Chapter 8

SECURING CURRENT AND FUTURE
PROCESS CONTROL SYSTEMS

Robert Cunningham, Steven Cheung, Martin Fong, Ulf Lindqvist, David
Nicol, Ronald Pawlowski, Eric Robinson, William Sanders, Sankalp
Singh, Alfonso Valdes, Bradley Woodworth and Michael Zhivich

Abstract Process control systems (PCSs) are instrumental to the safe, reliable and
efficient operation of many critical infrastructure components. However,
PCSs increasingly employ commodity information technology (IT) ele-
ments and are being connected to the Internet. As a result, they have
inherited IT cyber risks, threats and attacks that could affect the safe
and reliable operation of infrastructure components, adversely affecting
human safety and the economy.

This paper focuses on the problem of securing current and future
PCSs, and describes tools that automate the task. For current systems,
we advocate specifying a policy that restricts control network access and
verifying its implementation. We further advocate monitoring the con-
trol network to ensure policy implementation and verify that network
use matches the design specifications. For future process control net-
works, we advocate hosting critical PCS software on platforms that tol-
erate malicious activity and protect PCS processes, and testing software
with specialized tools to ensure that certain classes of vulnerabilities are
absent prior to shipping.

Keywords: Process control systems, access control, intrusion detection, secure plat-
forms, vulnerability testing

1. Introduction

Process control systems (PCSs) are used in a variety of critical infrastruc-
tures, including chemical plants, electrical power generation, transmission and
distribution systems, water distribution networks, and waste water treatment
plants [3]. Until recently, PCSs were isolated, purpose-built systems that used
specialized hardware and proprietary protocols; communications was provided
by radio and/or direct serial modem connections without regard to security.

100 CRITICAL INFRASTRUCTURE PROTECTION

However, current PCSs are increasingly adopting standard computer platforms
and networking protocols, often encapsulating legacy protocols in Internet pro-
tocols (e.g., Modbus encapsulated in TCP running on Windows, Unix or real-
time embedded platforms using IP networks with conventional switches and
routers) [4]. The change is driven by the improved functionality and lower
cost offered by these technologies and the demand for data to travel over exist-
ing corporate networks to provide information to engineers, suppliers, business
managers and maintenance personnel [2]. Unfortunately, enterprise IT sys-
tems based on conventional hardware, software and networking technologies
are vulnerable to myriad attacks. In some cases, PCSs are built using com-
modity components that are known to have vulnerabilities (e.g., WinCE [16]
and QNX [17]) and, unless the vulnerabilities are eliminated or mitigated, the
long life of PCS components means that these vulnerabilities will persist in
industrial control environments [10].

The Energy Sector Roadmap [10] envisions that within ten years, “control
systems ... will be designed, installed, operated and maintained to survive an
intentional cyber assault with no loss of critical function.” Achieving this goal
will be difficult, so concrete steps must be taken now to improve the security
of current and future control systems.

This paper focuses on the problem of securing current and future PCSs,
and describes tools that automate the task. For current systems, we advocate
adopting techniques from enterprise IT: developing a security policy, limiting
access to and from selected hosts, verifying the security policy implementation,
and monitoring network use to ensure the policy is met. In particular, we
describe two tools. The first tool, APT, verifies that firewall configurations
match the specified security policy. The second tool, EMERALD, ensures that
network traffic matches policy.

For future control systems, we advocate using secure platforms and auto-
mated testing for vulnerabilities in PCS applications. We describe two tools to
achieve these goals. The first tool, SHARP, monitors applications and restricts
privileges. The second, DEADBOLT, automates testing for buffer overflows in
applications software.

Security in enterprise systems places a higher value on confidentiality and
integrity than availability. Frequent patching and system reboots are standard
practice. Also, there is typically a fairly low suspicion threshold before ad-
ministrators take a system offline for forensic examination and remediation. In
control systems, on the other hand, availability is the primary security goal. As
a result, security components that sacrifice availability will be adopted more
cautiously in industrial control environments. We therefore advocate intrusion
detection systems rather than intrusion prevention systems for process control
networks, and implementation-time testing to prevent certain classes of vulner-
abilities instead of employing post hoc techniques that sacrifice availability for
integrity (e.g., stack canaries [7]). Moreover, it is important to ensure that the
defensive mechanisms used in industrial control systems and networks do not
themselves become attack vectors.

Cunningham, et al. 101

2. Securing Current Systems

This section describes two strategies for securing current PCSs. The first in-
volves the verification of security policy implementations in PCSs (using APT).
The second strategy involves model-based intrusion detection (using EMER-
ALD), which is very effective in control systems because of their regular topolo-
gies and connectivity patterns.

2.1 Verifying Access Policy Implementations

The management of the defense of a PCS against cyber attacks is driven
by a set of objectives; specifically, what activities the system should or should
not allow. For a control network built using current communications technolo-
gies such as Ethernet and TCP/IP, the objectives might involve accepting or
rejecting traffic at the network layer; accepting or rejecting protocol sessions
at the transport layer; and ensuring that application layer resources are used
securely. System-wide security objectives are ultimately implemented and en-
forced by mechanisms that form the first line of defense against an adversary
by restricting host and user access to devices, services and files. These access
control mechanisms include, but are not limited to:

m Router-based dedicated firewalls (e.g., Cisco PIX series).

m Host-based firewalls, which could be based in software (e.g., iptables [20]
in Linux, in-built firewalls in Windows XP, and various products from
Symantec and McAfee for Windows) or hardware (e.g., 3Com Embedded
Firewall NICs [1]).

m Operating-system-based mechanisms (e.g., discretionary access control
in Linux and Windows, and mandatory access control in SELinux [19] or
similar functionality provided for Windows systems by the Cisco Security
Agent [6]).

m Middleware-based mechanisms (e.g., Java Security Manager) that provide
for the specification and enforcement of fine granularity access control
policies for Java programs.

The rules imposed by these distributed and layered mechanisms are complex
with hard-to-anticipate interactions; thus, the true security posture of a PCS
relative to a global policy is difficult to discern. Therefore, it is not surprising
that misconfigurations of these mechanisms are a major source of security vul-
nerabilities. In fact, a recent study suggests that most deployed firewalls suffer
from misconfigurations [31].

In an industrial environment it is important to isolate the process control
network to ensure proper functioning and system security. Conflicts in the
implementation of policy objectives due to the configuration of myriad access
control elements can lead to access being denied or traffic being dropped in
situations where the opposite would be preferred. Improper configurations can

102 CRITICAL INFRASTRUCTURE PROTECTION

= OS-based
| Access Control
Router-based _

Dedicated Firewalls

= Cisco PIX

fules

Complete report of

SeLinux TE and constraint violation
RBAC rules

Iptables

-

Dynamic event

= o o B XML reportof new
Sources violations
Legend

— Secure collection

=iy Offline analysis

=l Online change
monitoring & analysis

Figure 1. Operational overview of APT.

also lead to access being granted or traffic being accepted in contexts where
this is not intended. This type of vulnerability may arise because a network
administrator tried to “fix” a conflict that denied desired or convenient access,
and by doing so created a hole. It can also arise more subtly from interac-
tions between routing and firewall functions, or routing and operating system
functions, among other interactions. Therefore, it is important for security
administrators to ensure that high-level specifications of system access con-
straints are reflected in the configurations of access control mechanisms that
are distributed throughout the network, and that changes to the configurations
adhere to the global security objectives. In addition to discovering (and pos-
sibly quantifying) the deviations between configurations and policy objectives,
an accurate and precise diagnosis of the root causes of the deviations would be
of great utility.

We have developed the Access Policy Tool (APT) to address the needs de-
scribed above. APT analyzes the security policy implementation for confor-
mance with the global security policy specification (Figure 1). It captures
configuration information from a variety of sources typically found in control
networks and conducts a comprehensive offline analysis as well as dynamic on-
line analysis of compliance to ensure that all access control elements work in
harmony. The tool includes a graphical front-end to increase usability and
provide ease of information management. It complements and supplements
other tools and technologies used to secure PCSs. It can ensure the proper
configuration of COTS and proprietary components by verification against a
specification of intended functionality. In the online mode, APT provides an
immediate analysis of configuration changes, and generates alerts for an in-

Cunningham, et al. 103

APT Graphical
Front-end

APT Analysis Engine

TCPTLS

Network topology description (or a selection from
topologies cached at the analysis engine)

Configuration information captured from
access control elements on the network

-

Policy specification

Analysis setup
_ Results
Modified configuration information
Policy specification
Analysis setup
Results

F ¥)

Figure 2. APT architecture.

trusion detection or anomaly detection system if any policy holes are detected
during system operation.

APT has two components: a graphical front-end written in Java Swing,
and the analysis engine written in C++ (Figure 2). The two components
can run on separate machines in a network, communicating with each other
securely via TCP/TLS. The analysis engine needs to automatically and securely
capture the configuration information of various network devices, and hence it
should be deployed at a strategic location in the network. The separation
of the two components allows for such a deployment, while enabling systems
administrators to use the front-end as a management console run from their
workstations. Using the front-end, the analysis engine can be configured with
basic information about network topology and parameters for secure access to
the various constituent devices. Thus, APT can obtain a snapshot of the overall
configuration in a secure manner.

The access control mechanisms that APT considers for analysis include,
but are not limited to: router-based dedicated firewalls (e.g., Cisco’s PIX fire-
walls); host-based firewalls implemented in software (e.g., iptables in Linux)
or hardware (e.g., 3Com’s Embedded Firewall NICs); OS-based mechanisms
(e.g., NSA’s SELinux); and middleware-based mechanisms (e.g., Java Security
Manager). The configuration information obtained is translated to an XML

104 CRITICAL INFRASTRUCTURE PROTECTION

schema designed to handle a variety of types of information. Network intercon-
nectivity and data flow between the policy enforcement rules are represented
internally using a specialized data structure called a multi-layered rule graph.
Each node in the rule graph represents a possible access decision (e.g., a rule
in a Cisco PIX firewall that might match incoming traffic), with the paths
representing possible sequences of access decisions. The tool can enumerate
the possible attributes of the traffic and user classes that traverse a path in
the rule graph (i.e., attributes of the traffic that can undergo the sequence of
access decisions represented by the path); these attributes are then checked for
potential violations against a specification of global access policy.

The tool performs an exhaustive analysis of the rule graph data structure.
Possible violations of the specified access policy are enumerated and highlighted
in the front-end’s graphical display. The algorithms for exhaustive analysis can
handle fairly large systems if the analysis is limited to firewall rule sets. How-
ever, a PCS might include other access control mechanisms such as SELinux’s
role-based access control and type enforcement (when other security tools are
used in the PCS) or Java Security Manager (when embedded devices are used).
The presence of these mechanisms in addition to firewall rule sets produces a
massive number of possible interactions between mechanisms that can make
exhaustive analysis impossible, even for relatively small PCSs.

To provide scalability in such cases, APT offers a statistical analysis capabil-
ity that quantitatively characterizes the conformance of the policy implementa-
tion to the specification of the global access policy. This is accomplished using
a statistical technique known as importance sampling backed by appropriate
mathematical constructs for variance reduction [12, 26]. Thus, a fairly accurate
estimation of the security posture can be obtained with a limited (and hence,
rapid) exploration of the rule graph data structure. The statistical analysis
produces a (likely incomplete) sample set of policy violations and quantitative
estimates of the remaining violations. The latter includes the total number
of violations, average number of rules (or other access decisions) involved in a
violation, and the probability that there are no violations given that none were
discovered after the analysis was performed for a specified amount of time.

Efficient data structures and algorithms are used to represent and manip-
ulate the traffic attribute sets. These include multi-dimensional interval trees
for representing the network traffic component of the attribute sets and custom
data structures for efficiently representing the discrete components of attribute
sets (e.g., security contexts and object permissions). Intelligent caching of the
results of sub-path analysis helps minimize repeated computations.

We have used APT to analyze a variety of PCS configurations, including
those for the Sandia testbed (Figure 3), which represents a typical process
control network used in the oil and gas sector. The testbed has two dedicated
Cisco PIX firewalls with about 15 rules each, which we augmented with host-
based firewalls (iptables) for five (of 17) hosts. All the hosts run stock versions
of Windows or Linux. The global access constraints were defined using the tool’s
graphical front-end and were set to emphasize the tightly controlled isolation

Cunningham, et al. 105

. . Domain
Bujlsr;e"ss Buj's’::ss BGSP Controller

S

Corporate Network

Terminal DMZ BGSP
Services Server Historian BGSP (Via VPN)
1 1 BGSP
(DMZ Network (PCN Firewall (Via VPN)
HWI pcs PCN Historian HMI SCADA PCN Historian
1 1 I
(Refinery Process Control Network Pipeline Process Control Network ()
¢ 9 8 & e
Communications
802.11
Domain Protocol BGSP Wireless BGSP Processor
Controller ~_Gateway/ Link Simulater
PC Server Satellite Link
PLC/ $ PLC/ %PLC/ é Flow @ Master
BGSP 1 RTU RTU | RTU | Computer | Terminal Unit
(Via Wireless)

Figure 3. Representative testbed (courtesy Sandia National Laboratories).

of the process control network from the corporate network. In particular, hosts
in the process control network could access each other, but only the historian
could be accessed from outside the control network. Furthermore, the historian
could be accessed by (and only by) a user belonging to the “sysadmin” class via
the DMZ historian and by a “manager” class user from a host in the corporate
network.

APT discovered more than 80 policy violations in under 10 seconds. Its
post-analysis evaluation identified two rules, one in each of the two Cisco fire-
walls, as the root cause of the problems. The tool generated alert messages
indicating the identified rules and suggestions for modification. The indicated
rules were then modified or deleted using APT’s user interface to quickly pro-
duce a configuration that did not result in any violations. Our experimental
results indicate that the tool’s exhaustive analysis functionality is very useful
for analyzing network layer concerns, allowing operators to gain confidence in
the implementation and configuration of their control networks.

2.2 Monitoring Process Control Systems

Intrusion detection and prevention are still relatively new to control system
applications. Early implementations typically build on the signature-based
intrusion detection technologies developed for enterprise systems. We believe
that model-based detection, which includes specification-based detection and
learning-based anomaly detection, would be very effective in process control
networks because they have more regular topologies and connectivity patterns
than enterprise networks.

106 CRITICAL INFRASTRUCTURE PROTECTION

Monitoring a process control network—or any computer network—provides
an important orthogonal defense even in networks with well-designed architec-
tures and segmentation. It is essential to confirm continuously that the systems
are working properly and that the defenses have not been bypassed.

Firewall configurations are also an issue. It is often the case that a firewall
is misconfigured initially, or it may be reconfigured to permit additional con-
nections, or some configurations may be changed erroneously. Indeed, change
management is a major concern for control system operators. Monitoring also
provides visibility into attempts to breach firewalls. Furthermore, monitoring
helps detect attacks that bypass firewall defenses such as those that come in
over maintenance channels or exploit PCS component vulnerabilities.

The SRI EMERALD component suite provides a lightweight, cost-effective
solution to PCS monitoring and situational awareness. It features the following
components detecting attacks, aggregating related alerts, and correlating them
in incident reports according to the system mission:

m Stateful protocol analysis of FTP, SMTP and HTTP, with a custom
knowledge base and the high-performance P-BEST reasoning engine [15].

m A Bayesian sensor for the probabilistic detection of misuse [29].

m A service discovery and monitoring component coupled to the Bayesian
sensor discovers new TCP services (new services in a stable system may
be suspicious) and monitors the status of learned services [29].

m A version of the popular Snort IDS [24] with signature set tuned to com-
plement the above, as well as to provide a unique model-based detection
capability [5].

m A high-performance, near-sensor alert aggregator combines alerts from
heterogeneous sensors based on probabilistic sensor fusion [30].

m Mission-aware correlation (MCORR) that correlates alerts from EMER-
ALD components and other sensors (via an API), and prioritizes security
incidents according to user-specified asset/mission criticality [23].

The knowledge base incorporates the Digital Bond SCADA rule set [8] as
well as methods developed for Modbus service discovery and model-based de-
tection [5]. Our protocol-based models use the specification of the Modbus
protocol, and detect unacceptable Modbus messages by considering, for ex-
ample, deviations in single-field and dependent-field values and ranges. The
model-based approach also detects deviations from expected communication
patterns and roles in the control network. This approach is based on the hy-
pothesis that specification-based—or more generally model-based—detection,
which is difficult in enterprise networks due to the cost and complexity of en-
coding accurate models, can be effective in control networks because of their
relatively static topology, small number of simple protocols and regular com-
munication patterns. Moreover, model-based detection can detect new (zero
day) attacks because it does not depend on attack signatures.

Cunningham, et al. 107

The EMERALD intrusion detection appliance uses a passive monitoring in-
terface, which is connected to a span port of a switch or router; its reporting in-
terface is ideally connected to a private network dedicated to security functions.
As such, the appliance itself is invisible on the monitored network. Depending
on performance requirements, the recommended deployment is to house the de-
tection components on multiple platforms and MCORR on another, with the
detection platforms reporting to the MCORR platform. If network traffic is
light, all the components can be installed on one platform.

Users of this or any other integrated PCS security monitoring system benefit
from the ability to detect a variety of attacks and suspicious events. The system
alerts users to probes crossing network boundaries (e.g., DMZ and control sys-
tem probes from the Internet by way of the corporate network or control system
probes from a compromised node on the DMZ), known exploits against com-
modity platforms and operating systems, appearance of new Modbus function
codes in a stable system, and unexpected communication patterns.

The performance of the system was validated via experiments on Sandia’s
PCS testbed (Figure 3). Also, Sandia developed a multi-step attack scenario in
which an adversary first compromised a system on the corporate network. From
there, the attacker gained access to the DMZ historian server and subsequently
accessed a historian in the process control network. The attacker then per-
formed reconnaissance before attacking Modbus servers and other hosts in the
process control network. During an attack run, tcpdump traces were collected,
which were later used to validate the sensors.

The experimental results provide evidence that the model-based intrusion de-
tection approach is effective for monitoring process control networks, and that it
complements the signature-based approach. Different sensors detected different
aspects of the multi-step attack scenario. Specifically, Snort and EMERALD’s
Bayesan sensor detected network scans. The signature-based rules developed
by Digital Bond detected events involving an unauthorized host sending read
and write attempts to a Modbus server. The system also generated Modbus
server /service discovery messages during a Modbus attack. The protocol-level
rules detected invalid Modbus requests (e.g., Modbus requests containing un-
supported function codes). Finally, the communication pattern rules generated
alerts for attack steps that violated the expected communication patterns.

3. Securing Future Systems

This section describes two strategies for securing PCSs of the future. The
first, involving SHARP, provides security for PCS platforms. The second, in-
volving DEADBOLT, is intended to assist vendors in eliminating buffer over-
flows in PCS software.

3.1 Securing Control System Platforms

PCSs often run on commodity computers that are susceptible to attack by
malicious insiders and outsiders. None of the common operating systems were

108 CRITICAL INFRASTRUCTURE PROTECTION

Current Process Control Component —— Security-Hardened Attack Resistant Platform

Vendor Sub-System

s
E
c
b
R

1
T
Y

Master Processing Sub-System

Figure 4. Vulnerable PCS system (left); SHARP platform (right).

designed with security as a primary requirement [28]. Experience has shown
that securing such operating systems requires high levels of skill and is a never-
ending process involving configuration changes, software patches and new layers
of security software. The result is uncertain and fragile security coupled with
higher costs and reduced productivity. Furthermore, security is commonly
achieved by limiting network connections and restricting applications to a min-
imal audited set of services. These security measures result in limited func-
tionality that can inhibit or compromise the primary function of a PCS. The
Security-Hardened Attack-Resistant Platform (SHARP) concept was created
to address this issue: it provides increased security for PCSs without limiting
the functionality of PCS software.

SHARP is a hardware and software architecture designed to reliably detect
and respond to unauthorized physical and/or network access by malicious users
and software. By design, SHARP employs publicly available or commercial
computing platforms that use proven security methodologies. For example,
SHARP uses minimized hardened operating systems [21] to reduce the number
of attack vectors and separation of duty via different roles to mitigate risk.
Additionally, it uses an independent security supervisor that runs on separate
hardware [27]. This supervisor constantly assesses the security state of the
PCS, monitors network traffic and data access, and constrains user activities.
SHARP also uses system partitioning to better secure the PCS. It places high-
value, harder-to-secure systems behind a high-performance security system that
provides better protection and monitoring capabilities (Figure 4).

SHARP partitions a PCS system into three parts: vendor subsystem (VSS),
long-term storage subsystem (LSS) and master processing subsystem (MPS).

Cunningham, et al. 109

VSSs are high-value legacy master terminal units, human machine interfaces
and other systems that are needed for operations. As the left-hand side of Fig-
ure 4 illustrates, an adversary who gains access to a classical PCS can obtain
control of the entire system. However, as shown in the right-hand side of Fig-
ure 4, an adversary who successfully attacks a VSS will have difficulty accessing
the other partitions used by the PCS application. All VSS inputs and outputs
are proxied and monitored by the MPS (discussed below). However, the VSS
also provides some security services, including authentication, authorization
and integrity checking as dictated by the underlying software and associated
policies. These measures are independent of the security services provided by
the MPS.

The LSS partitions and secures all SHARP data that requires persistence.
It runs separately from other system components and is secured by permitting
access only through special protocols. Also, it can provide encrypted storage
of persistent data to reduce insider threats.

The MPS is the core of SHARP, serving as an intelligent, high-security data
traffic controller. It mitigates vulnerabilities and protects against internal and
external threats without user interaction. The MPS also provides validation of
itself and other system components; this enhances attack detection. It boots
only from read-only media so that any detected coercion is remedied by a restart
from a known good state. Furthermore, it initializes cryptographic functions
and communications to combat insider threats.

The MPS uses three major technologies to provide security services:

m File Monitor: This detector monitors all proxied data I/O between a
VSS and LSS. It looks for policy violations and responds by interrupt-
ing or reversing the activity, alerting operators or implementing other
appropriate responses according to policy.

m Network Monitor: This detector monitors the ingress and egress sides
of the MPS network stack. It adaptively responds to network-based de-
nial of service attacks using a decision engine that implements a security
policy.

m Memory Monitor: This detector monitors process images in memory
for unexpected changes. The system can respond to these changes by
restarting the process from a CD-ROM image.

The use of these technologies enhances PCS security and, therefore, avail-
ability by detecting specific malicious activities and responding to them based
on preset policies. For example, if a denial of service attack on a vendor-
provided PCS platform is perpetrated by flooding the network interface, the
network monitor on the MPS will give priority to known communications and
block other (lower priority) packets that are received in high volume.

SHARP is very successful at limiting unauthorized changes to PCS settings,
which can occur after a successful attack on a VSS. It continues to protect the
PCS even when other measures to control unauthorized access to the VSS have

110 CRITICAL INFRASTRUCTURE PROTECTION

failed; this increases system availability. The physical partitioning of computing
resources within SHARP provides these security services with minimal impact
to PCS applications. This enhances the availability of existing systems that
would otherwise only be achieved by investing in new platforms to support the
functional PCS infrastructure.

The risk to plant operations increases when a physical failure is coupled
with a simultaneous control system failure [22]. SHARP is designed to in-
crease the availability of the control system in the face of deliberate attacks
and unanticipated failures without the additional cost of a major upgrade to
the process control infrastructure. Moreover, the additional effort required to
attack SHARP would produce a stronger attack signature that could be de-
tected more easily by other network security mechanisms. Our future work
will focus on developing a memory monitor for the MPS, and implementing
SHARP as a plug-in appliance for existing PCSs.

3.2 Securing Control System Applications

Buffer overflows are among the most common errors that affect the security
of open source and commercial software. According to the National Vulnerabil-
ity Database, buffer overflows constituted 22% of “high-severity” vulnerabilities
in 2005 [18]. Techniques to prevent attackers from exploiting these errors can
be divided into those that discover the vulnerability before software is deployed
(and thus enable the developer to fix the core problem) and others that make
the successful exploitation of deployed vulnerabilities more difficult by creating
additional barriers at runtime.

Current manual techniques for finding errors in software (e.g., code review
by expert programmers) are expensive, slow and error-prone. Automated re-
view by static analysis systems is also prone to very high false negative and
false positive rates [33]. Code instrumentation (e.g., fine-grained bounds check-
ing [25] or program shepherding [13]) can detect runtime problems when they
occur, but it usually slows execution, sometimes significantly. Faster techniques
that catch fewer attacks (e.g., address space layout randomization and using
canaries to detect overflows [7]) can be implemented and supported by the op-
erating system; in fact, both of these methods are used in modern enterprise
operating systems (e.g., Microsoft Vista and Linux). All these techniques raise
exceptions that translate programming errors into denials of service, which is
an acceptable strategy for many enterprise systems and applications. However,
such a defensive response is unsuitable for PCSs, where data must be reliably
collected and control must be maintained.

A better solution would be to discover and fix errors before deployment; this
eliminates the vulnerability entirely and prevents denials of service due to foiled
attacks. Such an approach is also cheaper: it costs thirteen times less to fix
software during development than after deployment [14]. Furthermore, if vul-
nerabilities can be reliably fixed at implementation time, solutions that require
even modest amounts of additional memory (e.g., [7]) or hardware support
(e.g., the per-page no-execute bit) would not be required. Even these modest

Cunningham, et al. 111

1
Cor C++
PCS
Source

I Code [T l
Static
_ Analysis /

Source
Instrumentation

-
Instrumented
PCS
Source Code

C/C++
Compiler

Instrumentation

M

Sample ‘Testcase Client [__ Test -
Inputs I Emulator Input P> PCS Application

Memory
> Access
Mutation Re:;’u“l? Information
Suggestions R

Figure 5. DEADBOLT architecture.

gains are important in embedded systems, where memory is at a premium and
hardware support is limited.

To accomplish these objectives, we have developed DEADBOLT, a developer
environment for automated buffer overflow testing (Figure 5). DEADBOLT
uses source code instrumentation and adaptive testcase synthesis to discover
buffer overflows automatically. Code instrumentation in the form of a bounds-
checking runtime library enables detection of overflows as small as one byte
beyond an allocated buffer [25]. However, fine-grained buffer overflow detection
alone is insufficient to identify buffer overflows—a way to trigger the overflow
is also required. This task is performed by adaptive testcase synthesis that
mutates sample valid inputs into ones that cause buffer overflows.

Code instrumentation (shown in the right half of Figure 5) is implemented us-
ing a source-to-source translator that parses the original C++ code and inserts
calls to a library that monitors memory accesses at runtime. The library keeps
track of all allocated memory objects (regardless of whether they were explicitly
allocated by the programmer) in a splay tree that enables determination of a
“referent object” (memory object referenced by a pointer) whenever a pointer
operation is performed. Thus, all memory operations using a pointer can be
checked against the size of “referent object” and violations reported as errors.
In addition, the bounds-checking library keeps track of memory access statistics

112 CRITICAL INFRASTRUCTURE PROTECTION

for each memory object, including the highest and lowest bytes accessed over
its lifetime. The resulting instrumented source code is compiled using a stan-
dard or platform-specific C/C++ compiler and linked to the bounds-checking
library. This process produces an executable that not only detects when an
overflow has occurred, but also provides valuable information about memory
accesses during normal program operation.

Adaptive testcase synthesis (shown in the left half and bottom of Figure 5)
provides an automated method for discovering buffer overflows in instrumented
executables. Testcases are generated by mutating sample valid inputs, and in-
formation produced by the runtime bounds-checking library during program
execution directs further testcase generation to overflow buffers that are con-
sidered potentially vulnerable. Adaptive testcase synthesis improves on existing
automated testing approaches (e.g., random testing) by automatically generat-
ing testcases from sample inputs without a grammar, adapting mutations based
on the results of previous program executions, and providing detailed informa-
tion about overflow locations in source code. A prototype implementation of
DEADBOLT was able to discover five buffer overflows in a C implementation
of Jabber instant messaging server using a simple input mutation strategy and
only a handful of testcases [32].

Achieving fine-grained buffer overflow detection and providing detailed in-
formation about memory access patterns needed for adaptive testcase synthesis
comes at a cost. Adding instrumentation that monitors memory accesses results
in potentially significant performance slowdowns when running instrumented
executables; this is because all pointer operations are converted to calls to
the bounds-checking library, and additional calls are inserted to keep track of
memory object creation and deletion. This additional code also increases the
memory footprint of the instrumented executable, which may become too large
to run on an embedded device with limited memory. In such cases, testing can
be conducted using an emulator on the developer’s desktop that has sufficient
memory and computing power. We believe that these tradeoffs are acceptable,
as the application performance and memory footprint are only affected during
testing—once errors are found and fixed, the application may be compiled and
shipped without any instrumentation.

We anticipated that the relatively small scale of PCS firmware and soft-
ware would facilitate the reliable detection of vulnerabilities at implementation
time. After discussions with several vendors, we discovered that many PCSs
are implemented using the entire C++ language, not the simplified Embedded
C++ [11]. Therefore, our solution developed for software written in C (which
includes only a subset of C++ features) would not protect a significant portion
of PCS software.

To extend DEADBOLT to support applications that use advanced C++
features such as templates and exception handling, we are employing a C++
front-end from Edison Design Group [9] to translate C++ constructs to a func-
tionally equivalent C implementation. This transformation enables the use of
simpler instrumentation while retaining information about the original source

Cunningham, et al. 113

code that is necessary for accurate and meaningful error messages. We are also
focusing on input mutation strategies and test framework modifications that
will enable DEADBOLT to provide effective buffer overflow discovery for PCS
applications. Once modifications and further testing are complete, we hope to
make the tool available to PCS vendors to assist them in eliminating buffer
overflows when developing process control applications.

4. Conclusions

Unlike their enterprise network counterparts, industrial control networks em-
phasize availability over confidentiality and integrity. This requires techniques
and tools designed for enterprise networks to be adapted for use in industrial
control environments. Alternatively, new techniques and tools must be devel-
oped specifically for control environments. Our strategy for securing current
and future process control systems and networks is to leverage existing enter-
prise security solutions as well as research results from the broader discipline
of information assurance. This strategy has led to the development of an inno-
vative suite of tools: APT, a tool for verifying access policy implementations;
EMERALD, an intrusion detection system for identifying security policy vio-
lations; SHARP, a tool that mitigates risk by partitioning security services on
tightly controlled hardware platforms; and DEADBOLT, a tool for eliminat-
ing buffer overflows during software development. The security requirements
for industrial control environments differ from those for enterprise networks.
Nevertheless, effective security solutions can be developed for process control
networks by considering the special security requirements of industrial control
environments, and carefully selecting, adapting and integrating appropriate en-
terprise security techniques and tools.

Acknowledgements

This work was partially supported by the Institute for Information Infras-
tructure Protection (I3P) under Award 2003-TK-TX-0003 from the Science and
Technology Directorate of the U.S. Department of Homeland Security, and by
Air Force Contract FA8721-05-C-0002.

References

[1] 3Com Corporation, 3Com embedded firewall solution (www.3com.com
/other /pdfs/products/en_US/400741.pdf), 2006.

[2] T. Aubuchon, I. Susanto and B. Peterson, Oil and gas industry partner-
ship with government to improve cyber security, presented at the SPE
International Oil and Gas Conference, 2006.

[3] S. Boyer, SCADA: Supervisory Control and Data Acquisition, Instrumen-
tation, Systems and Automation Society, Research Triangle Park, North
Carolina, 2004.

114 CRITICAL INFRASTRUCTURE PROTECTION

[4] E. Byres, J. Carter, A. Elramly and D. Hoffman, Worlds in collision: Eth-
ernet on the plant floor, Proceedings of the ISA Emerging Technologies
Conference, 2002.

[5] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner and A. Valdes,
Using model-based intrusion detection for SCADA networks, presented at
the SCADA Security Scientific Syposium, 2007.

[6] Cisco Systems, Cisco security agent (www.cisco.com/en/US/products/sw
/secursw/ps5057 /index.html), 2006.

[7] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle and Q. Zhang, StackGuard: Automatic adaptive detec-

tion and prevention of buffer overflow attacks, Proceedings of the Seventh
USENIX Security Symposium, pp. 63-78, 1998.

[8] Digital Bond, SCADA IDS signatures (digitalbond.com/index.php/cate
gory/scada-ids), 2005.

[9] Edison Design Group, C++ front end (www.edg.com/index.php?location
=c_frontend), 2006.

[10] J. Eisenhauer, P. Donnelly, M. Elllis and M. O’Brien, Roadmap to Secure
Control Systems in the Energy Sector, Energetics, Columbia, Maryland,
2006.

[11] Embedded C++ Technical Committee, The embedded C++ specification
(www.caravan.net/ec2plus/spec.html), 2006.

[12] P. Heidelberger, Fast simulation of rare events in queueing and reliability
models, ACM Transactions on Modeling and Computer Simulations, vol.
5(1), pp. 43-85, 1995.

[13] V. Kiriansky, D. Bruening and S. Amarasinghe, Secure execution via pro-
gram shepherding, Proceedings of the Eleventh USENIX Security Sympo-
sium, pp. 191-206, 2002.

[14] R. Lindner, Software development at a Baldridge winner: IBM Rochester,
presented at the Total Quality Management for Software Conference, 1991.

[15] U. Lindqvist and P. Porras, Detecting computer and network misuse
through the production-based expert system toolset (P-BEST), Proceed-
ings of the IEEE Symposium on Security and Privacy, pp. 146-161, 1999.

[16] National Institute of Standards and Technology, CVE-2004-0775: Buffer
overflow in WIDCOMM Bluetooth Connectivity Software (nvd.nist.gov
/nvd.cfm?cvename=CVE-2004-0775), 2005.

[17] National Institute of Standards and Technology, CVE-2004-1390: Multi-
ple buffer overflows in the PPPoE daemon (nvd.nist.gov/nvd.cfm?cvename
=CVE-2004-1390), 2005.

[18] National Institute of Standards and Technology, National Vulnerability
Database Version 2.0 (nvd.nist.gov), 2007.

[19] National Security Agency, Security-enhanced Linux (www.nsa.gov/selinux
/index.cfm).

Cunningham, et al. 115

[20]

[21]

[26]
[27]

[28]

netfilter.org, The netfilter.org iptables project (www.netfilter.org/projects
/iptables/index.html).

P. Neumann and R. Feiertag, PSOS revisited, Proceedings of the Nine-

teenth Annual Computer Security Applications Conference, pp. 208-216,
2003.

C. Piller, Hackers target energy industry, Los Angeles Times, July 8, 2002.

P. Porras, M. Fong and A. Valdes, A mission-impact-based approach to
INFOSEC alarm correlation, in Recent Advances in Intrusion Detection
(LNCS 2516), A. Wespi, G. Vigna and L. Deri (Eds.), Springer, Berlin-
Heilderberg, pp. 95-114, 2002.

M. Roesch, Snort: Lightweight intrusion detection for networks, presented
at the Thirteenth USENIX Systems Administration Conference, 1999.

O. Ruwase and M. Lam, A practical dynamic buffer overflow detector,
Proceedings of the Network and Distributed System Security Symposium,
pp. 159-169, 2004.

S. Singh, J. Lyons and D. Nicol, Fast model-based penetration testing,
Proceedings of the 2004 Winter Simulation Conference, pp. 309-317, 2004.

S. Smith, Trusted Computing Platforms: Design and Applications, Sprin-
ger, New York, 2005.

K. Stouffer, J. Falco and K. Kent, Guide to Supervisory Control and Data
Acquisition (SCADA) and Industrial Control Systems Security — Initial
Public Draft, National Institute of Standards and Technology, Gaithers-
burg, Maryland, 2006.

A. Valdes and K. Skinner, Adaptive model-based monitoring for cyber
attack detection, in Recent Advances in Intrusion Detection (LNCS 1907),
H. Debar, L. Me and S. Wu (Eds.), Springer, Berlin-Heilderberg, pp. 80-92,
2000.

A. Valdes and K. Skinner, Probabilistic alert correlation, in Recent Ad-
vances in Intrusion Detection (LNCS 2212), W. Lee, L. Me and A. Wespi
(Eds.), Springer, Berlin-Heidelberg, pp. 54-68, 2001.

A. Wool, A quantitative study of firewall configuration errors, IEEE Com-
puter, vol. 37(6), pp. 62—67, 2004.

M. Zhivich, Detecting Buffer Overflows Using Testcase Synthesis and Code
Instrumentation, M.S. Thesis, Department of Electrical Engineering and
Computer Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 2005.

M. Zitser, R. Lippmann and T. Leek, Testing static analysis tools using
exploitable buffer overflows from open-source code, Proceedings of the In-

ternational Symposium on the Foundations of Software Engineering, pp.
97-106, 2004.

