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Abstract Several extensions of Time Petri nets (TPNs) have been proposed for
modeling suspension and resumption of actions in timed systems. We first introduce
a simple class of TPNs extended with stopwatches (SwTPNs), and present a semi-
algorithm for building exact representations of the behavior of SwTPNs, based on the
known state class method for Time Petri nets. Then, we prove that state reachability
in SwTPNs and all similar models is undecidable, even when bounded, which solves
an open problem. Finally, we discuss overapproximation methods yielding finite
abstractions of their behavior for a subclass of bounded SwTPNs, and propose a new
one based on a quantization of the polyhedra representing temporal information. By
adjusting a parameter, the exact behavior can be approximated as closely as desired.
The methods have been implemented, experiments are reported.
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1 Introduction

Modeling of many embedded systems requires to express suspension and resumption
of actions. Addressing this issue, several models have been proposed.

Extending Timed Automata (TAs), Stopwatch automata (SWAs) are a subclass
of Linear Hybrid automata (LHAs) in which variable derivatives can only take two
values expressing progress (1) or suspension (0). SWAs and LHAs have equivalent
reachability problems (Cassez and Larsen, 2000), a problem known undecidable for
LHAs (Alur et al., 1995). As no decidable subclass of SWAs that preserve these
modeling capabilities has been identified, finite state space abstractions are typically
obtained by overapproximations, characterizing sets of states including the exact
state space, but possibly larger. Such approximations yield sufficient conditions for
safety properties.

Time Petri nets (TPNs) (Merlin, 1974) are another widely used model for real-time
systems. Time Petri nets extend Petri nets with temporal intervals associated with
transitions, specifying firing delay ranges for the transitions. State space abstractions
for TPNs preserving various classes of properties can be computed, in terms of so
called state classes (Berthomieu and Menasche, 1983; Berthomieu and Diaz, 1991;
Berthomieu and Vernadat, 2003). State classes represent sets of states by a marking
and a polyhedron capturing temporal information. State reachability is undecidable
for TPNs, but decidable for bounded TPNs, sufficient for virtually all practical
purposes.

Several extensions of TPNs have been proposed that address the modeling
of suspension and resumption of actions, including Scheduling-TPNs (Roux and
Déplanche, 2002; Lime and Roux, 2003), Preemptive-TPNs (Bucci et al., 2004),
and Inhibitor Hyperarc TPNs (IHTPNs) (Roux and Lime, 2004). The first two add
resources and priorities primitives to the TPN model, IHTPNs introduce special
inhibitor arcs that control the progress of transitions. Since all extend TPNs, their
state reachability problem is undecidable, but state reachability for bounded nets, of
high practical interest, remains an open problem.

For all these extensions, semi-algorithms are available that compute state space
abstractions in terms of state classes. But, as for SWAs, no expressive enough
decidable subclass has been identified. State space overapproximation methods are
available too, approximating the polyhedron that characterizes temporal information
in a state class by the smallest polyhedron denotable by a DBM that includes it. The
method is efficient, but the overapproximations obtained are often too coarse.

In this article, we first introduce a simple model of Time Petri nets with stopwatch
capabilities, called Stopwatch Time Petri nets (SwTPNs for short). SwTPNs extend
TPNs by stopwatch arcs, that control the progress of transitions. They can be seen as
a simplification of IHTPNs (Roux and Lime, 2004).

We then prove that state reachability is undecidable for SwTPNs, even when
bounded. It follows that many interesting properties of these nets are undecidable,
and that these problems are also undecidable for all extensions of TPNs discussed
above. Classically, the proof reduces state reachability in bounded SwTPNs to state
reachability in Minsky’s 2-counter machines.

The algorithms computing state class graphs for TPNs are easily adapted to
operate on SwTPNs. They yield exact state space abstractions, but, as a consequence
of the above undecidability result, boundedness of the SwTPN does not imply
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finiteness of the graphs of state classes. For ensuring termination on a class of
bounded SwTPNs, we propose a new overapproximation method based on quan-
tization of the polyhedra representing temporal information in state classes. By
adjusting a parameter, the exact behavior of the SwTPN can be approximated as
closely as desired. Both the exact and approximate computation methods have been
implemented in an extension of the TINA tool (Berthomieu et al., 2004).

The paper is organized as follows: Section 2 recalls the essentials about Time Petri
nets and summarizes their decidability results. Section 3 introduces Stopwatch Time
Petri nets and a semi-algorithm for computing their state classes. An example is
presented in Section 4. Undecidability of state reachability for SwTPNs is established
in Section 5. Section 6 explains the polyhedra quantization method for computing
overapproximations of state spaces of bounded SwTPNs, and discusses some experi-
ments handled with the help of an experimental implementation of the methods.

2 Time Petri nets

2.1 Time Petri nets, states, state graphs

Let I+ be the set of nonempty real intervals with nonnegative rational end-points.
For i ∈ I+, ↓ i denotes its left end-point, and ↑ i its right end-point (if i bounded) or
∞. For any θ ∈ R+, i −. θ denotes the interval {x − θ |x ∈ i ∧ x ≥ θ}.

Definition 1 A Time Petri net (or TPN) is a tuple 〈P, T, Pre, Post, m0, Is〉, in which
〈P, T, Pre, Post, m0〉 is a Petri net, and Is : T → I+ is a function called the Static
Interval function.

Function Is associates a temporal interval Is(t) ∈ I+ with every transition of the
net. Ef ts(t) = ↓ Is(t) and Lf ts(t) = ↑ Is(t) are called the static earliest and latest firing
times of t, respectively.

States, and the temporal state transition relation
t@θ−→, are defined as follows:

Definition 2 A state of a TPN is a pair s = (m, I) in which m is a marking and I
is a partial function called the interval function. Function I : T → I+ associates a
temporal interval with every transition enabled at m.

We write (m, I)
t@θ−→ (m′, I′) iff θ ∈ R+ and:

1 m ≥ Pre(t) ∧ θ ≥ ↓ I(t) ∧ (∀k ∈ T)(m ≥ Pre(k) ⇒ θ ≤ ↑ I(k))

2 m′ = m − Pre(t) + Post(t)
3 (∀k∈T)(m′ ≥ Pre(k) ⇒

I′(k) = if k �= t ∧ m−Pre(t) ≥ Pre(k) then I(k) −. θ else Is(k))

We have s
t@θ−→ s′ if firing transition t from s at time θ after t became last enabled

leads to state s′. (1) ensures that transitions fire in their temporal interval, unless
disabled by firing some other transition. (2) is the standard marking transformation.
From (3), transitions persistent wrt t have their current interval shifted by θ and
truncated to nonnegative times, and newly enabled transitions are assigned their
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static intervals. Transitions that remained enabled during their own firing (that is
such that m − Pre(t) ≥ Pre(t)) are considered newly enabled, alternative treatments
for such transitions are discussed in Berthomieu (2001). Firing a transition takes no
time.

Note, in the definition above, that only state changes involving a discrete transition
are considered. Transitions resulting from time progress could be added as well, but
this does not bring any particular benefit for TPNs as no discrete transition can be
disabled by just letting time progress. So, delay transitions are always agglomerated
with some discrete transition.

The state graph SG of a TPN is the set of its states reachable from the initial state
s0 = (m0, I0), where I0(t) = Is(t) for any t enabled at m0, equipped with the above
timed state transition relation. As transitions may fire at any time in their temporal
intervals, states typically admit an infinity of successors.

The notation s
t−→ s′ stands for (∃θ)(s

t@θ−→ s′), s −→ s′ for (∃t)(s
t−→ s′), and s

σ−→
s′, with σ ∈ T∗, for s

σ1−→ · · · σn−→ s′. A firing schedule is a sequence of successively
firable transitions, called its support, together with their relative firing times. The
firing domain of state (m, I) is the set of vectors {φ|(∀k)(φ

k
∈ I(k))}, with components

indexed by the enabled transitions.

2.2 Decidable and undecidable properties

R being the set of reachable states of some TPN, consider the following problems:

(1) The marking reachability problem: given m, (∃(m′, I) ∈ R)(m′ = m)

(2) The boundedness problem: (∃b ∈ N)(∀(m, I) ∈ R)(∀p ∈ P)(m(p) ≤ b )

(3) The k-boundedness problem: given k ∈ N, (∀(m, I) ∈ R)(∀p ∈ P)(m(p) ≤ k)

(4) The state reachability problem: given s, s ∈ R
(5) The liveness problem: (∀s ∈ R)(∀t ∈ T)(∃σ ∈ T∗)(∃s′ ∈ R)(s

σ.t−→ s′)

For arbitrary TPNs, problem (1) is known undecidable from Jones et al. (1977). It
directly follows that (2), (4) and (5) are undecidable too. Problem (3) is decidable:
The state class graph construction of Berthomieu and Menasche (1983) terminates
whenever applied to a bounded TPN, producing a graph that preserves the markings
and firing sequences of the state graph. As any k-bounded TPN is also bounded, this
construction decides problem (3): A net is k-bounded iff no state class is found, in
the course of the construction, with the marking of some place overflowing k.

Though boundedness of TPNs is undecidable, there exists decidable sufficient
properties for it (Berthomieu and Menasche, 1983). One, for instance, is that the
underlying Petri net is bounded, which is known decidable. Also, some useful classes
of TPNs are bounded “by construction.” For bounded TPNs (thus assuming (2)), we
have in addition:

Theorem 1 Marking reachability (1), state reachability (4) and liveness (5) are decid-
able for bounded TPNs.

Proof (1) is clearly decided by the construction of Berthomieu and Menasche (1983).
For (4): for bounded TPNs, the Strong state classes construction of Berthomieu and
Vernadat (2003) yields a finite graph in which classes canonically denote state sets,
represented by a marking and an inequality system in clock variables Qγ ≤ g. Given
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a state s = (m, I), one can easily compute a clock vector δ such that, for all transitions
k enabled at m: I(k) = Is(k) −. δk. State (m, I) is reachable iff there is a strong class
(m′, Qγ ≤ g) such that m = m′ and δ computed above satisfies Qδ ≤ g. For (5): the
Atomic state class graph construction also introduced in Berthomieu and Vernadat
(2003) produces, for bounded TPNs, a state class graph bisimilar with its state graph
(omitting temporal annotations). Adapting the known decision method for liveness
of bounded Petri nets, a bounded TPN is live iff all its transitions appear as edge
labels in all pending strong connected components of its atomic state class graph. ��

3 Stopwatch Time Petri nets

3.1 SwTPNs, states, state graphs

Definition 3 A Stopwatch Time Petri net (SwTPN for short) is a tuple 〈P, T, Pre,

Post, Sw, m0, Is〉, in which 〈P, T, Pre, Post, m0, Is〉 is a Time Petri net and Sw : T →
P → N is a function called the stopwatch incidence function.

Stopwatch Time Petri Nets add function Sw to Time Petri Nets. Sw associates
an integer with every (p, t) ∈ P × T, values greater than 0 are represented by
special arcs, called stopwatch arcs, possibly weighted, represented with square shaped
arrows. Figure 1 shows a Stopwatch Time Petri net, the arc from place p3 to transition
t4 is a stopwatch arc of weight 1.

As usual, a transition t is enabled at marking m iff m ≥ Pre(t). In addition, a
transition enabled at m is active iff m ≥ Sw(t), otherwise it is said suspended. States,

and the temporal state transition relation
t@θ−→, are defined as follows:

Definition 4 A state of a SwTPN is a pair s = (m, I) in which m is a marking and I, the
interval function, associates a temporal interval in I+ with every transition enabled at

m. We write (m, I)
t@θ−→ (m′, I′) iff θ ∈ R+ and:

1 m ≥ Pre(t) ∧ m ≥ Sw(t) ∧
θ ≥ ↓ I(t) ∧ (∀k ∈ T)(m ≥ Pre(k) ∧ m ≥ Sw(k) ⇒ θ ≤ ↑ I(k))

Fig. 1 A Stopwatch Time
Petri net

t1

[1,1] p3

t4 [1,1]

t3

[0,1]

p0

t2

[1,1]

p2
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2 m′ = m − Pre(t) + Post(t)
3 (∀k∈T)(m′ ≥ Pre(k) ⇒

I′(k) = if k �= t ∧ m−Pre(t) ≥ Pre(k)

then if m ≥ Sw(k) then I(k) −. θ else I(k)

else Is(k)

Compared to TPNs (see Definition 2 in Section 2.1), only active transitions may
fire, and, in item (3), persistent but frozen transitions have their temporal intervals
unchanged. So, when a frozen transition becomes active again, due to a change in
marking, it resumes with the temporal interval captured in the state rather than
its static interval. Stopwatch arcs allow to model suspension and resumption of
transitions, note that they do not convey ant tokens.

As an illustration, let us fire some transitions in the net Fig. 1. The interval
functions in states can be represented by systems of inequalities with one variable
for each enabled transition (their solution set is the firing domain of the state).

The initial state of the net is s0 = (m0, I0), where m0 is its initial marking and
interval I0 can be represented by the inequality system D0 (φt is the variable
associated with transition t):

m0 : p0, p3

D0 : 1 ≤ φt1 ≤ 1

0 ≤ φt3 ≤ 1

1 ≤ φt4 ≤ 1

All enabled transitions are active at s0. Waiting θ3 ∈ [0, 1] units of time then firing
t3, or, this is equivalent, firing t3 at relative time θ3, leads to a state s1 = (m1, D1),
described by:

m1 : p0 ∗ 2, p2

D1 : 1 − θ3 ≤ φt1 ≤ 1 − θ3

1 ≤ φt2 ≤ 1

1 − θ3 ≤ φt4 ≤ 1 − θ3

Transition t4 is suspended at s1, t1 and t2 are active. From s1, only t1 may fire, after
a delay of 1 − θ3. Firing it leads to a state s2 = (m2, D2) described by:

m2 : p0, p2, p3

D2 : 1 ≤ φt1 ≤ 1

θ3 ≤ φt2 ≤ θ3

0 ≤ φt3 ≤ 1

1 − θ3 ≤ φt4 ≤ 1 − θ3

Note that the interval of t4 did not change while going from s1 to s2, while that of
t2 was shifted by 1 − θ3. All enabled transitions are active at s2.

The notations and concepts introduced for TPNs at the end of Section 2.1 naturally
apply to SwTPNs too. In particular, State graphs for SwTPNs are defined similarly to

TPNs, from the above
t@θ−→ relation.
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3.2 State classes for SwTPN

As for TPNs, the states of a SwTPN typically have an infinity of successors. The
constructions that provide state space abstractions for TPNs: the state class graph of
Berthomieu and Menasche (1983), and the strong and atomic state class graphs of
Berthomieu and Vernadat (2003), are easily adapted to SwTPNs. We adapt below
the former, that preserves markings and LTL properties of the state space.

In that construction, state classes are denoted by pairs (m, D), where m is a
marking and D is a firing domain, described by an inequality system Aφ ≤ b .
Variable φi ranges over the times at which the ith transition enabled at m may fire.
Let us write (m, D={Aφ ≤ b }) ≡ (m′, D′ ={A′φ ≤ b ′}) when m = m′, and D and D′
have equal solution sets. The graph of state classes of a SwTPN is built as follows:

Algorithm 1 (Computing state classes) For each firable firing sequence σ , a class Cσ

can be computed as explained below. Compute the smallest set C including Cε and
such that, whenever Cσ ∈ C and σ.t is firable, then either Cσ.t ∈ C, or Cσ.t is equivalent
by ≡ to some class in C. There is an arc labeled t between classes Cσ and c iff c ≡ Cσ.t.

– The initial class is Cε = (m0, {Ef ts(t) ≤ φ
t
≤ Lf ts(t) | Pre(t) ≤ m0})

– If σ is firable and Cσ = (m, D = {Aφ ≤ b }), then σ.t is firable iff:

(a) m ≥ Pre(t) ∧ m ≥ Sw(t) (t is enabled and active at m)
(b) System D ∪ {φ

t
≤ φ

i
| i �= t ∧ m ≥ Pre(i) ∧ m ≥ Sw(i)} is consistent

– If σ.t is firable, then Cσ.t = (m′, D′) is computed from Cσ = (m, D) by:

m′ = m − Pre(t) + Post(t)
D′ obtained by:

a. The firability constraints for t in (b) above are added to D.
b. For each k enabled at m′, a new variable φ′

k
is introduced, obeying:

φ′
k

= φ
k

− φ
t

if k �= t, m − Pre(t) ≥ Pre(k), and m ≥ Sw(k)

φ′
k

= φ
k

if k �= t, m − Pre(t) ≥ Pre(k), and ¬(m ≥ Sw(k))

φ
k

∈ Is(k) otherwise

c. Variables φ are eliminated.

For TPNs (without stopwatch arcs), the set of distinct systems D one can build
by Algorithm 1 is finite (Berthomieu and Menasche, 1983), whether the TPN is
bounded or not. So, bounded TPNs admit finite state class graphs. Further, systems
D are difference systems (or DBMs), for which canonical forms can be computed
in polynomial time in the number of variables, so equivalence ≡ can be checked
efficiently.

Unfortunately, these properties do not hold if stopwatch arcs are present. Describ-
ing firing domains requires richer inequality systems, and boundedness of a SwTPN
does not imply finiteness of its set of state classes. Equivalence ≡ remains decidable,
however.

As an example, consider the net represented Fig. 1. By simple temporal argu-
ments, it can be shown that this net is bounded. In this net, schedules of support
σn = t3.t1.(t3.t2.t1)n.t2.t4, for any n ∈ N, are firable from the initial state, yielding by
Algorithm 1 an infinite series of state classes, all with the same marking. Sequence σn
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leads to the following class (the corresponding clock space are also given, as would
be computed by the alternative “strong classes” construction of Berthomieu and
Vernadat (2003):

marking = p0 p3

firing domain = {φ
t4

= 1, 0 ≤ φ
t3
, φ

t3
≤ φ

t1
≤ (n + 1)/(n + 2)}

clock space = {γ
t4

= 0, γ
t1

= γ
t3
, 1/(n + 2) ≤ γ

t1
≤ 1}

But setting the static interval of transition t1 to [2, 2], for instance, yields a finite
graph of state classes with 25 classes and 38 transitions.

So, Algorithm 1 does not in general terminate. To enforce termination on
bounded SwTPNs, the algorithm must be combined with an overapproximation
of the abstract state space. Overapproximations for Preemptive-TPNs, Scheduling-
TPNs and IHTPNs have been proposed in Bucci et al. (2004), Lime and Roux
(2003), and Roux and Lime (2004), which amount to replace the class obtained
at step (3) in Algorithm 1 by the smallest class denotable by a difference system
(DBM) that includes the class computed. Such approximations, available e.g. in the
ROMEO tool (Gardey et al., 2005) for Scheduling TPNs, yield sufficient conditions
for safety properties, but are sometimes too coarse in practice. An alternative
overapproximation technique will be proposed in Section 6.

When Algorithm 1 terminates, it produces a finite abstraction of the state graph
that preserves its markings and LTL properties. The “strong” and “atomic” state
class graphs for TPNs introduced in Berthomieu and Vernadat (2003) could be easily
adapted to SwTPNs too, the former preserves states and LTL properties, and the
latter states and CTL∗ properties. Other constructions of interest are the variants of
the basic and “strong” versions obtained by merging a class with any class including
it, as done for Timed Automata zones in Daws and Tripakis (1998) or TPNs strong
classes in Boucheneb and Hadjidj (2004). These alternatives only preserve markings
or states (not LTL), but typically produce smaller graphs.

4 A simple example

Though similar algorithms are available for all TPN extensions referred to in the
Introduction, none have been implemented at the time this paper was written. We
report in this Section some experiments with an implementation of Algorithm 1 for
SwTPNs embedded in an extension of the TINA tool (Berthomieu et al., 2004). For
polyhedral operations, the implementation relies on the NewPolka library (Jeannet,
2002). The prototype implementation is available from the authors.

Experiments suggests that the exact characterizations of the behaviors of SwTPNs
obtained by Algorithm 1 are finite in many practical cases. To illustrate this, let us
consider a simple scheduling example proposed in Bucci et al. (2004). The example
is a model of three independent tasks: Two periodic tasks of period 50 and 150 units,
and a sporadic task with a minimum interarrival time of 100. Task 1 (period 50) has
priority over both others, and task 2 (sporadic) has priority over task 3. This example
is easily translated into Scheduling-TPNs or SwTPNs. The corresponding SwTPNs is
shown in Fig. 2 (in black).
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obs1

obs2

tok [0,0] false

tfalse

]96,ω[

empty

[0,0]

[150,150]

[20,28]

p11 p21

p31

p12 p22
p13

p23

t11 [50,50] t21 [100,ω[ t31 [150,150]

t12 [0,0] t22 [0,0]

t32 [20,28]t13 [10,20] t23 [18,28]

Fig. 2 SwTPN of two periodic and a sporadic processes and an observer

Typical properties of interest for such applications are schedulability (that the
current instance of each task is complete before another starts) and quantitative
properties like worst case response time (WCRT).

Schedulability is satisfied if the net is safe. The DBM overapproximated state
space of Roux and Déplanche (2002) and Bucci et al. (2004) yields a graph of
637 classes, all with safe markings. To check if some run is indeed possible,
Bucci et al. (2004) proposes a method to compute feasible firing schedules for the
transition sequences given by the overapproximated state class graph, by solving
a linear programming problem. Ad-hoc methods for checking quantitative timed
properties are also proposed.

For this example, Algorithm 1 builds a graph of 323 classes and 477 transitions.
All markings are safe, which implies schedulability. Quantitative properties can be
checked by the use of observers. Figure 2 shows for instance a nonintrusive observer
(pictured in grey) for the property: “task 3 is always executed in less than 96 units of
time.” The property is satisfied if place false is never marked. The exact state class
graph computed for the extended net confirms that the property holds, and, updating
the observer, that it becomes false if the firing interval of tfalse includes 96. The
WCRT of this task is thus 96 time units.

From the DBM approximated graph of Roux and Déplanche (2002), we would
obtain at best an estimated WCRT equal to 144 time units, significantly larger that
the exact value of 96 we found. Finally, if the execution time of task 3 (t32) is
increased to [20,38], then the DBM approximated state class graph becomes infinite,
while the exact state class graph is still finite. In this case the methods of Roux and
Déplanche (2002) or Bucci et al. (2004) cannot be applied.

5 Decidability issues for Stopwatch Time Petri nets

SwTPNs clearly include TPNs. So, the undecidability results for TPNs mentioned
in Section 2.2 apply to SwTPNs too: boundedness, marking reachability, state
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reachability, and liveness are undecidable for arbitrary SwTPNs. Considering
bounded TPNs, all these problems were found decidable, the question addressed
in this Section is whether these problems remain decidable for bounded SwTPNs.

Unfortunately, the answers are negative, as will be seen. It is proven in this Section
that state reachability for SwTPNs can be reduced to the halting problem for 2-
counter machines, which in turns implies undecidability of the other problems. After
recalling the structure of such machines, an encoding into SwTPNs is developed,
and the undecidability results derived. The ideas underlying this encoding are similar
to those used in Henzinger et al. (1995) for encoding 2-counter machines into a
subclass of Hybrid Automata, but the encoding itself is obviously different as TPNs
and Hybrid Automata interpret time constraints differently.

5.1 2-counter machines

An input-free 2-counter machine is a tuple M = 〈Q, q0, qF, I, C1, C2〉 where

– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– qF ∈ Q is the final, or halting, state,
– C1 and C2 are counters, each storing a nonnegative integer, initially 0,
– I is a finite set of instructions, with following forms and meanings (i∈{1, 2}):

(a) (p, deci, q): in state p, decrement Ci by 1 and go to state q,
(b) (p, inci, q): in state p, increment Ci by 1 and go to state q,
(c) (p, testi, q, r): in state p, test Ci; if Ci = 0 go to q, go to r otherwise.

A configuration of M is a triple (q, x1, x2), where q ∈ Q and x1, x2 ∈ N are the
values of counters C1 and C2. The initial configuration is c0 = (q0, 0, 0).

The halting problem for 2-counter machine is undecidable (Minsky, 1961).

5.2 Encoding 2-counter machines into SwTPNs

Encoding principles and notations: Given two periodic events e1 and e2, of same
period ρ, the phase delay of e1 wrt e2 is the time elapsed between the next occurrence
of e1 and the following occurrence of e2. A value of k for counter Ci (i ∈ {1, 2}) will
be encoded by a phase delay of ρ/2k+1 between an event i.e, associated with counter
Ci, and a reference event r.e. I.e. phase delays ρ/2, ρ/4, ρ/8, . . . will encode values
values 0, 1, 2, . . . Similar encodings of unbounded discrete spaces into bounded
dense spaces have been already used in Čerāns (1992) and Henzinger et al. (1995),
for similar purposes.

A periodic event of period ρ can be modeled by a TPN constituted of a simple loop
as shown in Fig. 3 for ρ = 8. As such loops store a phase for an event, they will be
called registers. Given two such registers, say defining events x and y, the phase delay
observed at state s = (m, I) of event x wrt y is the difference I(y) − I(x) between the
firing intervals (reduced to single points here) associated in s with transitions x and y.

Fig. 3 TPN representing a
periodic event event [8,8]
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The nets encoding instructions are built from five elementary blocks, described in
the sequel. For each block, we prove a local lemma concerning its behavior. In these
lemmas, ϕs

i denotes the phase delay between event i.e (i ∈ 1..4) and the reference
periodic event r.e, observed at state s, and −→ is the state reachability relation. For
any state s, s ⊕ p denotes the state obtained from state s by adding a token to place
p and the necessary temporal constraints to the interval component of s.

Shared registers and Initialization block: For modeling a 2-counter machine, we need
a register for each counter (numbered 1 and 2, defining events 1.e and 2.e), plus one
for the reference event (referred to as register r, defining event r.e). We also need
registers for two temporary events (numbered 3 and 4, defining events 3.e and 4.e).
The chosen period ρ is 8, in any unit of time.

As we need to synchronize external transitions with the periodic events, at
particular instants in their periods, most registers will hold several transitions in
sequence (including the one materializing the event of interest) rather than a single
one, with the sum of their delays equal to period 8.

Figure 4 shows the required registers, together with the init initialization block
(transition init and connected edges). Block init initializes the phase delays of events
1.e and 2.e to 4 (making both encode counter value 0); events 3.e and 4.e are not
initialized. Places in and out (in grey) materialize the context of use of the block.

Lemma 1 (Init Lemma) Let s0 be the initial state of the registers. Then:

(a) (∀s)(s0 ⊕ in −→ s ⊕ out ⇒ ϕs
1 = 4 ∧ ϕs

2 = 4)

(b) (∃s)(s0 ⊕ in −→ s ⊕ out)

Proof (Omitted). ��

The fact that most registers in Fig. 4 hold several transitions, rather than a single
one as in Fig. 3, makes observation of phase delays ϕs

i slightly more complex than

in

out

r.a

[7,7]

r.Er.e

[1,1]

r.A

3.A

4.E

4.e

[8,8]

3.a

[7,7]

3.E

3.b

[0,0]

1.E 1.a

[7,7]

1.A1.b

[0,0]

1.B

1.e

[1,1]

3.B

3.e

[1,1]

2.B 2.b

[0,0]

2.A

2.e

[1,1]

2.E 2.a

[7,7] init[4,4]

Fig. 4 Shared registers and initialization block
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previously explained, transitions i.e and r.e not being enabled at all markings of the
registers. Assuming 0 < k ≤ 4, ϕs

i = k can be observed as follows:

ϕs
i = k holds iff for some state s′ = (m′, I′):

(a) s
σ−→ s′, with schedule σ firing only transitions in registers i and r;

(b) m′ marks i.E and r.E;
(c) I′(r.a) − I′(i.a) = k (if i �= 4), or I′(r.a) − I′(4.e) = k (otherwise)

The encoding of blocks will ensure that, at the states the phase delays are
observed, the registers are free to progress. So, if ϕs

i = k holds, then such an s′ above
will always be reachable from s.

Lemma 1, like all block lemmas to come, expresses both a safety property, relating
the phase delay of some event at block exit to that phase delay at block entry, and
a liveness property asserting that some firing schedule allows to exit the block. All
lemmas could be alternatively proved by model checking the behaviors of the blocks
obtained by our experimental implementation of Algorithm 1.

Zero testing instruction: Block test, shown in Fig. 5, behaves as a nonintrusive
observer for the phase delay between events i.e and r.e. As before, grey nodes and
edges materialize the context. A token put in place in may propagate to place outz if

i.E

r.a

[7,7]

r.Er.e

[1,1]

r.Ai.b

[0,0]

i.B

i.a

[7,7]

i.A

i.e

[1,1]

in

outnz outz

ref

[0,0]

waitp1 sup

[3,3]

p2

notZero [0,0] zero[0,0]

p3

test[0,0]

in

Test[i]

outz

outnz

Fig. 5 Zero testing instruction for register i, and pictogram
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that phase delay is 4, or to place outnz if that phase delay is not larger than 2. Note
that no stopwatch arc is used.

Lemma 2 (Test lemma) Let s be the current state of registers and assume 0 < ϕs
i ≤ 4.

Then:

(a) ϕs
i ≤ 2 ⇒ (∀s′)(s ⊕ in −→ s′ ⊕ outnz ⇒ ϕs′

i = ϕs
i )

(b) ϕs
i ≤ 2 ⇔ (∃s′)(s ⊕ in −→ s′ ⊕ outnz)

(c) ϕs
i = 4 ⇒ (∀s′)(s ⊕ in −→ s′ ⊕ outz ⇒ ϕs′

i = ϕs
i )

(d) ϕs
i = 4 ⇔ (∃s′)(s ⊕ in −→ s′ ⊕ outz)

Proof Assume a token is put into place in and ϕs
i = k, with 0 < k ≤ 4. Then:

– When transition test fires, it does so exactly 1 unit of time before i.e.
– Since k ≤ 4, place r.A in register r is always empty when test fires. So, after test

fired, ref fires exactly 1 unit of time before the next r.e event.
– From the above, we have that ref fires exactly k units of time after test fired. So,

when ref fires, either k ≤ 2, sup did not fire yet, and only nonZero can fire, or
k = 4, sup fired, and only zero can fire.

– Finally, firing test and ref do not change the phase of any event. ��

Note that firing transition test can be delayed an arbitrary amount of time,
nondeterministically, but that, once test fired, transition ref will necessarily fire k
units of time later. Most of the forthcoming blocks use the same mechanism for
entering blocks and observing phase delay φs

i .

Doubler block: Shown in Fig. 6, this doubles the phase delay of i.e, assuming it not
larger than 2. The arc from place p4 to i.a is a stopwatch arc. When executed, the
block suspends transition i.a a full period less the phase delay between i.e and r.e.
Thus, that phase delay has doubled.

Lemma 3 (Doubler lemma) Let s be the current state of registers and doubler block
(assuming place p4 marked from the start), and assume 0 < ϕs

i ≤ 2. Then:

(a) (∀s′)(s ⊕ in −→ s′ ⊕ out ⇒ ϕs′
i = 2 ∗ ϕs

i )

(b) (∃s′)(s ⊕ in −→ s′ ⊕ out)

Proof Assume place in is marked and ϕs
i = k, with 0 < k ≤ 2.

– Using the same arguments than in the proof of Lemma 2, transition ref , when it
fires, does so exactly k unit of times after double. Also, firing these transitions do
not change the phase of events i.e and r.e.

– From the above, assuming double fired at time t, transition i.a will become
enabled at time t + 1, suspended at time t + k + 1 (when suspend fires), and then
resumed at time t + 9 (when resume fires). So, event i.e will occur next at time
t + 17 − k, and the following event r.e at t + k + 17, establishing ϕs′

i = 2 ∗ k. ��

Selection block: This block initializes registers 3 and 4, giving events 3.e and 4.e the
same phase delay wrt r.e, in interval ]0, 2]. It is represented Fig. 7.
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r.a

[7,7]

r.Er.e

[1,1]

r.Ai.A

i.a

[7,7]

i.E

i.b

[0,0]

i.B

i.e

[1,1]

in

out

double

[0,0]

p2

wait

ref [0,0]

p3

suspend[1,1]resume [9,9]

p4
in

Double[i]

out

Fig. 6 Doubler block for register i, and pictogram

Lemma 4 (Selection lemma) Let s be the current state of registers. Then:

(a) (∀s′)(s ⊕ in −→ s′ ⊕ out ⇒ ϕs′
4 =ϕs′

3 ∧ 0<ϕs′
3 ≤2 ∧ ϕs′

i =ϕs
i )

(b) (∃s′)(s ⊕ in −→ s′ ⊕ out)

Proof

– Using the same arguments than in the proof of Lemma 2, transition ref , when it
fires, does so exactly 1 unit of times before event r.e, and firing choose and ref do
not change the phase of any register.

– Next, transition set fires between 7 (included) and 9 (excluded) units of time after
ref , establishing a phase delay for 3.e and 4.e wrt r.e in interval ]0, 2]. ��

Compare and assign block: Shown in Fig. 8, this block compares the phases of events
3.e and i.e for equality, and, if comparison is successful, makes the phase of event i.e
equal to that 4.e had when entering the block.
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3.A

3.a

[7,7]

3.E

3.b

[0,0]

3.B

3.e

[1,1]

4.E

4.e

[8,8]

out

in

i.E

r.a

[7,7]

r.Er.e

[1,1]

r.Ai.b

[0,0]

i.B

i.a

[7,7]

i.A

i.e

[1,1]

set[7,9[

choose

[0,0]

wait

ref

[0,0]

p2

in

Guess[i]

out

Fig. 7 Selection block for register i, and pictogram

Lemma 5 (Compare and assign lemma) Let s be the current state of registers and
assume 0 < ϕs

i,3 ≤ 4 and 0 < ϕs
4 < ϕs

3. Then:

(a) ϕs
3 = ϕs

i ⇒ (∀s′)(s ⊕ in −→ s′ ⊕ out ⇒ ϕs′
i = ϕs

4)

(b) ϕs
3 = ϕs

i ⇔ (∃s′)(s ⊕ in −→ s′ ⊕ out)

Proof

– Transition equal may only fire if places i.A and 3.A became marked at the same
time, that is the block is entered only if i.e and 3.e have equal phases.

– Next, assuming ϕs
4 < ϕs

3, 4.e fires, simultaneously restarting transition assign.
Then, after a full period (8), assign fires, giving i.e the phase 4.e had when entering
the block.

– If 3.e and i.e had different phases on entry, then no state reachable from s ⊕ in
marks out. ��

Decrement instruction: The decrement instruction, Fig. 9 (left), is implemented by
a copy of the doubler block preceded by a copy of the test instruction. The test
instruction prevents doubling the phase delay of register i if larger than 2 (that is
to decrement the counter i represents if it has value 0).



Discrete Event Dyn Syst

3.A

3.a

[7,7]

3.E

3.b

[0,0]

i.E i.a

[7,7]

i.Ai.b

[0,0]

i.B

i.e

[1,1]

3.B

3.e

[1,1]

4.E

4.e

[8,8]

in

out

p1

equal [0,0]

assign[8,8]
in

Assign[i]

out

Fig. 8 Compare and assign block for register i, and pictogram

Lemma 6 (Decrement lemma) Let s be the current state of registers, and assume 0 <

ϕs
i ≤ 4. Then:

(a) ϕs
i ≤ 2 ⇒ (∀s′)(s ⊕ in −→ s′ ⊕ out ⇒ ϕs′

i = 2 ∗ ϕs
i )

(b) ϕs
i = 4 ⇒ (∀s′)(s ⊕ in −→ s′ ⊕ out ⇒ ϕs′

i = ϕs
i )

(c) (∃s′)(s ⊕ in −→ s′ ⊕ out)

Proof Follows from Lemmas 2 and 3. ��

Increment instruction: The increment instruction makes use of three blocks organized
as shown Fig. 9 (right). Using a “selection” block, a phase delay for event i.e wrt r.e
is first chosen in ]0, 2], and saved in registers 3 and 4. Next, a “doubler” block is used
to double the phase delay of 3.e wrt r.e and, finally, using the “compare and assign”
block, the phases of i.e and 3.e are compared for equality, and the phase of i.e is
updated to that of 4.e if comparison is successful. If comparison fails, then no state
reachable from s ⊕ in marks out.

Lemma 7 (Increment lemma) Let s be the current state of registers, and assume 0 <

ϕs
i ≤ 4. Then:

(a) (∀s′)(s ⊕ in −→ s′ ⊕ out ⇒ ϕs′
i = ϕs

i /2)

(b) (∃s′)(s ⊕ in −→ s′ ⊕ out)
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Fig. 9 Decrement (left) and
Increment (right) blocks for
register i

in

Test[i]

Double[i]

out

in

Guess[i]

Double[3]

Assign[i]

out

Proof Follows from Lemmas 3, 4, and 5. ��

Encoding a machine: The SwTPN N encoding machine M is built as follows:

– If M has n + 1 states q0, q1, . . . , qn, then create N with n + 2 places named
start, p0, p1, . . . , pn. Place start is the sole marked.

– q0 being the initial state of the machine, add to N the shared registers, and block
Init connected to places start (as input) and p0 (as output).

– For each instruction (qa, deci, qb ) (resp. (qa, inci, qb )) add to N a copy of the
Decrement (resp. Increment) block for register i, connected to places pa (as
input) and pb (as output).

– For each instruction (qa, testi, qb , qc), add to N a copy of the Test block for
register i, connected to places pa (as input), pb (as outz output), and pc (as outnz
output).

5.3 Undecidability results

Let N , with initial state s0, be the SwTPN encoding some 2-counter machine M,
obtained as explained above.

For any configuration c = (qi, x1, x2) of M, and state s of N , let us write c ∼= s iff
s marks place pi, and the phase delays of events 1.e and 2.e wrt r.e at s encode the
counter values x1 and x2, respectively; that is ϕs

1 = 1/2x1+1 and ϕs
2 = 1/2x2+1.

Theorem 2 A configuration c is reachable from c0 in machine M (written c0 −→M c)
iff some state s is reachable from s0 in net N (written s0 −→N s) such that s ∼= c. That
is:

(∀c)(c0 −→M c ⇔ (∃s)(s0 −→N s ∧ s ∼= c))

Proof By induction on the length of sequences of machine instructions, using
Lemmas 1, 2, 6, and 7. ��
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Theorem 3 State reachability, marking reachability, k-boundedness, and liveness
(cf. Section 2.2) are undecidable for bounded Stopwatch TPN’s.

Proof Net N is bounded, it is even safe (1-bounded): It is easily checked that all
blocks are safe when a single token is put in their input place (for the doubler block,
notice that suspend always fires before resume).

Then, by Theorem 2, we have that some configuration c holding the final state qF

is reachable in M, i.e. M halts, iff some state s ∼= c is reachable in N . Hence state
reachability is undecidable for safe SwTPNs. Undecidability of the other properties
follows. ��

Since instructions of the machine are not executed concurrently, and phase values
can be copied from a register into another (as done in the “compare and assign”
block), any 2-counter machine can be encoded into a SwTPN that uses only a single
copy of the doubler block and a single copy of the selection block (details omitted),
that is into a SwTPN with a single stopwatch arc and a single transition with static
interval not reduced to a point. Indeed, if no stopwatch arc was present, or if all
intervals were punctual, then state reachability is decidable, since it is decidable
for bounded TPNs (Section 2.2), and bounded TPNs or SwTPNs in which all static
intervals are punctual have finite state spaces (this directly follows from the definition
of states).

Concerning other extensions of TPNs modeling preemption, all the blocks de-
scribed in this Section, including the doubler block in Fig. 6, are easily encoded
into Scheduling-TPNs (Roux and Déplanche, 2002), Preemptive-TPNs (Bucci et al.,
2004) or Inhibitor Hyperarc TPNs (Roux and Lime, 2004). It follows that Theorem
3 applies to these models as well, solving an open problem.

6 Approximate state spaces

Theorem 3 definitely ends any hope to compute exact finite abstract state spaces for
all bounded SwTPNs. In general, one will be bound to compute overapproximations
of those spaces, capturing a behavior including the exact behavior of the net, but
possibly larger. Such overapproximations provide sufficient conditions for safety
properties.

We discuss in this Section two overapproximation techniques: the “tightest enclos-
ing DBM” technique of Bucci et al. (2004), Lime and Roux (2003) and a technique
we introduce called “polyhedra quantization.” A number of other approximations
techniques have been proposed for linear hybrid automata (Alur et al., 1995), but
these are unnecessarily rich for our purposes.

6.1 Tightest enclosing DBM

This overapproximation method has been proposed for Preemptive-TPNs
(Bucci et al., 2004), Scheduling-TPNs (Lime and Roux, 2003) and IHTPNs (Roux
and Lime, 2004). Adapted to SwTPNs, the approximated state class graph by the
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tightest enclosing DBM method is built as follows, technical details and proofs can
be found in the references mentioned:

Algorithm 2 (Approximation by tightest enclosing DBM) As Algorithm 1, except
that, after step 3, domain D′ is approximated by the smallest domain including D′
that can be described by a DBM.

Because the approximated polyhedra relax time constraints, and that relaxing
time constraints in some bounded TPNs may make them unbounded, not all bounded
TPNs admit finite approximated state class graphs by the tightest enclosing DBM
method. However, the property holds for an important subclass of bounded TPNs,
introduced in the sequel.

Let us say that a SwTPN is inherently bounded when its underlying Petri net (the
net obtained by removing the stopwatch arcs and time constraints) is bounded. We
have:

Theorem 4 For any inherently bounded SwTPN, Algorithm 2 terminates.

Preserving the DBM shape for polyhedra makes computation and comparison of
classes in Algorithm 2 undoubtedly faster than in Algorithm 1. Now, it may happen
that the computed approximations are too coarse for preserving some properties of
interest, or much larger than the exact state class graph, when finite.

For instance, we have seen in the example discussed in Section 4 that the best
estimation one can infer using Algorithm 2 for the WCET of task 3 using observers
is 144, while its exact value of 96 can be checked on the (exact) state class graph
computed by Algorithm 1.

It could also be observed that, widening the interval of transition t32 to [20, 38],
instead of [20, 28] produces with Algorithm 2 an approximation of the behavior of the
net with more than 12,000 classes, much larger and more expensive to compute than
the exact graph obtained with Algorithm 1, that has only 3,641 classes in this case.
Further, widening this interval to [20, 39], the tightest enclosing DBM approximated
graph becomes unbounded (the net is not inherently bounded) while Algorithm 1
still produces a finite graph. Using Algorithm 1, the behavior computed becomes
unbounded from the larger interval value [20, 49].

6.2 Polyhedra quantization

As shown above, computing the exact behavior of a SwTPN may be cheaper in some
cases than approximating it by the tightest enclosing DBM, in general. And, in any
case, there is a need for more accurate approximations. Now, the undecidability
results of Section 5.3 imply that termination of Algorithm 1 is not guaranteed, even
on inherently bounded SwTPNs. We propose in the sequel an overapproximation
technique that operates on the general polyhedra computed by Algorithm 1 and
ensures its termination whenever applied to an inherently bounded SwTPN.

The technique is based on quantization of the polyhedra captured in state classes,
according to a discretization of space. Polyhedra are still computed assuming a dense
time though, as discretizing firing times would not in general produce overapprox-
imations. The precision of approximations may be adjusted, so that approximated
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state class graphs can be computed as close as desired to the exact graph. When the
precision is chosen “high enough” and Algorithm 1 produces a finite graph, then
the result coincides with that computed by Algorithm 1, otherwise we obtain an
overapproximation.

Let us first recall Motzkin’s decomposition theorem for polyhedra (see e.g.
Schrijver, 1986): any polyhedron P can be uniquely decomposed into a polytope (a
bounded polyhedron, generated by convex combination of the extreme vertices of
P, in finite number) and a polyhedral cone. In our case, since all polyhedra lie in
the nonnegative quadrant, the cones are pointed cones (generated by positive linear
combinations of the extreme rays of P, in finite number).

Our approximation method will take advantage of two properties of the polyhedra
computed by Algorithm 1:

Theorem 5 For any SwTPN N :

(a) There is an integer b such that all coordinates of all extreme vertices of the
polyhedra computed by Algorithm 1 for N are smaller than b;

(b) All extreme rays, if any, of all polyhedra computed by Algorithm 1, belong to the
canonical base of Rn.

Proof By induction. (a) and (b) hold for the initial state class and are preserved
by class derivations in Algorithm 1. For (a), b is any integer larger than the largest
finite endpoint among those of the static intervals of transitions. Any extreme vertex
is a finite endpoint of the firing interval of some state, and, from the definition of
states, these may only move towards 0. (b) means that, above some finite threshold,
unbounded variables are always unrelated. The only step in Algorithm 1 that could
introduce oblique rays is (1), but these disappear after the projection step (3). ��

The polyhedra characterizing temporal information in classes (as computed by
Algorithm 1) will be approximated as follows:

Definition 5 (Polyhedra approximations) Assume given some k > 0 (k ∈ Q). Sup-
pose Rn+ discretized into hypercubes of side k, and let Hk denote the set of these
hypercubes. Let P ⊆ Rn+ be some polyhedron. Then, relative to k:

– A point x ∈ Rn+ is approximated by the intersection of all hypercubes of Hk

containing x.
– A polytope Q ⊆ Rn+ is approximated by the convex hull of the approximations

of its extreme vertices.
– Polyhedron P is approximated by the polyhedron hk(P) built from the cone

component of P and the approximation of the polytope component of P.

Clearly, for any P and k, hk(P) contains P. Also, by adjusting the grid size k, hk(P)

can be chosen as close to P as desired. Indeed, when P includes its boundary, then
there is always some k such that hk(P) = P.

The approximated state class graph for grid size k is built as follows:
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Algorithm 3 (Approximation by quantization with grid size k) As Algorithm 1,
except D′ is approximated by hk(D′) after step 3.

Since each approximated state class contains (possibly strictly) some exact state
class, and any schedule firable from some class is also firable from any larger class, the
support of any schedule firable in the net appears as a path in the approximated state
class graph built by Algorithm 3. But, since approximations relax time constraints,
the converse is not necessarily true: Some paths in the approximated state class
graph may not be the support of some firable schedule. Applied to a SwTPN or TPN,
Algorithm 3 yields an overapproximation of its behavior.

For the same reasons than Algorithm 2, Algorithm 3 does not necessary terminate
on all bounded TPNs or SwTPNs, but we have similarly:

Theorem 6 For any grid size k and any inherently bounded SwTPN, Algorithm 3
terminates.

Proof Approximated polyhedra obey the conditions in Theorem 5 too. Next, the
number of hypercubes of side k in any bounded subspace of Rn is finite, so the
number of candidate extreme vertices for approximated polyhedra is finite too,
and only finitely many polyhedra can be built from these and a finite set of rays.
Finally, since the net is inherently bounded, relaxing time constraints preserves its
boundedness property. ��

Since any polyhedron can be approximated as closely as desired by adjusting the
grid size k, the exact graph of state classes may be approximated as closely as desired,
but there is not in general a bound on k such that the approximated graph coincides
with the exact one (this would contradict Theorem 3).

Algorithm 3 has been implemented. Approximations only require polyhedra
operations typically provided by available polyhedral libraries.

6.3 Discussion

Given some grid size k, it cannot be said in general that approximations by
quantization with grid size k is is more accurate than approximations by the
tightest enclosing DBM method. However, because the “tightest enclosing DBM”
approximation cannot approximate some polyhedra as closely as the “quantization”
approximation, there is always some grid size k such that this is true. To illustrate
their differences, consider the polyhedron represented Fig. 10a, defined by {0 ≤
x ≤ 2, 0 ≤ y ≤ 2, y − x ≤ 1, x + y ≤ 2}. Polyhedron (b) is the polyhedron obtained
from (a) by the tightest enclosing DBM method. Polyhedra (c) and (d) are those
obtained by the quantization method, with grid sizes k = 1 and k = 1/2, respectively.
Approximations (c) and (b) are uncomparable, but (d) is more accurate than (b);
approximation (d) coincides in fact with the exact polyhedron (a).

The first purpose of the quantization approximation method is to allow one to
compute more accurate approximations of the state class graph of a SwTPN than
computed by the tightest enclosing DBM method, when needed.
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Fig. 10 Exact polyhedra and overapproximations

As shown above, one can always compute for any polyhedron P the largest grid
size k such that the quantized polyhedron is equal or smaller than the tightest DBM
polyhedron including P. Consequently, one can always compute the largest grid
size k such that Algorithm 3 with grid size k yields an equally or more accurate
approximation of the state class graph of a net than that computed by Algorithm
2 (g’ is an equally or more accurate approximation than g” if, for any firing sequence
σ of g’, the firing domain obtained by σ in g’ is included in that obtained by σ in g”).

In particular, when the state class graph of a SwTPN is finite, Algorithm 2 does
not necessarily compute this exact graph, while Algorithm 3 does it for a “sufficiently
small” grid size k.

For the example in Fig. 2, for instance, the exact behavior is found with grid size
1. For the example in Fig. 1, that admits an infinite state class graph, the table below
shows the sizes of the approximated state class graphs computed by Algorithm 3
for various grid sizes and for two methods for comparing classes: using equality of
solution sets (≡, as in Algorithm 1), and its variant using inclusion of solution sets (�)
instead, briefly discussed in Section 3.2. Because this net is not inherently bounded,
the approximated behavior becomes unbounded when the grid size is taken larger
than 1.

Grid size Classes/transitions (≡ rule) Classes/transitions (� rule)

≥ 2 Unbounded Unbounded
1 57/137 12/32
1/4 920/2,060 18/47
1/16 29,704/64,436 18/47

Finally, it is worth to note that the “quantization” method is applicable to TPNs
too (without stopwatch arcs), taking grid sizes larger than 1 if static interval endpoints
are integers.

7 Conclusion

This paper first introduces a simple extension of Time Petri nets with “stopwatch”
arcs, able to express suspension and resumption of transitions upon conditions only
depending on markings. The model can be seen as a simplification of the IHTPNs of
Roux and Lime (2004). The features of IHTPNs (inhibitor hyperarcs) could be safely
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merged with those of SwTPNs to constitute an expressively rich modeling tool for a
wide range of problems involving preemption.

The main result of the paper is the proof that state reachability is undecidable for
SwTPNs, even when bounded. This result implies in turn undecidability of marking
reachability, k-boundedness, and liveness for SwTPNs and all above mentioned
extensions of TPNs, even when nets are bounded. These problems remained open
so far.

A semi-algorithm was presented for computing exact representations for the
state spaces of SwTPNs, and an implementation was reported, embedded into an
extension of the tool TINA (Berthomieu et al., 2004). Since this paper was written,
Algorithm 1 has been implemented for the Scheduling TPNs model too, integrated
into the ROMEO tool (Gardey et al., 2005). Experiments with the implementations
suggest that exact state space computation terminates on many practical applications.

Finally, we proposed an original method for computing finite overapproximations
of the state class graphs for a class of bounded Stopwatch Time Petri nets, based
on quantization of the polyhedra capturing the temporal information. It yields
more accurate approximations than available methods, and its precision can be
parameterized. It is also applicable to Time Petri nets.

Though conceptually close, the proposed techniques are computationally more
demanding than the similar techniques used for TPNs. Prospective work addresses
algorithmic aspects for their efficient implementation. A source of inefficiency in
implementations of Algorithm 3 is that classes are computed from polyhedra in
“constraints” forms, while approximations are computed on their dual “extreme
vertices and rays” forms. The change from a representation form to the other, or
maintaining the double representation, is expensive in the general case. We hope to
take advantage of the specific properties of our polyhedra (cf. Theorem 5) to speed
up representation changes and comparison of classes.
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