and Sadler, 1992] (ILD-TOPS). MLD for the period July 2005 to
September 2008 is from a FNMOC high-resolution MLD criteria model (FNMOC-HIRES). Finally, monthly MLD
between October 2008 and December 2010 is from the Hybrid Coordinate Ocean Model (HYCOM) [Bleck,
2002]. The use of different modeled MLD outputs is intended to cover the whole study period (2005-2010)
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Figure 1. General concept of the optimality-based model. (a) Optimal allocation of nitrogen maximizes growth:

A greater nitrogen quota fraction (fy) is allocated for nutrient acquisition when extracellular nutrient concentration is
low (left). For higher nutrient concentrations more nitrogen is allocated for carbon fixation (right). Hence, f,; increases as
the extracellular nutrient concentration drops. (b) The Chl:C ratio is the result of both photoacclimation and nitrogen
allocation. With low light and sufficient nitrogen, Chl is synthesized to enhance light harvesting efficiency, resulting in
an increased Chl:C ratio. High light conditions downregulate Chl production, decreasing Chl:C. (c) Net cell growth is
maximized via optimal allocation of nitrogen resources. The Chl:C ratio is maximized by high nutrient-low light
conditions and decreases as light levels increase and/or nutrient concentrations diminish.

with the most recent available model (i.e,, MLD output is not available from HYCOM before October 2008 and
FNMOC-HIRES before July 2005). Monthly global surface nitrate concentrations are taken from the data set
produced by Arteaga et al. [2015]. These global nitrate fields are obtained from multiple local linear regres-
sions of satellite-derived SST, Chl, and model-based MLD. All input variables are regridded to a 1° spatial
resolution grid.

2.1. Determination of the Phytoplankton Chlorophyll-to-Carbon Ratio

The optimality-based model used in this study is thoroughly explained in Pahlow et al. [2013]. Here we sum-
marize briefly the regulation of the Chl:C ratio in the model (Figure 1). The Chl:C ratio is constrained by the
effects of nutrient and light limitation on phytoplankton growth. Light (/g) is used to estimate the degree of
light saturation of the cellular light harvesting apparatus, S;:

iC
_ algd

S=1-e % (2)

where « is the Chl-specific light affinity, Vg is the potential CO, fixation rate, and 4 is the chlorophyll-to-carbon
N
ratio of the chloroplast. 5, and the fraction of internal resources allocated for cellular growth (1 — % -1y

constrain the carbon fixation rate (V<):
QN
C _\/C
% _v0<1 a_f>s. 3)

where f,, is the fraction of cellular nitrogen allocated for nutrient acquisition, Q" is the nitrogen cell quota (N:C
ratio) and Q! represents cellular nitrogen bound in structural protein. Nutrient and light limited phytoplank-
ton growth is described as the difference between carbon fixation (V) and respiration (R):

u=V =R (4)
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Chlorophyll synthesis is driven by the balance of CO, fixation and the cost of photosynthesis incurred within
the chloroplast. As discussed in Arteaga et al. [2014], the Chl:C ratio is regulated to maximize the energy avail-
able for carbon and nutrient assimilation. The first step to calculate the Chl:C ratio is the determination of the
Chl:C ratio of the chloroplasts:

. Ve RCh g4
o= L+ 23w, |1+ )T if 1, > 1y,
¢ al, DV (5)

Ac .
0~-=0 if lgslg0

where % is the cost of photosynthesis, R is the cost of Chl maintenance,

ChlpChl
— C Rm

9% " Dq

(6)

is the threshold irradiance for chlorophyll synthesis, and W, is the 0 branch of the Lambert-W function, defined
by W(x)e"™ = x [Barry et al., 2000].

The Chl:C ratio of the entire cell is then obtained as a direct result of N and light limitation, represented by QN

and 6, respectively:
A QY
ChI:C=6C<1 —Q—; —fv>. @)
2.1.1. Temperature Dependence

Since the original model [Pahlow et al., 2013] does not include temperature, we introduce a temperature
dependence (TEMP, degree Celsius) [Eppley, 1972] of the maximum rate parameters, in the same manner as
in Arteaga et al. [2014]:

Ve =V =V =1.4x1.066"" ®
2.2. Spatial Parametrization of Phytoplankton Nutrient and Light Affinity
Oceanic surface observations of Chl:C and phytoplankton C are sparse. Overall, an inverse global correlation
between Chl:C and light is expected due to phytoplankton photoacclimation [Geider, 1987]. Some of these
global patterns are captured by the optically derived Chl:C ratio estimated by Behrenfeld et al. [2005]. The
novel feature in Behrenfeld et al. [2005] is the estimation of phytoplankton carbon via the backscattering coef-
ficient (bbp) at 440 nm. Chl concentrations in that study were inferred from the ample and standardly used
water-leaving radiance data set provided by the Sea-viewing Wide Field-of-view Sensor. As the optically based
algorithm developed by Behrenfeld et al. [2005] currently provides, to the best of our knowledge, the only
reference for global estimates of Chl:C on a relatively high temporal resolution (i.e.,, monthly), we aimed to
produce model-based outputs of Chl:C that are in the same range as what is predicted by the algorithm of
Behrenfeld et al. [2005].

In order to represent different phytoplankton communities adapted to varying nutrient and light limitation
regimes, we introduce a simple parametrization for the phytoplankton Chl-specific light affinity (&) and nutri-
ent affinity (Ay) in the optimality-based model. The assignment of varying @ and A, is implemented as a
two-step procedure: First, an initial parameter set (Table 1) is applied with mean values obtained for differ-
ent phytoplankton species [Pahlow et al., 2013]. As mentioned above, the optimality-based model predicts
the biomass-normalized nitrogen cell quota (phytoplankton N:C ratio, QV) and the estimated degree of light
saturation of the cellular light harvesting apparatus (S,). We use Q" and S, to infer nitrogen and light limita-
tion, respectively [Arteaga et al., 2014]. Nitrogen limitation (Ly) is defined as the relative difference between
Q" and the phytoplankton subsistence quota (Qy). Light limitation (L,) is defined as one minus the degree of
light saturation:

Q- Q)

hWETT T T

L=1-5 (10)
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Table 1. Model Parameters Description and Values Used in the Standard Run

Symbol Value Description

Ao 100 Potential nutrient affinity (m3 mol=! d~1)

a 0.8 Chl-specific light affinity (m2 E~" mol (g Chl)~")

QY 0.025 Partial N quota bound in structural protein (mol N mol C")
Qg 0.0018 Subsistence P quota (mol P mol ch

<l 0.6 Cost of photosynthesis (mol mol~")

< 0.6 Cost of N assimilation (mol mol~")

Vg, V(’)“, Vg 1.4 % 1.066"EMP Potential C, N, and P acquisition rates

where Ly = 0and L, = 0 (dimensionless) indicate no limitation and Ly = 1 and [, = 1 indicate strong
limitation. The resulting patterns of Ly and L, are thus assumed to represent the global distribution of nitrogen
and light limiting regions for an average phytoplankton cell [Ward et al., 2012; Arteaga et al., 2014].

In the second step, we employ L, and L, obtained during the first step to assign varying @ and A, and thereby
to represent multiple phytoplankton communities adapted to different light and nitrogen limitation regimes
across the global ocean. We apply a simple linear formulation, where a and A, are directly proportional to
monthly mean light and nitrogen limitation, respectively:

a=a,l, +b, (11)

Ag = anly + b,. (12)

After testing different slopes a and offsets b, we achieve a reasonable agreement with global optically derived
Chl:C ratios [Behrenfeld et al., 2005] for a, = 1 (m? E™' mol (g Chl)™"), a, = 100 (m® mol~" d7"), b, = 0.3
(m2 E~" mol (g Ch)™"), and b, = 40 (m3 mol~! d~"). The form of equations (11) and (12) was chosen because
it represents the simplest relation between light and nutrient limitation and respective affinities and is not
aimed to describe a particular mechanism. Nevertheless, adaptation to nutrient or light limited conditions
could be expected to result in positive correlations between the affinities and their respective limitation
indices. Thus, equations (11) and (12) could be viewed as a phenomenological representation of the effects
of evolution of specific traits, such as cell size (nutrient affinity) or pigment composition (light affinity) in
local phytoplankton communities. The resulting distributions of a and A, employing the coefficients above
(a and b) are within the ranges of different phytoplankton species [Pahlow et al., 2013]. A sensitivity analysis
shows that alterations of 10% for different combinations of these coefficients do not substantially alter the
obtained patterns of modeled Chl:C (see section 4 below). The resulting distribution of phytoplankton species
produces a general latitudinal pattern composed of phytoplankton with high a and low A, in high latitudes
and vice versa in tropical regions (Figures 2a and 2b). The distribution of nutrient and light limitation areas
derived from the spatial parametrization of « and A, does not deviate from that obtained in the first step
(Figures 2c and 2d).

2.3. Estimation of Phytoplankton Carbon
We estimate global living phytoplankton carbon (phytoC) in the surface ocean from our predicted Chl:C ratio
and observations of surface Chl from the MODIS sensor (Chlygps, mg C m~3)

phytoC = (Chl:C);." - Chlyops (13)

where Chl:C,, is the predicted (model-derived) Chl:C ratio and phyto Cis obtained in mg C m=3. Satellite-based
observations of Chl provide valuable information on the relative patterns of phytoplankton biomass in the
global surface ocean. The incorporation of a physiologically derived Chl:C ratio allows a mechanistically
founded (with exception of equations (11) and (12)) description of the distribution of phytoplankton carbon
biomass at the surface of the global ocean.

Since the light level driving photoacclimation is given by /,, our estimated Chl:C ratio represents an
average for the surface mixed layer. Our phytoC estimates also depend on satellite-derived Chl. Satellite-borne
ocean color instruments estimate the upwelling spectral radiant flux at the sea surface by measuring
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Figure 2. Global distribution of (a) nutrient (Ay) and (b) light affinities (a) as functions of nutrient and light limitation, respectively. Areas of nutrient

(i.e., nitrogen) limitation are defined by the relative difference between QN and Qy, while light limitation regions are defined a by one minus the degree of light
saturation (1—S). Q" and S, are inferred for the global ocean by the model of Pahlow et al. [2013]. Phytoplankton adapted to low nutrient and high light
conditions are characterized by high Ay and low @, and vice versa for phytoplankton adapted to high nutrient-low light conditions. Difference in the global
distribution of (c) nitrogen limitation (Ly) and (d) light limitation (L,) indices, between the second (output) run with variable @ and Ay, and the initial (standard)
run with constant a and A (i.e., second run-first run). Ly and L; can vary between 0 and 1.

the spectral radiant flux emanating upward from the top of the atmosphere, accounting for atmospheric
corrections [Werdell and Bailey, 2005]. Surface Chl from remote sensors is estimated measuring the small
portion of incident radiation not absorbed by the ocean and its constituents [Longhurst, 20071, using empir-
ical algorithms based on large in situ data sets [Werdell and Bailey, 2005]. Even in the clearest waters
the depth from which information can be retrieved via remote sensing rarely exceeds 25 m [Kemp and
Villareal, 2013]. Thus, as long as the mixed layer is deeper than the depth range seen by the satel-
lite and as cells within the mixed layer are mixed faster than they can adapt to light gradients within
the mixed layer [Moore et al., 2003], remotely sensed information will be representative of that of the
mixed layer.

We use independent satellite-based estimates of total surface POC [Duforét-Gaurier et al., 2010] to assess the
relative contribution of living phytoplankton carbon to the total POC pool at the surface (phytoC,).

PhytoC

ot 14
POC,,, (4

phytocrel =

Satellite surface POC estimates (POC,,,) are obtained as described in Duforét-Gaurier et al. [2010] by the aver-
age of two methods: based on an empirical power law between surface POC and the blue-to-green ratio of the
remote sensing reflectance [Stramski et al., 2008] and based on deriving surface POC from a remotely sensed
inherent optical property [Loisel et al., 2002].

In the following sections we start by describing the general patterns of estimated Chl:C and a comparison
against in situ estimates (sections 3.1 and 3.2). We then describe our estimates of phytoplankton C biomass
and discuss the importance of accounting for the variability in the Chl:C ratio to assess the contribution of
living phytoplankton to total POC (sections 3.3 and 3.4). At the end of section 3 we discuss the caveats and
discrepancies between our model-based estimate of Chl:C and that derived from a remote sensing optical
algorithm (section 3.5). A series of sensitivity analyses of our modeled Chl:C is presented in section 4. We end
by highlighting the main results of this study in our conclusions.
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Figure 3. Global patterns of phytoplankton Chl:C ratio obtained with the (a and b) optimality-based physiological model [Pahlow et al., 2013] and the (c and d)
optically based method of Behrenfeld et al. [2005]. Figures 3a and 3c correspond to mean monthly values for the boreal summer (April-September), whereas
Figures 3b and 3d represent mean values for the austral summer. White regions indicate areas with no data.

3. Results and Discussion

3.1. Global Chl:C Patterns

Our estimated surface Chl:C ratios (Figures 3a and 3b) vary seasonally and geographically from < 0.01 to
0.05 g Chl g C". Lowest Chl:C values are predicted for the tropical and subtropical ocean, with the excep-
tion of the equatorial Pacific. Highest model-based Chl.C ratios are obtained during winter in high latitudes
polarward of 40° in the Southern Ocean and northern Atlantic and Pacific Oceans. The seasonality of our
model-based Chl:C is driven by the availability of nutrients and light. Phytoplankton physiology adapts to
low light levels by increasing the synthesis of Chl [Geider, 1987]. However, photoacclimation occurs more
effectively during high nutrient conditions, as nitrogen is a key enzymatic compound of the photochemical
machinery of the cell [Kolber et al., 1988]. As a result, high Chl:C is predicted during high nutrient-low light
conditions and vice versa.

3.2. Comparison Against In Situ Estimates of Chl:C

The ability of the optimality-based model to reproduce Chl:.C in phytoplankton experiments was validated in
Pahlow et al. [2013] for light and nutrient limited laboratory cultures [Laws and Bannister, 1980; Terry et al., 1985;
Healey, 1985; Rhee, 1974]. In situ observations are scarce, and the most comprehensive global picture for phy-
toplankton Chl:C is provided by Behrenfeld et al. [2005], although these are empirical model-based results and
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Figure 4. Monthly patterns of phytoplankton Chl:C ratio in the (a) Hawaii Ocean Time series (HOT) and (b) English
Channel. Red squares are flow cytometry data for HOT [Winn et al., 1995] scaled to Chl:C [Westberry et al., 2008] and
combined cell volume and high-performance liquid chromatography (HPLC) measurements in the English Channel
[Llewellyn et al., 2005]. Black circles connected with lines are model-based results for this study. Blue circles connected
with lines are model results from Arteaga et al. [2014].

not in situ observations. Arteaga et al. [2014] compared Chl:C estimates obtained using the optimality-based
model of Pahlow et al. [2013] against fluorescence measurements at the Hawaii Ocean Time series (HOT)
[Winn et al., 1995], scaled to Chl:C [Westberry et al., 2008] and combined cell volume and high-performance
liquid chromatography (HPLC) measurements in the English Channel [Llewellyn et al., 2005]. Here we employ
the same observations to compare our model-based outputs. The only difference between our model-based
results and those of Arteaga et al. [2014] is the geographical parametrization of the light and nutrient affinities
applied in this study.

Our mean monthly Chl:C outputs for 2005-2010 reproduce the seasonal evolution of the observations
at both sites reasonably well (Figure 4). Model outputs for this study (correlation coefficient (r) = 0.85,
root-mean-square error (RMSE) = 0.003 g Chl g C7") slightly overestimate Chl:C observations at HOT, whereas
previous estimates from Arteaga et al. [2014] (r = 0.81, RMSE = 7.6 X 10~* g Chl g C™") showed a slight under-
estimation. Inferred model-based Chl:C in this study for the English Channel (r = 0.84, RMSE = 0.013) is higher
and overall closer to observations than Chl:Cinferred in Arteaga et al. [2014] (r= 0.2, RMSE=0.014g Chlg C").
Overall, the spatial parametrization of light and nutrient affinities applied in this study increases Chl:C ratio
estimates, bringing them closer to observations at HOT and the English Channel compared to the estimates
from Arteaga et al. [2014].

3.3. Phytoplankton C in the Global Surface Ocean

Phytoplankton C (phytoC) in the global surface ocean is computed from satellite-inferred surface Chl from
MODIS and our model-based Chl:C ratio estimates (i.e., phytoC = Chlyops- (ChI:C):) (Figures 5aand 5b). High
phytoC concentrations are predicted during summer months for each hemisphere. During the northern sum-
mer (April-September), high phytoC concentrations are found in high northern latitudes, particularly in the
Atlantic Ocean. During austral summer, phytoC concentrations are high in the high southern latitudes, partic-
ularly near New Zealand and the Atlantic coast of southern South America. This seasonal pattern is the result
of differences in Chl concentration and the Chl:C ratio between the two hemispheres, with Chl:C being higher
in the winter hemisphere due to photoacclimation by phytoplankton cells [Geider, 1987; MacIntyre et al., 2000].
Estimated phytoC is highest in coastal regions, where it reaches concentrations of about 30 mg C m~3. The
Caribbean and Indian Ocean also show high phytoC concentrations throughout the year. Predicted phytoCin
the central Atlantic varies from < 10 mg C m~3 to ~15 mg C m~3, consistent with observations in this region
[Wang et al., 2013]. Our physiological model employed to estimate Chl:C, and hence phytoC, does not account
for the physiological effects of iron limitation on phytoplankton. However, iron limitation is implicitly included
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Figure 5. (a and b) Surface phytoplankton carbon concentration inferred from the optimality-based model and MODIS-Chl. (c and d) Surface POC in the global
ocean, estimated as in Duforét-Gaurier et al. [2010]. (e and f) Relative phytoplankton carbon contribution to total surface POC in the global ocean. (g and h)
Relative phytoplankton carbon contribution of total POC (same as Figures 5e and 5f but showing only low values, up to 0.3). Figures 53, 5¢, 5e, and 59 are the
mean of northern summer months (April-September) for the period 2005-2010. Figures 5b, 5d, 5f, and 5h) are the northern winter months mean
(October—March).
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to some degree in the estimation of phytoC by using Chl satellite observations (this is not the case for our Chl:.C
estimates, which do not depend on satellite Chl information). Iron deprivation should reduce phytoplankton
growth rates and Chl synthesis, and hence decrease Chl:C [Geider and LaRoche, 1994]. Accounting for iron
dynamics in our model-based analysis should thus result in higher phytoC concentrations in the Southern
Ocean, where iron limitation is particularly important [Martin et al., 1990; Boyd et al., 2007]. Higher estimates
of phytoC expected from our model-based analysis are due to the effect of iron limitation reducing Chl:C
[Sunda and Huntsman, 1997] and should not be confused with an enhancement of growth rates under iron
limitation.

3.4. Living Phytoplankton Contribution to POC
3.4.1. Spatial Patterns

Combining our phytoC estimates with satellite-derived surface POC concentrations (Figures 5c and 5d) allows
us to infer the contribution of living phytoplankton to the total particulate organic carbon biomass in the
global surface ocean (phytoC,,) (Figures 5e-5h). This relative contribution, phytoC,,, follows a similar sea-
sonal trend between hemispheres as phytoC and POC. Nevertheless, while phytoC and POC show similar
regional patterns generally decreasing toward the subtropical gyres, their ratio (i.e., the contribution of living
phytoplankton to surface POC) displays an inverse latitudinal pattern with respect to total surface POC con-
centration and phytoC. According to our estimates, living phytoplankton comprises between 30 and 70% of
total surface POC in most of the low-latitude ocean, between 40° north and 40° south (Figures 5e and 5f).
However, its share of the total surface POC decreases toward the poles in both hemispheres, where phyto-
plankton C constitutes between 10 and 30% of total surface POC (Figures 5g and 5h). Low phytoC,, is also
diagnosed in the productive region of the equatorial Pacific. The most pronounced seasonal variation in rela-
tive phytoplankton biomass occurs in the Pacific Ocean. Surface phytoplankton C contribution to POC s high
in the North Pacific during boreal summer months (April-September) and south of the equator during boreal
winter months (October—March). The contribution of phytoC in the Southern Ocean is fairly constant dur-
ing both summer and winter. According to our analysis, the Southern Ocean also has the lowest contribution
of phytoC (~10%) throughout the global surface ocean. However, this contribution might be higher if iron
limitation was considered, due to the effects of iron deprivation on the Chl:C ratio (see section 3.5).

We compare the latitudinal gradient of our phytoC estimates with in situ POC observations of the surface
ocean (top 10 m) obtained from Martiny et al. [2014] and satellite-inferred surface POC (Figure 6a). Latitu-
dinal patterns are obtained as zonal horizontal averages for each latitudinal band where observations and
model outputs for a 6 year climatological mean (2005-2010) are available. Surface POC (in situ and satellite
inferred) and estimated phytoC are both larger at high latitudes and decrease toward the equator. Similar to
Figures 5e-5h, surface POC observations [Martiny et al., 2014] decline more rapidly toward tropical regions
than phytoC, implying that the phytoC contribution to total POCis larger in low latitudes. The average latitudi-
nal satellite-derived surface POC follows a similar trend as the in situ POC observations for the surface ocean,
providing confidence in the global patterns of living phytoplankton C contribution to total POC in the surface
shown in Figures 5e-5h. Our modeled phytoC does not show a strong latitudinal increase toward southern
latitudes, possibly as a result of neglecting iron limitation.

3.4.2. Relationship Between POC Partitioning and Surface Nutrient Concentration

Our global maps show a relative partitioning of particulate carbon between photosynthetic organisms and
other particles in the surface ocean. The partitioning of dissolved organic carbon or inorganic carbon com-
pounds is not assessed by our study. The remaining portion of POC (1-phytoC,,) corresponds to other living
forms of carbon (i.e., bacteria and zooplankton) as well as detrital organic carbon compounds. The pattern
shown in Figure 6a indicates a positive correlation between nutrient concentration and the contribution of
nonphytoplankton particles to POC in the global surface ocean. This correlation is confirmed when we plot
the zonal mean contribution of nonphytoplankton particles (1-phytoC,, =1 — ZZ"T“’C) against the zonal mean
nitrate concentration for each latitudinal band. Estimations of 1-phytoC,,, derived From our global analysis of
variable Chl:C ratio indicate a saturating increase of the nonphytoplankton contribution to the total POC pool
as nitrate concentrations rise (Figure 6b). We analyze the same relationship employing the phytoplankton
C biomass derived from a remotely sensed backscattering signal (C,.,) [Behrenfeld et al., 2005] (Figure 6c).
A similar pattern is found when the optically derived Cy,., is used. This result is somewhat unexpected,
as the empirical relation used to estimate phytoplankton C from particle backscattering assumes a stable
nonalgal (heterotrophic and detrital) background component, and its scalar coefficient was chosen so that
retrieved Cp,,4:POC ratios were ~0.3, which is the mean value of the limited field measurements analyzed
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Figure 6. (a) Latitudinal patterns in modeled surface phytoplankton carbon (phytoC) (blue line and circles),
satellite-inferred surface POC (red squares), and POC surface observations (top 10 m, black asterisks) from Martiny et al.
[2014]. Contribution of nonphytoplankton carbon to total POC in the surface ocean (1-phytoC,) versus surface nitrate
concentration: Phytoplankton carbon was inferred using (b) the optimality-based model [Pahlow et al., 2013], (c) the
optically (backscattering) based algorithm [Behrenfeld et al., 2005], and (d) a constant global ratio of 0.01 g Chl g C~'.
All latitudinal patterns are obtained as zonal averages for each latitudinal band where observations and modeled
outputs are available.

in Behrenfeld et al. [2005]. Given this constraint, we expected that 1-phytoC,, as inferred from the optically
derived C, ., to be ~0.7 for all nitrate concentrations. Overall, 1-phytoC,,; computed from C,,, is ~0.7 for
nitrate concentrations > 3pmol -1, but lower values are obtained for nitrate concentrations < 3pmol I=1. The
connection between nitrate and 1-phytoC, is not evident when phytoplankton C is computed employing a
constant Chl:Cratio (0.01 g Chl g C™") for the global ocean (i.e., when the variability in the Chl:C ratio is ignored)
(Figure 6d). In fact, for zonal mean estimates obtained for the Northern Hemisphere, the relationship between
1-phytoC,, and nitrate is negative. This is likely due to a positive correlation between satellite-based Chl and
surface nitrate, which could be misconceived as a positive relation between nutrients and phytoplankton
biomass if the physiological acclimation of the Chl:C ratio is ignored.

While our analysis does not allow us to discern between the contributions of zooplankton, other heterotrophs,
or detritus to 1-phytoC,, it is reasonable to expect that high values of 1-phytoC, are at least partially due
to an increase in the zooplankton share of total POC associated with regions of high nitrate concentration.
This pattern is consistent with the view that in general, marine ecosystems are composed of grazer con-
trolled phytoplankton populations in nutrient-limited systems [Price et al., 1994; Talmy et al., 2016]. Idealized
population models with size-specific grazing relationships suggest that top-down controls determine the
phytoplankton biomass of a given size class, whereas bottom-up nutrient limitation ultimately regulates the
total biomass in the system [Armstrong, 1994; Thingstad and Sakshaug, 1990]. Our results coincide with predic-
tions from ecological models suggesting that the ratio of zooplankton:phytoplankton increases with higher
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nutrientand phytoplankton biomass, as a larger fraction of the community is brought under top-down control
[Ward et al., 2012, 2014].

Our zonally averaged plot of 1-phytoC,,, against nitrate based on the optimal growth model Chl:C estimates
(Figure 6b) shows clearly distinct relations for the Southern and Northern Hemispheres. Model outputs for the
Southern Hemisphere suggest a higher fraction of nonphytoplankton material in the POC pool for the same
nitrate concentration compared to the Northern Hemisphere. A similar interhemispheric difference is also
noticeable when a fixed Chl:Cratio is used to estimate phytoC (Figure 6d). An inverse but less pronounced dis-
tinction is shown when the optically based C, ., is used to infer 1-phytoC, (Figure 6¢). It is unclear whether
this interhemispheric pattern is related to distinct ecological processes between hemispheres or induced by
differences in the model-based estimations of Chl:C and phytoC (optical algorithms versus mechanistic for-
mulations of phytoplankton physiology), as the difference between hemispheres is not present in the same
manner in all three analyses (Figures 6b-6d). We do not find similar distinctions between ocean basins. Our
optimality-based Chl:C estimates predict a decreasing fraction of phytoplankton C to total POC (i.e., higher
1-phytoC,,) toward high nitrate concentrations in the Southern Hemisphere. Iron limitation could explain this
inferred low share of POC assigned to living phytoplankton in regions of the Southern Hemisphere with higher
nitrate concentrations (>10u mol 1), characteristic of the Southern Ocean [Moore et al., 2013, 2001; Boyd
etal., 2010]. As mentioned above, iron is not part of our optimality-based model, but partial effects of iron lim-
itation are implicitly accounted for in our estimates of phytoC by the use of satellite-based Chl observations
to compute phytoC. Low phytoplankton contribution to POC is also shown for lower nitrate concentra-
tions (<10p mol I71) in the Southern Hemisphere, compared to the Northern Hemisphere (Figure 6b). Both
bottom-up and top-down processes, such as limitation by other nutrients (e.g., silicon limitation, [Sarmiento
et al., 2004a)), could be responsible for causing the variation in the relative composition of the POC pool.

3.5. Differences and Considerations of the Optical and Model-Based Estimates of Chl:C Ratio

and Phytoplankton C Biomass

The optimality-based Chl:C patterns presented in this work are, together with the satellite-based estimates of
Behrenfeld et al. [2005], the only two studies assessing the global distribution of Chl:C ratios in the surface
ocean that we are aware of. Our model-based Chl:C global and seasonal patterns are similar to those predicted
by the optically based algorithm of Behrenfeld et al. [2005] (monthly estimates of optically derived phytoplank-
ton C (Cppyyo) for 2005-2010 are obtained from http://orca.science.oregonstate.edu/1080.by.2160.monthly.
hdf.carbon2.m.php) (Figures 3c and 3d). Optically derived Chl:Cis higher in high latitudes (particularly during
winter), the equatorial Pacific, and lower in the oligotrophic gyres in the Atlantic and Pacific Oceans. The most
obvious discrepancies between our model-based and the optically based Chl:C estimates are the high values
inferred by the optical algorithm along continental margins and the tropical Atlantic and Indian Oceans, as
well as the high values predicted by the optimality-based model in the Southern Ocean (Figure 7a). The
optically inferred Chl:C shows maximum values close to the continental margins (>0.05 g Chl g C"). As the
satellite-based Chl:C product is essentially a Chl:backscattering ratio that depends directly on Chl estimated
from a satellite sensor (i.e, MODIS), high values in this ratio may be associated with known errors in the
retrieval of Chl from satellites due to the interference of colored dissolved organic matter (CDOM) and detritus
[Siegel et al., 2005; Morel and Gentili, 2009; Loisel et al., 2010]. In the same manner, errors associated to the accu-
rate retrieval of Chl concentration from ocean color can affect our model-based estimates of phytoplankton
C biomass, which depend on MODIS Chl observations (equation (13)).

An important source of discrepancy between both methods is the assumption stated in Behrenfeld et al., 2005
[2005, section 3.1] that “..the particle population contributing to bbp is comprised of a stable non-algal back-
ground component and a second component that includes phytoplankton and other particles that covary with
phytoplankton.” According to our interpretation, this implies that the phytoplankton C contribution to POC
is roughly constant in the global ocean. This contribution of ~30% is aimed to represent a range of phy-
toplankton C:POC ratios that vary from 19% to 49% for different oligotrophic and eutrophic regions of the
global ocean [see Behrenfeld et al., 2005, and references therein, sections 2.3 and 3.1]. Our model-based Chl:C
ratio estimates make no a priori assumption about phytoplankton C:POC and therefore provide an inde-
pendent estimate of this ratio in the surface ocean (i.e., phytoC,,, Figures 5e-5h). Comparing the regional
differences in estimated Chl:C ratio from the optical method of Behrenfeld et al. [2005] and the model-based
results obtained in this work (Figure 7), we find that the highest degree of agreement between these two
independent estimates occurs in regions where our estimate of phytoC,, is around ~30% (i.e., the range of
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Figure 7. (a) Map of global differences in estimated surface Chl:C ratio between the optical method of Behrenfeld et al. [2005] and the model-based results
obtained in this study. (b) Scatterplot of the relative phytoplankton C biomass contribution to total POC in the surface ocean (phytoC, ) and differences in
predicted Chl:C ratio (optical-model based results) for the Atlantic, (c) Pacific, and (d) Indian Oceans. Black dashed line in the scatterplots shows perfect agreement
of predicted Chl:C by both optical and model-based estimates. Red dashed line shows the location of data points where phytoC, is =0.3, which is the portion of
phytoplankton to total POC aimed at by the linear model of Behrenfeld et al. [2005] to estimate phytoplankton C from surface ocean backscattering.

phytoplankton C: POC ratios aimed at by the linear model of Behrenfeld et al. [2005]). Regions of the Atlantic,
Pacific, and Indian Oceans where the optical method predicts higher Chl:C than our model analysis correlate
well with regions where our estimate of phytoC,,, is >30%, while regions where the optical method predicts
lower Chl:C than our model-based results correspond to regions where our estimate of phytoC,, is <30%.
While our model-based estimates cannot be interpreted as true observations of Chl:C, these results suggest
that the optically based algorithm may be inaccurate in regions where phytoC,,, deviates substantially from
30%, and hence, this backscattering-dependent relationship should be employed with caution.

Differences between these two estimates in regions where the predicted model-based Chl:Cis larger than the
optically derived Chl:C (i.e., Southern Ocean and tropical Pacific) are likely not only associated to inaccuracies
in the optical estimate caused by deviations of the phytoplankton C:POC ratio from 0.3. High estimates of Chl:C
ratio predicted by the optimal growth model with respect to the optical algorithm might be an overestimation
of the model-based results due to the lack of iron limitation in the model. Iron deprivation should suppress
nitrogen uptake and reduce photosynthetic electron transfer efficiency [Geider and LaRoche, 1994]. Thus, the
inclusion of iron dynamics in the model is expected to result in a reduction of the predicted Chl:C ratio in iron
limited areas, such as the Southern Ocean [Sunda and Huntsman, 1997; Martin et al., 1990].

As mentioned above, our range of predicted Chl:C in the global ocean varies from < 0.01 to 0.05 g Chl g C™',
consistent with Chl:C obtained in phytoplankton cultures [Laws and Bannister, 1980; Geider, 1993]. Our
model-based results predict Chl:C < 0.01 in large areas of the tropical and subtropical ocean. As a conse-
quence of the large oceanic area covered by these regions, our mean globally modeled Chl:C ratio is ~0.01
(g g7, which is the median value found in laboratory data compiled by Behrenfeld et al. [2002] for light levels
between 0.7 and 1.4 moles photons m~2 h~', We evaluate the regional effects of estimating phytoplankton C
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Oceans (SO) (0°S-50°S).

biomass from satellite Chl employing different globally constant (fixed) Chl:C ratios, in comparison with
our model-based Chl:C (i.e, Chl:C_! *Chl, /Chl:C_" _*Chl,) (Figure 8). Overall, the closest match in pre-
dicted phytoplankton C biomass from fixed and model-based Chl:C (employing the same satellite Chl
information) occurs when Chl:Cis ~0.001 (g g~"). This relatively low fixed Chl:C needed to match our predicted
phytoplankton carbon biomass is a consequence of the large regions of the global ocean with predicted Chl.C
ratios <0.01 (g g~"). Compared with our estimates, using a globally fixed Chl:C to infer phytoplankton biomass
can have diverse effects in different regions of the global ocean, which can result in a overestimation of 2-8
times in phytoplankton C concentration (or underestimation depending on the fixed Chl:C employed to infer
phytoplankton C). This analysis highlights the importance of accounting for regional differences in Chl:C in
order to estimate phytoplankton carbon biomass.

4, Sensitivity Analyses

4.1. General Parameter Sensitivity

We conducted several sensitivity analyses in order to evaluate the effect of each model parameter presented
in Table 1 on the estimated phytoplankton Chl:C ratios. We performed six additional simulations for the year
2005, increasing each of the six non-temperature-dependent parameters of the model by 50%. The results of
these calculations for different ocean basins are presented in Figure 9. Compared against our standard con-
figuration, our model-based Chl:C is most sensitive to changes in phytoplankton nutrient affinity (A,) and
the Chl-specific light absorption coefficient (a). A greater A, results in a reduction of the nitrogen limitation
experienced by phytoplankton, enlarging the internal pool of the enzymatic material available for the photo-
chemical machinery, which results in a higher Chl:C ratio. Conversely, a larger « results in a more efficient use
of light, reducing Chl:C.
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Increasing the cost of photosynthesis (¢"'), the cost of N assimilation (¢V), or the subsistence nitrogen and
phosphorus cell quotas (QY, QF) has more moderate effects on Chl:C in comparison to A, and a. Both " and
¢Nincrease the cost of Chl synthesis; thus, higher values lead to lower Chl:C ratios. A 50% increase in O? or
Qg has essentially no effect on Chl:C. The spatial parametrization of A, and « (equations (11) and (12)) results
in higher Chl:C on average, which brings our model-based estimate closer to the in situ observations. We
performed a second set of analyses to assess the sensitivity of our global patterns to changes in the parameters
of the nutrient and light dependent functions for A, and a.
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ap =100, and b, = 40). Slopes and offsets values for each sensitivity simulation are as follows: Stest 1: a, = 1.1, b, = 0.33, a5 = 90, and b, = 44. Stest 2:

a, =1.1,b, =0.33,a, = 100, and b, = 40. Stest 3:a, = 1, b, = 0.3, a5 = 90, and b, = 44.

4.2. Sensitivity to Variations of A, and «

We ran three additional simulations varying the slope and offset of the formulations based on the nutrient
and light limitation indices for A, (m* mol~! d=") and a (m? E~" mol (g Chl)~") (equations (11) and (12)) and
recalculated global Chl:C. In sensitivity test 1 (Stest 1) the slope and offset of a (a, = 1 and b, = 0.3) were
increased by 10% to yield a, = 1.1 and b, = 0.33, while for A; we decreased the original slope and increased
its offset by 10% (from a, = 100 to a, = 90 and from b, = 40 to b, = 44, respectively). Sensitivity test 2
(Stest 2) was conducted altering by 10% only the slope and offset of a (i.e., a, = 1.1and b, = 0.33,a, = 100,
b, = 40). Sensitivity test 3 (Stest 3) was conducted altering by 10% only the slope and offset of A (i.e,a, =1
and b, = 0.3,a, = 90, b, = 44). Variations in Chl:C obtained in these sensitivity tests are small (Figure 10).
Stest 1 and Stest 2 result in globally lower Chl:C with respect to the output run produced by the original slope
and offset (largest difference ~ 0.002 g Chl g C™"). This is primarily the consequence of a global increase in a,
which reduces Chl synthesis and Chl:C as discussed above. Stest 3 shows almost no difference with respect to
usinga, = 1and b, = 0.3 (output run).

The sensitivity of our phytoC results (and hence phytoC,,)) is tightly linked to the parameter sensitivity of our
modeled Chl:Cratio, butin an opposite direction. As our inputs of Chl and POC are inferred from independent
satellite information (i.e., not modeled), parameter changes thatinduce an increase in modeled Chl:C translate
into a lower predicted phytoC (and hence phytoC,,) and vice versa. As a consequence, A, and a are the two
parameters with the greatest influence on our phytoC estimates.
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4.3. Sensitivity to [
A potential caveat in our model-based approach is the representation of the light level in the surface mixed
layer (Iy). Iy depends on the diffusive light attenuation coefficient estimated at 490 nm, which is the wave-
length of maximum sunlight penetration in seawater and thus can cause an overestimation of the amount of
light that phytoplankton cells experience in the mixed layer [Morel et al., 2007]. Excessive estimates of light
can result in an underestimation phytoplankton Chl:C ratio. We approximated the downward diffuse attenu-
ation coefficient for the complete spectral range of PAR (Kp,z, equation (9)) [Morel et al., 2007] and carried out
a sensitivity run of 1 year (2005) with I, estimated from Kp,g instead of K490. Accounting for the full range of
wavelengths within PAR has a considerable effect on /g, especially in the Southern Ocean where /; estimated
from K490 is ~3 to 4 times higher than /; estimated from K, (Figure 11a). This has a considerable impact
on model-based Chl:C, resulting in an increase of 30% in most of the Southern Ocean, and up to 70% in var-
ious regions of the ocean, including the subtropical north Atlantic and Pacific, the central equatorial ocean,
and the eastern and western coast of South Africa and Australia, when Kp,g instead of K490 is used to infer I
(Figure 11b). While the K,z approximation of Morel et al. [2007] is useful in the assessment of potential errors
in I, Kpag is not established as a standard remote sensing product. Thus, our analyses have been carried out
employing the widely used MODIS product for K490.

5. Conclusions

We simulate global Chl:.C ratios employing an optimality-based model and monthly satellite-derived light and
nitrate inputs. Our results predict high Chl:C in low light-high nutrient areas and vice versa. Predicted Chl:C
varies between <0.01 and ~0.05 g Chl g C-'. When combined with satellite-based Chl and POC estimates,
our model-based Chl:C allows to infer phytoplankton carbon and its contribution to total POC in the global
surface ocean. Highest concentrations of phytoplankton C biomass are found in high latitudes and along
coastal margins (~30 mg C m~3). However, the portion of POC corresponding to living phytoplankton is higher
in subtropical low productive regions. We estimate that the contribution of living phytoplankton to the total
surface POC pool is ~30-70% in the tropical oligotrophic areas and ~10-30% in higher latitudes and the
equatorial Pacific. A similar latitudinal trend is observed when our modeled phytoC estimates are compared
with zonally averaged POC observations [Martiny et al., 2014].

The estimation of phytoplankton C from variable Chl:C allows us to detect a positive correlation between
nitrate concentration and the nonphotosynthetic particulate carbon pool in the surface ocean, as predicted
by ecological models with specific allometric predatory relationships [Ward et al., 2012, 2014]. This relation is
missed when a fixed Chl:C ratio is employed to estimate phytoplankton C.

Our analysis of phytoplankton C has the novel advantage of not being constrained by assumptions of
constant Chl:C or phytoC:POC ratios. When compared with an optically derived estimate of Chl:C con-
strained by observations with a mean phytoC:POC ratio of 0.3 [Behrenfeld et al., 2005], our model-based
patterns have a similar latitudinal trend to that of the optically derived estimate but show important dis-
crepancies in areas where the ratio of phytoC:POC deviates strongly from 0.3. While our Chl:C estimates
are to some degree adjusted by equations (11) and (12) to approximate the global patterns inferred by
Behrenfeld et al. [2005], the parameter distribution that derives from these equations results in a global
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distribution of light and nutrient (i.e., nitrogen) affinities that is within the range of values reported for
different phytoplankton species [Pahlow et al., 2013] and that is expected for the surface ocean [Moore
et al., 2013; Follows and Dutkiewicz, 2011]. Thus, our model-based Chl:C provides an independent esti-
mate to compare against commonly used optically derived estimations. Other factors for the mismatch
between these two estimates could be due to biases in satellite Chl due to CDOM affecting the optical
algorithm in coastal areas and a possible overestimation in modeled Chl:C ratio in the Southern Ocean
and tropical Pacific due to the lack of iron limitation mechanisms in the physiological model employed in
this study.

The potential uncertainty in our Southern Ocean estimates is related not only to the lack of iron limitation
in our model formulation but also the correct estimation of light levels in this region. A sensitivity analysis
indicates that the Southern Ocean is a region of large discrepancy in /, estimates when K, instead K490 is
employed. Hence, our model-based Chl:C for this region needs to be interpreted with caution.

Improved estimates of phytoplankton carbon and Chl:C ratio can lead to better assessments of carbon export
from the surface ocean [Emerson, 2014]. The distinction between carbon associated with primary producers
and carbon associated with heterotrophic organisms and other sources provides valuable information on the
assemblage of the ecosystem, and as seen above, can help to evaluate optically based methods aimed at
estimating phytoplankton biomass. As global climate change leads to warmer surface waters and changes
in the relative distributions of nutrients and light [Sarmiento et al., 2004b; Riebesell et al., 2009], POC export
patterns might change as a result of the expansion of oligotrophic areas in the ocean [Polovina et al., 2008].
Our global estimations of phytoplankton carbon and its relative contribution to total surface POC provide an
approach to identify such changes and detect shifts in patterns of global marine habitats.
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