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Abstract—Dedicated hardware accelerators are suitable for
parallel computational tasks. Moreover, they have the tendency
to accept inexact results. These hardware accelerators are exten-
sively used in image processing and computer vision applications,
e.g., to process the dense 3-D maps required for self-driving
cars. Such error-tolerant hardware accelerators can be designed
approximately for greater power reduction and/or reduced pro-
cessing time. However, since for some inputs the output errors
may reach unacceptable levels, the main challenge is to enhance
the accuracy of the results of approximate computing and keep
the error magnitude within an allowed range. Towards this
goal, in this paper, we propose a novel machine learning-based
self-compensating approximate computing for energy efficient
image processing in autonomous systems. The proposed com-
pensation module, which is integrated within the architecture
of approximate hardware accelerators, efficiently reduces the
accumulated error at its output. It utilizes lightweight supervised
machine learning techniques, i.e., decision tree, to capture input
dependency of the error. We consider image blending application
in multiplication mode to demonstrate a practical application
of self-compensating approximate computing. Simulation results
show that the proposed design of self-compensating approximate
accelerator can achieve about 9% accuracy enhancement, with
negligible overhead in other performance measures, i.e., power,
area, delay and energy.

I. INTRODUCTION

Approximate computing (AC) or best-effort computing [1]
is being adapted as a new design paradigm, in both hardware
and software [2], for error-resilient applications, due to the
increased benefits of approximation, i.e., simplified circuit de-
sign with reduced silicon area, delay and power consumption.
Several designs of approximate arithmetic components, i.e.,
adders [3], dividers [4], multipliers [5] and meta-functions
[6], have been presented. Such approximate components are
integrated to form approximate hardware accelerators (Ax-
Acc), which are suitable for error-tolerant computationally
intensive applications, e.g., big-data and image processing.
These applications can tolerate error due to the following
factors [7]: 1) the lack of a unique, golden result, where a
range of results are equally acceptable, 2) no guarantee or
need to find the best solution where good-enough result is
sufficient, 3) the input data is noisy with iterative-refinement
nature, and 4) a reduced quality is tolerable by perceptual, i.e.,
visual or hearing, human limitations.

Autonomous systems respond to real-world conditions auto-
matically without human intervention by employing machine
learning techniques [8]. For example, self-driving vehicles
rely on global positioning system (GPS) based knowledge for

navigation, sensors to avoid collisions and augmented reality
to display information for drivers. Therefore, there are very
stringent requirements to achieve a high computation speed
and low power consumption to be able to process the enormous
amount of sensors data [8]. These demands can be met by
adapting approximate computing.

The approximation error persists permanently during the
entire lifetime of the approximate hardware accelerators (Ax-
Acc). Thus, it is necessary to develop techniques that can
alleviate approximation error and enhance the accuracy with
minimal overhead, when high error cannot be afforded. Thus,
it is crucial to tackle this issue at the early design stage and
change the architecture of approximate hardware accelerators
by building a lightweight internal error compensation module
with minimal overhead, i.e., area, power and delay.

Despite the unprecedented power saving and reduced ex-
ecution time introduced by design approximation, it is still
an immature computing paradigm [9] [10], where to the
best of our knowledge, a formal model of the impact of
approximation on accuracy metric is still missing. However,
accuracy performance of approximate designs is highly input-
dependent, where we know relatively little about enhancing
the accuracy of approximation in a disciplined manner. In this
paper, we propose a novel machine learning (ML)-based self-
compensating approximate accelerator, aiming to improve the
accuracy of the approximated results. Since there is no clear
relationship between the inputs of approximate accelerators
and their errors, such accelerators are designed by employing
ML-based compensation module, to capture input dependency
of error, such that the error introduced by the approximate
component may be alleviated by the incorporated module.
This leads to a noteworthy reduction in error magnitude, with
negligible overhead.

As a proof of concept, we consider approximate hardware
accelerators with multiple 8-bit approximate array multipliers
[5], which have 9 bits of the results being approximated
utilizing full adder (FA) cells, knows as approximate mirror
adder 5 (AMAS) [11], which provides a simplified design with
reduced area, power and delay. The challenge is to build
an efficient compensation module, where it should consider
the value of the inputs. Thus, machine learning technique
is used to capture such dependency. Finally, we consider an
image blending application where two images are multiplied
pixel-by-pixel to demonstrate a practical application of self-
compensating approximate hardware accelerators.



The rest of the paper is structured as follows. Section II
introduces the related work. Section III explains our proposed
methodology to enhance the accuracy of approximate hard-
ware accelerators by integrating a decision tree-based self-
compensating module within its design. The obtained results
utilizing image processing are described in Section I'V. Section
V concludes and highlight future work.

II. RELATED WORK

There has been significant work on designing approximate
components and accelerators. However, to the best of our
knowledge, there are very few works targeting the enhance-
ment of the accuracy of approximate accelerator. While most
prior works focus on error prediction, this paper aims to
overcome the approximation error through an input-dependent
error compensation.

Authors of [12] approximated different designs given as
behavioral descriptions based on the expected coarse-grained
input data distributions. Then they used these approximate
designs to build an adaptive hardware accelerator based on
the applied workload. However, the proposed approximate
circuits heavily depends on the training data used during
the approximation process, where not all possible workload
distributions can be precharacterized, thus the real workload
may differ completely form the training one. Authors of
[13] performed a design-space exploration of state-of-the-
art approximate designs, and proposed a flow for designing
approximate coarse-grained reconfigurable arrays (CGRAs).
Green [14] and SAGE [15] check the output quality of
approximate programs through sampling techniques, and use a
more accurate configuration if the approximation error is high.
However [13] — [15] are inadequate for fine-grained input data.

A machine learning-based technique has been proposed in
[16], aiming to control the quality of approximate computing
through selecting the most suitable approximate design based
on the inputs. Nevertheless, this technique is efficient when
having a set of approximate designs to select the most suitable
among them which is not always applicable. A fault recovery
method utilizing machine learning to ameliorate the effect
of permanent faults have been proposed in [17], assuming
that the number of unique values of error distance (ED) is
very low, typically less than 5. However, such assumption
is unrealistic where the value of the ED may range from
1 to 2™, based on fault location, where n is the number of
circuit inputs. Recently, a self-compensating accelerator has
been proposed in [18] by integrating approximate components
with their complementary designs, i.e., having the same error
magnitude with opposite polarity. However, obtaining such
complementary components is not always guaranteed, e.g., the
approximate multiplier based on AMAS5 which is utilized in this
work does not have a complementary design. Moreover, the
approximate design and its complementary design may have
different characteristics, i.e., area, power, delay and energy.

Aiming to avoid the overhead of adapting the design and
improving its accuracy, in this paper, we investigate a novel
ML-based approach to build an input-dependent compensation
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Figure 1: Simplified Architecture for Accelerator of Two Approx-
imate Multipliers, (a) Without Error Compensation, (b) With Error
Compensation Module per Component, (¢) With Error Compensation
Module per Accelerator.

module for approximate accelerators. The proposed approach
relies on the high error rate (ER) of the approximate accelera-
tor aiming to lower the magnitude of the error distance (ED).
Our work is orthogonal to the previous related work, where
innovatively we utilize ML-based, i.e., decision tree, model to
capture input dependency of error. As a proof of concept, we
utilize an approximate hardware accelerator with approximate
multipliers based on AMAS FAs.

III. METHODOLOGY

In self-compensating approximate accelerator, we propose to
integrate an input-dependent compensation module in such a
way that the accumulative error is reduced. The design of
a simplified accelerator with two approximate multipliers is
shown in Figure 1(a). The magnitude of error el depends on
the inputs A and B, while the magnitude of error e2 depends on
the inputs C and D. Whereas, el does not equal €2, i.e., el #
e2, unless {A, B} = {C, D}. It is important to note that most
of the previous work did not consider the input dependency
of the approximation error. The final accelerator error is e,
where e = el + e2. The maximum error is |el| + |e2|. In
this paper, without loss of generality, we consider accelerators
constructed utilizing 8-bit approximate array multipliers based
on AMA5 FAs with 9-bits of the results being approximated
[5]. However, the proposed methodology is applicable to any
approximate accelerator design.

The main challenge in the design of self-compensating accel-
erators is the development of the input-dependent compensa-
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Figure 2: Design Flow for Approximate Accelerator Compen-
sation Module -

Table I: Design Characteristics of Approximate Accelerator
Components, i.e., Approximate Multiplier and Compensation
Module

Desi Dynamic Slice Occupied | Period | Frequency | Energy
ign Power (mW) | LUTs Slices (ns) (MHz) (pj)
Exact
Multiplier 442 85 33 8.747 114.32 3866.2
Approximate 113 31 1 4.625 216.22 522.6
Multiplier
Compensation 279 23 8 2213 451.88 6.6
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Figure 3: Distribution of the Error Distance (ED) of the
Approximate Multiplier

tion module that has minimal area, delay and power overhead.
An overview of the proposed design methodology is given in
Figure 2, where its steps are explained next. The first step
in the proposed flow is designing of approximate multiplier
which is the essential building component for the accelerator.
Table I shows the design characteristics of the 8-bit approx-
imate multiplier including its area, delay, power and energy
consumption. Moreover, in order to show the benefits of such
approximation, the characteristics of the exact multiplier are
also shown in Table I. We evaluate the power, area, delay and
energy utilizing the XC6VLX75T FPGA, which belongs to
the Virtex-6 family, and the FF484 package. We use Mentor
Graphics Modelsim [19], Xilinx XPower Analyser and Xilinx
Integrated Synthesis Environment (ISE 14.7) tool suite.

Since the magnitude of approximation error is input depen-
dent, we apply an exhaustive simulation by having 2% = 256
different values for each input. Thus, we have 256 % 256 =
65, 536 different input combinations with their associated error
distance (ED), which constitute our training data. Figure 3

shows the histogram distribution for the ED of the approximate
multiplier. Accordingly, we can make the following observa-
tions regarding the ED:

e Out of the 65536 possible input combinations, 62420
have an inexact result, thus the error rate (ER) is 95.3%.

o High error rate (ER), i.e., 95.3%, require having a small
value of ED to get an acceptable final result. This is
because approximate computing relies on the principle
of fail small or fail rare.

o Small errors occur more frequently than large errors. For
example, we have only 1575 input combinations with
ED>500, which is about 2.48% of the erroneous inputs.
Considering such extreme values in ED may simplify
building the compensation module.

o Error distance has 176 distinctive values, where the
minimum ED is 4, the maximum ED is 756 and the
average is 185.

Generally, whenever the error occurs for a small fraction of
input combinations, i.e., error rate (ER) is low, approximate
design with simple error correction, such as adding a constant
corrective magnitude, exhibits better performance compared
with the exact design. However, our approximate accelerator
has an ER of 95.3%. Therefore, such high ER makes simple
error correction inapplicable.

In order to predict the ED based on the value of the inputs,
we use a lightweight machine learning-based algorithm, i.e.,
classification decision tree (DT) based on C5.0 algorithm
[20], given in R [21] which is a programming and statistical
computing language. Decision trees which are fast, memory
efficient and have a simple structure, are quite well able to
model the non-linear relationship between the inputs and error
distance.

We notice that the inputs of the approximate design with
close magnitudes are associated with a very close ED. Con-
sequently, we quantized the inputs based on their magnitudes
into 16 different clusters. Thus, the model has 16 *x 16 = 256
different input combinations rather than 256 * 256 = 65,536
which simplifies its internal structure. Figure 4 shows the
structure of the decision tree that we obtained. The leafs of
the tree represent the expected values of the ED that should
be added to correct the final result, while the internal nodes
represent the conditional decision points which are the inputs
of the model, i.e., the first input (/nputl) and the second input
(Input2) of the approximate design. The values associated
with the connections between the conditional decision points
represent the class/cluster of the inputs, i.e., from 1 to 16. For
example, the first branch in Figure 4 examines the class of
Inputl, then it traces to the left-side if it is <9 or traces to the
right side if the class is > 9.

To show the effectiveness of the proposed compensation
module, we perform accuracy evaluation utilizing its imple-
mentation in MATLAB. Moreover, we evaluate its power,
area, delay and energy. Table I shows the obtained results,
where the power consumption of the module is about 2.8mW,
which forms about 2.4% added power to the approximate
multiplier. Similarly, the introduced area, delay and energy
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overhead of the module with respect to the approximate
multiplier is about 42.5%, 32.4% and 1.2%, respectively. Such
overhead is insignificant when compared to the approximate
multiplier where we integrate multiple instances of it within
the approximate accelerator.

Figure 5 shows a relative representation for the power, area,
delay and energy of the approximate multiplier, compensation
module as well as the exact multiplier. Despite of the module
added overhead, the approximate multiplier with the accom-
panying module (as shown in Figure 1(b)) has a reduction of
73.8%, 38.1%, 21.8% and 86.3% in the power, area, delay
and energy, respectively, compared to the exact multiplier.
The error of the approximate multiplier, i.e., el, will be
reduced to el which represent el after being alleviated
by the compensation module at the component level, where
el®<<el.

Moreover, in order to amortize the overhead of the proposed
module, we propose another architectural configuration with a
single compensation module for the approximate accelerator
as shown in Figurel.(c), rather than having a dedicated module
for each approximate component as shown in Figurel.(b).
Such proposed design is applicable when different data pro-
cessed at different components (multiplies) have alike values,
e.g., adjacent image pixels. Thus, the introduced error is

roughly similar.

In image processing applications, the accelerator processes
adjacent image pixels, which usually have close values. There-
fore, for image blending in multiplicative mode where the pix-
els of the two images are multiplied pixel-by-pixel, we propose
to divide the image into three segments (colored-components),
i.e., red, green and blue. Each colored component is processed
on a separate accelerator. For that, the compensation module
of the approximate accelerator evaluates the average value
of the pixels for each frame colored-component. Based on
that, a compensation value is calculated (predicted by decision
tree-based model) and then added to all the pixels of the
frame colored-component. Thus, the error of the approximate
accelerator, i.e., el + €2, will be reduced to el + €24, based
on the error compensation module at the accelerator level.
The next section evaluates the accuracy of the implemented
compensating module that we built.

IV. RESULTS AND DISCUSSION

This section presents the experimental results obtained by
introducing the compensation module both at the component
and the accelerator level. In order to evaluate the performance
of the compensation module which is shown in Figure 1.(b),
we performed an exhaustive simulation of the approximate
multiplier. Figure 6 shows the histogram of the error distance
of the approximate multiplier without compensation as well as
and the compensated value by integrating the compensation
module into the approximate component. Such module will
enhance the accuracy of the result, by adding a compensation
value based on decision tree-model in order to reduce the final
error distance (ED). Clearly, there is a significant reduction in
error characteristics, i.e., in both error magnitude and error
frequency.

As summarized in the table shown in Figure 6, the proposed
compensation module, reduces the maximum ED of the mul-
tiplier from 756 to 520, while the mean ED is decreased from
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185 to 110. The number of input combinations with erroneous
result where ED>500 is reduced from 1575 input combi-
nations into 16, which is a significant quality improvement.
Similarly, the number of input combinations with erroneous
result that has an ED>400 and ED>300 is notably reduced
from 5454 to 218, and from 12922 to 1458, respectively. This
noteworthy improvement in the quality of results validates
the importance of the added compensation module. Moreover,
the number of distinctive values of the ED is lowered from
176 to 129. Without the proposed compensation module, the
approximate multiplier has 3116 error-free input combinations.
However, adding a ML-based compensation module reduces
the error-free input combinations into 2177 by erroneously
adding a compensation value into error-free result. This is
due to model imperfection, even though the final accuracy has
significant improvement. Since there is a significant reduction
in error magnitude and error frequency, this will enhancement
the accuracy of the utilized error resilient application.

In order to evaluate the proposed self-compensating approx-
imate accelerators in practical applications, we deployed them
in the image blending, where two images are multiplied pixel-
by-pixel. Images used in blending and their corresponding

accurate results are shown in Figure 8, where the size of each
image is 250x400 pixels. Two configurations of compensation
modules are used: a compensation module for each approx-
imate component, and a single compensation module for all
approximate components. The Peak-Signal-to-Noise (PSNR)
of the obtained results are shown in Figure 7, which show that
output quality is improved because of error compensation.

As shown in Figure 7, all blending examples have an im-
proved quality, i.e., PSNR, whenever the compensation module
is used. Clearly, the improvement in the output quality when
the compensation module is incorporated at the component
level is higher than the case when the module is used at
the accelerator level. The shown results of image blending
with error compensation have an enhanced quality where the
increase in the PSNR ranges from 2.6dB to 4.7dB with an
average of 4.2bB for the considered examples. Thus, we were
able to obtain an average of 9% improvement in the final
accuracy/quality of image blending application with negligible
overhead. Using the compensation module at the accelerator
level achieved a lower accuracy enhancement, where the
compensation value is evaluated for 100,000 components.
Obviously, the accuracy of approximate accelerators can be
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enhanced by integrating the compensation module at finer
granularity level.

V. CONCLUSION

In this paper, we proposed a novel machine learning-based
self-compensating approximate computing for energy efficient
image processing in autonomous systems. In contrast to the
state-of-the-art error reduction methodologies, the proposed
generic self-compensating methodology has shown an oppor-
tunity for error reduction without requiring similar computing
elements. The proposed decision tree-based compensation
module, illustrated through approximate accelerators, is found
to achieve noteworthy enhancement in accuracy performance
without compromising the power consumption and speed.
This work, yield significant new insights into the potential
of approximate computing in complex hardware designs, that
can lead the designers towards exploiting the problematic
error reduction, by focusing on error metrics of individual
components as well as the accelerator level. For future work,
we aim to investigate complex accelerators with heterogeneous
arithmetic components, as well as other error-tolerant appli-
cations. Machine learning based-models, other than decision
trees, may be investigated.
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