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Abstract

Large-scale ocean-atmospheric phenomena like the El Niño Southern Oscillation (ENSO) and Indian
Ocean Dipole (IOD) have significant influence on Australia’s precipitation variability. In this study,
multi-linear regression (MLR) and complex empirical orthogonal function (CEOF) analyses were applied
to isolate (i) the continental precipitation variations likely associated with ENSO and IOD, here referred
to as ‘ENSO/IOD mode’, and (ii) the variability not associated with ENSO/IOD (the ‘non-ENSO/IOD
mode’). The first is of interest due to its dominant influence on inter-annual variability, while the second
may reveal lower frequency variability or trends. Precipitation products used for this study included
gridded rainfall estimates derived by interpolation of rain gauge data from the Australian Bureau of
Meteorology (BoM), two satellite remote sensing products (CHIRP and TRMM TMPA version 7), and
two weather forecast model re-analysis products (ERA-Interim and MERRA). The products covered the
period 1981-2014 except TMPA (1998-2014). Statistical and frequency-based inter-comparisons were
performed to evaluate the seasonal and long-term skills of various rainfall products against the BoM
product. The results indicate that linear trends in rainfall during 1981-2014 were largely attributable
to ENSO and IOD. Both intra-annual and seasonal rainfall changes associated with ENSO and IOD
increased from 1991 to 2014. Among the continent’s 13 major river basins, the greatest precipitation
variations associated to ENSO/IOD were found over the Northern and North East Coast, while the
smallest contributions were for Tasmania and the South West Coast basins. We also found that although
the assessed products show comparable spatial variability of rainfall over Australia, systematic seasonal
differences exist that were more pronounced during the ENSO and IOD events.

Keywords: Australia’s Rainfall, Remote Sensing, long-term trend, Complex EOF, ENSO, IOD,
Seasonal bias

1. Introduction1

Rainfall variability significantly influences water resource availability over the Australian continent.2

It also has caused drought and flood events over the past decades, including a prolonged multi-year3

drought from 1995 to 2009 known as the ‘Millennium drought’ (Ummenhofer et al., 2009a; van Dijk et4

al., 2013); a shift to drier conditions in southwest Western Australia since the 1970s (Raut et al., 2014),5

and a period of widespread flooding over the eastern regions from 2009 to 2012 (Boening et al., 2012).6

Australia is surrounded by tropical and subtropical oceans, and its climate is sensitive to large-scale7

ocean-atmosphere interactions. El Niño Southern Oscillation (ENSO) and Indian Ocean dipole (IOD)8

phenomena have been known to significantly influence precipitation over Australia (Trenberth, 1990;9

Nicholls et al., 1997), and also influence other regions of the world, e.g., Africa (Awange et al., 2013;10
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Omondi et al., 2013; Bloszies and Forman, 2015) and South America (de Linage et al., 2013; Córdoba-11

Machado et al., 2015). ENSO is mainly generated through movements of the tropical convergence zones12

from their seasonal mean positions, causing tropical and extra tropical responses (Cai et al., 2012). Al-13

though sea surface temperature (SST) in the tropical Indian Ocean co-varies with that of the tropical14

Pacific, IOD itself is known as a distinguishable phenomenon that can act to enhance or mitigate ENSO15

and contributes to inter-annual variability of rainfall over Australia (Saji et al., 1999). ENSO conditions16

often develop in austral winter and spring and tends not to peak until austral summer. In contrast,17

IOD develops in winter and typically becomes stronger during austral spring when it is correlated with18

ENSO (Ummenhofer et al., 2009a; Cai et al., 2012). Hence, the independent and combined impacts of19

ENSO and IOD exist in all seasons, which makes it difficult to separate their contribution to rainfall20

changes and consequently water storage variability over the Australian continent.21

The impact of ENSO on Australian rainfall has been known for decades (e.g., Walker, 1923; Nicholls,22

1985). The influence of IOD on Australian climate has also been reported in previous studies such as23

Ashok et al. (2003a) and Ummenhofer et al. (2009a,b). Most of these studies, however, have focused24

on describing the underlying mechanisms for the transmission of ENSO and IOD to Australian climate25

(e.g., Cai et al., 2011), rather than quantifying spatial and temporal rainfall changes due to (or in the26

absence of) these phenomena.27

Here, we hypothesize that the annual and semi-annual rainfall variability computed from long-term28

(∼30 years) precipitation data represents the mean seasonality of climate variability over the Australian29

continent. The impact of ENSO and IOD can be considered an additional superimposed variability that30

changes the amplitude and potentially the phase of ‘non-(normal) seasonal’ precipitation variability over31

the continent. This assumption is in line with previous studies that quantified rainfall variability or32

water resources such as Chiew et al. (1998) and Power et al. (1999), who estimated rainfall variability33

due to the inter-decadal variability of ENSO and its modulations.34

Long-term rainfall trends over Australia were discussed in Smith (2004), Smith et al. (2009), van35

Dijk et al. (2013), and Fu et al. (2010). Furthermore, Liu et al. (2007, 2009) and Bauer-Marschallinger36

et al. (2013) quantified the influence of ENSO and IOD on remotely sensed surface soil moisture and37

vegetation water content variations, while Garćia-Garćia et al. (2011) and Forootan et al. (2012) studied38

water storage variations since 2003 estimated from Gravity Recovery and Climate Experiment (GRACE)39

observations to define the regions that are predominantly affected by ENSO and IOD.40

This study adds to previous efforts by studying three decades (1981-2014) of monthly gridded pre-41

cipitation products to assess seasonal, inter- and intra-annual variability of precipitation over Australia.42

The relationships between these changes and ENSO/IOD events are addressed. The products include:43

gridded monthly precipitation estimates derived by interpolation of rain gauge measurements produced44

by the Australian Bureau of Meteorology (BoM, Jones et al., 2009), a recent satellite remote sensing45

product of the Climate Hazards Group Precipitation (CHIRP, Funk et al., 2014), monthly products of46

the Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA) version47

7, Huffman et al., 2007) that incorporate guage measurements, as well as the weather forecast model48

re-analysis products ERA-Interim from the European Centre for Medium-Range Weather Forecasts (Dee49

et al., 2011), and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) from50

NASA (Rienecker et al., 2011).51

The mentioned products were selected because they are long-term gridded products that have been52

used in several previous continental-wide rainfall estimation studies (e.g., Fleming and Awange, 2013;53

Renzullo et al., 2011; Peña-Arancibia et al., 2013; Pipunic et al., 2013), climate studies (e.g., Ashcroft et54

al., 2013; Donat et al., 2014), water storage monitoring studies (Rieser et al., 2011; Awange et al., 2011;55

Forootan et al., 2012; Seoane et al., 2013), or as input of hydrological models (e.g., Gebremichael and56

Zeweldi, 2007; Peña-Arancibia et al., 2011; van Dijk and Renzullo, 2011; van Dijk et al., 2011). CHIRP57

is a long-term satellite-only rainfall product that has been applied here for the first time over Australia.58

Estimation of rainfall over Australia, similar to other parts of the world, is vulnerable to errors during59

both anomalously dry (Dai, 2013) and wet conditions (e.g., Bosilovich et al., 2008; Trenberth, 2011, cf.60

http : //www.cawcr.gov.au/projects/SatRainV al/sat val aus.html). Pipunic et al. (2013) reported61

that estimates of rainfall from different satellite observations can be very different, particularly over62

tropical areas with high precipitation. Therefore, an incorporation of gauge observations to correct the63

biases of satellite rainfall (e.g., Ebert et al., 2007; Peña-Arancibia et al., 2011), or a complementary use64
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of gauge, reanalysis, and satellite rainfall products is desired (Peña-Arancibia et al., 2013).65

In order to understand the seasonal to long-term behavior of rainfall variability over Australia, three66

main objectives are drawn here that include: (i) quantifying the variability of rainfall due to ENSO67

and IOD events (here called the ‘ENSO/IOD mode’ of rainfall) to address the amount of precipitation68

over the continent due to these major phenomena, (ii) removing the impacts of ENSO and IOD from69

rainfall variability (‘non-ENSO/IOD mode’ of rainfall) and analyzing the underlying large-scale rainfall70

variability, trend and seasonality, and (iii) quantifying the ability of satellite and reanalysis products71

to accurately represent seasonal precipitation as well as the major climatic phenomena of ENSO and72

IOD. Objective (ii) has not often been addressed in previous studies while (i) has been of particular73

interest due to its dominant impact. In addition to fully spatial analysis, we also report our results for74

Australia’s major river basins (Figure 1).75

To estimate the impact of ENSO and IOD on spatio-temporal rainfall variability, two independent76

techniques were considered. First, a multi-linear regression (MLR) technique was applied with the main77

assumption that the temporal patterns of ENSO and IOD, respectively derived from Niño 3.4 (http://78

www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/) and Dipole Mode Index (DMI,79

http://www.jamstec.go.jp/e/), directly influence monthly accumulated rainfall changes. Since it is80

expected that different phases of ENSO and IOD might also have impacts on rainfall changes, Hilbert81

transformation of the ENSO and IOD indices was used to account for the phase lag (see Section 4.1).82

The indices and their Hilbert-transformed patterns along with a linear trend, annual, and semi-annual83

cycles were fitted to the time series of gridded precipitation products using MLR (see also Phillips et84

al., 2012). Thereby, amplitudes and phase propagations of ENSO/IOD mode were estimated. The non-85

ENSO/IOD mode was calculated as residuals of the total rainfall variations and the ENSO/IOD mode.86

The impact of ENSO and IOD was alternatively extracted from rainfall time series by applying the87

statistical method of complex empirical orthogonal function (CEOF, Rasmusson et al., 1981). Unlike88

the MLR technique, the CEOF technique does not require a priori assumptions about the variability89

of ENSO/IOD mode, and has been successfully used to explore SST (e.g., Enfield and Mestas-Nuñez,90

1999) and water storage variations (e.g., Bauer-Marschallinger et al., 2013; Forootan, 2014). By apply-91

ing CEOF, one can extract both temporal and spatial propagation of precipitation patterns that are92

associated to ENSO/IOD, while by applying MLR only the temporal phase propagation of precipitation93

changes (due to ENSO/IOD) is considered.94

In order to address our objective (iii), we used the gridded BoM estimates as our reference ‘truth’.95

The spatial representation (in terms of spatial correlations) of various satellite rainfall products were96

compared to BoM estimates. The skill of the satellite products in representing seasonal and non-seasonal97

precipitation changes were also assessed against BoM products.98

The remaining part of this study is organized as follows: in Section 2 the Australian climate is99

explained. In Section 3, the datasets of the study are introduced, and the methodology of their analysis100

is explained in Section 4. The results are reported in Section 5, and finally, the study is summarized101

and concluded in Section 6.102

2. Australian climate103

The Australian continent experiences a variety of climatic conditions ranging from wet tropical104

conditions in the north, arid conditions in the interior, to temperate sub-humid to humid conditions in105

the south. Six climate zones (see, Figure 1a) were identified by Stern et al. (2000) based on a modified106

Köppen classification system applied to 30-year (1961-1990) mean rainfall, maximum and minimum107

temperature, and elevation.108

The amount of precipitation in Australia is less than other inhabited continents on Earth. Climate109

is strongly influenced by the surrounding open oceans, including the southwestern Pacific Ocean in the110

east and the Indian Ocean in the west. Tropical cyclones are a prominent feature in the coastal regions111

of the northern and north-eastern Australia, while the western and central regions remain relatively dry112

(e.g., Sturman and Tapper, 1996). The Great Dividing Range along the coast of southeast Australia is113

the main topographic feature (elevation <2208 m above sea level) but has modest influence on large-scale114

weather systems other than creating local orographic rainfall gradients.115

The impacts of ENSO and IOD on the climate of Australia have been found dominant on inter- and116
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intra-annual variability of rainfall in various regions. During El Niño (negative phase on ENSO), northern117

and eastern parts of Australia experience reduced rainfall and often prolonged drought in the interior118

regions (e.g., during 1997-1998). Conversely, La Niña periods often result in flooding; e.g., the 2010-2012119

La Niña event caused widespread flooding between September 2010 and March 2011 across all eastern120

states including Tasmania (cf. http://www.bom.gov.au/climate/enso/lnlist/). On the other hand,121

positive IOD events are linked to decreased inter-annual rainfall over northern and western Australia.122

Negative IOD enhances rainfall especially over the western part of the continent. More details of the123

role of ENSO and IOD in the Australian climate are provided in http://www.bom.gov.au/climate/.124

[FIGURE 1 AROUND HERE.]125

3. Data126

3.1. Rainfall products127

Daily estimates of rainfall at 0.05◦×0.05◦ spatial resolution were provided by the Australian Bureau128

of Meteorology (BoM). These fields have been produced by interpolating rainfall observations from a129

relatively dense gauge networks across Australia using a sophisticated analysis technique (Jones et al.,130

2009). Monthly gridded rainfall products were computed here by averaging daily estimates covering131

1981-2014.132

Figure 1b shows the overall distribution of rain gauges across Australia contributing to the gridded133

rainfall analyses for the entire study period (1981-2014) consisting of about 3,800 rain gauges. About134

∼68% of stations contain data gaps of less than 10% over the entire period of study. Although gauge135

distribution is relatively dense across much of Australia, vast arid regions in the interior have few gauges136

(Figure 1b). Such data gaps result in uncertain interpolation estimates, and care was taken when137

interpreting results in basin-average analysis.138

Other datasets used in this study include two satellite-based precipitation products and two reanalysis139

products:140

a) TMPA version 7: The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation141

Analysis (TMPA, Huffman et al., 2007) provides near-global high-resolution (0.25◦×0.25◦) precipita-142

tion estimates both in real-time and as post-processed data after incorporating gauge data. Monthly143

TMPA version 7 (or known as TRMM 3B43 version 7) products, which are combined with monthly144

gauge-based precipitation analyses from the Global Precipitation Climatology Center (GPCC, Schnei-145

der et al. , 2014, http://precip.gsfc.nasa.gov/), were used for the period 1998-2014. The TMPA146

version 7 products used here may be different from version 6, which has been used in most previous147

analyses. For an evaluation of TRMM products over Australia see e.g., Fleming and Awange (2013).148

b) CHIRP: The US Geological Survey (USGS) in collaboration with the US Department of Interior (DOI)149

have recently developed a near-global very high-resolution (0.05◦×0.05◦) infrared-based precipitation150

dataset known as the Climate Hazards Group InfraRed Precipitation (CHIRP, Funk et al., 2014).151

CHIRP is produced by integrating several long-term and short-term IR rainfall products (Funk et152

al., 2012). So far, this unique long-term satellite-only product has not been evaluated for Australia.153

In this study, monthly 0.05◦×0.05◦ products covering 1981 to 2014 (from http://chg.geog.ucsb.154

edu/data/) were used.155

c) ERA-Interim: ERA Interim is a global atmospheric reanalysis produced by the European Center for156

Medium-Range Weather Forecasts (ECMWF, Dee et al., 2011). Several gridded products describing157

the ocean, land surface and atmospheric (covering the troposphere and stratosphere) conditions have158

been integrated to produce global fluxes at 3-hourly to 6-hourly time-scales with a spatial resolution159

of ∼0.79◦×0.79◦. The Integrated Forecast System also produces precipitation forecasts, as the sum160

of stratiform (large-scale) and convective (small-scale) precipitation. The products were provided as161

precipitation rates (mm/hour) at 6-hourly intervals from 1979. Data for 1981-2014 were retrieved162

over the Australian continent from the ECMWF website (http://apps.ecmwf.int/datasets/data/163

interim_full_daily/).164

d) MERRA: The Modern Retrospective Analysis for Research Application (MERRA, Rienecker et al.,165

2011) is an American global reanalysis for the satellite-era (1979 onwards) produced by the National166
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Aeronautic and Space Administration (NASA, US) using the Goddard Earth Observing Data As-167

similation System version 5 (GEOS-5). The retrospective analysis is performed at a relatively high168

spatial resolution (0.67◦×0.50◦) at 1-hourly to 6-hourly time intervals, while focusing mainly on the169

assimilation of the global hydrological cycle by integrating a variety of satellite and surface observ-170

ing systems. In this study, average monthly precipitation rates from the MERRA-Land data set171

(http://gmao.gsfc.nasa.gov/research/merra/merra-land.php) were used for 1981-2014.172

The two reanalysis products mentioned above differ in many aspects, both in terms of the numerical173

modeling and observational data assimilation schemes (see, Dee et al., 2011; Rienecker et al., 2011, and174

references therein). For instance, a four-dimensional variational (4Dvar) scheme is used to correct biases175

in producing ERA-Interim products, whereas a 3Dvar scheme is used for the same purpose in MERRA176

(e.g., Bromwich et al., 2011). For Australia, Peña-Arancibia et al. (2013) reported that ERA-Interim177

represents rainfall seasonality in the southern and northern regions well in comparison with other re-178

analysis products. Conversely, the long-term trend in MERRA was reported to be more consistent with179

runoff observations and vegetation indices, see e.g., Los (2014).180

The precipitation data used are summarized in Table 1. All data were averaged to a common grid181

of 0.50◦×0.50◦ and monthly time step to allow a consistent comparison. Otherwise the sampling error182

caused by spatio-temporal mismatch likely represents non-negligible impact on the final results. The183

ERA-Interim and MERRA needed to be downscaled to a finer spatial resolution, which was done by bilin-184

ear interpolation. A comparison between the spatial representation of BoM and the satellite/reanalysis185

products has been presented in the Appendix.186

[TABLE 1 AROUND HERE.]187

3.2. ENSO and IOD indices188

The strength of ENSO is commonly summarized in SST anomalies such as those within the Niño189

3.4 region (5◦N-5◦S, 120◦-170◦W). ENSO events are said to occur if SST anomalies exceed ±4◦C for 6190

months or more (Trenberth, 1990). IOD is commonly measured by the difference between SST anomalies191

in the western (50◦E-70◦E and 10◦S-10◦N) and eastern (90◦E-110◦E and 10◦S-0◦S) equatorial Indian192

Ocean, which is referred to as Dipole Mode Index (DMI, Saji et al., 1999).193

In this study, we used monthly Niño 3.4 ENSO index (time series from the Climate Prediction Center194

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/) and for IOD, DMI195

index time series from the Low-latitude Climate Prediction Research (http://www.jamstec.go.jp/196

frsgc/research/d1/iod/e/iod/). The indices were provided as normal-standardized differences (Niño197

3.4) or standardized differences (DMI) of SST anomalies in the equatorial Pacific and the Indian Ocean,198

respectively. The Niño 3.4 values were multiplied with -1 to make the sign consistent with the Southern199

oscillation Index (SOI) used by BoM, where positive values represent La Niña conditions and negative200

values El Niño events. For intuitive consistency, DMI was also multiplied with -1 (cf. Garćia-Garćia et201

al., 2011; Forootan et al., 2012) so that, similarly, positive and negative values relate to generally wetter202

and drier conditions, respectively. Index values bigger than 1 or smaller than −1 are likely related to203

strong ENSO/IOD events.204

[FIGURE 2 AROUND HERE.]205

4. Method206

4.1. Extracting the contribution of ENSO/IOD using MLR207

In order to quantify the contribution of ENSO/IOD and to derive long-term and decadal changes/variabilities208

in monthly precipitation over Australia, the multi-linear regression (MLR) method was applied. Let us209

consider that X contains the time series of monthly rainfall anomalies over Australia, after removing210

their long-term temporal mean. For monthly 0.5◦x0.5◦ precipitation grids over Australia covering the211

period 1981-2014, Xn×m has the dimension of n = 408 and m = 2908, where n is the number of months212

and m represents the number of rainfall grid cells over the continent. Each entry of X is defined by x(l, j),213
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l = 1, . . . , n, j = 1, . . . ,m. This notation is adhered to throughout, while time t is always represented in214

years. The MLR is then formulated as215

X = x(l, j) = β1(j).t+ β2(j).cos(2πt) + β3(j).sin(2πt)

+β4(j).cos(4πt) + β5(j).sin(4πt) +

β6(j).N(t) + β7(j).H(N(t)) +

β8(j).D(t) + β9(j).H(D(t)) + ε(t), (1)

where β1(j) to β9(j) are coefficients, N(t) and D(t) the normalized -Niño 3.4 (ENSO) and -DMI (IOD)216

time series, and ε(t) random noise. The indices were shifted in the frequency domain by 90 degrees using217

Hilbert transformation (H(.), Horel, 1984) to capture the out of phase behavior of precipitation changes218

due to ENSO/IOD (see also, Phillips et al., 2012). The time series of -Niño 3.4 and -DMI as well as219

their respective Hilbert transforms are shown in Figure 2.220

The coefficients β1..9(j) were determined using a least squares adjustment (LSA). The adjusted221

coefficients (β̂1..9(j)) and their properties are summarized in Table 2, where β̂1(j) represents the linear222

trend, β̂2(j) and β̂3(j) the mean annual variability, while that of semi-annual is contained in β̂4(j) and223

β̂5(j), the variability due to ENSO is captured by β̂6(j) and β̂7(j), and that of IOD by β̂8(j) and β̂9(j).224

The uncertainties of the adjusted coefficients were estimated following Brook and Arnold (1985) and225

Rieser et al. (2011). It should be mentioned here that the sinosuidal base functions that are used in Eq.226

1 (to account for seasonality) might not be very suitable to adequately capture the complexity of the227

annual and semi-annual components of rainfall variability, whereby the frequency and the amplitude of228

seasonal cycles might change due to various climatic circulations over the continent (e.g., Drosdowsky,229

1993). However, later in this paper we will show that such imperfect seasonality reduction does not230

significantly affect the extraction of the ENSO/IOD mode in rainfall records. The ENSO/IOD mode231

from the MLR technique (superindex ‘MLR’) can be computed from232

XMLR
ENSO/IOD = x(l, j)MLR

ENSO/IOD = β̂6(j).N(t) + β̂7(j).H(N(t)) +

β̂8(j).D(t) + β̂9(j).H(D(t)), (2)

while the non-ENSO/IOD mode (from MLR) was estimated as the total precipitation changes after233

removing Eq. 2 as234

XMLR
non-ENSO/IOD = x(l, j)MLR

non-ENSO/IOD = x(l, j)− x(l, j)MLR
ENSO/IOD. (3)

The non-ENSO/IOD mode in Eq. 3 contains the mean (‘normal’) seasonal changes, thus, no spectral235

information is lost through the performed ENSO/IOD and non-ENSO/IOD separation.236

[TABLE 2 AROUND HERE.]237

4.2. Extracting the contribution of ENSO/IOD using CEOF238

CEOF is a statistical technique alternative to principal component analysis (PCA, Preisendorfer,239

1988) and allows extraction of non-stationary patterns from time series (Horel, 1984). CEOF is of240

interest here because ENSO/IOD represents a dynamic impact (changing in space and time) on precip-241

itation changes over the continent. Unlike the MLR technique (Section 4.1), no pre-defined patterns for242

ENSO/IOD need to be assumed. Instead, the ENSO/IOD contribution in precipitation was statistically243

extracted as the first two dominant modes of the CEOF analysis. To perform CEOF, first the mean244

annual and semi-annual cycles were removed from each rainfall time series using245

Xnon-seasonal = x(l, j)non-seasonal = x(l, j)− (β̂2(j).cos(2πt) + β̂3(j).sin(2πt) +

β̂4(j).cos(4πt) + β̂5(j).sin(4πt)), (4)

where the coefficients β̂2 to β̂5 were estimated by fitting the MLR model of Eq. 1. A complex field246

was defined as Y containing the non-seasonal time series in Eq. 4 as its real part, and their Hilbert247
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transform (Horel, 1984) as the imaginary part:248

Ynon-seasonal = y(l, j)non-seasonal = x(l, j)non-seasonal + i H (x(l, j)non-seasonal) , (5)

where i =
√
−1. It follows that the real part of Ynon-seasonal equals Xnon-seasonal.249

The generated complex dataset (Eq. 5) contains information about non-seasonal changes in rainfall250

and their temporal rate of changes as introduced by the Hilbert transform. Singular value decomposition251

(Preisendorfer, 1988) was applied to decompose the generated complex field as Ynon-seasonal = PET .252

This decomposition results in complex spatial patterns (E), known as the complex empirical orthogonal253

functions (CEOFs), and the temporal patterns (P) called the complex principal components (CPCs).254

Thus, both CEOFs and CPCs contain real and imaginary parts. The dominant modes of non-seasonal255

rainfall variability can be expressed using CEOFs and CPCs in terms of amplitude and phase (see e.g.,256

Forootan, 2014, pages 32-36). The ENSO/IOD mode derived from CEOF analysis (superindex ‘CEOF’)257

can be reconstructed from the first two dominant CEOF modes as258

XCEOF
ENSO/IOD = x(l, j)CEOF

ENSO/IOD = real(P(:, 1 : 2)E(:, 1 : 2)T ), (6)

while the non-ENSO/IOD mode can be calculated as the residual precipitation after removing the259

contribution derived via Eq. 6 as260

XCEOF
non-ENSO/IOD = x(l, j)CEOF

non-ENSO/IOD = x(l, j)− x(l, j)CEOF
ENSO/IOD. (7)

Therefore, similar to the MLR case (Eq. 3), the non-ENSO/IOD mode of rainfall variability in Eq. 7261

contains the mean seasonal pattern estimated in Eq. 4.262

5. Results263

5.1. Seasonal rainfall variability264

In order to explore the long-term (1981-2014) variability in rainfall over Australia, the MLR model265

of Eq. 1 was fitted to the time series of BoM products. Figures 3a and b show the spatial distribution of266

the seasonal variability over the entire period of study (1981-2014). The seasonal values, with the highest267

amplitudes of 250±18 mm/yr and 180±15 mm/yr respectively over the tropical northern Australia and268

along the southwest and east coast, were removed from rainfall time series to extract the ENSO/IOD269

mode.270

[FIGURE 3 AROUND HERE.]271

With the growing number of global high-resolution precipitation products in the past two decades for272

regional applications, it is important that these precipitation datasets accurately represent the spatial273

and temporal aspects of rainfall variability over Australia. These not only include instantaneous hourly274

to monthly continental rainfall but also must provide accurate and reliable representation of climate275

extremes and responses to major large-scale climate mechanisms such as ENSO and IOD. While satellite-276

and reanalysis-based rainfall estimates are being consistently evaluated to assess their hourly-to-daily277

rainfall frequency and detection (Chen et al., 2013; Peña-Arancibia et al., 2013) and monthly rainfall278

accumulations (e.g., Fleming and Awange, 2013), the continental long-term behavior has not widely been279

investigated. The spatial characteristics of TMPA, CHIRP, ERA-Interim and MERRA are compared280

with those of the BoM estimates in Appendix A, which suggests spatial correlation lengths for the281

CHIRP, ERA-Interim and TMPA products of ∼ 200 − 300 km, comparable with those in the BoM282

estimates. Correlation lengths were slightly larger (∼ 500 km) for MERRA.283

The seasonal amplitudes of differences between the BoM estimates and the satellite and reanalysis284

estimates are shown in Figure 4. The results show that both TMPA (covering 1998-2014) and CHIRP285

(1981-2014) are in strong agreement with BoM estimates, except in the northwestern region where BoM286

estimates are unreliable (see Figure 4a and b for TMPA and Figure 4c and d for CHIRP). This was287

somewhat expected for TMPA (v7), which incorporates GPCC gauge observations. The differences288
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between BoM and ERA-Interim or MERRA were greater than for satellite products. Significant under-289

estimates of up to ∼20 mm/year were found, particularly over the monsoonal northern part of the290

continent (see Figure 4e to h).291

[FIGURE 4 AROUND HERE.]292

5.2. ENSO/IOD mode of rainfall from the MLR analysis of BoM products293

The decadal and long-term patterns of ENSO and IOD amplitudes and their long-term phase propaga-294

tion are shown in Figure 5. The amplitudes represent the quantitative contribution of each phenomenon295

to the total rainfall over Australia. A total of 14 weak to strong ENSO event (comprising nine El Niño296

and five La Niña phases) and 12 IOD event (eight positive and four negative phases) occurred during the297

past three decades (Figure 2, see also, http://www.bom.gov.au/climate/). Considerable inter-decadal298

variations in continental rainfall were associated to both ENSO and IOD during the past three decades.299

At continental scale, the ENSO contribution to rainfall was found to be more dominant (∼12% of total300

rainfall) than IOD (∼7%). These values were estimated as averages of the ratios computed by divid-301

ing the amplitudes of ENSO (Figure 5a-d) and the amplitudes IOD (Figure 5f-i) by the total signal302

root-mean-squares (not shown). Compared to preceding decades, the contribution of ENSO was more303

prominent during 2001-2014 in the northern tropical region and in the eastern basins, in response to two304

moderate-strong La Niña events in 2007-2008 and 2010-2012 (compare Figure 5a-c). During 1981-1990305

and 1991-2000, the IOD contribution was less prominent than ENSO but more distinguishable, due to306

two strong positive IOD events in 1994-1995 and 1997-1998. Larger values for IOD-derived inter-annual307

amplitudes were found for 2001-2014, coinciding with stronger ENSO activity in this decade (Figure 5h).308

The ENSO and IOD events as reflected in the respective indices are to some extent correlated, however.309

This may have had influence on the respective decadal amplitude estimates. The decadal correlation310

barely exceeded a (lag-zero) correlation coefficient of 0.25, however, and therefore was not explicitly311

considered in applying MLR.312

[FIGURE 5 AROUND HERE.]313

The long-term mean phase propagations of ENSO and IOD modes (Figures 5e and j, respectively)314

indicate that ENSO effects usually develop in the east (the North East Coast, South East Coast, and315

Murray-Darling basins) during autumn (cf., Cai et al., 2011) and IOD in the tropical north and south316

during spring.317

Due to the hydro-climatic and economic significance of the drainage basins, the results were also318

expressed as basin averages. Average annual, semi-annual, ENSO, and IOD amplitudes of long-term319

precipitation for the 13 basins of Figure 1 are shown in Table 3. Substantial variations were found320

among basins, with the Carpentaria Coast (CC) showing the largest overall amplitude, followed by the321

Tanami-Timor Sea (TTS) and North East Coast (NEC). The South Western Plateau (SWP) showed322

the smallest amplitude and the least ENSO influence, while greatest ENSO influence was found in the323

northern and eastern basins. For 1981-2014, the highest IOD amplitudes were found over Tasmania324

(8.1±6.5 mm/year), CC (6.3±8.4 mm/year), and TTS (5.8±6.5 mm/year).325

[TABLE 3 AROUND HERE.]326

5.3. ENSO/IOD- and non-ENSO/IOD modes of rainfall from CEOF327

Before applying CEOF, a 5-month moving average filter was applied to the monthly non-seasonal328

rainfall anomalies to filter out high-frequency temporal variability of rainfall. The signal dampening due329

to the application of the filter was accounted for by simulating seasonal time series (according to Eq. 1)330

and applying the same 5-month moving average filter. Scaling factors were computed as ratios of the331

original time series and the filtered values. The filtered time series were then multiplied by the estimated332

scales.333

Filtered (and scaled) time series were then transformed to include the phase shifted values using334

Eq. 5. Following Horel (1984), the first and last 5 months were removed before applying CEOF de-335

composition to account for the artifacts introduced by the Hilbert transform. The CEOF technique336

was expected to be more efficient than the ordinary EOF analysis to extract ENSO/IOD contributions337
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because of their non-stationary behavior (Figure 5). A comparison of CEOF and PCA for extracting338

the ENSO/IOD patterns was also performed, the results of which indicated that the patterns extracted339

by CEOF were better correlated with ENSO/IOD indices (not shown). The first two leading modes340

of CEOF, accounting for ∼29% and ∼14% of the total non-seasonal rainfall variability, are interpreted341

here because of their dominance and relevance to the ENSO and IOD patterns. The remaining ∼57%342

of non-seasonal variability mostly represents local precipitation distribution patterns.343

Figure 6 presents the spatial patterns (real part of the first two dominant CEOF modes) of rainfall344

variability over Australia, with their corresponding temporal evolution shown in Figure 7. For brevity,345

the imaginary part of the spatial patterns is not shown. This does not however mean that the imaginary346

components are not important, while they represent the propagative behavior of rainfall variability over347

the continent. The two CEOF modes (Figures 6 and 7) represented the combined influence of ENSO348

and IOD indicating maximum precipitation over the tropical northern Australia (Figure 6a) and eastern349

Australia (Figure 6b). Rainfall over much of the northern and western Australia, and southern Tasmania350

exhibited the influence of IOD, while that of northern and eastern states exhibited the influence of ENSO.351

Their corresponding temporal patterns (real and imaginary PCs in Figure 7) were found to be correlated352

with ENSO (-Niño 3.4) and IOD (-DMI). The real part of the first complex PC was correlated to -Niño353

3.4 (0.40 at lag of 1 month) while the correlation with -DMI was smaller (0.24 at a lag of 1 month).354

Higher correlation was found between the imaginary part of the first complex PC and -Niño 3.4 (0.43 at a355

lag of 1 month). The real and imaginary part of the second complex PC was found to be more correlated356

with -DMI (0.34 and 0.28 at a lag of 1 month, respectively). As is clear from the temporal evolution,357

the temporal patterns of Niño 3.4 and DMI are not fully reflected in the rainfall time series. Therefore,358

application of CEOF is likely better suited than MLR to extract the ENSO/IOD and non-ENSO/IOD359

modes.360

[FIGURE 6 AROUND HERE.]361

[FIGURE 7 AROUND HERE.]362

The influence of ENSO/IOD on Australia rainfall are further supported by the power spectral density363

plots in Figure 8, where those of the first two real PCs were compared in the frequency domain with364

-Niño 3.4 and -DMI time series. Power spectral density plots were estimated using least squares spectral365

analysis (Vanicék, 1969) and the significance of the estimates was tested using the Fisher test as in366

Sharifi et al. (2013). The results indicate that ENSO corresponds better with the extracted rainfall367

modes given that the high peaks of -Niño 3.4 (at 0.08, 0.18, and 0.58 cycle/year) were also found in368

the spectrum of PC1 (Figure 8a). The highest peaks of PC2 were found to be similar to the frequency369

of 0.08 cycle/year from -Niño 3.4 and 0.33 cycle/year from -DMI (Figure 8b). Given that ENSO and370

IOD modes were significantly related to PC1 and and PC2, both CEOF modes appear to represent371

ENSO/IOD-induced rainfall anomalies. As it is clear from the spectral density plots, estimated for372

the two indices and the dominant PCs, the contribution of the annual and semi-annual variability in373

the ENSO/IOD mode is very minor (compared to other frequencies). Besides, the ENSO/IOD mode374

of rainfall variability for the period 1981-2014 was reconstructed by inserting the spatial patterns of375

Figure 6 (and the imaginary parts that are not shown here) and their corresponding temporal patterns376

(Figure 7) in Eq. 6. The standard deviations of the ENSO/IOD rainfall is shown in Figure 9. The377

largest variations (up to 50 mm/month) were found in the tropical north and the northeast (Figures 5378

and 6). We found that the annual and semi-annual amplitudes of the ENSO/IOD mode reach up to 3379

and 0.3 mm/year over 1981-2014, respectively (results are not shown). The estimated amplitudes are380

negligible compared to the magnitude of the ENSO/IOD mode (∼50 mm/year, see Figure 9) or the381

seasonal amplitude of precipitation (∼150 mm/year, see Figure 3).382

[FIGURE 8 AROUND HERE.]383

[FIGURE 9 AROUND HERE.]384

Figure 10 shows the temporal correlation patterns between the ENSO/IOD mode of Australian385

rainfall and -Niño 3.4/-DMI over the entire period of 1981 to 2014. A two-tailed test (Best and Roberts,386

1975) was applied to examine the significance of correlations. Low correlations (<0.18) were masked.387
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Correlations between -Niño 3.4 and the non-ENSO/IOD mode of rainfall were positive with the388

strongest relationship over the tropical north, west coast, and eastern regions of the continent (see389

Figure 10a) with a maximum correlation of 0.6 over the north and northwest. A maximum lag of up to390

4 months was found over the Murray-Darling basin (MDB), while the rest of the continent experienced391

an almost instant influence of ENSO (Figure 10b). The rainfall-ENSO relationship was previously found392

to be partly associated with the inter-decadal fluctuation of atmospheric pressure over the northern393

Pacific Ocean referred to as the Inter-decadal Pacific Oscillation (IPO) (Power et al., 1999; Risbey et394

al., 2009). Correlations were found to be stronger during the negative IPO phase (corresponding to the395

lower SST anomalies over the northern Pacific ocean), thus, favoring stronger correlations during the La396

Niña conditions. However, the notion of IPO as an independent climate mode has been questioned by397

Newman et al. (2003).398

[FIGURE 10 AROUND HERE.]399

IOD correlations showed two contrasting patterns: (a) positive correlation (up to 0.32) over southwest400

and southeast including Tasmania (see Figure 10c) consistent with the results of Ashok et al. (2003a)401

and (Risbey et al., 2009) and (b) negative correlations (up to -0.30) over central and northern parts402

of Australia. While the correlations are not very strong over Australia, intense negative IOD events403

have resulted in widespread rainfall deficits over the southwest and southern Australia (e.g., Ashok et404

al., 2003a). Lags of up to 3 month were found between -DMI and the ENSO/IOD mode of rainfall405

variability over Australia (see Figure 10d). Although IOD events are known to occur independently of406

ENSO such as in 1994 (Ashok et al., 2003b), positive (negative) IOD events co-evolve with El Niño (La407

Niña) conditions, especially during spring (SON) (Figure 2) leading to extreme droughts (floods) over408

southern and eastern Australia (see, e.g., Ummenhofer et al., 2009b; Cai and Rensch, 2012; van Dijk et409

al., 2013).410

Figure 11 shows both decadal (1981-1990, 1991-2000, and 2001-2014) and long-term (1981-2014)411

trends in rainfall over Australia. These decades were chosen to be consistent with previous (hydro-)412

climate studies, but it is noted that they do not necessarily coincide with change points in rainfall413

trends. A more sophisticated trend analysis was performed by Fu et al. (2010). The grid presentation414

was chosen in Figure 11 to show changes as detailed as possible. One can perform such analysis based on415

climatic regions or particular river basins. Trends in the total amount of rainfall were computed using416

Eq. 1 but omitting the last four ENSO/IOD related terms (Figure 11a-d). To estimate the trend of417

the ENSO/IOD and non-ENSO/IOD rainfall contributions separately the same regression was applied418

to the outputs of Eqs. 6 and 7 (Figures 11e to h and i to l, respectively).419

Considerable variability was found in decadal total rainfall trends during the past three decades420

(Figure 11a to d). A significant influence of ENSO and IOD events is evident (Figure 11e-g). The spatial421

patterns of total precipitation changes for the period 1981-1990 (Figure 11a) indicate a decreasing trend422

(up to 4.5 mm/year) over tropical Northern Australia with a modest increase in ENSO/IOD-related423

rainfall (Figure 11e). An increase in ENSO/IOD-related rainfall trend was also found over eastern424

Australia despite the two major El Niño events in the 1980s (in 1982 and 1987). Linear trends during425

the last two decades (1991-2014) mainly suggested increases (up to 4 mm/year) (Figure 11b), leading to426

an overall rainfall increase (Figure 11d) for the period 1981-2014.427

Decreasing rainfall trends were mainly observed over the southern Australia including Tasmania in the428

1990s (Figure 11b), and over western Australia during the last decade (Figure 11c), which may be related429

to the influence of a strong southern annular mode (Nicholls, 2010), as well as weakening monsoon troughs430

over northern Australia during austral summer (December-January-February, Taschetto and England,431

2009). Increases in long-term and decadal rainfall trends were influenced by higher rainfall as a result432

of moderate-strong La Niña events at the end of the decade (e.g., in 2011-2012). Besides increasing433

rainfall over Australia, decreasing trends were observed at the same time over northern, eastern and434

southern Australia (see, Figure 11i-k), which cannot be explained by ENSO/IOD. The long-term (1981435

to 2014) trend in rainfall was dominated by ENSO/IOD (Figure 11h) during the last 10 years with436

almost no trend in non-ENSO/IOD rainfall over Australia. Increasing trends (Figure 11d) over the437

north, northwest, and western Tasmania and decreasing trends over the southwest and east coast of438

Queensland were consistent with previous findings (see, e.g., Nicholls et al., 1997; Smith, 2004; Nicholls,439

2006; Taschetto and England, 2009; Li et al., 2013).440
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[FIGURE 11 AROUND HERE.]441

Although ENSO/IOD are the leading atmospheric drivers of inter-annual variability of rainfall over442

Australia, other factors such as Madden Jullian Oscillation (MJO, e.g., Wheeler et al., 2009), Southern443

Annular Mode (SAM, e.g., Hendon et al., 2007; Nicholls, 2010), and atmospheric blocking (e.g., Pook et444

al., 2013, and references therein) and their interaction with ENSO/IOD have been reported to produce445

substantial intra-seasonal rainfall variability across various parts of the continent (detailed discussion446

can be found in Risbey et al. (2009)). Because ENSO and IOD themselves are highly correlated in time,447

for example, during the austral spring (e.g., Ashok et al., 2003b; Risbey et al., 2009; Cai et al., 2011),448

the CEOF technique was not able to separate their independent contributions but the combinations of449

ENSO and IOD in the two modes were extracted successfully. We confirmed this by computing the450

correlations of the non-ENSO/IOD mode with -Niño 3.4 and -DMI indices; residual correlations were451

less than 0.25.452

The decadal and long-term impact of ENSO and IOD varies across Australia as shown in Figures 9,453

10, and 11 with compounding implications on hydrology including extreme events - droughts and floods.454

In an effort to quantify the impacts of ENSO/IOD on hydrology, the basin-averaged seasonal rainfall455

(in km3/month) between 1981 and 2014 was plotted for the 13 basins in Figure 12. The mean seasonal456

rainfall over various basins were found to be consistent with the correlation patterns shown in Figure 10,457

indicating greater impact of ENSO/IOD over the basins in the northern and eastern Australia including458

the Carpentaria Coast (CC) (Figure 12a), TTS (Figure 12b), NEC and South East Coast (Figure 12c-d),459

Lake Eyre Basin and South Australian Gulf (LEB and SAG, Figure 12i-j), as well as Murray-Darling460

Basin (MDB) and South East Coast (SEV) (Figure 12k-l). The highest rainfall was recorded in TTS461

followed by CC and NEC, while the lowest rainfall was observed over Tasmania and the South West462

Coast (SWC) basin, in which the ENSO/IOD impact was relatively small.463

ENSO/IOD impacts appeared to occur in all river basins with continuous negative anomalies during464

the major drought conditions in the late 1990s and early 2000s for PG, SWC, SWP LEB, and MDB (see,465

e.g., Ummenhofer et al., 2009a; van Dijk et al., 2013). Anomalously high rainfall contributions were found466

due to the two successive La Niña events over the north (CC and TT), northwest (NWP), and east (NEC,467

LEB, and MDB basins) between 2010 and 2012. The last two events caused severe floods over northern468

and eastern Australia including eastern Tasmania (http://www.bom.gov.au/climate/enso/lnlist/).469

Table 4 reports the estimated linear trend in rainfall for all the river basins during the last three decades.470

With the exception of the Southwest Coast (SWC), all basins show increasing rainfall trends between471

1981 and 2014, with significant trends in ENSO/IOD-related rainfall for most (CC, NEC, TTS, NWP,472

PG, SWP, and LEB). The decreasing rainfall trend over SWC has been reported previously (e.g., Nicholls,473

2010) and has been attributed to the strong influence of the Southern Annular Mode over recent decades.474

Although ENSO/IOD events play a major role over MDB, no significant increasing trends were found475

during the period 1981-2014. In general, non-ENSO/IOD rainfall trends were found to be negative across476

the majority of basins (see also, Figure 11l) but the values were not statistically significant.477

[FIGURE 12 AROUND HERE.]478

[TABLE 4 AROUND HERE.]479

5.4. Evaluation of non-seasonal variations and trends in satellite and reanalysis products480

In order to assess the skill of the satellite and reanalysis products in representing non-seasonal rainfall481

variability over Australia, their differences with BoM products after removing the annual and semi-annual482

cycles were assessed during the main four climate seasons. At the continental scale, the differences were483

found to be mainly over tropical northern Australia (similar to the seasonal differences in Figure 4) with484

TMPA, ERA and MERRA overestimating monthly rainfall and the IR-derived CHIRP underestimating485

rainfall, in both cases by more than 60 mm/month (not shown). Substantial underestimation also486

occurred along the coastal regions of southwest and eastern Tasmania.487

Table 5 reports the non-seasonal root-mean-square-errors (RMSEs) of the three long-term (1981-488

2014) precipitation products for the 13 major river basins of Australia in comparison to BoM estimates.489

The RMSE values were calculated after removing the annual and semi-annual cycles with the aim of490

quantifying the uncertainties due to the influence of inter-annual changes as well as ENSO and IOD491
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variability over the mentioned river basins. The estimated RMSEs were generally larger during the wet492

seasons (December to March) in the high rainfall regions of tropical northern Australia, e.g., Carpentaria493

Coast (CC), Tanami-Timor Sea Coast (TTS), and North East Coast (NEC) while precipitation errors494

were smaller in the other basins. Among the three precipitation products, MERRA indicated smaller495

RMSE than ERA-Interim and CHIRP for all the seasons. Anomalously large errors were found in ERA-496

Interim from September to May in the tropical north while it was found to be better than CHIRP during497

the JJA season for majority of the river basins (see, Table 5). While the magnitude of errors was found498

to be reduced substantially in ERA-Interim re-analysis over northern Australia during the TRMM-era499

(1998-2014, Table 6), the error magnitudes increased slightly in the central and southern river basins500

for the other two products, namely CHIRP and MERRA (e.g., LEB and MDB). TMPA precipitation501

estimates were found to be comparable to MERRA and was relatively better than CHIRP for all the502

seasons with few exceptions (see, Table 6).503

[TABLE 5 AROUND HERE.]504

[TABLE 6 AROUND HERE.]505

To compare the long-term behavior of precipitation over Australia, linear trends were computed506

using the satellite and reanalysis products. Computations were carried out based on basin averages of507

all 13 river basins during the period 1981-2014 (1998 to 2014 for TMPA). Table 7 reports the trend508

estimates from total precipitation and the trends due to ENSO/IOD rainfall. While there has been an509

increase in the amount of average rainfall over the majority of basins based on the observed rainfall510

datasets from BoM (see, Table 4 and 7), only CHIRP and MERRA were able to produce consistent511

trends, while ERA-Interim (1981-2014) and TMPA (1998-2014) showed negative trends for most basins.512

In fact, MERRA shows the most consistent trend estimates for all the basins (except for those of MDB513

and SEN), and trends in CHIRP precipitation products were found to be insignificant for both total514

precipitation and ENSO/IOD contributions. The magnitude of rainfall changes was also found to be515

quite consistent across all the long-term precipitation products (CHIRP, MERRA and ERA) with the516

SWC and Tasmania basins indicating no trend in both total precipitation and ENSO/IOD rainfall. This517

suggests that the CHIRP and MERRA precipitation products may be more suitable for estimating long-518

term rainfall trends over Australia, and specifically in representing the recent La Niña events (e.g., that519

of 2012) that impacted the northern and eastern basins.520

[TABLE 7 AROUND HERE.]521

5.5. Skills of the satellite and reanalysis products to represent ENSO/IOD events522

In Figures 6 and 7, one could see that the dominant behavior of non-seasonal rainfall variations523

over Australia were significantly influenced by ENSO and IOD events. In order to assess whether the524

satellite and reanalysis products are in agreement with BoM products, they were projected onto the525

spatial patterns of Figure 6. This projection allows a consistent comparison by relying on the spatial526

distribution of rainfall from BoM products, while depicting the temporal patterns with respect to the527

explained variances of the reference data. Since the grid values located over the northwest and central528

Australia are almost zero, the performed projection does not include the semi-arid and arid regions,529

where BoM data is very sparse. The annual and semi-annual cycles were removed and a 5-month running530

average was applied to each product prior their projections to focus on the impacts of ENSO/IOD on531

the precipitation residuals. Figure 13 shows the corresponding temporal evolutions of rainfall variability532

over Australia, which accounted for the total variance of over 35% in non-seasonal rainfall variations.533

The resulting two evolutions (shown by PCs) in Figures 13a and 13c represented the overal agreement534

of various products in representing ENSO and IOD impacts.535

Figures 13b and 13d show the differences between the evolution of BoM and those derived from536

projections. In theory, the differences should be zero, while the spatial (shown in the Appendix) and537

temporal sampling (monthly aggregations) of the assessed products are quite similar. Considering the538

temporal behavior of residuals, one can see that the temporal patterns of residuals (‘biases’) are different539

for the satellite and reanalysis products. ERA-Interim estimates indicated largest difference among540

the different precipitation estimates over the entire period of 1981 to 2014 with anomalously large541
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overestimation (up to 3 standard deviations) between 1982 and 2000 and large underestimates (up to542

3 standard deviations) for the period 2000-2014 (see Figures 13b). Similar results were found for the543

second mode i.e. Figure 13d. This behavior might be related to the inter-annual biases caused by544

more pronounced ENSO/IOD activity over the last decade or the existing shifts (over time) in the545

precipitation differences between ERA-Interim and gauge observations as reported in Simmons et al.546

(2010). More research should be done to address this issue. On the other hand, the satellite-based547

CHIRP and reanalysis-based MERRA agreed very well with BoM estimates. The differences were found548

to be mostly below 1 standard deviation. The TMPA estimates, although with a shorter time period549

(1998-2014), agreed very well but indicated a periodic underestimation in both modes. This behavior550

in TMPA can partly originate from the fact that the spatial base function of Figure 6 is not totally551

fitted to TMPA estimates due to its shorter data coverage. CHIRP and MERRA differences were quite552

large in the second mode, especially during the active periods of ENSO and IOD phenomena such as553

in 1998 and 2011 (see, also Figure 7) indicating that rainfall due to major ENSO and IOD events were554

either underestimated or overestimated. Considering satellite-only estimates (including both infrared555

and microwave algorithms) over the tropics, Ebert and Manton (1998) found that the advantage of556

superior temporal and spatial sampling in the geostationary algorithm outweighs the advantage of more557

directly related measurements of micro-wave estimates in monthly rainfall estimates. This holds true558

especially over Australia for the IR-based CHIRP products, which indicated relatively low RMSE values559

and very good skills in describing the inter-annual variability of rainfall over 1981-2014.560

[FIGURE 13 AROUND HERE.]561

Since the biases were amplified during the major ENSO/IOD events, further LSSA analysis was562

carried out to assess the spectral properties of the large-scale differences between the satellite/reanalysis563

products and BoM estimates. Figure 14 shows the power spectral density of the first two residual564

temporal evolutions (as shown in Figures 13b and 13d) of CHIRP (Figure 14a and b) and MERRA565

(Figure 14c and d). The power spectrum of -Niño 3.4 and -DMI time series are also plotted together to566

show the structure of ENSO an IOD events in the frequency domain.567

The largest peaks in the power spectrum in both products coincided with the peaks in the ENSO and568

IOD spectrum. For instance, a large peak in PC1 (the first temporal evolution) of CHIRP coincided with569

the IOD peak (0.28 cycle/year, Figure 14a), while another peak in PC2 (the second temporal evolution)570

was found close to the largest ENSO peak (0.18 cycle/year, Figure 14b). Peaks in both ENSO and IOD571

signals were found to coincide with the spectrum of the first temporal evolution of MERRA (0.18 and 0.28572

cycle/year, Figure 14c). The spectrum of the second temporal evolution (PC2) in MERRA indicated less573

correspondence with ENSO and IOD (0.58 cycle/year, Figure 14d). These results further suggest that574

extreme events such as those related to pronounced ENSO/IOD events represent a significant influence575

on the difference (or bias) in the satellite and reanalysis rainfall estimates.576

[FIGURE 14 AROUND HERE.]577

6. Summary and conclusions578

In this study, we investigated the rainfall variability over Australia, including long-term and decadal579

changes over the period 1981-2014 using various observational and reanalysis gridded precipitation prod-580

ucts. The rainfall amounts due to ENSO and IOD were quantified using multi-linear regression (MLR)581

as well as complex empirical orthogonal functions (CEOF). Two satellite-based (CHIRP and TMPA)582

and two reanalysis-based (ERA-Interim and MERRA) precipitation products were also evaluated with583

reference to BoM rainfall products. The decadal and long-term rainfall changes over 1981-2014 were584

found mainly to be influenced by the combined effect of ENSO and IOD phenomenon by varying de-585

grees. Consistent with previous studies (e.g., Ashok et al., 2003b; Risbey et al., 2009; Ummenhofer et586

al., 2009a), large regional variations were found for major ENSO/IOD events, which mainly affected the587

northern and eastern river basins. Rainfall anomalies due to the ENSO and IOD events were found to be588

often under- or overestimated in global satellite and reanalysis precipitation products. The main results589

of this study are summarized as follows:590
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a. A considerable inter-decadal variation were found in Australian rainfall over 1981-2014 in response591

to 14 weak-strong ENSO events and 12 IOD events contributing up to ∼12% and ∼7% of the total592

rainfall. The contribution of ENSO/IOD events was more prominent in the past decade due to three593

consecutive La Niña events (2007-2008, 2008-2009, 2010-2012) despite increasing positive IOD events.594

b. After removing the annual and semi-annual signals (using MLR), and applying CEOF to the non-595

seasonal part, the first two dominant modes were found to represent the impact of ENSO/IOD events.596

The ENSO/IOD mode of the rainfall, therefore, accounted for 43% of non-seasonal rainfall variability597

over Australia. The first principal component (temporal pattern) was more correlated to -Niño 3.4598

(0.4 at 1 month lag), while -DMI indicated modest correlation with both the PCs (0.24 and 0.34 at599

1 month lag). The largest ENSO/IOD impacts were found in the tropical north and the northeast,600

consistent with the MLR-derived amplitudes (see, Figure 7).601

c. Regions of high correlation between ENSO (-Niño 3.4)/IOD (-DMI) and Australian rainfall included602

tropical Northern Australia, far-west (Western Australia), and eastern Australia with varying degree603

of magnitudes (see, Figure 10).604

d. Long-term and decadal rainfall analyses indicated that increasing rainfall trends over 1981-2014 were605

largely due to consecutive La Niña events. Specifically during the last 10 years, significant linear606

trends were found over the majority of the river basins across the northern, northwestern, and eastern607

Australia. However, no significant increasing or decreasing trends were detected over the Southwest608

coast and Tasmania.609

e. Two satellite-based and two reanalysis-based precipitation products were also used in this study to610

understand the source of precipitation biases compared to the BoM gauge-based estimates. The611

results suggested that satellite-based CHIRP and reanalysis-based MERRA products were in good612

agreement with BoM estimates at inter-annual scale, while ERA-Interim represented considerable613

positive (1981-2000) and negative (2000-2014) differences with respect to BoM estimates. Overall,614

the largest deviations occurred in austral summer (December-February), which is the wet season for615

most of the continent.616

f. The differences between the investigated satellite/reanalysis rainfall and BoM products were found617

to be influenced by extreme climatic conditions resulting from major ENSO/IOD events especially618

during the La Niña events, where the satellite and reanalysis rainfall estimates were found to be619

usually underestimated. Thus, an application of a frequency-based bias correction may be useful to620

reduce the identified biases.621
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Appendix A - Spatial representation of the satellite and reanalysis products868

To evaluate the spatial variability of various precipitation products over Australia, spatial correlation869

lengths were calculated from the mean reduced differences of BoM products and each of the satellite870

and reanalysis precipitation estimates. The differences were computed based on the mean seasonal871

rainfall of the four seasons December-January-February (DJF), March-April-May (MAM), June-July-872

August (JJA), and September-October-November (SON). A spatial autocorrelation has been estimated873

to assess the distance of spatial dependence between each pair of grid point. Figure A1a represents the874

empirical and analytical correlation functions, which has been determined by fitting a simple exponential875

function, exemplified by TMPA products considering the four seasons. Results for the other products876

were found to be quite similar.877

Previous studies reported that the spatial correlations of above ∼ 0.2 between various precipitation878

estimates (products) cannot be neglected (e.g., Bacchi and Kottegoda, 1995). Therefore, the correlation879

value of 0.2 in Figure A1a is chosen to present the spatial correspondence of available satellite/reanalysis880

products against BoM during the four DJF, MAM, JJA, and SON seasons, see e.g., Figure A1b. The881

variability between the four seasons was found to be small for CHIRP and ERA-Interim (∼ 40−50 km),882

while that of TMPA and MERRA indicated differences of ∼ 150 and ∼ 200 km, respectively. The length883

differences were found between JJA/MAM and DJF/SON seasons showing that during the wet season884

products were closer to BoM than the dry seasons. A comparable spatial representation was found for885

CHIRP, ERA-Interim and TMPA with ∼ 200 − 300 km correlation length. MERRA was found to be886

slightly different from the other products exhibiting less spatial correspondence to BoM (with the length887

of ∼ 500 km). By considering another threshold value (a correlation different from 0.2 graphs in Figure888

A1a), the spatial correlation lengths in Figure A1b will be changed, i.e., selecting bigger threshold would889

lead to smaller spatial distance. However, the overall behavior of the four lines in Figure A1b would not890

be changed.891

[FIGURE A1 AROUND HERE.]892
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Figure 1: a) Six climate regions of Australia along with the 13 major river basins within the country. The climate regions
are adapted from Stern et al. (2000) and the river basins are defined according to the drainage divisions and river regions
provided by the Australian Bureau of Meteorology http://www.bom.gov.au/water/geofabric/inuse.shtml. b) Location
of the in-situ rain gauge stations within 13 basins from the Bureau of Meteorology (BoM, Australia)
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Figure 2: Monthly ENSO (-Niño 3.4) and IOD (-DMI) indices and their Hilbert transformed time series.
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Figure 3: Annual (a) and semi-annual (b) amplitudes over Australia computed from long-term (1981-2014) rainfall dataset
of BoM. The amplitudes are scaled between 0-60 mm/yr. Table 2 provides the formulations to estimate the maps.
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Figure 4: Amplitudes of annual and semi-annual differences between BoM and (a and b) TMPA product over 1998-2014,
(c and d) CHIRP product over 1981-2014, (e and f) ERA-Interim product over 1981-2014, and (g and h) MERRA product
over 1981-2014.
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Figure 5: Amplitudes and phase propagation of ENSO/IOD mode over Australia for the decadal intervals and the long-
term (between 1981 and 2014) computed using the MLR technique described in Section 4.1. Figures 5a, b, c, and d
correspond to the amplitude of ENSO over 1981-1990, 1991-2000, 2001-2014, and 1981-2014, respectively. Figure 5e shows
the phase propagation that corresponds to ENSO over 1981-2014. Figures 5f, g, h, and i correspond to the amplitude of
IOD over 1981-1990, 1991-2000, 2001-2014, and 1981-2014, respectively. Figure 5j indicates the phase propagation of IOD
over 1981-2014. The amplitudes and the two propagation patterns are estimated according to the formulations in Table 2.
Temporal lags between the ENSO/IOD mode of rainfall variability and the indices are shown in Figure 10.
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Figure 6: The real part of the first two leading CEOF modes of rainfall variability over Australia computed using the
CEOF analysis of BoM products for the period 1981-2014. (a) represents the real part of the first spatial pattern, and (b)
represents the real part of the second spatial pattern. The corresponding temporal patterns are shown in Figure 7.
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Principal Components (PC)s are estimated by applying CEOF to BoM Products

Figure 7: The complex principal components (real and imaginary parts of CPCs) corresponding to the first two leading
modes of CEOFs computed using BoM datasets over the period 1981-2014. (a) and (b) respectively represent the real and
imaginary part of the first mode, while (c) and (d) represent the real and imaginary part of the second mode, respectively.
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Figure 8: Power spectrum of the first two dominant temporal evolutions (PCs) of BoM rainfall data. Graphs also contain
the power spectrum computed by considering the temporal patterns of -Niño 3.4 and -DMI representing ENSO and IOD
events, respectively.
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Standard deviations of the ENSO/IOD mode
         estimated using BoM products

Figure 9: Standard deviations of the ENSO/IOD mode of Australian rainfall over the period 1981-2014 derived from
CEOF analysis of BoM products.

  Correlation coefficients and the temporal lags between the ENSO/IOD-mode
estimated using BoM products and the ENSO (-Nino 3.4) and IOD (-DMI) indices

BoM Products BoM Products BoM Products BoM Products

Figure 10: Correlation and lags between ENSO (-Niño 3.4 index) and IOD (-DMI index) and Australian rainfall (derived
from BoM) for the period 1981-2014.
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Figure 12: Basin-averaged seasonal rainfall variability between 1981 and 2014 computed based on BoM products. For
estimating basin averages the boundaries of the 13 major river basins of Figure 1 were used. The values are expressed in
volumes (in km3/month) of accumulated rainfall, which were estimated by considering the areas of Table 3.
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Figure 13: Temporal variability of precipitation error estimates in satellite and reanalysis products. In a and c, the real
part of PC1 and PC2 from BoM products are shown along with the temporal evolutions that were estimated by projecting
non-seasonal satellite and reanalysis products onto the EOFs of BoM rainfall (Figure 6). In b and d, the residual between
the real part of PCs (estimated from BoM products) and the temporal evolutions are shown.
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Figure 14: Power spectrum of the first two dominant residuals estimated as the differences between the real part of
BoM-PCs (Figure 13) and the temporal evolutions (PCs) of CHIRP (a and b) and MERRA (c and d). Graphs also contain
the power spectrum computed while considering the temporal patterns of -Niño 3.4 and -DMI representing the power
spectrum density of ENSO and IOD events, respectively.
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TMPA

TMPA against BoM estimations

Figure A1a) Empirical (dots) and analytical (lines) spatial correlation functions exemplified by TMPA
rainfall product when analyzing the differences to the reference dataset BoM corresponding to four

seasons of DJF, MAM, JJA, and SON. Figure A1b) Correlation length in km (defined as the distance
according to correlation value 0.2 in Figure A1a) estimated from the seasonal differences of BoM

products and the four rainfall products of CHIRP, TMPA, ERA-Interim, and MERRA.
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Table 1: Summary of the datasets used in this study.

Product Type
Spatial Resolution Temporal

Coverage Data used
[lat x lon] Resolution

BoM Gauge-only 0.05◦ x 0.05◦ Daily Australia 1981-2014
TMPA Satellite+gauge 0.25◦ x 0.25◦ Monthly 50◦S – 50◦N 1998-2014
CHIRP Satellite-only 0.05◦ x 0.05◦ Monthly 50◦S – 50◦N 1981-2014
ERA-Interim Reanalysis 0.79◦ x 0.79◦ 6-hourly Global 1981-2014
MERRA Reanalysis 0.67◦ x 0.50◦ 6-hourly Global 1981-2014

Table 2: Properties of the coefficients in Eq. 1. The coefficients β̂1(j) to β̂9(j) (j = 1, . . . ,m being grid box indices) were
determined using a least squares adjustment (LSA).

Linear rate [mm/yr]
Trend β1(j)

Amplitude [mm/yr] Phase [deg]

Annual cycle (β̂2(j)
2

+ β̂3(j)
2
)0.5 180/π.tan−1(β̂3(j)/β̂2(j))

Semi-annual cycle (β̂4(j)
2

+ β̂5(j)
2
)0.5 180/π.tan−1(β̂5(j)/β̂4(j))

ENSO contribution (β̂6(j)
2

+ β̂7(j)
2
)0.5 180/π.tan−1(β̂7(j)/β̂6(j))

IOD contribution (β̂8(j)
2

+ β̂9(j)
2
)0.5 180/π.tan−1(β̂9(j)/β̂8(j))

Table 3: Average amplitudes of rainfall over various rivers basins (see Figure 1) across Australia computed using BoM
products over the period 1981-2014. For the locations and abbreviations of the basins, see Figure 1

Basin CC TTS NEC SEN NWP PG SWC SWP SAG LEB MDB SEV TAS
Area (km2) 631,893 1,154,262 447,937 129,574 715,794 477,240 326,032 1,093,049 113,281 1,308,429 1,062,025 134,336 64,136

Amplitudes in mm/yr
Annual 101.3±10.7 79.4±8.3 62.2±9.2 34.4±9.7 27.1±4.4 17.3±5.3 22.6±3.6 4.5±2.6 8±3.3 16±4.3 6.2±4.5 18.3±4.5 41.2±8.3
Semi-annual 45.2±10.5 31.3±8.2 18.6±9.1 1.5±9.6 12.4±4.3 10.8±5.2 6.4±3.6 1.5±2.5 2.3±3.3 5.7±4.3 6.1±4.5 2.7±4.4 0.5±8.2
ENSO 9.6±8.2 8.8±6.3 12.1±7.1 8.8±7.4 4.2±3.3 6.4±4.1 2.7±2.8 1.2±2 0.8±2.6 2.9±3.3 5.4±3.5 2.2±3.5 1.9±6.4
IOD 6.3±8.4 5.8±6.5 2±7.2 4.5±7.6 1.4±3.4 1.3±4.2 1.3±2.9 1.7±2 4±2.6 1±3.4 2.3±3.6 5.4±3.5 8.1±6.5

Table 4: Seasonal trends (in km3/decade) in total rainfall volume over various rivers basins in Australia for the period
1981-2014. Please note that unlike Table 3, volumes of rainfall changes have been reported here. The overall uncertainties
in the trend estimates were less than 1 mm/decade and were not shown here.

Basin CC TTS NEC SEN NWP PG SWC SWP SAG LEB MDB SEV TAS
Total 7.3 10.1 2.6 0.0 2.7 1.0 0.0 1.9 0.0 2.4 0.0 0.0 0.0
ENSO/IOD 5.9 9.3 2.2 0.0 2.0 1.2 0.0 1.4 0.0 3.0 1.0 0.0 0.0
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Table 5: Basin averaged RMSE of three long-term (1981-2014) precipitation products with respect to BoM datasets after
removing the annual and semi-annual cycles.

BASIN
CHIRP [mm/month] ERA [mm/month] MERRA [mm/month]

1981-2014 1981-2014 1981-2014
DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

CC 16.4 12.8 5.6 8.8 39.7 20.6 4.4 18.7 10.3 6.6 2.7 5.1
TTS 15.2 11 4.3 7 40.6 21.7 4.3 23.7 12.1 6.4 1.9 6
NEC 14.4 14.1 9.4 11.8 16.9 8.4 3.5 10.1 8.6 8.2 3.7 5
SEN 13.7 12.6 9.1 9.8 9.9 9.6 4.5 13.2 6.9 5.8 3.2 3.9
NWP 7.9 6.7 2.9 3.7 16.6 9.9 2.3 5.8 11.1 6.9 1.9 5.1
PG 11.5 8.5 4.2 5.2 11.1 7.6 2.1 7.9 4.5 4 1.9 2.3
SWC 5.9 4.7 2.9 2.8 3.8 3.6 1.4 4.5 2.3 2.1 1.3 1.6
SWP 6.2 5 1.2 1.9 5.6 4 1.2 3 2.2 1.7 0.6 1
SAG 5.4 4.7 2.9 3.2 5.4 4.9 1.4 5.4 3.6 3.1 1.4 1.9
LEB 8.4 6 3.1 5.2 11 4.9 1.2 5.7 3.2 2.1 1.2 1.7
MDB 9.8 8.4 5.3 7.6 6.7 4.3 1.9 6.5 4.6 3.9 2.1 2.9
SEV 7 5.3 3.0 4.7 6.0 4.4 2.0 7.5 5.0 4.2 1.6 2.4
TAS 4.5 3.1 2.3 3.1 4.9 4.1 2.9 13.1 4.8 3.9 1.6 2.4

Table 6: Basin averaged RMSE of four precipitation products with respect to BoM datasets over 1998-2014. The RMSEs
were obtained in the same manner as in Table 5.

BASIN
TMPA [mm/month] CHIRP [mm/month] ERA [mm/month] MERRA [mm/month]

1998-2014 1998-2014 1998-2014 1998-2014
DJF MAM JJA OND DJF MAM JJA OND DJF MAM JJA OND DJF MAM JJA OND

CC 10.0 4.0 7.2 4.3 14.2 12.4 6.9 9.9 25.9 11.8 14.4 15.1 8.9 4.6 4.0 3.5
TTS 8.3 4.0 6.3 2.6 14.6 12.4 6.0 7.4 22.2 12.2 13.7 16.0 10.3 5.1 5.0 4.5
NEC 8.1 4.3 5.1 4.0 13.9 9.7 8.1 13.4 12.3 6.8 5.4 7.4 8.8 6.1 2.4 5.0
SEN 3.7 2.9 1.7 2.5 13.5 8.3 6.8 9.6 9.4 7.5 3.0 8.0 5.9 4.0 2.2 3.8
NWP 10.1 8.3 2.6 3.2 8.6 6.9 2.4 3.2 10.7 5.1 7.0 3.2 9.4 7.2 4.3 3.3
PG 5.9 3.2 3.6 2.3 14.7 11.7 5.9 6.2 11.6 9.5 5.1 10.4 6.8 6.0 1.9 2.6
SWC 2.5 1.6 1.2 1.2 7.8 6.7 3.1 2.6 4.4 4.5 0.9 4.1 2.9 3.0 1.4 1.8
SWP 3.6 2.8 1.5 1.3 8.0 7.1 1.8 2.3 5.3 3.9 3.1 2.7 3.1 2.7 0.8 1.4
SAG 2.0 1.6 1.1 1.1 6.6 5.8 2.6 3.6 5.7 5.5 1.1 4.5 4.4 4.2 1.5 1.9
LEB 3.4 1.3 2.7 1.2 10.0 7.9 3.9 6.4 8.9 4.3 4.7 4.9 4.3 2.2 1.4 1.9
MDB 3.3 2.1 2.0 1.6 11.3 7.0 4.2 9.1 6.1 2.8 1.9 4.9 4.7 3.3 1.4 2.8
SEV 3.0 2.3 1.8 1.5 9.5 6.9 2.9 6.3 4.9 4.2 1.5 4.9 4.9 4.5 1.5 2.3
TAS 4.4 3.6 2.7 3.0 6.5 6.7 2.7 3.1 4.5 4.9 2.3 16.0 5.2 4.7 1.7 2.3

Table 7: Long-term linear trend in rainfall variability over various rivers basins across Australia for the period 1981-2014.
Please note that the linear trends that are estimated using TMPA products are valid over the period 1998-2014. This, the
results from TMPA cannot be directly comparable to those estimated from BoM or other products.

Basin CC TTS NEC SEN NWP PG SWC SWP SAG LEB MDB SEV TAS
Overall Trend in Rainfall [mm/decade]

BoM [1981-2014] 7.3 10.1 2.6 0.0 2.7 1.0 0.0 1.9 0.0 2.4 0.0 0.0 0.0
TMPA [1998-2014] 4.1 0.0 4.4 1.0 -7.1 -3.4 -2.2 -3.8 0.3 4.2 2.7 0.0 -1.0
CHIRP [1981-2014] 3.4 5.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ERA [1981-2014] -4.2 -13.1 0.0 0.0 -2.8 -0.7 0.0 0.0 0.0 -2.4 -1.4 0.0 0.0
MERRA [1981-2014] 8.8 16.2 2.3 0.0 6.1 1.4 0.0 2.0 0.0 3.1 -1.7 0.0 0.0

Trends due to ENSO/IOD [mm/decade]
BoM [1981-2014] 5.9 9.3 2.2 0.0 2.0 1.2 0.0 1.4 0.0 3.0 1.0 0.0 0.0
TMPA [1998-2014] 0.0 -9.9 2.7 0.0 -7.7 -3.5 -1.3 -5.6 0.0 2.1 4.6 0.0 0.0
CHIRP [1981-2014] 2.6 3.5 1.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ERA [1981-2014] -6.1 -14.6 0.0 0.0 -3.9 0.0 0.0 -1.5 0.0 -3.9 0.0 0.0 0.0
MERRA [1981-2014] 7.8 15.3 1.8 0.0 5.6 1.5 0.0 1.6 0.0 3.2 0.0 0.0 0.0
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