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Abstract. In this paper, we give a new identity-based signcryption
scheme based on pairings. It is secure against adaptive chosen cipher-
text and identity attack in the random oracle with the Modified Bilinear
Diffie-Hellman assumption [14]. It produces shorter ciphertext than any
one of schemes [7],[14] for the same plaintext and adapts to the band-
constrained scenario very well.
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1 Introduction

The two fundamental services of public key cryptography are encryption and
signing. Encryption provides confidentiality. Digital signatures provide authen-
tication and non-repudiation. Often when we use one of these two services, we
would like to use also the other. In 1997, Zheng [1] proposed a novel crypto-
graphic primitive which he called as signcryption. The idea behind signcryp-
tion is to simultaneously perform signature and encryption in a logically sin-
gle step in order to obtain confidentiality, integrity, authentication and non-
repudiation at lower computational cost than the traditional “signature then
encryption”approach. In addition, this latter solution also expends the final ci-
phertext size. Several efficient signcryption schemes [2],[3],[4],[5],[6] have been
proposed since 1997. Malone-Lee afterward extended the signcryption idea to
identity-based cryptography and firstly presented an identity-based signcryption
scheme [8]. Indeed, the concept of identity-based cryptography was proposed in
1984 by Shamir [16]. The idea behind identity-based cryptography is that the
user’s public key can be derived from arbitrary string (e-mail address, IP ad-
dress combined to a user name,...) which identifies him in a non ambiguous way.
This greatly reduces the problems with key management. This kind of system
needs trusted authority called private key generator(PKG) whose task is to com-
pute user’s private key from user’s identity information. Several identity-based
signcryption schemes have been proposed so far, e.g. [7],[9],[10],[11],[12],[13],[14].
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Unfortunately, most of these schemes only operate on plaintexts of less than or
equal to some fixed length.

In some situations, e.g. bandwidth-constrained scenario, it is desirable to
shorten the length of ciphertext. In this paper we propose a new identity-based
signcryption scheme which can deal with plaintexts of arbitrary length. For the
same plaintext, it produces shorter ciphertext than any one of the schemes [7],[14]
and adapts to the bandwidth-constrained scenario very well.

The paper will proceed as follow. In section 2, we review some preliminaries
used throughout this paper. Our scheme is presented in Section 3. In Section 4,
we compare our scheme with others. Section 5 concludes the paper.

2 Preliminaries

2.1 Notations

Throughout this paper, we will use the following notations. |q| denotes the
length of q in bits. If |q| = 0, q is denoted as φ. Z+ denotes the set of natural
numbers and {0, 1}∗ denotes the the space of finite binary strings. Let [m]l1
denote the most significant l1 bits of m and [m]l2 denote the least significant l2
bits of m. We denote by a||b the string which is the concatenation of strings a
and b. We also denote [x]= y if y ≤ x < y + 1 and y ∈ Z+. a

⊕
b denotes the

bitwise XOR of bit strings a and b. If G is a set, x ∈R G denotes that x is an
element randomly selected from G. Zq = {0, 1, . . . , q − 1}

2.2 Bilinear Map and Some Problems

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
and G2 be a cyclic multiplicative group with the same order q. The bilinear map
is given as e : G1 ×G1 → G2, which satisfies the following properties:

(1) Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P,Q ∈ G1, a, b ∈ Zq

(2) Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) 6= 1, in other
words, the map does not send all pairs in G1 ×G1 to the identity in G2;

(3) Computability: There is an efficient algorithm to compute ê(P, Q) for all
P, Q ∈ G1.

We note that the weil and Tate pairings associated with supersingular elliptic
curves can be modified to create such bilinear maps.

Definition 1. Let l be a security parameter. Given two groups G1 and G2 of the
same prime order q (|q|=l), a bilinear map ê :G1 ×G1→G2 and a generator P
of G1, the Decisional Bilinear Diffie-Hellman Problem (DBDHP) in (G1, G2, ê)
is, given (P, aP, bP, cP, h) for unknown a, b, c ∈ Zq, to decide whether h =
ê(P, P )abc. The Modified Decisional Bilinear Diffie-Hellman Problem (MDB-
DHP) in (G1, G2, ê) is, given (P, aP, bP, cP, c−1P, h) for unknon a, b, c ∈ Zq,
to decide whether h = ê(P, P )abc−1

.
We define the advantage of a distinguisher D against MDBDHP like this:

Adv
MDBDHP (G1,G2,P )
D (l)=|Pra,b,c∈RZq [1← D(aP , bP , cP , c−1P , ê(P , P )abc−1

)]
−Pra,b,c∈RZq,h∈RG2 [1←D(aP , bP , cP , c−1P , h)]|.



Obviously DBDHP is harder than MDBDHP. However, no known existing
efficient algorithm can solve MDBDHP, to the best of our knowledge.

2.3 Framework of Identity-Based Signcryption Scheme

Signcryption schemes are made of five algorithms: Setup, Keygen, Signcrypt,
Unsigncryp and TPVerify(if public verifiability is satisfied).
–Setup: Given a security parameter l, the private key generator(PKG)generates
the system’s public parameters params.
–Keygen: Given an identity ID, the PKG computes the corresponding private
keys sID, dID and transmits them to their owner in a secure way.
– Signcrypt : To send a message m to Bob, Alice computes Signcrypt(m, sIDA

, IDB)
to obtain the ciphertext σ.
– Unsigncrypt : When Bob receives σ, he computes Unsigncrypt(σ, IDA, dIDB )
and outputs the clear text m and ephemeral data temp for public verifiability,
or the symbol ⊥ if σ was an invalid ciphertext between identities IDA and IDB .
–TPVerify : On input (σ, IDA,m, temp), it outputs > for true or ⊥ for false,
depending on whether σ is a valid ciphertext of message m signcrypted by IDA

or not .
For obvious consistency purposes, we of course require that if σ=Signcrypt(m,

sIDA , IDB), then we have the relation (m, temp) = Unsigncrypt(σ, IDA, dIDB )
and >=TPverify(σ, IDA, m, temp).

2.4 Security Notions

Malone-Lee [8] extended notions of sematic security for public key encryption
to identity-based signcryption schemes(IBSC). Sherman et al. slightly modified
the definitions of these notions. these modified notions are indistinguishabil-
ity against adaptive chosen ciphertext and identity attacks(IND-IBSC-CCIA)
and existential unforgery of identity based signcryption under adaptive chosen
message and identity attacks (EUF-IBSC-ACMIA). Now we recall the following
definitions.

Definition 2. An identity-based signcryption scheme has the IND-IBSC-CCIA
property if no adversary has a non-negligible advantage in the following game.

(1) The challenger runs the Setup algorithm and sends the system parameters
to the adversary

(2) The adversary A performs a polynomially bounded number of queries:
– Signcrypt query: A produces two identities IDA, IDB and a plaintext m.
The challenger computes (sIDA

, dIDA
) = Keygen(IDA) and then Signcrypt(m,

sIDA
, IDB) and sends the result to A.

– Unsigncrypt query: A produces two identities IDA and IDB , a ciphertext
σ. The challenger generates the private key (sIDB

, dIDB
) = Keygen(IDB)

and sends the result of Unsigncrypt(σ, dIDB , IDA) to A (this result can be
the ⊥ symbol if σ is an invalid ciphertext).



– Keygen query: A produces an identity ID and receives the extracted private
key (sID, dID) = Keygen(ID).
A can present its queries adaptively: every query may depend on the answer
to the previous ones.

(3) A chooses two plaintexts m0, m1(|m0| = |m1|) and two identities IDA and
IDB on which he wishes to be challenged. He cannot have asked the private
key corresponding to IDB in the first stage.

(4) The challenger randomly takes a bit d ∈ {0, 1} and computes σ=Signcrypt(
md, sIDA

, IDB) which is sent to A.
(5) A asks again a polynomially bounded number of queries just like in the first

stage. This time, he cannot make a Keygen query on IDB and he cannot
ask the plaintext corresponding to σ.

(6) Finally, A produces a bit d
′
and wins the game if d

′
= d.

The adversary A’s advantage is defined to be Adv(A):=|2Pr[d
′
= d]− 1|

Definition 3. An identity-based signcryption scheme is said to have the EUF-
IBSC-ACMIA property if no adversary has a non-negligeable advantage in the
following game.

(1) The challenger runs the setup algorithm and gives the system parameters to
the adversary A.

(2) The adversary A performs a polynomially bounded number of queries just
like in the previous definition 2.

(3) Finally, A produces a new triple (σ∗, IDA, IDB) (i.e. a triple that was not
produced by the signcryption oracle), where the private key of IDA was not
asked in the first stage and wins the game if the result of Unsigncrypt(σ, IDA,
dIDB ) is not the ⊥ symbol.

The adversary’s advantage is simply its probability of victory.

In this definition, to obtain the non-repudiation property and to prevent a
dishonest recipient to send a ciphertext to himself on Alice’s behalf and to try to
convince a third party that Alice was the sender, it is necessary for the adversary
to be allowed to make a Keygen query on the forged message’s recipient IDB .

3 Proposed Signcryption Scheme

3.1 Description of the scheme

– Setup: Given a security parameter l ∈ Z+, the private key generator(PKG)
chooses groups G1 and G2 of prime order q( l = |q| = l1 + l2, here l1 = [ l+1

2 ],
l2 = [ l

2 ]), a generator P of G1, an bilinear map ê : G1 × G1 → G2 and
cryptographic hash functions H1:{0, 1}∗→G1, H2:G2→{0, 1}n (here n is the
key length of symmetric cipher ), H3:{0, 1}∗→ Z∗q , F1:{0, 1}l2→ {0, 1}l1 ,
F2:{0, 1}l1→ {0, 1}l2 . It also choose a secure symmetric cipher (E , D) and a
master-key s ∈ Z∗q , and computes Ppub = sP and g=ê(P ,Ppub). The system’s
public parameters are P= {q, G1, G2, n, ê, P, Ppub, g, H1,H2,H3, F1, F2, E ,D}.



– Keygen: Given identity ID, the PKG computes QID = H1(ID) and the
private key dID = s−1QID, sID = sQID.

– Signcrypt : To send a message m (|E(·)(m)| ≥ l2) to Bob, Alice follows the
steps below.
1. Compute QIDB = H1(IDB) ∈ G1.
2. Randomly choose x ∈ Z∗q , compute k1=gx, k=H2(ê(P ,QIDB )x).
3. Compute c = c1||c2 =Ek(m), f = F1(c2)||(F2(F1(c2))

⊕
c2). Here if

|c| = l2, c2 = c ; if |c| > l2, c1=[c]|c|−l2 , c2=[c]l2 .
4. Compute r = H3(k1) + f and r0 = H3(r||c1).
5. Compute S = xPpub − r0sIDA

.
6. The ciphertext is σ = (c1, r, S).

– Unsigncrypt : When receiving σ = (c1, r, S), Bob follows the steps below.
1. Compute QIDA

= H1(IDA) ∈ G1 and r0 = H3(r||c1).
2. Compute k1 = ê(S, P )ê(QIDA

, Ppub)r0 .
3. Compute τ = ê(S, dIDB

)ê(QIDA
, QIDB

)r0 and k = H2(τ).
4. Compute f = r −H3(k1).
5. Compute c2 = [f ]l2

⊕
F2([f ]l1) and m =Dk(c2).

6. Accept σ if and only if [f ]l1 = F1(c2).
7. Given (k, m, σ) to third party.

– TPVerify : On receiving (k,m, σ), the third party follows the steps below.
1. Compute r0 = H3(r||c1) and k1 = ê(S, P )ê(QIDA , Ppub)r0 .
2. Compute f = r −H3(k1).
3. Compute c2 = [f ]l2

⊕
F2([f ]l1).

4. Accept the origin of ciphertext if and only if [f ]l1 = F1(c2).
5. Accept the message authenticity if and only if m =Dk(c2).

– Remark 1: If |E(·)(m)| < l2, we need some redundancy to signcrypt message
m. For example, we choose a hash function H : {0, 1}∗ → {0, 1}l2 and
set c

′
=E(·)(m)||H(E(·)(m)), then we sign message c

′
by Fangguo Zhang et

al’s identity-based signature scheme. Since the length of paper is limited, we
don’t discuss it any more here. Throughout this paper, we assume |E(·)(m)| ≥
l2 if message m need to be signcrypted.

– Remark 2: In the unsigncryption process, f ∈ Z+ is turned into a bit string
f . If |f | < l, we will fill (l − |f |) zeros in the left of bit string f .

The consistency of this scheme is easy to verify by the bilinear pairing. It is
forward-secure, in the sense that only Bob (and PKG) can recover m: knowl-
edge of Alice’s private keys sIDA

and dIDA
is insufficient to compute k. It is

also publicly verifiable because, when verifying the messages origin by TPVerify
algorithm, any third party does not depend on any private information. In order
to convince someone that Alice is the sender of plaintext m, the receiver just
have to forward the ephemeral decryption k to the third party.

3.2 Security Result

Theorem 1. In the random oracle model (the hash functions are modeled as
random oracles), if there is an IND-IBSC-CCIA adversary A that succeeds with



an advantage ε when running in a time t and asking at most qH1 H1 queries, at
most qE Keygen queries, at most qR H3 queries, qR Signcrypt queries and qU

Unsigncrypt queries, then there is a distinguisher B that can solve the MDBDH
problem in O(t+((6qR +2)qR +4qU )T

ê
+((3qR +1)qR +2qU )Tpm) time with an

advantage

Adv
MDBDHP (G1,G2,P )
B (l)> (ε(2[l/2] − qU )− qU )/(qH1)

22[l/2]+1

where T
ê

denotes the computation time of the bilinear pairing, Tpm denote the
computation time of exponentiation over G2

Proof. see the appendix.
The existential unforgeability against adaptive chosen messages and identity

attacks derives from the security of Fangguo Zhang ea al’s identity-based sig-
nature scheme [15]. By arguments similar to those in [17], one can show that
an attacker that is able to forge a signcrypted message must be able to forge a
signature for Fangguo Zhang ea al’s identity-based signature scheme.

4 Comparison of Schemes

Among these schemes [7],[9], [10],[11],[12],[13],[14], only schemes [7],[14] use
the more general symmetric cipher and seems to process messages of arbitrary
length. So, in table 1 below, we compare our scheme with schemes [7],[14] in
terms of the length of the ciphertext which they produce and the number of the
dominant operations required by them. In table we use mls, exps, and pcs as
abbreviations for point multiplications in G1, exponentiations in G2 and pairing
computations respectively. In table, we denote all the ciphertexts, which are
produced by encrypting the plaintext m with symmetric cipher in different and
equal length keys and which are of equal length, as c for convenience, since we
only consider the ciphertext length not the content of the ciphertext.

Table 1 Comparison of Schemes
Ciphertext Size Efficiency

Schemes |c|∗=l2 |c|∗>l2 Signcrypt Signcrypt

(c1 = [c]|c|−l2) mls exps pcs mls exps pcs

Libert-Quisquater[10]♣ |c|+ |q|+ |G1| |c|+ |q|+ |G1| 1 2 2‡ 2 4‡

Chow-Yiu-Hui-Chow[15] |c|+ |q|+ |G1| |c|+ |q|+ |G1| 1 2 2‡ 2 4‡

Our scheme |q|+ |G1| |c1|+ |q|+ |G1| 1 2 1† 2 4‡

(∗) c is produced by encrypting plaintext m with symmetric cipher.
(†) One pairing is precomputable
(‡) Two pairings are precomputable

(♣) This scheme has no forward-secure property

5 Conclusion

We proposed a new identity-based signcryption scheme. It produces shorter
length ciphertext than any one of schemes [7],[14] for the same plaintext. It has



the IND-IBSC-CCIA property in random oracle with assumption that MDBDHP
is hard to decide. Additionally, it is an interesting problem to construct an
identity-based signcryption schemes which produces shorter length ciphertext
than ours for the same plaintext
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Appendix: Proof of theorem 1

The distinguisher B receives a random instance (P, a1P, a2P, a3P, a−1
3 P, h) of the

MDBDH problem. Its goal is to decide whether h = ê(P, P )a1a2a−1
3 or not. B will

run A as a subroutine and act as A’s challenger in the IND-IBSC-CCIA game.
Here note that we only discuss the case E(·)(m) = l2, the discussion of the case
E(·)(m) > l2 is similar to that of the case E(·)(m) = l2 and is omitted. B needs
to maintain lists L1, L2, L3, L4, and L5 that are initially empty and are used to
keep track of answers to queries asked by A to oracle H1, H2, H3, F1 and F2.
We assume that the following assumptions are made.

(1) A will ask for H1(ID) before ID is used in any Signcrypt, Unsigncrypt
and Keygen queries.

(2) A will not ask for Keygen(ID) again if the query Keygen(ID) has been
already issued before.

(3) Ciphertext returned from a Signcrypt query will not be used by A in an
Unsigncrypt query.

At the beginning of the game, B gives A the system parameters with Ppub =
a3P (a3 is unknown to B and plays the role of the PKG’s master key in the game).

– H1 queries: When A makes an H1 query on identity, B checks the list
L1, If an entry for the query is found, the same answer will be given to A;
otherwise, a value dj from F ∗q will be randomly chosen and djP will be used as
the answer, the query and the answer will then be stored in the list L1. The only
exception is that B has to randomly choose one of the H1 queries from A, say
the ith query, and answers H1(IDi) = a2P for this query. Since a2P is a value in
a random instance of the MDBDH problem, it does not affect the randomness
of the hash function H1.

– H2, H3, F1 and F2 queries: When A makes queries on these hash
functions, B checks the corresponding list. If an entry for the query is found, the
same answer will be given to A; otherwise, a randomly generated value will be
used as an answer to A, the query and the answer will then be stored in the list.

– Keygen queries: When A asks a query Keygen(ID), if ID = IDi, then
B fails and stops. if ID 6= IDi, then the list L1 must contain a pair (ID, d) for
some d. The private keys corresponding to ID is dID =da−1

3 P and sID =da3P
which B knows how to compute.

– Signcrypt queries: At any time A can perform a Signcrypt query for
a plaintext m and identities IDA, IDB (Let IDA, IDB be the identity of the
sender and that of the recipient respectively).

For case IDA 6=IDi, B can compute the private key sIDA
correspondingly

and the query can be answered by a call to Signcrypt(m, sIDA
, QIDB

).
For the case IDA=IDi and IDB 6= IDi, B answers Signcrypt(m, sIDA

, QIDB
)

query as follows. B randomly picks S ∈ G∗1. Then B randomly choose r0 ∈ Zq

and computes k1=(ê(S, P )ê(QIDA
, Ppub)r0). If L3 contains (k1, ·), B has to

repeat the same process using another r0 until the corresponding (k1, ·) is not
any entry in L3 (Note that: this process repeats at most 3qR times as L3 can



contain at most 3qR. B needs to compute two pairings at most for each itera-
tion of the process ). Then B computes τ= ê(S, dIDB )ê(QIDA , QIDB )r0 , where
dIDB

is the private decryption key of IDB . B finds k =H2(τ) by running the
simulation for H2 and computes c =Ek(m). Then B finds f1 =F1(c) by running
the simulation for F1 and f2 =F2(f1) by running the simulation for F2, and
computes f=f1||f2

⊕
c. Then B randomly picks r1∈Z∗q \A ( here A={x−f | L3

contains (x, ·)}⋃{x|L3 contains (·, x)} ⋃{k1− f} ) and puts (k1,r1) and (r1+f ,
r0) into L3. The ciphertext (r1 + f, S) appears to be valid from A’s viewpoint.

For case IDA = IDB = IDi, B signcrypts m as follows. B randomly chooses
τ∗ ∈ G2 and k∗ ∈ {0, 1}n such that entries (τ∗, .) and (., k∗) are not in L2

and computes c∗ =Ek∗(m). Then B finds f∗1 =F1(c∗) by running the simulation
for F1, and f∗2 =F2(f∗1 ) by running the simulation for F2 and computes f∗ =
f∗1 ||f∗2

⊕
c∗. B randomly picks S∗ ∈ G∗1. Then B randomly choose r∗0 ∈ Zq

and computes k∗1=(ê(S∗, P )ê(QIDA
, Ppub)r∗0 ). If L3 contains (k∗1 , ·), B has to

repeat the same process using another r∗0 until the corresponding (k∗1 , ·) is not
any entry in L3 (Note that: B needs to compute two pairings at most for each
iteration of the process). Then B randomly picks r∗1∈Z∗q \A (here A={x−f∗|
L3 contains (x, ·)}⋃{x|L3 contains (·, x)}⋃{k∗1 − f∗}) and puts (k∗1 ,r∗1) and
(r∗1+f∗, r∗0) into L3. B gives the ciphertext σ∗=(r∗1+f∗, S∗) to A. As A will
not ask for the unsigncryption of σ∗, he will never see that σ∗ is not a valid
ciphertext of the plaintext m where IDA = IDB = IDi (since τ∗ may not equal
to ê(S∗, dIDB )ê(QIDA , QIDB )r∗0 ).

– Unsigncrypt queries: When A makes a Unsigncrypt query for cipher-
text σ

′
= (r

′
, S

′
) from IDA to IDB , we consider the two cases below:

For the case IDB = IDi, B always answers A that σ
′

is invalid. So in
the following case, B always notifies A the ciphertext is invalid: if the list L3

contains (r
′
, r
′
0) and ( ê(S

′
, P )ê(QIDA , Ppub)r

′
0 , y), the list L5 contains an entry

([r
′−y]l1 , f

′
2), and A previously asked the hash value F1([r

′−y]l2
⊕

f
′
2), there is

a probability of at most 1/2l1 that B answered [r
′−y]l1 (and that σ

′
was actually

valid from A’s point of view). The simulation fails if the list L4 contains an entry
([r

′−y]l2
⊕

f
′
2, [r

′−y]l1) (as B rejected a valid ciphertext).

For the case IDB 6= IDi, B rejects the ciphertext σ
′
if (r

′
, ·) isn’t be found in

L3. Otherwise, it finds (r
′
, r
′
0) in L3. B rejects the ciphertext σ

′
if (k

′
1, ·) is not be

found in the list L3 ( here k
′
1=ê(S

′
, P )ê(QIDA , Ppub)r

′
0 ). Otherwise, it finds (k

′
1,

r
′
1). B rejects the ciphertext σ

′
if ([r

′−r
′
1]

l1 , ·) isn’t be found in L5. Otherwise, it
finds ([r

′−r
′
1]

l1 , f
′
2 ) and computes c

′
=[r

′−r
′
1]l2

⊕
f
′
2. B rejects the ciphertext σ

′
if

the list L4 contains an entry (c
′
, x) with x6=[r

′−r
′
1]

l1 or the list L4 doesn’t contain
(c
′
, [r

′−r
′
1]

l1). Otherwise, B computes τ
′

= ê(S
′
, dIDB

)ê(QIDA
, QIDB

)r
′
0 , then

he searches for an entry (τ
′
, ·) in list L2; If no such entry is found, B randomly

picks k
′ ∈ {0, 1}n such that no entry with k

′
already exists in L2 and inserts

(τ
′
, k

′
) in L2. B can use the corresponding k

′
to find m

′
=Dk′ ([r

′−r
′
1]l2

⊕
f
′
2)

and returns m
′
. Apparently, under this case, the probability to reject at least

one valid ciphertext doesn’t exceed qU

2[l/2] (=Max{ qU

2l , qU

2[(l+1)/2] ,
qU

2[l/2] })



By analyzing the two cases above, It is easy to see that, for all queries, the
probability to reject at least one valid ciphertext does exceed qU

2[l/2] ( =Max
{ qU

2[(l+1)/2] ,
qU

2[l/2] }).

After the first stage, A picks a pair of identities on which he wishes to be
challenged. Note that B fails if A has asked an Keygen query on IDi during the
first stage. It is easy to see that the probability for B not to fail in this stage
is greater than 1

qH1
. Further, with a probability exactly 2

qH1
( =(qH1 − 1)/

(qH1
2

)

), A chooses to be challenged on the pair (IDj , IDi) with j 6= i. Hence the
probability that A’s response is helpful to B is greater than 1

(qH1 )2 . Note that
if A has submitted an Keygen query on IDi, then B fails because he is unable
to answer the question. On the other hand, if A does not choose (IDj , IDi) as
target identities, B fails too.

Then A produces two plaintexts m0 and m1 (|m0|=|m1|), B randomly picks
a bit b ∈ {0, 1} and signcrypts mb. To do so, he sets S∗ = a1P and randomly
chooses r∗0 ∈ F ∗q . Suppose IDj = dP , setting S∗ = a1P implies (x−r∗0)da3 = a1,
i.e. x = a1a

−1
3 d−1 + r∗0 . Since a1P and a3P belong to a random instance of the

MDBDH problem, x is random and this will not modify A’s view. B computes
k∗1=(ê(S∗, P )ê(QIDA , Ppub)r∗0 ). If L3 contains (k∗1 , ·), B has to repeat the same
process using another r∗0 until the corresponding (k∗1 , ·) is not any entry in L3.
B computes τ∗=hê(QIDj , a2P )r∗0 , where h is B’s candidate for the MDBDH
problem, obtains k∗ = H2(τ∗) by running the simulation for H2, and computes
cb =Ek∗(mb). Then B finds f1 =F1(cb) by running the simulation for F1 and f2

=F2(f1) by running the simulation for F2, and compute f = f1||f2

⊕
cb. Then B

randomly picks r∗1∈Z∗q \A (here A={x−f | L3 contains (x, ·)}⋃{x|L3 contains (·,
x)}⋃{k∗1 − f} ) and puts (k∗1 ,r∗1) and (r∗1+f , r∗0) into L3. B sends the ciphertext
σ∗=(r∗1+f , S∗) to A.

A then performs a second series of queries, B can handle these queries as in
the first stage. At the end, A will produce a bit b

′
for which he believes relation

σ = Signcrypt(mb′ , sIDj , QIDi) holds . If b = b
′
, B then answers 1 as the result

to the MDBDH problem since he has produced a valid signcrypted message of
mb using the knowledge of h. Otherwise, B should answer 0.

Taking into account all the probabilities that B will not fail its simulation,
the probability that A chooses to be challenged on the pair (IDj , IDi), and also
the probability that A wins the IND-IBSC-CCIA game, we have

Adv
MDBDHP (G1,G2,P )
B (l)> ( ε+1

2 (1− qU

2[l/2] )− 1/2)(1/(qH1)
2) = ε(2[l/2]−qU )−qU

(qH1 )22[l/2]+1

Regarding the time complexity, it can be verified by counting the number of
pairing operations required to answer all queries.


