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Abstract

While Markov Random Fields (MRFs) are widely used

in computer vision, they present a quite challenging infer-

ence problem. MRF inference can be accelerated by pre-

processing techniques like Dead End Elimination (DEE) [8]

or QPBO-based approaches [18, 24, 25] which compute the

optimal labeling of a subset of variables. These techniques

are guaranteed to never wrongly label a variable but they

often leave a large number of variables unlabeled. We ad-

dress this shortcoming by interpreting pre-processing as a

classification problem, which allows us to trade off false

positives (i.e., giving a variable an incorrect label) versus

false negatives (i.e., failing to label a variable). We describe

an efficient discriminative rule that finds optimal solutions

for a subset of variables. Our technique provides both per-

instance and worst-case guarantees concerning the quality

of the solution. Empirical studies were conducted over sev-

eral benchmark datasets. We obtain a speedup factor of 2 to

12 over expansion moves [4] without preprocessing, and on

difficult non-submodular energy functions produce slightly

lower energy.

1. Pre-processing for MRF inference

We address the inference problem for pairwise Markov

Random Fields (MRFs) defined over n variables x =
(x1, . . . , xn), where each xi is labeled from a discrete la-

bel set L. The MRF can be viewed as a graph G = (V,E)
with a neighborhood system N : V 7→ 2V . To compute the

MAP estimate we minimize the energy

E(x) =
∑

i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (1)

where θi and θij are unary terms and pairwise terms. MRFs

are widely used in applications such as image segmentation,

stereo, etc [14, 40]. Unfortunately the MRF inference prob-

lem is NP-hard even when |L| = 2 (i.e. binary labels) [22].

Many algorithms involve some kind of pre-processing

phase that seeks to determine the value of a subset of vari-

ables, thus reducing the complexity of the remaining combi-

natorial search problem. Pre-processing methods are com-

monly used in conjunction with graph cuts, a technique that

achieves strong performance on both binary and multilabel

MRF inference [40]. Graph cuts handle binary MRFs by re-

duction to min-cut, which is then solved via max-flow (see

[3, 9] for reviews). The most widely used graph cut methods

for multi-label MRFs are move-making techniques, which

generate a new proposal at each iteration and reduce the

multi-label problem into a series of binary subproblems

(should each variable stick with the old label or switch to the

proposed label) and then solved by max-flow/min-cut. Pop-

ular algorithms in this family include expansion moves [4]

and their generalization to fusion moves [27].

The best known pre-processing methods are Dead End

Elimination (DEE) [8] and QPBO [3, 21], but there are a

number of others [18, 24, 25, 35, 36, 39, 42]. (Similar ap-

proaches are used for other NP-hard problems, a prominent

example is Davis-Putnam’s pure literal rule for SAT [7].)

The key weakness of such methods is that they are in-

herently conservative, since they only label variables whose

value can be determined in every global minimum. Yet the

MRFs that occur in computer vision are so large that in

practice we almost never compute the actual global mini-

mum.1 As a result, a pre-processing step that is carefully

designed to never prune the global minimum is followed by

a search step that almost never finds the global minimum.

Our fundamental observation is that the pre-processing step

can be viewed as a classification problem, and that exist-

ing pre-processing methods are designed to avoid false pos-

itives (i.e., to never label a variable incorrectly), at the cost

of many false negatives (i.e., variables that are left unla-

beled). By revisiting this tradeoff we can design techniques

where the combination of the pre-processing step and the

search step leads to better overall performance, especially

on the most difficult problems.

As an example, consider a tiny 8-connected binary MRF

with 9 variables (pixels), and suppose we wish to determine

by pre-processing that the center pixel should be labeled

with 0. In order to soundly compute this by DEE or QPBO,

1See [12, 29] for rare counterexamples.
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1 0 1

0 ? 0

1 0 1

1 1 1

1 ? 1

1 1 1

Table 1. Minimal MRF example. The left configuration is an un-

likely configuration for the neighborhood around the center pixel

in the global minimum, compared to the configuration at right. Ex-

isting pre-processing methods treat all configurations equally, and

as a result fail to label many variables.

we need to establish that switching the center pixel from 1 to

0 will always decrease the energy, no matter what the con-

figuration of the surrounding pixels. Yet as demonstrated

in Table 1, there are local configurations that are quite un-

likely.

1.1. Outline and contributions

We begin with a summary of related work, with an em-

phasis on DEE, QPBO and QPBO-based pre-processing

techniques. In Section 3 we give our discriminative cri-

terion for pre-processing, motivated by examples like Ta-

ble 1, and provide efficient approximations for the key sub-

problems. The theoretical performance of our method is

analyzed in Section 4, and experimental results are given in

Section 5. Most proofs are deferred to the supplemental ma-

terial, which also contains additional experimental results.

2. Related work

A popular approach to the inference problem is to find

the optimal labeling for a subset of the variables [8, 13, 18,

20, 34, 35, 36, 39, 44]. A partial labeling that holds in every

global minimizer is said to be persistent [3]. Techniques

like QPBO [3, 21] find an optimal partial labeling by en-

forcing an even stronger condition: a partial labeling that

will decrease the energy if it is substituted into any com-

plete labeling.2 This stronger property is sometimes called

an autarky [3], which was generalized by [35]. QPBO in

particular is widely used in computer vision since it often

finds the correct label for the majority of the variables.

To make these notions precise, we introduce the follow-

ing notation. A partial labeling xS is represented by the

subvector of x indexed by S ⊆ V . Let LS = Πi∈SL be the

label space of xS . Given two partial labelings xA and xB

where A ∩ B = ∅, we define xA ⊕ xB to be the composi-

tion of xA and xB .3 As an important special case, we can

write substituting a partial labeling xS into a full labeling z
as xS ⊕ zV \S .

Following [3], we can define persistency and autarky:

2QPBO is naturally viewed as a pre-processing method since it finds

persistent partial labelings, and leaves the task of labeling the remaining

variables to some other algorithm.
3Let y = xA⊕xB when A∩B = ∅, then we have yi = (xA)i when

i ∈ A and yi = (xB)i when i ∈ B.

Definition 1. A partial labeling xS is persistent if

xS = x∗
S , ∀x∗ ∈ argminxE(x). (2)

Definition 2. A partial labeling xS is an autarky if

E(xS ⊕ zV \S) < E(yS ⊕ zV \S),

∀zV \S ∈ LV \S and ∀yS ∈ LS where yS 6= xS . (3)

Persistency is the key property for pre-processing, since

it determines the optimal value of a subset of the variables

and thus reduces the remaining combinatorial search prob-

lem. In general, though, checking for persistency is in-

tractable [3]. All existing persistency algorithms appear to

check the autarky property as a sufficient condition, which

states that overwriting an arbitrary labeling with this partial

labeling will reduce the energy.

2.1. MRF pre­processing algorithms

QPBO generalizes the binary graph cut reduction that

uses max-flow to find an optimal partial labeling [3, 21, 33].

If the energy function is submodular4 the partial labeling

is complete (i.e., it labels every variable and finds a global

minimizer). However, the computational expense of run-

ning max-flow is non-trivial.

There are also techniques directly finding optimal partial

labeling for the multi-label case, but the computational costs

for these methods are significant. Kovtun [24, 25] described

an approach constructing a series of binary one-verse-the-

rest auxiliary problems and solve each of them via graph

cuts. MQPBO [18] and generalized roof duality [44] pro-

posed generalizations of QPBO to multi-label MRFs.

Recently, Swoboda et. al. [39] use standard MRF in-

ference algorithms to iteratively update the set of persis-

tent variables. Shekhovtsov [35] formalized the problem to

maximize the number of optimally labeled variables as an

LP. They also proposed to combine these two approaches to-

gether which can take advantage of both of them [36]. The

number of variables labeled by these approaches are signif-

icantly more than Kovtun’s approach and MQPBO. How-

ever, the running time of these approaches is significantly

longer, since these approaches involve solving complex pro-

gramming (either via standard MRF inference solver or LP

solver) iteratively.

Dead End Elimination (DEE) [8] and the recent Persis-

tency Relaxation (PR) algorithm [42] are the only existing

method with cheaper computational costs than max-flow.

DEE checks a local sufficient condition which only involves

a single vertex and its adjacent edges. PR generalizes DEE

to check a larger partial labeling, which gives improved re-

sults on standard benchmarks.

4For every pairwise cost, we have θij(0, 0)+ θij(1, 1) ≤ θij(0, 1)+
θij(1, 0).
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Methods that optimally label a subset of the variables

can obviously be used to pre-process and accelerate MRF

inference algorithms such as expansion moves. For ex-

ample, Radhakrishnan and Su [32] used DEE while Ala-

hari et. al. [2] applied Kovtun’s approach.

3. Discriminative pre-processing of MRFs

In computer vision, the MRF inference problem is al-

most never solved exactly. As a result, pre-processing meth-

ods that enforce soundness are far too conservative, since

they leave a large number of variables unlabeled. If we view

pre-processing as a binary classification problem (given a

partial labeling xS , decide if it’s persistent), existing tech-

niques ensure that there are no false positives (i.e., variables

given a label must be part of every global minimum), but at

the cost of multiple false negatives (i.e., variables that are

left unlabeled).

First, we need some notation. Define

∆E(yS ← xS | zV \S) = E(yS ⊕ zV \S)− E(xS ⊕ zV \S)

to be the energy change when we substitute xS by yS given

the partial labeling zV \S for the variables not in S. By ex-

panding the definition of E(x) and cancelling terms, the

Markov property of MRFs gives us a sum over terms only

depending on xi, yi for i ∈ S and zj for j ∈ V \S with

some i ∈ S such that (i, j) ∈ E (i.e., zj is adjacent to S).

Let N (S) = {j ∈ V \S | ∃i ∈ S, (i, j) ∈ E}, and we can

rewrite ∆E(yS ← xS | zV \S) = ∆E(yS ← xS | zN (S)).
This allows us to rewrite the autarky property (3) as:

min
yS 6=xS

∆E(yS ← xS | zN (S)) > 0, ∀zN (S) ∈ LN (S) (4)

The key issue is the universal quantification in Eq. 4.

To ensure that a partial labeling xS presents in all global

minimizer, we look at all possible values that the neighbors

might have. For each of these, we check that any other as-

signment yS would increase the energy.

Yet this is obviously quite conservative. We now show

the desired persistency property can be rewritten by only

looking at assignments to the neighboring variables that oc-

cur in a global minimizer. Define L∗
N (S) = {z

∗
N (S) | z

∗ ∈

argminE(z)} be all possible configurations of N (S) in a

global minimizer.

Lemma 3. xS is persistent if and only if

min
yS 6=xS

∆E(yS ← xS | zN (S)) > 0, ∀zN (S) ∈ L
∗
N (S).

(5)

Proof. The if direction is trivial: consider an arbitrary

global minimizer z∗, we have z∗N (S) ∈ L
∗
N (S) by definition.

Suppose xS 6= z∗S , we will have E(xS ⊕ z∗
V \S) < E(z∗),

which contradicts the assumption that z∗ is a minimizer.

Therefore, we have xS = z∗S , ∀z
∗, so it is persistent.

For the only if direction, suppose Eq. 5 is not true, then

∃zN (S) ∈ L
∗
N (S), ∃yS 6= xS such that ∆E(yS ← xS |

zN (S)) ≤ 0. We can expand zN (S) to one minimizer z∗

such that z∗N (S) = zN (S). Since xS is persistent, we also

know z∗S = xS . Therefore, E(yS ⊕ z∗
V \S) ≤ E(xS ⊕

z∗
V \S) = E(z∗). Since z∗ is a minimum this inequality

is an equality, hence yS ⊕ z∗
V \S is also a global minimum.

This contradicts the assumption that xS is persistent, since

yS 6= xS .

3.1. Discriminative criterion

Comparing Eq. 4 and Eq. 5, we immediately observe that

the universal quantifier makes autarky a sound but stronger

condition than persistency. Crucially, this suggests a dis-

criminative criterion to trade off false positives against false

negatives.

The high level idea is the following. Let L̂N (S)(xS) =
{zN (S) ∈ LN (S) | minyS 6=xS

∆E(yS ← xS | zN (S)) >
0} be the set of neighbor configurations zN (S) such that

given them xS is always a better choice. When L̂N (S)(xS)
is large enough or covers the most important neighbor con-

figurations, it’s very likely that we will have L∗
N (S) ⊆

L̂N (S)(xS). This in turn implies xS is persistent, even

though L̂N (S)(xS) 6= LN (S) and we do not precisely know

L∗
N (S).

Formally, assume we have a ground truth distribu-

tion p(zN (S)) which is uniform over L∗
N (S) and 0 oth-

erwise. Then a sound condition to check persistency is
∑

zN(S)∈L̂N(S)(xS) p(zN (S)) = 1. Of course, computing

L∗
N (S) and p(zN (S)) is computationally intractable. So we

use an estimated distribution q(zN (S)) that approximates

p(zN (S)). Looking back to Table 1, one would assume that

the left configuration would not appear in Z∗
N (S), while the

right one quite plausibly could; there should be a lower q
value for the left one but a higher q value for the right. Our

discriminative criterion for persistency is

∑

zN(S)∈L̂N(S)(xS)

q(zN (S)) ≥ κ. (6)

Here κ ∈ [0, 1] is the key parameter that controls the trade-

off between false positives and false negatives, as shown by

the following (obvious) lemma.

Lemma 4. For the same set of decision problems for persis-

tency, we will never increase the number of false positives

by increasing κ.

We now address the two crucial issues: how to choose q
to effectively approximate p, and how to efficiently check

Eq. 6.
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3.2. Approximating p

A trivial baseline is to treat each zN (S) as equally impor-

tant and set our approximation q(zN (S)) to be the uniform

distribution over LN (S). In this special case, Eq. 6 is equiv-

alent to count the number of neighbor configurations zN (S)

that satisfy minyS 6=xS
∆E(yS ← xS | zN (S)) > 0. We

expect L̂N (S)(xS) to cover the unknown L∗
N (S) with high

probability when |L̂N (S)(xS)| is large enough.

A more elegant approach is to estimate the marginal

probability of a particular assignment zN (S) via the gen-

erative MRF model, and use this as our approximation for

p. This problem is well studied in the message passing lit-

erature, and is often solved by max-product loopy belief

propagation (LBP) [31, 43]. An important special case is

if we only use the initialization of LBP, qi(zi) ∝ e−θi(zi).

This makes a certain amount of intuitive sense: in the MRF

energy functions that occur in computer vision it is well

known that most of the weight comes from the unary terms

[31], which provide a strong signal as to the optimal label

for each variable.

More generally, we can define q(zN (S)) to be a fully

independent distribution q(zN (S)) = Πi∈N (S)qi(zi) with

qi(zi) ∝ e−θi(zi))Πj∈N (i)mj→i(zi), where mj→i(zi) is

the message we have from the belief propagation algorithm.

Since this is just an approximation, we would not need to

pay the cost of running LBP to convergence. In our exper-

iments, the more general approach does not seem to pay

dividends, but other ways of estimating the marginals are

worth investigating.

3.3. Efficiently checking our discriminative crite­
rion

Checking Eq. 6 is generally computational intractable,

due to the size of LN (S)(xS) and {yS ∈ LS | yS 6= xS}.
We now propose a polynomial time algorithm to compute a

lower bound for
∑

zN(S)∈L̂N(S)(xS) q(zN (S)).

We will focus on the persistency of a single variable xi

from this point forward. This subroutine is used by our con-

struction algorithm (which will be described in Section 3.4)

to construct a partial labeling for the given energy function

E(x). However, our methods can handle an arbitrary xS

for |S| > 1; the details are deferred to the supplementary

material, but are similar to the single variable case.

Our general strategy is to find a subset of LN (i) which

we know is inside L̂N (i)(xi) and can be easily factorized.

We start by considering each node j ∈ N (i) independently.

For each j, define Aj to be the set of labels ℓ where the au-

tarky condition holds if zj = ℓ. Since autarky is a stronger

condition than persistency, we know that all zN (i) values

where zj ∈ Aj are inside L̂N (i)(xi). The union of these

sets across different j ∈ N (i) will still be a subset of

L̂N (i)(xi).

Formally, define L
zj=ℓ

N (i) = {zN (i) | zj = ℓ}. Then

Aj = {ℓ | minyi 6=xi
∆E(yi ← xi | zN (i)) > 0, ∀zN (i) ∈

L
zj=ℓ

N (i)}. Let L
zj∈Aj

N (i) = ∪ℓ∈Aj
L
zj=ℓ

N (i) . Then, we know that

L
zj∈Aj

N (i) ⊆ L̂N (i)(xi) and ∪j∈N (i)L
zj∈Aj

N (i) ⊆ L̂N (i)(xi).

We establish a computationally tractable lower bound for
∑

zN(i)∈L̂N(i)(xi)
q(zN (i)) by the following lemma, which

we can check instead.

Lemma 5. We have the following lower bound:

∑

j∈N (i)

QjΠk∈N (i),k≺j(1−Qk) ≤
∑

zN(i)∈L̂N(i)(xi)

q(zN (i)),

(7)

where Qi =
∑

ℓ∈Ai
qi(zi = ℓ).

Proof. We can view
∑

zN(i)∈L′
N(i)

q(zN (i)) as the probabil-

ity Pr(zN (i) ∈ L
′
N (i)) given distribution q.

Because our q(zN (i)) can be factorized independently,

we can integrate over the variables other than zj to get

Pr(zN (i) ∈ L
zj=ℓ

N (i)) = Pr(zj = ℓ) = qj(zj = ℓ).

We also have Pr(zN (i) ∈ L
zj∈Aj

N (i) ) = Pr(zj ∈ Aj) =
∑

ℓ∈Aj
qj(zj = ℓ) = Qj since L

zj=ℓ

N (i) are all disjoint. Then,

using independence again, we have

∑

zN(i)∈∪j∈N(i)L
zj∈Aj

N(i)

q(zN (i))

=Pr
(

zN (i) ∈ ∪j∈N (i)L
zj∈Aj

N (i)

)

=Pr
(

∪j∈N (i)

(

zN (i) ∈ L
zj∈Aj

N (i)

)

)

=Pr
(

∪j∈N (i)

(

zj ∈ Aj

)

)

=Pr(zj1 ∈ Aj1) + Pr(zj2 ∈ Aj2)Pr(zj1 6∈ Aj1) · · ·

=
∑

j∈N (i)

QjΠk∈N (i),k≺j(1−Qk)

(8)

Finally, note that we argued ∪j∈N (i)L
zj∈Aj

N (i) ⊆ L̂N (i)(xi)
before, which concludes the proof.

Constructing Aj requires us to be able to efficiently

check minyi 6=xi
∆E(yi ← xi | zN (i)) > 0, ∀zN (i) ∈

L
zj=ℓ

N (i) . We expand it by the definition of E(x) then swap

the min and sum operators. This gives the following lower

bound, which we check for being strictly positive:

min
yi 6=xi

(

θi(yi)− θi(xi)
)

+ min
yi 6=xi

(

θij(yi, ℓ)− θij(xi, ℓ)
)

+
∑

k∈N (i),k 6=j

min
zk,yi 6=xi

(

θij(yi, zk)− θij(xi, zk)
)

> 0

(9)
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Algorithm 1: MRF inference with pre-processing

Input: Energy function E(x)
1 x̂← ∅; S ← ∅;
2 for t← 1 to τ do

3 for i ∈ V \S, ℓ ∈ Li do

4 Compute LB ≤
∑

zN(i)∈L̂N(i)(xi=ℓ) q(zN (i));

5 if LB ≥ κ then

6 x̂← x̂⊕ {xi = ℓ};
7 Li ← {ℓ}; S ← S ∪ {i};

8 end

9 end

10 end

11 With x̂S fixed, use one MRF inference algorithm to

solve the remaining variables, get x̂V \S ;

12 return x̂ = x̂S ⊕ x̂V \S ;

3.4. Our algorithm

We have presented our discriminative criterion to decide

if a given partial labeling xi = ℓ is persistent. Now we

will use it as a key subroutine to perform pre-processing

for MRF inference, as shown in lines 2-10 of Algorithm 1.

We firstly loop over the unlabeled variables and its label set

(line 3). For each given xi = ℓ, use our discriminative rule

to judge if it’s persistent (line 4-8). We will fix its value if it

passes our test by setting Li = {ℓ}, and concatenate it with

our inference result x̂ (line 6, 7). Note that fixing xi = ℓ
will also provide additional information as to the unlabeled

variables which were checked before xi, so we repeat the

whole procedure for τ iterations (line 2).

After our pre-processing has terminated and labeled the

variables in the set S, we fix the variables x̂S and use any

MRF inference algorithms to solve the remaining energy

minimization problem, which gives us a labeling x̂V \S on

the remaining variables (line 11). Finally, we obtain our

inference result by concatenating them together (line 12).

Running time We now give an asymptotic bound on the

running time of our pre-processing algorithm here, defer-

ring the analysis into the supplementary material. Assum-

ing we have an oracle to give us data terms θi(xi) and prior

terms θij(xi, xj) in O(1) time. Let N = |V |,M = |E|
and L = maxi |Li| be the number of variables, edges and

maximum possible labels, and d = maxi |N (i)| be the

maximum degree of the graph. The overall running time

isO(d2NL2+EL2) when we use Section 3.3 to check our

discriminative criterion, and O(dNLd+2) for brute force

(which is feasible when both d and L are small constants).

4. Performance bounds

We can analyze the per-instance and worst-case perfor-

mance of our pre-processing methods when followed by an

inference algorithm that produces a solution with perfor-

mance bounds.

4.1. Per­instance bounds

There are a number of MRF inference algorithms that

produce per-instance guarantees (i.e., they produce a certifi-

cate after execution that their solution is close to the global

minimum). These methods, which are typically based on

linear programming, include [19, 23, 41], and they provide

a per-instance additive error bound by computing the dual-

ity gap.

Our algorithm has a natural way to bound additive er-

rors. Recall our notation ∆E(yi ← xi | zN (i)) describing

the energy changes when we flip xi to yi with the neighbor

configuration zN (i). Therefore, minzN(i)
minyi

∆E(yi ←
xi | zN (i)) ≤ 0 is the worst case energy decrement

when we flip xi to arbitrary yi with arbitrary neighbor

configurations zN (i). It’s non-positive since we can al-

ways set yi = xi. Now we can negate it and define

δi , −minzN(i)
minyi

∆E(yi ← xi | zN (i)) to be the

maximum potential energy loss when we use our discrimi-

native criterion to decide xi is persistent. Then we have the

following two lemmas.

Lemma 6. Let x̂S be the persistent variables found by our

Algorithm 1. For arbitrary x̂V \S , and arbitrary x′
S , we have

E(x̂S ⊕ x̂V \S) ≤ E(x′
S ⊕ x̂V \S) +

∑

i∈S δi.

Proof. With x̂V \S fixed, we flip x̂i to x′
i in the reverse order

of them being added to S by our algorithm. Due to the

analysis before, we will lose at most δi at each step.

Theorem 7. Suppose the inference algorithm has per-

instance ζ-additive bound, then E(x̂) ≤ E(x∗) + ζ +
∑

i∈S δi.

Proof. Let x̄V \S be the minimizer of E(x) with x̂S fixed,

which might be different than the global minimizer x∗
V \S .

Then we will have E(x̂S ⊕ x̂V \S) ≤ E(x̂S ⊕ x̄V \S) +
ζ ≤ E(x̂S ⊕ x∗

V \S) + ζ ≤ E(x∗
S ⊕ x∗

V \S) + ζ +
∑

i∈S δi.
The first step is because we use an inference algorithm with

ζ-additive errors to solve the problem with x̂S fixed. The

second step follows because x̄V \S is the minimizer w.r.t.

x̂S .

As a special case, any sound condition like Eq. 4 guar-

antees δi = 0, i.e., we don’t make mistakes. In practice it is

computationally intractable to compute δi, so just as in Sec-

tion 3.3 we swap the min and sum operators, and compute

the upper bound δ̄i ≥ δi efficiently. Then we use
∑

i∈S δ̄i
as our per-instance additive bound.

4.2. Worst case bounds

Some MRF inference algorithms produce a solution that

is guaranteed to lie within a known factor of the global min-

imum. The best known such technique is the expansion
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move algorithm [4] but there are others [11, 17, 23]. We

can easily turn our per-instance bounds into the worst case

bounds. We combine Eq. 6 and δ̄i ≤ ǫ as our discriminative

criterion for pre-defined ǫ.

Corollary 8. Suppose the inference algorithm has worst

case ζ-additive bound, then E(x̂) ≤ E(x∗) + ζ + |S|ǫ is

our worst case additive bound.

Inference algorithm with worst case guarantees are usu-

ally multiplicative bounds other than additive bounds, but

we can modify our proof of Theorem 7 to get the following

bounds.

Theorem 9. Suppose the inference algorithm has a worst

case β-multiplicative bound, then we will have E(x̂) ≤ β ·
E(x∗) + β · |S|ǫ.

Proof. Following the proof of Theorem 7, we have E(x̂S⊕
x̂V \S) ≤ β · E(x̂S ⊕ x̄V \S) ≤ β · E(x̂S ⊕ x∗

V \S) ≤ β ·

(E(x∗
S ⊕ x∗

V \S) + |S|ǫ).

A more careful analysis can give us a tighter bound

(dropping the coefficient β before |S|ǫ), for the important

special case where we use the expansion move algorithm

[4] for inference. We defer the proof to the supplementary

material.

Theorem 10. Suppose we use expansion moves as the in-

ference algorithm, with the β-multiplicative bound, then we

will have E(x̂) ≤ β · E(x∗) + |S|ǫ.

5. Experiments

5.1. Datasets and experimental setup

Approaches The most natural baselines for us to compare

against include inference without pre-processing, and in-

ference using the sound (but conservative) DEE [8] and

PR [42] techniques. We employ expansion moves for MRF

inference [4]. In order to achieve better speedup, we apply

preprocessing to each induced binary subproblem of expan-

sion moves as the input of DEE, PR or Algorithm 1, and

then run QPBO [21].

At the other end of the spectrum are high overhead tech-

niques such as Kovtun’s approach [24, 25], MQPBO [18],

and LP-based approaches [35, 36, 39]. These algorithms

require more running time than max-flow on each induced

binary subproblem. Therefore, we apply them to the multi-

label problem, and then use expansion move to infer the

remaining part. We choose the IRI method [36] as the rep-

resentative among [35, 36, 39] since it’s significantly faster.

Note that the R3 [2] method also uses Kovtun’s method as

their pre-processing (reduce) step in order to speed up MRF

inference. The reuse and recycle parts attempt to speed up

the inference algorithm itself, which is orthogonal to what

we propose to do in this paper, so we do not compare against

this method.

We also compared against other widely used MRF infer-

ence algorithms besides expansion moves, including loopy

belief propagation (LBP) [31, 43], dual decomposition

(DD) [15], TRWS [19] and MPLP [10, 37, 38]. The com-

parison among these inference algorithms are provided in

survey papers [14, 40]. In our experiments, expansion

moves is usually significantly faster than other methods,

and gives comparable or better energy. These experimen-

tal comparisons are deferred to the supplemental material.

Dataset We conducted experiments on a variety of MRF in-

ference benchmarks, where the energy minimization prob-

lems come from different vision problems, including color

segmentation [26], stereo, image inpainting, denoising [40]

and optical flow [6]. Datasets for the first three tasks are

wrapped in OpenGM2 [14] and are available online. We

use the BSDS300 [28] for the denoising task with the MRF

setup following [40]. We use the MPI Sintel dataset [5] for

the optical flow task with the MRF setup following [6].

Our focus, of course, is on the difficult inference

problems where the induced binary subproblem is non-

submodular. For comparison, we also included some ex-

periments on relatively easy problems where the induced

binary subproblem is submodular.

Measurement We report the improvement in overall run-

ning time (including both pre-processing and the infer-

ence for the remaining unlabeled variables) and relative

energy change.5 The baseline is expansion moves with

no pre-processing. Let TALG
i and EALG

i be the running

time and energy for algorithm ALG on the i-th instance.

We define the speedup as Tα-EXP
i /TALG

i and energy change

(EALG
i − Eα-EXP

i )/Eα-EXP
i for each instance, and then re-

port the average speedup and energy change for the whole

dataset.

We also report the percentage of labeled variables dur-

ing the pre-processing. Since we view the decision problem

(whether a given partial labeling is persistent) as a classifi-

cation problem, we interchangeably use the term percentage

of labeled variables and recall value. Getting the precision

value is tricky. Since it’s a NP-hard problem so we cannot

have the ground truth label for every variable. However, we

apply our pre-processing technique to the binary subprob-

lems induced from expansion moves. We know that either

max-flow solves the subproblem exactly for the submodular

cases or QPBO can find a sufficiently large subset of partial

persistent labeling for the non-submodular cases (in our ex-

periments, it labels almost all the variables). Therefore, we

report the precision value of our method on the subset of the

variables where we know the ground truth labeling.

5Our goal is efficient energy minimization, so speed and energy are the

key criterion, but we also provide visual results comparison in the supple-

mental material.
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Figure 1. Energy vs time curve on instance Ted in Stereo dataset

Parameter setup and sensitivity analysis The discrimina-

tive rule in our approach has a few parameters. In order

to achieve a fair comparison, we employed leave-one-out

cross-validation (see, e.g. [31]) to use all but one instances

in the same dataset as the validation set to choose the best

parameter6 and test on the remaining instance. We explored

all the combinations of 1) threshold κ ∈ {0.7, 0.8, 0.9}, 2)

using a uniform distribution or the distribution derived from

the unary term for our q(x), 3) using Section 3.3 to compute

LB on line 4 of Algorithm 1 or using brute force to com-

pute
∑

zN(i)∈L̂N(i)(xi=ℓ) q(zN (i)) exactly, 4) number of it-

erations τ ∈ {1, 3, 5, 7, 9}. We run expansion moves until

convergence or after 5 iterations through of the whole label

set. We set our worst case bound ǫ = ∞ in Section 5.2,

in order to investigate how good our discriminative rule is

even without the worst case guarantee. We further study the

role of ǫ in Section 5.3 and supplementary material.

There is evidence that our approach achieves good per-

formance over a wide range of parameters. We observed

that cross validation picked nearly identical parameters for

every instance in the same dataset. Using nearby parameters

also produced good results.

We also experimented with the following fixed parame-

ters, to avoid the expense of cross-validation: κ = 0.8, τ =
3, using the uniform distribution for q(x) and checking with

Section 3.3. Note that this is a fairly conservative assump-

tion, since we use the exact same parameters for very dif-

ferent energy functions, but still obtain good results. We

acheive a 2x-12x speedup on different datasets with the en-

ergy increasing 0.1% on the worst case. In addition, we

still get lower energy on 4 of the 5 challenging dataset. We

defer the details of our fixed parameter experiments to the

supplementary material.

6Based on the criterion that we choose the fastest overall running time

when the false positive rate is less than 1%.

5.2. Results on benchmarks

We summarize our experimental results in Table 2. Our

primary goal is to speedup MRF inference on hard prob-

lems, and there is evidence that our benchmarks are chal-

lenging. The state-of-the-art IRI method, which deliv-

ers impressive performance on the easier problems in our

benchmarks, struggles with the harder problems7 while

MPQBO runs out of memory. The only source code for

Kovtun we could find is restricted to the Potts model.

Our approach achieved a significant improvement, mak-

ing expansion moves 2x to 12x faster on various datasets.

Our pre-processing method beats its natural competitor

DEE by around 2x, and outperforms all the baseline meth-

ods. Figure 1 shows a typical energy vs. time curve. We

can see our approach drives the energy curve down much

faster than the other methods.

The key factor for the speedup is the percentage of la-

beled variables. The values of these variables are fixed dur-

ing the pre-processing step, resulting in a smaller problem

for max-flow/QPBO to solve. Table 2 shows our approach

labels significantly more variables than DEE and PR, es-

pecially on the inpainting and denoising-sq datasets. Kov-

tun, MQPBO and IRI have very expensive overhead as the

pre-processing step. While it is impressive that IRI labels

almost every variable on the easy dataset, it is still 2x-6x

slower than our proposed method. Furthermore, Kovtun,

MQPBO and IRI do not perform well on our challenging

datasets. When the size of the label set is large (which is

common in many vision problems such as inpainting, de-

noising or optical flow), even IRI only proves a few vari-

ables to be persistent after spending 3x-70x as much time as

our method. This demonstrates the advantage of performing

pre-processing on the binary subproblem, which is consis-

tent with the observation in [42].

Our method also performs well in terms of energy, espe-

cially on the hard benchmarks. Because we can label some

variables incorrectly during pre-processing, there is a risk

of producing a larger energy. However, the experimental re-

sults are reassuring: on the hard problems we actually pro-

duce slightly lower energy, while on the easier problems we

can produce slightly higher energy.

While it is somewhat counter-intuitive, occasionally la-

beling variables incorrectly can plausibly lead to a better

overall energy by getting out of a local minimum. Expan-

sion moves can be viewed as a local search algorithm al-

though its search space has an exponential size [1]. There-

fore, a random walk going uphill occasionally may help us

escape from the local minimizer, as in the Metropolis algo-

rithm [30] or simulated annealing [16]. At one iteration of

the expansion move algorithm, our method may label some

7In the table, time out means we do not obtain results after running for

10x the overall running time that expansion moves take.
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Table 2. Experimental Results (N/A: not applicable, TO: time out, MEM: out of memory)
Dataset Measurement Ours DEE PR Kovtun MQPBO IRI

C
h

a
ll

en
g

in
g

D
a

ta
se

ts

(n
o

n
-

P
o

tt
s

en
er

g
y,

la
rg

e
|L

|)

Stereo Speedup 1.78x 1.06x 1.13x N/A MEM 0.51x

12–20 labels Energy Change -0.06% 0.00% 0.00% N/A MEM -0.15%

Trunc. L1/L2 Labeled Vars 44.76% 10.07% 18.06% N/A MEM 56.45%

Inpainting Speedup 3.40x 1.28x 1.32x N/A MEM 0.12x

256 labels Energy Change -1.71% 0.00% 0.00% N/A MEM 0.00%

Trunc. L2 Labeled Vars 74.29% 21.05% 23.75% N/A MEM 0.36%

Denoising-sq Speedup 11.83x 1.20x 1.37x N/A MEM 0.29x

256 labels Energy Change -0.02% 0.00% 0.00% N/A MEM 0.00%

L2 Labeled Vars 97.91% 16.54% 29.83% N/A MEM 0.39%

Denoising-ts Speedup 11.91x 10.53x 10.64x N/A MEM 0.18x

256 labels Energy Change 0.00% 0.00% 0.00% N/A MEM -0.03%

Trunc. L2 Labeled Vars 98.32% 95.65% 97.69% N/A MEM 5.85%

Optical Flow Speedup 4.69x 2.63 3.40x N/A MEM TO

225 labels Energy Change -0.04% 0.00% 0.00% N/A MEM TO

L1 Labeled Vars 77.25% 54.34% 65.51% N/A MEM TO

E
a

sy
D

a
ta

se
ts

(P
o

tt
s,

sm
al

l
|L

|) Color-seg-n4 Speedup 7.02x 4.55x 6.34x 2.43x 0.37x 3.67x

4–12 labels Energy Change 0.00% 0.00% 0.00% 0.00% 0.00% -0.12%

Potts Labeled Vars 85.74% 65.38% 77.50% 70.32% 17.27% 98.44%

Color-seg-n8 Speedup 8.33x 5.61x 6.37x 2.33x 0.32x 1.45x

4–12 labels Energy Change +0.04% 0.00% 0.00% 0.00% 0.00% -0.10%

Potts Labeled Vars 90.39% 71.62% 82.05% 70.05% 17.87% 99.35%

Table 3. Precision of our method
Dataset Stereo Inpainting Denoising-sq Denoising-ts Optical Flow Color-seg-n4 Color-seg-n8

Precision 99.74% 96.16% 99.95% 99.79% 99.88% 99.79% 99.77%

Table 4. Precision/recall value v.s. κ (P: Precision, R: Recall)
κ 0.7 0.8 0.9 1.0

Stereo
P 90.40% 99.71% 99.41% 100.00%

R 91.31% 56.77% 11.35% 9.26%

Inpainting
P 95.11% 99.88% 99.96% 100.00%

R 90.51% 47.06% 25.97% 21.93%

Denoising-sq
P 99.66% 99.95% 99.95% 100.00%

R 99.47% 97.52% 19.11% 15.15%

Denoising-ts
P 99.75% 99.95% 99.99% 100.00%

R 98.61% 96.65% 94.99% 94.62%

Optical Flow
P 94.01% 99.50% 99.98% 100.00%

R 99.27% 93.74% 60.85% 56.79%

Color-seg-n4
P 94.77% 99.50% 99.86% 100.00%

R 98.52% 90.80% 77.20% 66.65%

Color-seg-n8
P 99.48% 99.76% 99.87% 100.00%

R 92.84% 90.43% 86.92% 71.66%

variables incorrectly and solve the binary subproblem sub-

optimally (i.e., our pre-processing may cause the energy to

increase during expansion move framework). It is plausible

that this suboptimal move for the binary subproblem may

also help us escape from the local minimizer. To verify this

hypothesis, we experimented with a variant of our method

where we reject an expansion move if it makes the energy

worse. In experiments, this change led to a worse final en-

ergy. This suggests that allowing suboptimal moves is ben-

eficial.

We believe that our method achieves competitive energy

due to the very high precision, shown in Table 3. It demon-

strates that our discriminative rule described in Eq. 6 is ef-

fective and powerful despite being simple and intuitive. In

general, by compromising precision a little bit, we can sig-

nificantly boost the recall value, as illustrated in Table 4.

In summary, our proposed method achieves a high qual-

ity trade-off between running time and energy among all the

methods, particularly on challenging datasets. It runs sig-

nificantly faster than its competitors and achieves an energy

that is similar and sometimes even lower.

5.3. Experiments with parameters and bounds

In Section 5.2, we set the parameter ǫ = ∞, and in-

vestigated how our algorithm performed without the worst

case bound. We have demonstrated the proposed discrimi-

native rule Eq. 6 itself is empirically effective. All the post-

running per-instance bounds we proved in Section 4.1 are

still sound, although in this variant of our method there is

no worst case theoretical guarantee.

However, if we combine Eq. 6 and δ̄i ≤ ǫ as our deci-

sion rule, as described in Section 4.2, we will have the worst

case bounds. We also conducted experiments with differ-

ent ǫ’s. Our observation is that when κ ≥ 0.8, adding the

rule δ̄i ≤ ǫ has minimal effects on the speedup and energy

we reported in Table 2, since our precision is already very

high as shown in Table 4. However, it gives us a worst case

theoretical guarantee. When κ ≤ 0.6, we can observe a no-

ticeable improvement on precision and energy change when

we decrease the ǫ value with other parameters fixed. As a

special case, we have a sound condition again when ǫ = 0.

In general, decreasing ǫ increases the running time, but the

tradeoffs involved are not obvious, and we defer details to

the supplementary material.
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