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Abstract

Cinemagraphs are a compelling way to convey dynamic

aspects of a scene. In these media, dynamic and still el-

ements are juxtaposed to create an artistic and narrative

experience. Creating a high-quality, aesthetically pleas-

ing cinemagraph requires isolating objects in a semanti-

cally meaningful way and then selecting good start times

and looping periods for those objects to minimize visual

artifacts (such a tearing). To achieve this, we present a

new technique that uses object recognition and semantic

segmentation as part of an optimization method to auto-

matically create cinemagraphs from videos that are both

visually appealing and semantically meaningful. Given a

scene with multiple objects, there are many cinemagraphs

one could create. Our method evaluates these multiple can-

didates and presents the best one, as determined by a model

trained to predict human preferences in a collaborative way.

We demonstrate the effectiveness of our approach with mul-

tiple results and a user study.

1. Introduction

With modern cameras, it is quite easy to take short, high

resolution videos or image bursts to capture the important

and interesting moments. These small, dynamic snippets of

time convey more richness than a still photo, without be-

ing as heavyweight as a longer video clip. The popularity

of this type of media has spawned numerous approaches to

capture and create them. The most straightforward meth-

ods make it as easy to capture this imagery as it is to take a

photo (e.g., Apple Live Photo). To make these bursts more

compelling and watchable, several techniques exist to sta-

bilize (a survey can be found in [33]), or loop the video to

create video textures [29] or “cinemagraphs” [1], a media

where dynamic and still elements are juxtaposed, as a way

to focus the viewer’s attention or create an artistic effect.

The existing work in the space of cinemagraph and live
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image capture and creation has focused on ways to ease user

burden, but these methods still require significant user con-

trol [2, 17]. There are also methods that automate the cre-

ation of the loops such that they are the most visually seam-

less [23], but they need user input to create aesthetic effects

such as cinemagraphs.

We propose a novel, scalable approach for automati-

cally creating semantically meaningful and pleasing cin-

emagraphs. Our approach has two components: (1) a new

computational model that creates meaningful and consis-

tent cinemagraphs using high-level semantics and (2) a new

model for predicting person-dependent interestingness and

visual appeal of a cinemagraph given its semantics. These

two problems must be considered together in order to de-

liver a practical end-to-end system.

For the first component, our system makes use of seman-

tic information by using object detection and semantic seg-

mentation to improve the visual quality of cinemagraphs.

Specifically, we reduce artifacts such as whole objects be-

ing separated into multiple looping regions, which can lead

to tearing artifacts.

In the second component, our approach uses semantic

information to generate a range of candidate cinemagraphs,

each of which involves animation of a different object, e.g.,

tree or person, and uses a machine learning approach to pick

which would be most pleasing to a user, which allows us to

present the most aesthetically pleasing and interesting cin-

emagraphs automatically. This is done by learning a how

to rate a cinemagraph based on interestingness and visual

appeal. Our rating function is trained using data from an

extensive user study where subjects rate different cinema-

graphs. As the user ratings are highly subjective, due to

individual personal preference, we propose a collaborative

filtering approach that allows us to generalize preferences

of sub-populations to novel users. The overall pipeline of

our system is shown in Fig. 1.

In summary, our technical contributions include: (1) a

novel algorithm for creating semantically meaningful cin-

emagraphs, (2) a computational model that learns to rate

(i.e., predict human preference for) cinemagraphs, and (3) a

collaborative filtering approach that allows us to generalize

and predict ratings for multiple novel user populations.
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Figure 1: Overview of our semantic aware cinemagraph creation and suggestion system: 1) applying a semantic segmentation on the

input video to recover semantic information, 2) selecting top-K candidate objects, each of which will be dynamic in a corresponding

candidate cinemagraph, 3) solving semantic aware Markov Random Field (MRF) for multiple candidate cinemagraph generation (Sec. 3).

4) selecting or ranking the best candidate cinemagraphs by a model learned to predict subjective preference from a database we acquire of

user preferences for numerous cinemagraphs in an off-line process (Sec. 4).

2. Related Work

There is a range of types of imagery that can be con-

sidered a “live image”, “live photo”, or “living portrait”.

In this section, we briefly survey techniques for creating

these types imagery, categorized roughly as video textures

(whole frame looping), video looping (independent region

looping), and content-based animation (or cinemagraphs).

Video Textures Video textures [29, 20, 24, 10] refer to

the technique of optimizing full-frame looping given a short

video. It involves the construction of a frame transition

graph that minimizes appearance changes between adja-

cent frames. While the above methods are restricted to

frame-by-frame transition of a video, the notion of video

re-framing has inspired many video effect applications, e.g.,

independent region-based video looping and cinemagraphs.

Video Looping Liao et al. [23] developed an auto-

matic video-loop generation method that allows indepen-

dently looping regions with separate periodicity and start-

ing frames (optimized in a follow-up work [22]). The rep-

resentation used in [22, 23] conveys a wide spectrum of dy-

namism that a user can optionally select in the generated

video loop. However, the output video loop is generated

without any knowledge of the scene semantics; the dynam-

ics of looping is computed based on continuity in appear-

ance over space and time. This may result in physically

incoherent motion for a single object region (e.g., parts of

a face may be animated independently). Our work builds

directly on these approaches, by incorporating semantic in-

formation into cost functions.

Interactive Cinemagraph Creation The term “cinema-

graph” was coined and popularized by photographer Jamie

Beck and designer Kevin Burg [1], who used significant

planning and still images shot with a stationary camera for

creating cinemagraphs.

A number of interactive tools have been developed to

make it easier to create cinemagraphs [35, 17, 2]. These

approaches focus on developing a convenient interactive

representation to allow user to composite a cinemagraph

by manual strokes. Commercial and mobile apps such as

Microsoft Pix, Loopwall, Vimeo’s Echograph1 and Flixel’s

Cinemagraph Pro2 are also available, with varying degrees

of automation. The primary difference between all these

previous works and ours is that user input is not necessary

for our method to create a cinemagraph effect.

Automatic and Content-based Creation Closely related

to our work are techniques that perform automatic cinema-

graph creation in a restricted fashion [40, 7, 39, 3, 30].

Bai et al. [3] track faces to create portrait cinemagraphs,

while Yeh et al. [40, 39] characterize “interestingness” of

candidate regions using low-level features such as cumu-

lative motion magnitudes and color distinctness over sub-

regions. More recently, Sevilla-Lara et al. [30] use non-

rigid morphing to create a video-loop for the case of videos

having a contiguous foreground that can be segmented from

its background. Yan et al. [38] create a cinemagraph from

a video (captured with a moving camera) by warping to a

reference viewpoint and detecting looping regions as those

with static geometry and dynamic appearance.

By comparison, our method is not restricted to specific

target objects; we generate a cinemagraph as part of an opti-

mization instead of directly from low-level features or very

specific objects (e.g., faces [3]). Our approach is to produce

independent dynamic segments as with Liao et al. [23], but

we encourage them to correspond as much as possible with

semantically clustered segments. Given the possible can-

didates, each with a different looping object, we select the

best cinemagraph by learned user preferences.

Rating of Videos and Cinemagraphs There are a few

approaches to rank or rate automatically-generated videos.

Gygli et al. [15] propose an automatic GIF generation

method from a video, where it suggests ranked segments

from a video in an order of popularity learned from GIFs

on the web; however, their method does not actually gener-

ate an animated GIF or a video loop. Li et al. [21] create a

benchmark dataset and propose a method to rank animated

GIFs, but do not create them. Chan et al. [7] rank scene

“beauty” in cinemagraphs based on low-level information

1https://vimeo.com/echograph
2http://www.flixel.com/
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(the size of the region of interest, motion magnitude, and

duration of motion). We are not aware of any work that rates

cinemagraphs based on user and high-level visual contexts.

3. Semantic Aware Cinemagraph Generation

A semantic segmentation of the scene allows us to model

semantically meaningful looping motion in cinemagraph.

In the following sections, we describe how we extract the

semantic information for cinemagraph, and then how we

instill it into an MRF optimization.

Note that throughout this paper, we assume that the input

video is either shot on a tripod or stabilized using off-the-

shelf video stabilization (e.g., Adobe After Effect). Due to

the space limit, we present details, e.g., implementation, all

the parameter values we used and setups if not specified, in

the supplementary material.

3.1. Semantic Information Extraction

Semantic Segmentation We use semantic segmentation

responses obtained from a model, FCN-8 [25]3 learned with

PASCALContext[27], which predicts 60-classes per pixel. We

run it on each frame of the input video independently, which

forms the semantic response F2[0, 1]C⇥S⇥T , where C, S
and T denote the numbers of channels (or semantic cate-

gory), spatial pixels and input video frames, respectively.

Empirically, we found that using macro-partitioned se-

mantic categories causes over-segmentation, which is of-

ten undesirable for cinemagraph generation. We re-define

categories that exhibit different types of cinemagraph mo-

tions and alleviate FCN’s imperfect prediction that are eas-

ily confused by FCN. We combined some categories to gen-

erate a smaller number of representative higher-level cat-

egories which are roughly classified by similar semantics

as well as similar cinemagraph motion characteristics, e.g.,

{ground, floor, sidewalk} to be in background. We reduced

the number of categories from 60 to 32 including back-

ground (C=32); all these mapping of categories are listed

in the supplementary.

Top-K Candidate Label Selection Unfortunately, this

32-dimensional (in short, dim.) feature introduces signifi-

cant computational complexity in subsequent optimization.

To reduce the complexity and memory usage, we only store

the top-K class responses to form semantic response. These

top-K classes are used in the optimization described later

and determining what objects should be dynamic (i.e., loop-

ing) in each candidate cinemagraph.
We select the top-K by the number of pixels associated

with each category with simple filtering. The procedure to
select candidate objects is as follows:

1. Given F∈[0, 1]C⇥S⇥T , construct a global histogram

hg(c)=
P

x,t
δ [c=argmaxc0 F (c0, x, t)], where δ[·] denotes

3We explain with FCN as a reference in this work, but it can be seamlessly

replaced with an alternative one and all the technical details remain same.

the indicator function to return 1 for true argument, otherwise 0,

2. Discard classes from hg that satisfy the following criteria:
(a) Static object categories with common sense (i.e., objects

that do not ordinarily move by themselves, such as roads

and buildings. The full lists are in the supplementary),

(b) Object classes of which the standard deviation of intensity

variation across time is ≤0.05 (i.e., low dynamicity),

(c) Object classes of which connected component blob sizes

are too small on average (≤20×20 pixels),

3. Pick top-K labels which are K highest values in the his-

togram hg , and with this, pick the channel dim. of F to be K

as F∈[0,1]K⇥S⇥T . We set K = 4.4

Spatial Candidate Map π Given top-K candidate ob-

jects, we maintain another form of candidate information

that allows our technique to decide which regions should

appear as being dynamic in each candidate cinemagraph.

We use a rough per-pixel binary map ⇡i2{0, 1}
S for

each category i. Let m[·]:{1,· · ·,K}!{1,· · ·,C} be the

mapping from an index of the top-K classes to an orig-

inal class index. Then, we compute ⇡m[k] by thresh-

olding the number of occurrences of the specified candi-

date object k across time as ⇡m[k](x)=δ [ht(k, x)≥thr.],
where ht(k, x)=

P

tδ [k=argmaxk0 F (k0, x, t)] is a his-

togram across the temporal axis. The candidate region in-

formation from ⇡ is propagated through subsequent MRF

optimization.

3.2. Markov Random Field Model

Our MRF model builds on Liao et al. [23]. Their

approach solves for an optimal looping period px and

start frame sx at each pixel, so that the input RGB

video ~V (x, t)2[0, 1]3 is converted to an endless video-

loop ~L(x, t)=~V (x, φ(x, t)) with a time-mapping function

φ(x, t)=sx+(t−sx) mod px. Following this formulation,

we formulate the problem as 2D MRF optimization.

Liao et al.’s approach uses terms to minimize color dif-

ference between immediate spatiotemporal pixel neighbors,

but it does not incorporate any high level information. Thus,

while the resulting loops are seamless in terms of having

minimal color differences of neighbors, it is common that

the resulting video loops have significant artifacts due to the

violation of semantic relationships in the video, e.g., parts

of objects like animal or person are often broken apart in

resulting video-loops, which looks unnatural and awkward.

We extend the method of Liao et al. such that seman-

tic consistency is also considered in the energy terms of the

optimization along with photometric consistency. In addi-

tion to creating results that have fewer semantic-related arti-

facts, we use the semantically meaningful segments to cre-

ate a variety of cinemagraph outputs where we can control

4It has practical reasons: (1) A multiple of 4 allows word alignment for

the memory bus. Bus transfer speed is important because the semantic

feature vector is frequently evaluated during optimization. (2) Through

many experiments, we found that four categories are enough to cover a

wide range of dynamic scenes.
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the dynamic/static behavior on a per-object basis. Lastly,

we adaptively adjust parameters according to semantic con-

texts, e.g., enforce greater spatial consistency for a person,

and require less consistency for stochastic non-object tex-

tures such as water and grass.

Cost Function Denoting start frames s = {sx}, periods

p = {px}, and labels l = {lx}, where lx = {px, sx}, we

formulate the semantic aware video-loop problem as:

argmin
s,p

P

x

{

Etemp.(lx)+↵1Elabel(lx)+↵2

P

z2N (x)

Espa.(lx, lz)
 

, (1)

where z 2 N (x) indicates neighbor pixels. The basic ideas

for the label term Elabel, spatial and temporal consistency

terms Espa. and Etemp. are the same with those described in

[23]. However, there are significant differences in our work,

i.e., our semantic aware cost function.

Hyper-Classes for Semantic Aware Cost Our empirical

observation is that depending on types of object motion

characteristics, qualities of resulting cinemagraphs vary as

mentioned above. In this regard, a single constant value for

each parameter in cost function limits the extent of its appli-

cability. To allow the object specific adaptation, we control

the dynamicity of resulting loops according to the class.

Assigning object dependent parameters for all the classes

leads to parameter tuning on the high dimension parameter

space, which is challenging. As a trade-off, we use another

set of hyper-class by simply classifying C-classes into nat-

ural / non-natural texture to encourage the diversity of loop

labels or to synchronize loop labels, respectively. The nat-

ural set Hnat. denotes the objects like tree, water, grass,

waterfall, etc., which are natural objects that have textual

motion easily loopable and generally require less spatial co-

herence. The non-natural set Hnon. denotes the objects like

a person, animal, car, etc., which have rigid or non-rigid

motion and are very sensitive to incoherence. The full nat-

ural and non-natural category list is in the supplementary.

The separation into “natural” and “non-natural” empirically

allows us to enjoy few parameters but enough adaptation

effectively.

Temporal consistency term Both consistency terms in-

corporate semantic and photometric consistency measures.

The term Etemp. measures the consistency across the loop

start frame sx and the end frame sx+px as

(a) (b) (c)

Figure 2: Comparison on connectivity potential γs(x, z). (a) Se-

lected frame. (b) γs(x, z) in Liao et al. [23] (deviation of intensity

difference across time). (b) Our version of γs(x, z) (difference of

semantic label occurrence distribution).

Etemp.(lx) = γt(x) [(1− w)ΦV (x) + wΦF (x)] , (2)

where w is the semantic balance parameter, the temporal

photometric consistency ΦV (x) and the temporal semantic

consistency ΦF (x) are defined as follows:

ΦV (x)=
1
3

✓

k~V (x, sx)−~V (x, sx+px)k
2+

k~V (x, sx−1)−~V (x, sx+px−1)k2

◆

,

ΦF (x)=
1
K

✓

k~F (x, sx)−~F (x, sx+px)k
2+

k~F (x, sx−1)−~F (x, sx+px−1)k2

◆

,

so that the loop is not only visually loopable, but also se-

mantically loopable. We represent the semantic response F
in a vector form, ~F (x, t)2[0, 1]K .5 The factor γt(x) [20, 23]

is defined as

γt(x)=1/
(

1+λt(x)MADt0k~V (x,t0)−~V (x,t0+1)k
)

. (3)

This factor estimates temporal intensity variation at x based

on the median absolute deviation (MAD). The factor γt(x)
slightly relaxes Etemp. when the intensity variation is large,

based on the observation that looping discontinuities are

less perceptible in that case. The spatially varying weight

λt(x) is determined depending on semantic information

as λt(x)=125 if (_i2Hnat.
⇡i(x))=1, where _ denotes the

logical disjunction operator, otherwise it is half the value.

By this, we reduce γt(x) for the natural objects, as the loop

discontinuity is less perceptible for the natural one.

Spatial consistency term The term Espa. also measures

semantic and photometric consistency between neighbors

as well. Specifically, Espa. is defined as

Espa.(lx, lz)=γs(x,z) [(1−w)ΨV (x,z)+wΨF (x,z)] . (4)

The spatial photometric consistency ΨV (x, z) and the spa-

tial semantic consistency ΨF (x, z) are defined as follows:

ΨV (x, z)=
1

3·LCM

T−1
P

t=0

✓

k~V (x, φ(x, t))−~V (x, φ(z, t))k2+

k~V (z, φ(x, t))−~V (z, φ(z, t))k2

◆

,

ΨF (x, z)=
1

K·LCM

T−1
P

t=0

✓

k~F (x, φ(x, t))−~F (x, φ(z, t))k2+

k~F (z, φ(x, t))−~F (z, φ(z, t))k2

◆

,

where LCM is the least common multiple of per-pixel pe-

riods [23]. This cost can be evaluated efficiently by sep-

arating cases w.r.t. lx and lz and using an integral image

technique in a constant time similar to Liao et al. [23].

We also define the connectivity potential, γs(x, z), in a

semantic aware way, to maintain coherence within objects.

We introduce a label occurrence ~ht(x)=[ht(k, x)]
K
k=1,

where the histogram ht(k, x) was defined in Sec. 3.1. If two

histograms between neighbor pixels are similar, it indicates

that two pixels have a similar semantic occurrence behav-

ior. We measure the connectivity potential by computing

the difference of semantic label occurrence distribution as
5When feeding semantic response F into the subsequent optimization, we

re-normalize each vector across the channel axis to sum to one.
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Algorithm 1 Procedure for Candidate Cinemagraph Generation.

1: Input : Video, semantic responses, spatial candidate map π.

2: Stage 1 (Initialization): Solve MRFs for s, given each p>1 fixed (i.e.,

s
⇤
|p

).

3: (Multiple Candidate Cinemagraph Generation)

4: for each candidate label ID do

5: Stage 2: Solve MRF for {p>1, s0} given ID, where each px
is paired as (px, s⇤x|px

) from the step 2, s0x denotes all possible

frames for the static case, p=1.

6: Stage 3: Solve MRF for s given ID and fixed {p⇤}.

7: Render the candidate cinemagraph result as described in Liao et

al. [23, 22].

8: end for

9: Output : Candidate cinemagraphs.

γs(x, z) = 1
.⇣

1 + λskĥt(x)− ĥt(z)k2
⌘

, (5)

where ĥt(·) is the normalized version of ~ht(x). As shown

in Fig. 2, it preserves real motion boundaries better than the

one proposed by Liao et al.

Label term We define the label term, Elabel, to assign an

object-dependent spatial penalty in addition to discourag-

ing a trivial all-static solution as in Liao et al. This is key in

generating object-specific candidate cinemagraphs that al-

lows us to vary which objects are static vs. looping.

Our label term Elabel is defined as:

Elabel(lx)=

8

<

:

Estatic(x) · δ[⇡ID(x)], px=1,
↵1 · δ[_i2Hnat.

⇡i(x)], 1<pxPshort,
0, Pshort<px,

(6)

where ID represents the current target candidate category

index the algorithm will generate, and Pshort defines the

range of short periods. The label term Elabel has three cases.

When px = 1, i.e., static, the cost imposes the static penalty

Estatic only when the semantic index at the pixel is the target

label we want to make it dynamic. The static term Estatic(x)
is defined as

Estatic(x)=↵sta.min(1, λsta. MADt0kN(x, t0)−N(x, t0+1)k), (7)

where N is a Gaussian-weighted spatio-temporal neighbor-

hood. The static term Estatic penalizes significant temporal

variance of the pixels neighborhood in the input video, and

also prevents a trivial solution which assigns all the pixel to

be static that attains perfect spatio-temporal consistency.

We also observe that long periods look more natural for

natural objects. To encourage long period, we add high

penalty on natural object regions for short period labels

(1<pxPshort) with a large ↵1. Otherwise, Elabel is 0.

3.3. Optimization Procedure

The multi-label 2D MRF optimization in Eq. (1) can be

solved by ↵-expansion graph cut [19]. Due to the size of

the label space, i.e., |s|⇥|p|, directly optimizing Eq. (1)

may stuck in poor local minima. This is because a graph

cut ↵-expansion only deals with a single new candidate la-

bel at a time. Also, a video clip typically consists of mul-
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Figure 3: Visualization of {p,s} estimated by Liao et al. [23] (top)

and ours (bottom). Values of p and s are presented by a color map

on the top right corner, with gray indicating static pixels.

tiple semantic regions, whereby several candidate cinema-

graphs are generated. We present an efficient procedure for

multiple candidates in Alg. 1, which is regarded as a block

coordinate descent. The stages (1) and (2) in Alg. 1 are

similar to the procedure of Liao et al. [23] except the ID de-

pendency involved. Moreover, due to the restriction of the

paired label, sx|p, in the stage (1), the solution can be still

restricted up to the stage (2); hence we additionally intro-

duce the stage (3).

Since the terms related to candidate-specific regulariza-

tion by ID are not involved in the stage (1), the initial

paired label sets {(px, sx|px
)} obtained from the stage (1)

are shared across all other stages. The complexities of each

stage are proportion to the number of labels: |s|, |p| + |s|
and |s| in the stages (1,2) and (3) respectively, which are sig-

nificantly lower than directly optimizing the problem with

|p|⇥|s| labels. The number of total candidate cinemagraphs

generated is restricted to K. To obtain more diverse can-

didates, we allow the target ID to involve combination of

multiple objects, e.g., {Person, Tree} in ID, so that both are

dynamic in a candidate cinemagraph.

Fig. 3 visualizes the labels {p,s} obtained by our

semantic-based cinemagraphs, which show strong spatial

coherence along the semantic regions.

4. Learning to Predict Human Preference

Given a set of candidate cinemagraphs generated from

a video clip, we want to automate suggesting a single best

cinemagraph or predicting a ranking for a specific user. To

this end, we investigate a computational model to predict

human perceptual preference for cinemagraphs. This model

is trained on rating scores we collected from a user study.

4.1. User Study

Our study consisted of a dataset of 459 cinemagraphs,6

of which mean video length is about 1 sec. The 459 cinema-

graphs are the multiple candidates generated from 244 input

video clips. The study consisted of 59 subjects; each was

shown one cinemagraph at a time in random order, which

is loop play-backed until a user provides a rating from 1 to

6As we are only interested in understanding semantic and subjective pref-

erence, we chose cinemagraphs that did not have any significant visual

artifacts, so as not to bias the ratings.
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5 using the following guideline: 1) rate each cinemagraph

based on interestingness/appeal of the cinemagraph itself,

2) if it is not appealing at all (i.e., you would delete it in an

instant), rate it a 1, 3) if it is extremely appealing, (i.e., you

would share it in an instant), rate it a 5, 4) otherwise, give

intermediate scores according to your preference. Before

starting the study, each user was instructed, and carried out

a short pilot test. In a pilot study, we found that asking users

to rate all cinemagraphs was too fatiguing, which affected

the rating quality over time. Instead, in our final user study,

we limit the total time spent to 20 mins. On average, each

subject ended up rating 289 cinemagraphs.

We conducted a simple statistical analysis to see the

characteristics, which suggests that user rating behaviors

are very diverse in terms of rate distribution shapes and little

consensus among users for each cinemagraph. For instance,

72.66% of cinemagraphs in the dataset have the rates of the

standard deviation σ>1 among users, while the ones having

σ<0.5 is actually close to 0%,7 implying strong personal

preference for cinemagraphs. Thus, user-dependent prefer-

ence may not be modeled using a single model across all

users (refer to global model). We instead learn a local pref-

erence model for each user. In addition, we have to han-

dle partial information, since every subject rated only about

63% of all the cinemagraphs.

4.2. Preference Prediction Model

Given the user-study data, our goal is to predict subjec-

tive preference rating for a user. A basic approach we can

consider is to model subjective preference by associating a

regression model to each user independently (refer to indi-

vidual model). However, it is not practical due to two issues

on this model: (1) for a new user, we need to train a new

model from the scratch, and (2) it requires a lot of data for

each user to achieve reasonable generalization. To handle

these issues, we use a collaborative style learning to pro-

cess multi-user information.

To develop a model depending on user and context

(cinemagraph), we formulate the problem as a regression,

y=f(v,u), where y,v and u denote a predicted rating, con-

text and user features respectively. In what follows, we de-

scribe the context and user features, and the model f .

Context Feature The context feature v can be easily ex-

tracted from cinemagraphs, which may be relevant to its

preference. We use and concatenate three types of fea-

tures: hand designed, motion, and semantic features. The

hand designed feature consists of quantities related to face,

sharpness, trajectory, objectness and loopability. For the

motion, we use C3D [36], which is a deep motion feature.

For the semantic feature, we use two semantic label occur-

rence measures for static and dynamic regions. These detail

7Statistics of user ratings can be found in the supplementary due to space

limitation.

Regressor

` ⋮
` ⋮

` ⋮

?? ` ⋮

Figure 4: Diagram for architec-

ture and variable dependency of

the proposed joint model. The

left and right towers denote an

auto-encoder and a regression

model for rate prediction, re-

spectively.

specifications and lists refer to the supplementary.

User Feature Contrary to the context feature, it has not

been researched which and what user profiles are related to

user’s preference for cinemagraph, i.e., undefined. In this

regard, we do not use any explicit profile, e.g., age, gender,

but instead we leverage rating behavior to reveal user’s la-

tent feature. Motivated by collaborative learning [32, 18],

we assume that a user’s characteristics can be modeled by

similar preference characteristics of other users and so it is

for similar cinemagraphs. We observed that this is also valid

for our scenario (through evidences in Sec. 5 and the sup-

plementary). This allows us to model group behavior and

to obtain compact user representation from user rate data

without any external information.

We are motivated by an unsupervised approach using

auto-encoder [16] to learn the latent user feature such that

users with similar preferences have similar features. It has

known to have an implicit clustering-effect by enforcing

embedding of data to be low-dimensional, called bottle-

neck [14]. Formally, we represent the multi-user rating

information as a matrix Y2Rm⇥n with m cinemagraphs

and n users, of which entry yij is a rate {1, · · · ,5} of i-
th cinemagraph by j-th user. Given a rating vector for a

user, yj = Y:,j ,8 we consider two mappings {M} for the

auto-encoder, one of which maps a high-dimension vec-

tor to low-dimensional space,9 as u=Mh!l(y) and the

other is the inverse map as y=Ml!h(u). Thus, the auto-

encoder can be trained by minimizing self-reconstruction

loss, ky−Ml!h(Mh!l(y))k. Through this procedure, we

can obtain the latent user feature u from the intermediate

embedding. Unfortunately, this is not directly applicable

to our problem due to incomplete data (partial ratings by a

user). Thus, we leverage a model suggested by Carreira et

al. [6], i.e., an auto-encoder with missing values (AEm),

depicted as the left tower in Fig. 4, whereby rating vectors

with missing values are completed and simultaneously non-

linear low-dimensional embeddings of rating vectors are

learned. Now, we have the latent user feature u. The map-

pings for {M} make use of a Gaussian radial basis function

(RBF) network [4] as suggested by Carreira et al.

Model 1) A Simple User Aware Model Since we have the

described features u and v, now we can train a regression

model such that y=f(v,u). For the simple baseline model,

we use the random forests (RF) regression [11] as a regres-

8We borrow a MATLAB like matrix-vector representation.
9M applies vector-wise to each column.
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(a) Liao et al. (b) Proposed (c) Liao et al. (d) Proposed (e) Liao et al. (f) Proposed

Figure 5: Comparisons with Liao et al. [23]. The shown sampled frames are from the cinemagraphs generated by each method. We can

observe severe artifacts such as distorted or tearing faces or bodies in (a,c,e), while ours shows artifact-free and semantic preserving results.

sion function f(·). The RF model is proper for this purpose

in that we have limited amount of training data. We use 10
number of ensembles for generalized performance. We call

this model as subjective aware RF (S-RF).

Model 2) A Joint and End-to-End Model When we learn

u by Carreira et al. [6], the context feature information is

not used; hence, any link between the user and context in-

formation may not be reflected to u. To learn u reflecting

context information, we formulate a joint model for both re-

gression and auto-encoder that are entangled by user latent

feature as a medium variable, of which loss is defined as

argmin
U,Y

Ω
,{M},θ

Lreg.(U,θ)+λLrecon.(U,YΩ, M
h!l

, M
l!h

), (8)

where Ω denotes the index set for known entries and

Ω is its complementary set, i.e., missing entries, U =
[u1, · · · ,un], ✓ denotes regression model parameters, and

λ = 1
nm

is the balance parameter. Lreg. and Lrecon. are

respective common l2 regression loss and the the auto-

encoder loss of AEm by Carreira et al. As with Carreira et

al., Lrecon.(·) incorporates missing values,10 and defined as:

Lrecon.(U,YΩ, M
h!l

, M
l!h

)= (9)

kU− M
h!l

(Y)k2F+kY− M
l!h

(U)k2F+RM(M
h!l

, M
l!h

),

10Note that we assume there is no case where all entries in a column vector

y are missing.

(a) Tompkin et al. (b) Proposed

(c) Yeh and Li (d) Proposed

Figure 6: Comparison with Tompkin et al. [35] and Yeh and

Li [39]. The intensity maps indicate average magnitude of optical

flow (darker represents larger magnitude). The dynamic areas in

our results are better aligned along semantic boundaries of moving

objects (“animal” in (a,b), “water” in (c,d)), than other methods.

where k · kF denotes Frobenius norm and RM(·, ·) is the

l2 regularization term for two mappings. The same user

feature U is also fed into Lreg.(·):
Lreg.(U,θ)=

P

(i,j)2Ω (yij−f(vi,uj ,θ))
2+Rf (θ), (10)

where Rf (·) is the l2 regularization term for the rating

regressor f , and we use a linear regression for f(·) as

f(u,v,θ)=θ
>[u;v; 1]. The variable dependency and over-

all architecture are shown in Fig. 4. We optimize Eq. (8)

by the Gauss-Newton method in an alternating strategy. Its

optimization details can be found in the supplementary.

Having two loss functions on the same rating may seem

redundant, but the information flow during optimization is

significant. The sum of two gradients, back-propagated

through the rating regressor f(·) to U (see Fig. 4) and from

Lrecon., encourages U to be learned from auto-encoding

with missing completion and context aware regression. This

can be regarded as multi-task learning, which has regular-

ization effect [34] that mitigates the problems of partial and

limited number of measurements. This is because it col-

laboratively uses all the ratings provided by all the users,

whereas the individual model does not.

For new user scenario, it can be dealt with in a way simi-

lar to [18, 37, 31] by finding a similar other user in database.

5. Results

Implementation and Run-time Speed We implemented

our approach on a PC with 3.4GHz CPU, 32GB RAM and

Person

Water

Figure 7: Comparison without/with user editing for our method.

[Left] Sampled frames overlaid with semantic segmentation mask

for a selected object by green color, [Middle] Color coded {s} la-

bel obtained by our method without user editing. [Right] Results

with user editing. Each superposed black-white mask shows a se-

mantic binary map π(·), on which user edits. Color coding of {s}
is referred to Fig. 3.

5166



m
A
P

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ran
d CR G-R

F
I-R
F

S-R
F(M

C)

S-R
F(A
Em
)

Joi
nt(L

in.)

Joi
nt(R

BF
)

42.16%

39.09%

39.83%

38.96%

34.97%

30.14%

25.76%

17.93%

Figure 8: mAP comparison for rat-

ing prediction. Rand: random guess,

CR: constant prediction with rate 3,

{G,I,S}-RF: {global, individual,

subjective} RFs, Joint: Joint

model with either linear or RBF

mappings. MC and AEm indicates

user feature obtained from either ma-

trix completion [5] or AEm [6].

NVIDIA GTX1080 GPU, and applied it over a hundred of

casually shot videos acquired by ourselves or collected from

previous works. For speed purposes, we downsampled and

trimed the videos so that the maximum resolution does not

exceed 960⇥540 and the duration is less than 5-sec long.

Without careful engineering level code optimization, our

system typcially takes a few minutes to generate all the se-

mantically meaningful cinemagraphs for each video.

The Importance of Semantic Information As we argued

before, semantic information plays a key role in the pro-

cess of candiate generation to suppress any semantic mean-

ingless video loops. Thanks to our novel semantic aware

cost function (described in Sec. 3) embedded in the MRF

framework, the generated cinemagraphs all trend to be more

meaningful compared with the ones generated by previous

work such as [23] in which only low-level information is

considered. Fig. 5 shows a few typical videos that seman-

tic information is crucial to avoid severe artifacts. As in-

dicated by the comparison, the results for Liao et al. tend

to have artifacts such as distortions or ghosting effects, as

highlighted in the close-up views, while our method pre-

serves the boundary region of objects well with more natu-

ral looping. Figs. 3 and 6 show another examples of what

happens if semantic-based looping is not applied.

The Effectiveness of Callaborative Learning We com-

pare the several baselines for cinemagraph preference pre-

diction in Fig. 8 in terms of mean average precision (mAP).

Interestingly, S-RF and Joint outperform I-RF (indi-

vidual learning per a user), which suggests collaboratively

learning the preference behavior is beneficial. The best per-

formance of Joint shows learning the user feature in a

context aware manner can improve the quality of prefer-

ence prediction for cinemagraph. Another example in Fig. 9

shows the completed rating matrix for missing entries by a

matrix completion (MC) [5] (as a reference that does not

(a) Missing pat-

tern of rates

(b) MC [5] (c) Joint (RBF)

Figure 9: Completed rat-

ing matrices (rows: cin-

emagraphs, cols.: users).

White color indicates

missing entries, and rate

scores are color-coded

through the parula color

map built in MATLAB.

use context feature) and ours. The completed regions in

each left bottom region of matrices clearly show that our

method predicts preference ratings more plausibly and di-

versely than MC by virtue of context aware feature. We vi-

sualize 2D embedding of latent user features by t-SNE [26]

in Fig. 10, which suggests that users can be modeled by a

few types for cinemagraph preference. Refer to supplmen-

tary material for additional results.

User Interaction We have showed our results in cases

where semantic segmentation worked well. While signif-

icant progress has been made on semantic segmentation,

the semantic segmentation that we use does not always pro-

duce object regions with perfect boundaries or labeling as

shown in Fig. 7-[Left], which produces loop labels violat-

ing the semantics of the scene (Fig. 7-[Middle]). Using

a more advanced semantic segmentation approach such as

[13, 12, 9, 8] is one way to improve. However, with sim-

ple manual interaction to roughly correct the mask ⇡ID, we

can quickly fix the issues and output semantically meaning-

ful cinemagraphs (Fig. 7-[Right], where each example took

about 19 sec. on average for the editing). This simple op-

tional procedure is seamlessly and efficiently compatible to

our MRF optimization (details in the supplementary).

6. Discussion and Future Work

We create cinemagraphs using a semantic aware per-

pixel optimization and human preference prediction. These

allow our method to create cinemagraphs without user in-

put; however, the automatic results are limited by the qual-

ity of the semantic segmentation. Semantic segmentation it-

self remains a open research issue beyond the scope of this

work, and as these methods improve, they can be used in

our approach to improve the results. As an alternative, we

optionally allow the user to correct imperfections of seman-

tic segmentation and thus improve the quality of the out-

put. Our system is flexible in that the semantic segmenta-

tion part can be seamlessly replaced with an advanced or

heterogeneous (e.g., face segmentation) one to improve se-

mantic knowledge or speed, e.g., [28].

Figure 10: t-SNE visualization for 59 latent user features {u} ob-

tained by Joint(RBF). This plot clearly shows clustered posi-

tions of users, which may imply that the intrinsic dimensionality

of user space holds the low-dimensionality assumption.
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