Ontology Pre-Processor Language (OPPL)
User’s manual

Mikel Egana Aranguren (1), Luigi lannone (2), and Robert Stevens (2)

(1) Ontology Engineering Group, School of Computer Science,
Technical University of Madrid (UPM), Spain

(2) Bio-Health Informatics Group, School of Computer Science,
University of Manchester, UK

July 4, 2011

Contents

0 Introduction| 2
L1 Whatis OPPLY. oo 000 2
(L2 When should Tuse OPPTZ. 2
[1.3 Installation and requirements| 2
L2 Confacll 3

2 Basic OPPI] 4

[_Using OPPL with Protegé| 6
BI_OPPLfall. 6

B11 OPPLbuilder. 6
B.12 OPPl texteditorl. 6
B.2 OPPl macrostabl 6

4__Advanced OPPI/ 13

4.1 Working with variables|. 0000 13
4.1.1 Matching strings (MATCH)[. 13
4.1.2 Creating variables (create, create Union|Intersection)| 14
4.1.3 Variable scope ([Variable Free OWL Expression]). .. 14

4.2 Working in asserted mode (ASSERTED)| 15

4.3 Using constraints (WHERE)| 15
4.3.1 Different entities (!=)[. 15
4.3.2 String matching (MATCH)[. 16
4.3.3 Negation as failure (FAIL) 16
4.3.4 Variable values (IN)| 16

4.4 OPPL patterns|o 16

EEThe OPPLAPI. oottt 18

4.6 Populous| 18

[A OPPL grammar| 20
[A1 Statementd 20
IA.2 Manchester OWL Syntax axioms| 21
IA.3 Manchester OWL Syntax with variables entities| 22

1 Introduction

1.1 What is OPPL?

OPPL is a scripting language for automating the manipulating of OWIEI on-
tologies: The user defines queries and changes to be performed on the entities
returned by the queries. A change is the addition/removal of axioms to/from
the entities retrieved by the query. The queries and changes are all defined in an
OPPL script written following the OPPL syntax: when the script is executed, if
the query returns entities from the ontology the changes will be applied to those
entities. For example, the translation of an hypothetical OPPL script into nat-
ural language would read as follows: “Retrieve all the entities that have the ax-
iom subClass0f part-of some car and add the axiom subClass0f part-of
only car to them”.

1.2 When should I use OPPL?

The use of OPPL is worthy in (At least) the following situations (And combi-
nations thereof):

e Ontologies with a lot of entities.
e Ontologies with repetitive axiomatic structures.
e Ontologies with complex axiomatic structures (Complex modelling).

e Ontologies with repetitive annotation values.

The advantages of using OPPL in the mentioned situations (And in other
situations that the user considers it to be useful) can be summarised as follows:

e Store modelling: very complex modelling structures can be stored and
applied at will, saving time, since such application is not performed man-
ually.

e Do/Undo: very complex modelling can be tested by executing a script.
e The same modelling can be applied consistently across the whole ontology.
e Modelling can be shared between developers and applied at will.

e The modelling process is explicitly recorded in scripts.

1.3 Installation and requirements

OPPL is open source and licensed under the LGPIEl; it can be freely downloaded
El In order to use OPPL OWL knowledge is required, specially Manchester OWL
Syntax (MOS) [1]. The Manchester Protégé OWL tutoriaﬁ covers most of the
OWL knowledge that is needed to work with OPPL, including MOS.

Thttp://www.w3.org/standards/techs/owl
2http://www.gnu.org/copyleft /lesser.html
3http://sourceforge.net/projects/oppl2/files/
4http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial /

http://www.w3.org/standards/techs/owl
http://www.gnu.org/copyleft/lesser.html
http://sourceforge.net/projects/oppl2/files/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

OPPL can be used through a graphical interface as a Protégﬂ plug-in (At
least Protégé 4.1 RC 4 is needed). Protégé is a widely used open source ontology
editor that is able to work with the OWL or OBqu ontology languages. OPPL
can also be used programmatically, through the OPPL Java API; the OWL
API[is needed in that case.

1.4 Contact

The OPPL web pagﬂ provides documentatiorﬂ and a collection of OPPL sample
scriptﬂ Any questions regarding using OPPL should be addressed to the
public mailing lis

Shttp://protege.stanford.edu/

6http://www.geneontology.org/GO.format.obo-1_4.shtml

“http://owlapi.sourceforge.net/

8http://oppl.sf.net

9http://oppl2.sourceforge.net/documentation.html
Ohttp://oppl2.sourceforge.net /taggedexamples,/
Hoppl2-user@lists.sourceforge.net

http://protege.stanford.edu/
http://www.geneontology.org/GO.format.obo-1_4.shtml
http://owlapi.sourceforge.net/
http://oppl.sf.net
http://oppl2.sourceforge.net/documentation.html
http://oppl2.sourceforge.net/taggedexamples/
file:oppl2-user@lists.sourceforge.net

O Ut W~

00O UL W

2 Basic OPPL

The basics of the OPPL syntax will be shown using an example script; further
details and keywords of the syntax are provided in Section f] The example
script manipulates the Cell Type Ontology'El (CL). CL describes cell types in
a hierarchy, including their development path with the develops_from relation

(e.g.Glioblast subClassOf develops_from some neuroectodermal_cell). Such

existential relation indicates that there is at least one develops_from rela-
tion, but there could be more; therefore, it might be interesting to close every
develops_from some relationship to assert that each cell that develops from a
given cell develops only from that cell. Thus, to add the axiom, in the case of

Glioblast, Glioblast subClassOf develops_from only neuroectodermal cell.

The following OPPL script does the job:

7target : CLASS,

?origin :CLASS

SELECT

7target SubClassOf develops_from some 7origin
BEGIN

ADD ?target SubClassOf develops_from only ?origin
END;

This script shows the main parts of an OPPL script, summarised as follows:

Variable declaration ,
Variable declaration ,

SELECT
Query ,
Query ,

BEGIN
ADD/REMOVE Axiom ,
ADD/REMOVE Axiom ,

END;

)

Each section is explained as follows:

e Variables declaration (Lines 1-2): In this section the variables that will be
used in the script (In the query and the changes) are defined. The variables
represent the entities of the ontology that should be retrieved by the query.
Variables start with the ? mark, and they are strongly typed with the key-

word CLASS, CONSTANT, OBJECTPROPERTY, DATAPROPERTY, ANNOTATIONPROPERTY,

or INDIVIDUAL. In this case there are two variables: 7target and Porigin,
both OWL classes (CLASS).

e Selection of entities (Starting with keyword SELECT, Lines 3-4): In this
section a query against the ontology is performed, referring to the vari-
ables defined in the previous section. The query can be a DL (Description
Logics) query or a regular expression to filter entities by their annotation
values, e.g. rdfs:label. In this case a DL query is performed, thus the
query 7target SubClassOf develops_from some 7origin is executed
using the automated reasoner: 7target will be matched by Glioblast
and other cells, and Porigin will be matched by neuroectodermal _cell
and other cells. Note that develops_from is an entity of the CL ontology.

2http://purl.org/obo/owl/CL

http://purl.org/obo/owl/CL

e Perform actions (Lines 5-7, between keywords BEGIN and END): In this
section axioms are added or removed to/from the entities retrieved by
the querying, if any. In this case a new axiom is added (ADD) to the re-
trieved entities (Axioms can also be removed with the REMOVE keyword).
In the case of Glioblast, the following axiom will be added: Glioblast
subClass0f develops_from only neuroectodermal_cell. Many axioms
can be added and/or removed, but the variables should always be the ones
defined in the variables declaration section.

3 Using OPPL with Protégé

In order to use OPPL, the OPPL Protégé 4.1 plug-in should be downloaded and
placed in the plug-ins directory of the Protégé installation. There are two ways
of using OPPL wvia Protégé: using the OPPL tab or the OPPL macros tab. If
the plug-in has been installed correctly, both can be found in Window >> Views
>> Ontology views >> OPPL | OPPL macros: the user chooses where to put
them within the Protégé interface.

Before using any of the OPPL plug-ins an automated reasoner should be cho-
sen and synchronised with the ontology. To synchronise the reasoner reasoning
should be performed at least once, by going to Reasoner >> Start reasoner
or by pushing CTRL-R. This does not apply in the case of the asserted mode

(See Section [£.2).

3.1 OPPL tab

Using the OPPL tab the user builds an OPPL script using either the OPPL
builder or the OPPL text editor (Figure . Once built, the script can be
evaluated (Evaluate button) in order to see beforehand how its execution will
affect the ontology, in the Affected axioms pane. The user can later execute
the script, if happy with the consequences.

3.1.1 OPPL builder

The OPPL builder guides the user through the different steps needed to build
an OPPL script (Figures and . The beginning of the script, thus the
variables declaration, can be found in the left side: the variables can be for
entities already present in the ontology (Input variables) or for entities that
will be created when the script is executed (Generated variables). Further
to the right, the Select pane can be used to define the selection section of the
script, including constraints in the Where pane (See Section . Finally the
actions can be defined in the Actions pane. If the OPPL script has syntactic
errors they are flagged in the middle pane.

3.1.2 OPPL text editor

The plain text editor can be used to directly type an OPPL script or paste it
(Figures 4] and . If the OPPL script is directly typed in, the autocomplete
functionality can be exploited.

3.2 OPPL macros tab

The OPPL macros tab can be used to record the steps that the user performs
when working with the ontology (Figures |§| and @ Such steps are recorded in
an OPPL script: Later, such script can be pasted in the OPPL text editor and
executed normally. In order to use this method the user only needs to push the
record button (The big red circle on the left) and perform the desired changes
in the ontology. The recording can be stopped at any time and the changes
performed till that moment will be written down to an OPPL script.

DL Query Rules QaPPL QOPPL Macros
QPPL: MEEE

OPPL Builder | OPPL Text Editor |

Input Variables: SELECT WHERE

Generated Variables:

Actions

Errars:

Ak No variables

A\ The must be at least either one action, or ane query. or ane constraint

["] When removing consider Active Ontology Imported Closure

Affected axioms: Bindings Instantiated axioms:

Invalid Script

Figure 1: OPPL tab. The OPPL tab is further divided into the OPPL builder
and the OPPL text editor. In this case the OPPL builder is selected.

DL Query | Rules | OPPL | OPPL Macros | Patterns

MEEE

OPPL Builder | OPPL Text Editor

Input Variablas

SELEET WHERE

A ?target:CLASS @ (7target) SubClassOf ((develops_from some

A 7origin:CLASS ((7origin))))

Generated Variables.

Actions

Add @ (?target) SubClassOf ((develops_from only
((7origin))))

Evaluate

[When removing consider Active Ontology Imported Closure

Affected axioms Bindings: Instantiated axioms:

2arigin target |

Figure 2: OPPL builder: the user has entered the example script from Section

ry | Rules | OPPL [OPPLMacros | Patterns

DEEE
OPPL Builder | OPPL Text Editor
Input Variables: SELECT WHERE
4 7target:CLASS @ (rtarget) SubClassoOf ((develops_from some
4 7origin:CLASS ((?origin))))
Generated Variables:
Actions
Add @ (ttarget) SubClassOf ({develops_from only
((zarigin)))
[] When removing consider Active Ontalogy Imported Closure
Affected axioms: 15891 Bindings:: 15891 Instantiated axioms:
rdd @(CL_0002111) [Torigin | Ftargst |
SubClassof Il | ®cL 0000000 @CL 0000005 4]
({develops_from @CL 0000000 @CL 0000006 |
only - ©CL 0000000 ®CL 0000008
- @CL 0000000 @CL 0000011
fa L GO0 ©CL 0000000 ®CL 0000017
SubClassof ©CL 0000000 ©CL 0000018
({develops_from ©CL 0000000 ®CL 0000019
only @©CL 0000000 ©CL 0000024
Add ®(CL_0002042) @CL 0000000 @CL 0000025
subClassOf ©CL 0000000 ©CL 0000026
({develops_from ©CL 0000000 ®CL 0000027
only - L @CL 0000000 @CL 0000028
- = @ CL 0000000 @CL 0000029 B
Execute |

Figure 3: OPPL builder: evaluation of the example script from Section[2} The
script can be executed afterwards by pushing the Execute button.

OPPL Builder | OPPL Test Editor |

[[] when removing consider Active Ontology Imported Closure

Affected axioms:

Bindings:

Instantiated axioms:

Invalid Script

To use the reasoner click Reasoner-=Start Reasoner Show Inferences

Figure 4:

OPPL text editor.

[DLquery | Rules f OPFL | OFFLMacros | Patterns |
OPPL Builder | OPPL Text Editor |

Ttarget: CLASS,

7origin: CLASS

SELECT

Ttarget SubClassOf develops_from some ?origin

BEGIMN

ADD Marget SubClassOf develops_from only ?origin

END;

Evaluate

[[] When removing consider Active Ontology Imported Closure

Affected axioms: Bindings: Instantiated axioms:

Farigin | Ttarget

Figure 5: OPPL text editor: the user has typed the example script from Section
[l The evaluation and execution is exactly the same as in Figure [

10

Named entities

Recorded actions

Wariables:

To use the reasoner click Reasoner-=Start Reasaner Show Inferences

Figure 6: OPPL macros tab.

11

(DL Query | Rules | OFFL |" OPPL Macras | Patterns |

OPPL Macros:

. @B@ Narmed entities:

Recarded actians @ CL_0000030
add ®CL_0000030 E=developsEfom
SubClassOf @CL_0000133
develops_from only
CL 0000133

Wariables:

Figure 7: OPPL macros tab. Some actions have been recorded: if the user
pushes the Stop recording button, the recording will stop and the actions will
be available to be copied to an OPPL script, by pushing the Copy OPPL button
(The script can be pasted in any plain text editor).

12

4 Advanced OPPL

This section expands the concepts introduced in Section [2] to cover the whole
OPPL expressivity.

4.1 Working with variables

The whole syntax for working with variables is depicted in Figure [§] and ex-
panded in the following subsections.

= MATCH ("Regexp") ?var.RENDERING
= create (?2var.GROUPS(n) [+ + "String"
?var.IRI

2var —3p :TYPE -+

= createlntersection

(?var.VALUES)
= createUnion
SubClassOf
[SuperClassOf)
SubPropertyOf Variable Free
SuperPropertyOf OWL Expression]
InstanceOf

Figure 8: Graphical representation of the OPPL syntax for variables. Solid
lines indicate compulsory elements, dotted lines optional elements. Vertical
lines indicate different options on the same element. ?var indicates any vari-
able. TYPE should be one of CLASS, CONSTANT, OBJECTPROPERTY, DATAPROPERTY,
ANNOTATIONPROPERTY, or INDIVIDUAL. Variable Free OWL expression is a
pure OWL expression, with no OPPL variables or keywords, like hasPart some
(part0f only body) or Pizza.

4.1.1 Matching strings (MATCH)

Regular expressions can be matched against the rdfs:label value of entities
with the MATCH keyword. Such regular expressions follow the Java syntax for
regular expressions. For example, the following scripﬂ selects all the classes
whose rdfs:label value ends with _binding and adds the axiom subClassOf
molecular_function to them:

1 ?y:CLASS=Match(” ((\w+)) -binding”)

2 SELECT ?y subClassOf Thing

3 BEGIN

4 ADD ?y subClassOf molecular_function
5 END;

Bhttp://miuras.inf.um.es/ mfoppl/

13

http://miuras.inf.um.es/~{}mfoppl/

© 00 O Ui W~

O © 00O Uk W

[y

4.1.2 Creating variables (create, create Union|Intersection)

Variables can be created anew. Such variables represent entities that will be
created as the result of processing other variables that represent entities that do
exist in the ontology. Two types of processes can be used to generate variables:
create or any of the functions createUnion, createIntersection.

The create function creates entities from strings, and three processes can be
used to do so: ?var.RENDERING, ?var.GROUPS and ?var.IRI. A string can be
added to any of the three processes using the + symbol, as in Java. The follow-
ing script transforms, for example, the axiom car subClassOf hasPart some
engine into car subClassOf hasFeature some (Part and hasValue some engine)
2l:

?7x : CLASS,

7y :OBJECTPROPERTY = MATCH(” has ((\w+))") ,

?7:CLASS,

?feature :CLASS = create (?y.GROUPS(1))

SELECT ASSERTED ?x subClassOf 7y some 7z

BEGIN

REMOVE ?x subClassOf ?y some 7z,

ADD ?x subClassOf !hasFeature some (?feature and !hasValue some ?7z)
END;

The 7y object property will be any object property whose rdfs:label value
matches (MATCH) the regular expression has((\w+)). The GROUPS keyword is
used to refer to the groups of the matched string; the ?feature class will be
a newly created class (create) whose name is the first group of the matched
string (GROUPS(1)). In the actions section two new entities will be created using
the ! keyword: hasFeature and hasValue.

The createUnion and createIntersection functions can be used to create
new entities from the values that have been bound to a prior variable. Both
functions must be used with the ?var.VALUES parameter, that is, they take the
values (entities) of the variable as parameters. For example the following script
creates a copy of the class Margherita (MargheritaCopy) by making a copy of
the union of the toppings of Margherita (The script can be used with the Pizza
Ontologylzl):
7topping : CLASS,

?allToppings :CLASS = createUnion (?topping . VALUES)

SELECT

Margherita subClassOf NamedPizza ,

Margherita subClassOf hasTopping some ?topping

BEGIN

ADD !MargheritaCopy subClassOf NamedPizza,

ADD !MargheritaCopy subClassOf hasTopping some ?topping,

ADD ! MargheritaCopy subClassOf hasTopping only 7allToppings
END;

)

4.1.3 Variable scope ([Variable Free OWL Expression])

Individual variables can be constrained with arbitrary expressions. For example,
in the following script we make sure that the variable 7x, apart from being an
OWL class, it is a subClassOf Pizza (This script can be tried against the Pizza
ontology):

Mhttp://www.co-ode.org/ontologies/pizza,/

14

http://www.co-ode.org/ontologies/pizza/

Uk W N

N O Ut R WN

00~ O UL W

?7x:CLASS[subClassOf Pizza|

SELECT ?x subClassOf hasTopping some PepperTopping
BEGIN

REMOVE 7x subClassOf hasTopping some PepperTopping
END;

)

4.2 Working in asserted mode (ASSERTED)

OPPL can be used without an automated reasoner, if the inference is not needed.
For example, we might be interested in querying for direct subclasses, using the
annotation values for querying, etc. This can be useful since it improves the
performance of the plug-in. In order to deactivate the inference the ASSERTED
keyword should be used in the selection section. The following script detects
the following pattern in an ontology: a class is asserted to be a subclass of the
parent class, and also equivalent to the parent class. Since such structure is
redundant, the script removes the subClass0f axiom (The script can be used
against the Sequence Ontology, SqEI). By using the asserted mode the execution
of the script is much faster:

?child : CLASS, ?parent:CLASS, ?filler :CLASS, ?prop:OBJECTPROPERTY
SELECT

ASSERTED ?child equivalentTo ?parent and (?prop some ?filler),
ASSERTED ?child SubClassOf ?parent

BEGIN

REMOVE ?child SubClassOf ?parent
END;

)

4.3 Using constraints (WHERE)

The selected entities can be further constrained using the WHERE keyword fol-
lowed by a constraint method. There are four constraint method: !=, MATCH,
FAIL, and IN.

4.3.1 Different entities (!=)

This constraint makes sure that the selected entities have different URIs. For
example, we can make sure that the subclasses of a given class we want to select
are all different. The following example script, which can be used against CL,
selects all the direct (ASSERTED) subclasses of CL_0000255, then gets all the
retrieved entities that are different to each other (?7child != 7other_child)
and makes them pairwise disjoint.

?child : CLASS, ?other_child :CLASS

SELECT

ASSERTED ?child SubClassOf CL_0000255,
ASSERTED ?other_child SubClassOf CL_0000255

WHERE ?child != ?7other_child

BEGIN

ADD 7child DisjointWith ?other_child
END;

Bhttp:/ /www.berkeleybop.org/ontologies/owl /SO

15

http://www.berkeleybop.org/ontologies/owl/SO

N O U WN -

O O 00U WN

[y

4.3.2 String matching (MATCH)
The MATCH keyword works as in the SELECT section.

4.3.3 Negation as failure (FAIL)

OWL works with the Open World Assumption (OWA). Thus, for an OWL
compliant automated reasoner the fact that an assertion has not been made
does not mean that the assertion is false. In other words, OWL does not work
with Negation As Failure: for example, if we assert in an ontology that a citizen
has British nationality, OWL does not assume that the same citizen has not
also Spanish nationality: the citizen may have double nationality. For OWL,
it remains unknown till we explicitly assert that the citizen can only have one
nationality.

The following script for the Pizza ontology makes use of the FAIL keyword
to find all the classes that are not unsatisfiable and removes the subClass0f
hasTopping some PepperTopping axiom from them:
x:CLASS[subClassOf Pizza]

SELECT

?x subClassOf hasTopping some PepperTopping
WHERE FAIL ?x subClassOf Nothing

BEGIN

REMOVE ?x subClassOf hasTopping some PepperTopping
END;

)

4.3.4 Variable values (IN)

The IN keyword constrains the values of a variable to a set of possible ones.
For example the following script (Executable with the Pizza ontology) selects
the instances of the class Country that are the country of origin of satisfiable
classes, and also that are one of England, Italy, France, or Germany and makes
them instances of the new class EuropeanCountry:

?x: INDIVIDUAL, ?y:CLASS

SELECT

?x instanceOf Country,

7y subClassOf hasCountryOfOrigin value 7x

WHERE

?x IN {England, Italy , France, Germany},

FAIL 7y subClassOf Nothing

BEGIN

ADD 7x instanceOf !EuropeanCountry
END;

)

4.4 OPPL patterns

An OWL pattern is an abstract OWL structure. For example, the closure pat-
tern (An intersection of an existential restriction and an universal restriction: ?p
some 7x and 7p omnly ?y) can be parameterised with many different entities.
The OPPL patterns plug—irm (Figure E[) can be used to generate such patterns
and to execute them, i.e. to fill such abstract structures with actual entities from
the target ontology (To bind entities to ?p, ?x and ?y). The OPPL patterns
plug-in can be found in Window >> Views >> Ontology views >> Patterns.

L8http://oppl2.sourceforge.net /patterns_documentation.html

16

http://oppl2.sourceforge.net/patterns_documentation.html

QPPL QOFPPLM

Pattern Editor

[Pattern Builder | Pattern Text Editor |
Pattern name

| |
[input Variables =]
[Actions =]

Rendering

Return

[[] Allow Return Yalue

Errors:

Ak Invalid name =
Ak No Variables

Cancel

To use the reasaner click Reasoner-=5tart Reasoner Show Inferences

Figure 9: OPPL patterns tab.

17

12
13
14

4.5 The OPPL API

The OPPL API can be used to write programs that exploit OPPL’s functional-
ity. For example the following excerpt shows the source code of a program that
detects certain patterns on ontologies defined by the OPPL scripts passed to it
by the user (OPPL_script_source is an OPPL script that has been extracted
from a plain text file):

ParserFactory parserFactory = new ParserFactory (manager,
OWL_ontology, reasoner);

Logger logger = Logger.getLogger (Application.class.getName());

ErrorListener errorListener = (ErrorListener)new
LoggerErrorListener (logger);

OPPLParser opplparser = parserFactory.build(errorListener);

OPPLScript OPPLscript = opplparser.parse(OPPL_script_source);

RuntimeExceptionHandler exceptionhandler = new
QuickFailRuntimeExceptionHandler () ;

ChangeExtractor extractor = new ChangeExtractor(exceptionhandler ,
true);

extractor. visit (OPPLscript) ;

ConstraintSystem c¢s = OPPLscript.getConstraintSystem () ;

Set<BindingNode> nodes = c¢s.getLeaves();

System.out.println (” [OPPL: result entities amount] ” 4 nodes.size ()

Iterator NodesIterator = nodes.iterator ();
while (NodesIterator.hasNext ()){
System.out.println (” [OPPL: result entity] ” + NodeslIterator.next

)

15 }

4.6 Populous

Populous is a tool for populating ontologies with the data stored in spread-
sheetﬂ OPPL can be used as part of populous (Populous includes an OPPL
wizard) to add rich axioms as part of of the populating process.

http:/ /www.e-lico.eu/?q=populous

18

http://www.e-lico.eu/?q=populous

References

[1]

2]

M Horridge, N Drummond, J Goodwin, A Rector, R Stevens, and H Wang.
The Manchester OWL syntax. In OWLed, 2006.

Ondfej Svéb Zamazal, Vojtéch Svéatek, and Luigi Iannone. Pattern-based
ontology transformation service exploiting oppl and owl-api. In Proceedings
of the 17th international conference on Knowledge engineering and manage-
ment by the masses, EKAW’10, pages 105-119, Berlin, Heidelberg, 2010.
Springer-Verlag.

19

10
11
12
13

14
15
16
17

18
19
20
21
22
23

24
25

26

27
28
29
30
31
32

33

34

A OPPL grammar

The latest version of the grammar can be checked in the OPPL web pageﬁ

A.1 Statements

OPPL Statement ::= (<VariableDeclaration>)? (<Query>)? (<
Actions>)? 73”7

VariableDeclaration ::= <VariableDefinition> (7,” <
VariableDefinition>)=

Actions ::= "BEGIN” Action (”,” Action)+ ”END”

VariableDefinition ::= <InputVariableDefinition> | <
GeneratedVariableDefinition>

InputVariableDefinition ::= <VARIABLENAME> ”:” <variableType> (<
VariableTypeScope>)? | VARIABLENAME <variableType> 7 = 7 7
MATCH” <RegularExpression>

GeneratedVariableDefinition ::= <VARIABLENAME> ”:” <variableType>
?=" <opplFunction>

opplFunction ::= <create> | <creatlnteserctions> | <
createDisjunction >| Any Manchester Syntax with variables
expression compatible with the generated variable.

create ::=7create("<value>”)”

createlntersection ::=7createlntersection (”<variablevalues>")”

createDisjunction ::=7createDisjunction (”’< variablevalues>")”

variablealues ::=<VARIABLENAME>" .VALUES”

value ::= a string constant | <generatedValue>

generatedValue ::=<variableAttribute> (<aggregator> <

variableAttribute >)x

aggregator ::="4"

variableAttribute ::=<VARIABLENAME>" .”<attributeName>

attributeName ::="RENDERING” | "GROUP(” <DIGIT>+")” | ”IRI”

VariableTypeScope ::= 7 [” <direction> <VariableFreeOWLExpression>" |

direction ::= 7subClassOf” | ”superClassOf” | subPropertyOf | ”
superPropertyOf” | ”instanceOf”

/* Direction production is not context free as it depends on which

variable type the wvariable
is being applied to. The scope, therefore, is not context free

eitherx/

Constraint ::= <VARIABLENAME> ”!=" <OWLExpression>

| <VARIABLENAME> "MATCH’ <RegularExpression>

| <VARIABLENAME> "IN” 7{” <OWLExpression> (”7,” <OWLExpression>)* ”

"FAIL” <axiom>

variableType ::= ”"CLASS” | "OBJECTPROPERTY | ”DATAPROPERTY” | ”
INDIVIDUAL” | ”CONSTANT”

Query ::= "SELECT” (”ASSERTED”)? <Axiom> (7, (”ASSERTED”)?” <Axiom
>)% ("WHERE” <Constraint> (7,” <Constraint>)%)7

Action ::= 7ADD” | "REMOVE’ <Axiom>

IDENTIFIER ::= <LETTER> (<LETTER>|<DIGIT>)x

VARIABLENAME ::= ”?”<IDENTIFIER>

LETTER ::= [77 ” 7}7a17_7iz}7 717A77_77Zﬂ7 , 775\uooeo77_n\uODf977]

DIGIT ::= [”0"-"97]

OWLExpression ::= An OWL entity in Manchester OWL Syntax (possibly
containing variables)

VariableFreeOWLExpression ::= An OWL entity in Manchester OWL
Syntax (without variables)

RegularExpression ::= ”(”” A regular expression for string matching

(applies to the entity rendering) ””)”

8http://oppl2.sourceforge.net/grammar.html

20

http://oppl2.sourceforge.net/grammar.html

© 00Uk WN -

31
32
33
34
35
36
37

38
39

40

41

42

43

44
45

46

47

A.2 Manchester OWL Syntax axioms

Axiom <SubClassAxiom

| <EquivalentClassAxiom>

| <DisjointClassAxiom>

| <FunctionalObjectPropertyAxiom>
| <SymmetricObjectProperty Axiom>
| <ReflexiveObjectPropertyAxiom>
| <TransitiveObjectPropertyAxiom>
| <AntiSymmetricObjectProperty Axiom>
| <IrreflexiveObjectPropertyAxiom>
| <SubObjectProperty Axiom>

| <EquivalentObjectPropertyAxiom>
| <DisjointPropertyAxiom>

| <InversePropertyAxiom>

| <InverseFunctionalPropertyAxiom>
| <FunctionalDataPropertyAxiom>

| <ObjectPropertyRangeAxiom>

| <ObjectPropertyDomainAxiom>

| <SubDataPropertyAxiom>

| <EquivalentDataProperty Axiom>

| <DisjointPropertyAxiom>

| <DataPropertyDomainAxiom>

| <DataPropertyRangeAxiom>

| <ClassAssertionAxiom>

| <ObjectPropertyAssertionAxiom>

| <DataPropertyAssertionAxiom>

| <NegativeObjectPropertyAssertionAxiom>

| <NegativeDataPropertyAssertionAxiom>

| <SameAsAxiom>

| <DifferentFromAxiom> | <EntityAnnotatonAxiom>

SubClassAxiom ::= <ClassDescription> ”SubClassOf” <ClassDescription
>

EquivalentClassAxiom ::= <ClassDescription> ”EquivalentTo” (<
ClassDescription >)+

DisjointClassAxiom ::= <ClassDescription> ”DisjointWith” (<
ClassDescription >)+

FunctionalObjectPropertyAxiom ::= ”Functional” <ObjectProperty>

SymmetricObjectPropertyAxiom ::= ”Symmetric” <ObjectProperty>

ReflexiveObjectPropertyAxiom ::= ” Reflexive” <ObjectProperty>

TransitiveObjectPropertyAxiom ::= ”Transitive” <ObjectProperty>

AntiSymmetricObjectPropertyAxiom ::= ”AntiSymmetric” <
ObjectProperty>

IrreflexiveObjectPropertyAxiom ::= ”Irreflexive” <ObjectProperty>

SubObjectPropertyAxiom ::= <ObjectProperty> ”SubPropertyOf” <
ObjectProperty >

EquivalentObjectPropertyAxiom ::= <ObjectProperty> ”EquivalentTo”
(<ObjectProperty >)+

DisjointPropertyAxiom ::= <ObjectProperty> ”DisjointWith” (<
ObjectProperty >)+

InversePropertyAxiom ::= <ObjectProperty> "InverseOf” 7 (7<
ObjectProperty>")”

InverseFunctionalPropertyAxiom ::= <ObjectProperty> ”
InverseFunctional” 7 (?<ObjectProperty>")”

FunctionalDataPropertyAxiom ::= ”Functional” <DataProperty>

ObjectPropertyRangeAxiom ::= <ObjectProperty> ”Range” <
ClassDescription >

ObjectPropertyDomainAxiom ::= <ObjectProperty> ”Domain” <
ClassDescription>

SubDataPropertyAxiom ::= <DataProperty> ”SubPropertyOf” <
DataProperty>

21

48

49

50

51
52

53
54
55
56
57

58
59

=W N~

22
23
24

EquivalentDataPropertyAxiom ::= <DataProperty> ”EquivalentTo” (<

DataProperty >)+

DisjointPropertyAxiom ::= <DataProperty> ”DisjointWith” (<
DataProperty >)+

DataPropertyDomainAxiom ::= <DataProperty> ”Domain” <
ClassDescription>

DataPropertyRangeAxiom ::= <DataProperty> ”Range” <DataRange>

ClassAssertionAxiom ::= <Individual> ”InstanceOf” | ”"Types” <
ClassDescription>

ObjectPropertyAssertionAxiom ::= <Individual> <ObjectProperty> <
Individual >

DataPropertyAssertionAxiom ::= <Individual> <DataProperty> <
Constant>

NegativeObjectPropertyAssertionAxiom ::= "not” <Individual> <
ObjectProperty> <Individual>

NegativeDataPropertyAssertionAxiom ::= ”not” <Individual> <
DataProperty> <Constant>

SameAsAxiom ::= <Individual> ”sameAs” (<Individual>)+

DifferentFromAxiom ::= <Individual> ”differentFrom” (<Individual >)+

EntityAnnotationAxiom ::= <IRI> <AnnotationProperty> <Constant>

A.3 Manchester OWL Syntax with variables entities

ClassDescription ::= <ClassIntersection>

ClassIntersection ::= <ClassUnion> (”and” <ClassUnion >)x

ClassUnion ::= <NonN—aryDescription> (”or ” <NonN—aryDescription >)x

NonN—aryDescription ::= <PrimitiveClass> | <ObjectRestriction> | <
DataRestriction> | ”not” <ClassDescription> | ”oneOf {” <
Individual> (, <Individual>)x ”}”

DataRestriction ::= <DataProperty> ”some” <DataRange> | <
DataProperty> ”only” <DataRange> | <DataProperty> ”value” <
Constant> | <DataProperty> "min” <NonNegativelnteger> (<
DataRange>)? | <DataProperty> ”exactly” <NonNegativelnteger> (<
DataRange>)? | <DataProperty> "max” <NonNegativelnteger> (<
DataRange>)?

ObjectRestriction ::= <ObjectProperty> ”"some” <ClassDescription> |
<ObjectProperty> ”"only” <ClassDescription> | <ObjectProperty> 7
value” <Individual> | <ObjectProperty> ”"min” <
NonNegativelnteger> (<ClassDescription>)? | <ObjectProperty> ”
exactly” <NonNegativelnteger> (<ClassDescription>)? | <
ObjectProperty> "max” <NonNegativelnteger> (<ClassDescription >)
N

PrimitiveClass ::=<ClassName> | <VariableName>

ObjectProperty ::=<ObjectPropertyName> | <VariableName>

DataProperty ::=<DataPropertyName> | <VariableName>

AnnotationProperty ::=<AnnotationPropertyName> | <VariableName>

Individual ::=<IndividualName> | <VariableName>

Constant ::=<ConstantLiteral> | <VariableName>

ClassName ::= <LETTER> (<LETTER>|<DIGIT>)x*

ObjectPropertyName ::= <LETTER> (<LETTER>|<DIGIT>)x

DataPropertyName ::= <LETTER> (<LETTER>|<DIGIT>)x

IndividualName ::= <LETTER> (<LETTER>|<DIGIT>)x

ConstantLiteral ::= ”See the OWL specification”

DataRange ::= See Manchester OWL Syntax references above

NonNegativelnteger ::= Any integer greater than or equal to zero

ClassName ::= <LETTER> (<LETTER>|<DIGIT>)x*

IRI ::= [”<”a valid IRI as defined in IETF RFC 3987">” | <
VariableName>" . IRI”

VariableName ::= ”?” <LETTER> (<LETTER>|<DIGIT>)x

LETIER si= [77 777 777 a77777z77 ,77A77777Z77 7”\u0060”7”\u00f977]

DIGIT ::= [”07-"97]

22

	1 Introduction
	1.1 What is OPPL?
	1.2 When should I use OPPL?
	1.3 Installation and requirements
	1.4 Contact

	2 Basic OPPL
	3 Using OPPL with Protégé
	3.1 OPPL tab
	3.1.1 OPPL builder
	3.1.2 OPPL text editor

	3.2 OPPL macros tab

	4 Advanced OPPL
	4.1 Working with variables
	4.1.1 Matching strings (MATCH)
	4.1.2 Creating variables (create, create Union|Intersection)
	4.1.3 Variable scope ([Variable Free OWL Expression])

	4.2 Working in asserted mode (ASSERTED)
	4.3 Using constraints (WHERE)
	4.3.1 Different entities (!=)
	4.3.2 String matching (MATCH)
	4.3.3 Negation as failure (FAIL)
	4.3.4 Variable values (IN)

	4.4 OPPL patterns
	4.5 The OPPL API
	4.6 Populous

	A OPPL grammar
	A.1 Statements
	A.2 Manchester OWL Syntax axioms
	A.3 Manchester OWL Syntax with variables entities

