
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000 509

TADEUS: Seamless Development of Task-Based and
User-Oriented Interfaces

Chris Stary, Member, IEEE

Abstract—Task-based and user-oriented user interfaces utilize
knowledge about user tasks and end user characteristics to the
utmost extent. They not only support end users throughout the
work flows they are involved in their business, but need also to
be constructed throughout a development process that allows to
proceed without loss of application context and user feedback
from requirements specification to code generation. The concepts
behind the task analysis/design/end users systems (TADEUS)
approach to enable seamless development based on end user tasks
are a semantically rich representation scheme, a model-driven
development procedure, a diagrammatic notation and unifying
specification scheme. They are to be used for task analysis, design,
and code generation. This way, interactive applications can be
developed seamlessly, starting with task analysis, proceeding with
design, and generating customized user interfaces for the actual
task performers (users). Specifications comprise problem domain
knowledge, work processes, user roles and personal profiles, as
well as interaction modalities (required for task accomplishment).
For user-interface prototyping the TADEUS environment contains
a model interpreter that executes structure and behavior speci-
fications. This way, early feedback on task-based portals can be
provided by users. In this paper we detail the latest developments
in the TADEUS project when implementing a work-process based
usability life cycle. We review the underlying methodology and the
features of the TADEUS environment, in order to demonstrate the
benefits for developers and users resulting of smooth transition
support for and between the different stages of development.

Index Terms—Customization, intelligent user interface manage-
ment, interactive work design, knowledge representation, life cycle
management, model-based development, object-oriented mod-
eling, object systems, portal generation, prototyping, task analysis,
usability engineering, user-centered design, workflow modeling.

I. INTRODUCTION

I T IS now commonly accepted that developing interactive
software requires consideration of the interaction between

humans and computers from a work and users’ perspective
rather than focussing primarily on technical issues. In doing
so, development activities concerning the user interface are no
longer add-ons to the required software-engineering activities.
The knowledge for human-centered user interface design
stems from the organization of work and the cognitive and
social context of technology use (see, e.g., [29]). In case the
user interface interferes with intended user activities for task
accomplishment, it might become a source of trouble, since
users might get worried and the results of work might lack
required quality, (see, e.g., [6], [28], [30]).

Manuscript received December 17, 1998; revised June 1, 2000. This paper
was recommended by Associate Editor C. C. White.

The author is with the Department of Business Information Systems, Com-
munications Engineering, University of Linz, 4040 Linz, Austria.

Publisher Item Identifier S 1083-4427(00)07049-1.

Although a number of task-based and user-centered develop-
ment approaches have been reported, a thorough integration of
structured development techniques and user interface develop-
ment procedures is still lacking. Few authors (e.g., [6], [8], [47],
[48]) have addressed this deficiency admitting “there is usually
a certain amount of craft and creativity involved in producing
effective designs” [48, p. 2] and “designing the fundamentals of
object-oriented Graphical User Interfaces to meet user needs has
been done seemingly by magic” [48, p. 16]. Most researchers
tend to apply techniques either from software or knowledge en-
gineering for user interface engineering when striving for struc-
tured or knowledge-intensive development techniques [3], [10],
[47]. However, neither the Waterfall [40] nor the Spiral model
[5] for software development has been designed for interactive
systems engineering. Thus, both do not actively support the de-
velopment of interactive systems based on task or user represen-
tations. As a consequence, conceptual frameworks for usability
engineering and life cycles related to task and user representa-
tions have been proposed, e.g., [1, p. 120], [25, p. 104]. They
do not only focus on acquiring (usability engineering) knowl-
edge and mapping this knowledge to development activities.
They also try to bridge the gap between structured development
and user interface development in a rather evolutionary way.
Studying the work addressing that gap [12], [13], [34], [35], re-
veals the following topics to be crucial for bridging the gap:

• acquire and represent knowledge about users and tasks, in
order to achieve a high degree of adaptability;

• define accurate representation schemes as well as flexible
notations;

• build tools capturing more than a single phase of develop-
ment;

• provide early feedback to end users;
• shift from engineering to participation of task performers

throughout the development;
• educate designers to develop thorough domain knowledge

and context sensitivity.
Consequently, the key features for task-based and user-cen-

tered support mechanisms are continuous support of develop-
ment phases, starting out with analyzing the work situation of
users and their profiles, and a “language” both developers and
users understand. The latter is required to communicate elicited
knowledge, design ideas, and envisioned computer support. Pro-
viding these features ensuresseamless development. It means
to be able to successively transform user and task inputs into
a technical artifact in a way that 1) all relevant tasks and user
properties can be captured (taking into account organizational
and cognitive constraints) and 2) it can be traced by actual users
(task performers) and (system) developers how the artifact has

1083–4427/00$10.00 © 2000 IEEE

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ノート
既存のツールの効用の記載

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ノート
シームレスな開発には、
(1)タスク知識（タスク自身の知識とユーザ特性）が獲得できること
(2)タスク知識からどのように、HMIが生成されたかがトレースできることが重要

510 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

been created through stepwise refinement and transformation of
task knowledge.

Seamless development can only be achieved when the devel-
opment process is understood as a collective activity rather than
a sequence of isolated tasks or phases, as already recognized
by Ehn [13, p. 109]. This commitment ensures the above-men-
tioned shift from engineering activities to an active participation
of users. However, it requires support of views on the develop-
ment knowledge, as observed by Kotonya [23] and Scheweet
al. [36]. It also requires an (activity-theoretical) understanding
of representation as “mediating the relation between designers
and their products” (according to Bodker [4, p. 110]). One of
the major requirements to representations is that they have to
“hold on to aspects of the computer application to be, and, at
the same time, facilitate the design process” [4, p. 111]. Hence,
representations have to support the process of development and
the product as a result of this process [26, p. 20].

Object-oriented modeling schemes seem to become com-
monly used for development representations (e.g., [7], [17]),
although major deficiencies have also been found [22], [39].
For presentation, another observation seems to be relevant:
When software development tends to be knowledge-intense
(as being the case for human-centered design), diagrammatic
languages, such as UML, and visualized contents facilitate
the development process (e.g., [16], [32], [45]). However, the
best representation scheme will fail unless its contents can be
communicated successfully to task performers, either in terms
of meaningful abstract terms or concrete interaction elements.
Both issues have been addressed in the TADEUS-project.

Task analysis/design/end user systems (TADEUS) [41] is an
approach that intends to enable seamless development support.
It addresses domain experts, users, analysts, designers, usability
engineers, and programmers. It focuses on representation in
the tradition of “containers of ideas” [4, p. 120], facilitates the
process of design, the specification and generation of results,
and finally, makes the process of development easily accessible
and traceable for the listed user groups through diagrammatic
(re)presentation. TADEUS (re)defines usability engineering
through an integrated a) model-driven; b) task-based; c)
user-oriented; and d) object-driven life cycle.

a) Model-driven developmentallows for multidimensional
and viewpoint-related specification and generation of
interactive software. Several aspects, namely, the content
of work, the organization of work, the technology used
for task accomplishment, user skills and capabilities can
be handled in a structured way throughout the phases of
development. However, as we will see, integrating those
aspects requires a redefinition of traditional techniques
for model-based user interface development, in order
to capture the nature of the design process: The design
process is considered as a continuous switch between
perspectives, namely, between user tasks, user roles
and profiles, problem domain data, interaction styles
for task accomplishment, and the already integrated
parts of the specification of an application. Revisited
model-driven development supports a nonlinear sequence
of view-driven activities.

b) Task-based developmenttakes into account the organiza-
tional and business context of interactive software sys-
tems. Tasks are those entities that have to be supported
from the structural point of view as well from the dynamic
perspective, i.e., the accomplishment of problem-solving
activities. Hence, similarly to the introduction of work-
flow management systems, the organization of a business,
the functional roles, as well as the assignment of users to
roles (in our case also to modalities of interaction) have
to be specified in the course of (interface) development.

c) User-oriented developmentreflects on the situation of
task performers distributed throughout business pro-
cesses, probably involved in more than one process, and
hence, requiring an individual organization of tasks. In
addition, individual skills and preferences are crucial for
role and task assignment. Besides comprehensive repre-
sentation of this knowledge (e.g., through user modeling)
user participation is substantial in the course of develop-
ment. Both, the diagrammatic (re)presentation of design
knowledge and prototyping tuned to that representation
(see below) allow the utmost individual involvement
of users throughout the development procedure and its
phases.

d) Object-oriented developmentenables the diagrammatic
and unifying treatment of analysis and design knowl-
edge, and supports its implementation. Such a strategy
is a conditio-sine-qua-non to ensure smooth transitions
from analysis to design and from specification to code
generation (without loss of contextual information).
Furthermore, it allows the iteration of analysis and de-
sign activities, despite of already implemented software
components. Finally, it facilitates the communication
among developers and users.

The diagrammatic (re)presentation has not only been chosen
for the sake of communicating development ideas, user partic-
ipation, and traceability of the design process, but also to en-
able workflow-oriented prototyping: “Early prototyping is fun-
damental to the success of operations supporting software prod-
ucts” [2, p. 2], in particular, due to the following reasons.

1) The prototype provides a vehicle for systems engineers to
better understand the environment and the requirements
problem being addressed.

2) A prototype is a demonstration of what is actually feasible
with existing technology, and where the technical weak
spots still exist.

3) A prototype is an efficient mechanism for the transfer of
design intent from system engineer to the developer.

4) A prototype lets the developer meet earlier schedules for
the production version.

5) A prototype allows for early customer interaction.
6) A prototype demonstrate to the customers what is func-

tionally feasible and stretches their imagination, leading
to more creative inputs and a more forward-looking
system.

7) The prototype provides an analysis test bed and a vehicle
to validate and evolve system requirements [2].

In addition, prototyping allows evolutionary development, as
recognized by Schneider [37, p. 523], meeting the demand for

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 511

handling the design process as a highly dynamic set of activities,
since the “specification and the design of the algorithm or the
system architecture often constitute an ill-defined problem type”
[32, p. 89f].

Methodologically, TADEUS bridges the gap between struc-
tured software development and traditional user interface devel-
opment through supporting 1) the acquisition and representation
of tasks and organizational information; 2) the mapping of ac-
quired information to interaction features; and 3) the generation
of prototypes based on the results of 2) to ensure early feedback
and involvement of end users. As such, TADEUS does not only
show “what will take place” and “how this is to take place” [4,
p. 120], butwhy this is to take place. It implements both, the
quest for capturing nonfunctional requirements and constraints,
but also the quest for understandable traceability [45]. Hence,
(re)presentations and prototypes are not only containers for de-
sign ideas, but also serve as basis for collaborative reflection on
artifacts and for active involvement of task performers.

In the following, we discuss the latest TADEUS develop-
ments with respect to a usability engineering life cycle that sup-
ports design as a (nonlinear) process as well as the specifica-
tion and evaluation of its results, in particular task-complete
user interface prototypes. We start out with discussing related
work in Section II, and review TADEUS in Section III including
task-oriented prototyping. Section IV concludes the paper sum-
marizing the objectives and results of our work, and sketching
areas of our further research.

II. RELATED WORK

In this section, we primarily focus on the procedures, rep-
resentation schemes, and tools being developed for task- and
user-centered interactive software development support. Cur-
rently, most of the existing approaches stem from the field of
human-computer interaction. Recent developments in the field
of organizational development, e.g., business process (re)engi-
neering, however, might influence research in the future. There,
issues such as enriching business models with objects to fa-
cilitate the software development process (e.g., [15], [49]) fol-
lowing the tradition of [19], and how to focus on people needs in
the course of organizing tasks and knowledge (e.g., [38]), have
been started to be discussed from a methodological perspective.
Future results might have significant impact on the methodolog-
ical integration of organizational and interactive software devel-
opment, as well as the tool corresponding to integrated devel-
opment. In particular, since currently the relationship between
user interface technology and organizational development is not
very well defined, as the latest developments in the field of en-
terprise-resource planning systems show: Most of the software
producers in that area, e.g., SAP, FabaComponents, tend to link
the generation of user interfaces or portals to process specifica-
tions, however, at a very elementary level and in a straightfor-
ward way (cf., e.g., [35]).

A. Schemes for Representation and Procedures for
Development

Experiencing the need for linking task and software devel-
opment [33], [34], several projects have been started to tackle

Fig. 1. ADEPT approach.

this issue from the methodology and tool perspective. For in-
stance, in the ADEPT project [21], [47], several models have
been identified, namely, for task definitions, the specification of
user properties and the user interface. These models are also part
of the ADEPT environment—see also Fig. 1. The task model
does not only comprise a representation of existing tasks, but
also envisioned ones. The latter representation also serves as
container for design ideas. The (abstract) interface model con-
tains both, guidelines for feature design, and the features re-
quired to implement the envisioned tasks through a GUI. As we
will see, the ADEPT task model is similar to the TADEUS task
model. However, it also captures part of the TADEUS problem
domain model. In TADEUS there is no difference between envi-
sioned and existing task representations, since multiple designs
might be created in the course of development. In TADEUS
both, existing task models and visions about the future of task
accomplishment can be handled through versioning of (appli-
cation) models. Moreover, in contrast to TADEUS, the ADEPT
user model does not contain access and manipulation permits for
elements of the data according to the relationships between tasks
and user roles. Finally, the ADEPT abstract interface model
corresponds to the TADEUS application model (and the proto-
typing engine), since it comprises the behavior of the application
at an implementation-independent layer (including the interac-
tion control).

In ADEPT, a top-down design and prototyping approach
has been implemented for development: After task analysis
(leading to a task model capturing existing tasks), a description
of the process the users would like follow when interactively
supported has to be elicited (leading to an envisioned task
model). The procedure concludes with a detailed specification
of the user interface for the envisioned tasks, termed the
abstract interface model. In principle, this procedure can also
be followed when using TADEUS. In that respect, ADEPT
and TADEUS differ from the other development approaches,
such as [9], since the others support merely functional design
representations rather than task and user modeling.

HUMANOID [24] can also be considered as a model-based
approach. Its development procedure starts with a declarative
model of how the interface should look like and behave (in
the sense of the above mentioned envisioned task model), and

kushiro
ハイライト表示

512 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

should be refined to a single application model that can be exe-
cuted. Each user interface is handled according to five semi-in-
dependent perspectives, namely,

1) the application semantics which is captured through
domain objects and operations (similar to the TADEUS
problem-domain data model);

2) the presentation part emphasizing the visual appearance
of the interface elements;

3) the behavior part capturing the input operations, e.g.,
mouse clicks, that can be applied to presented objects,
and their effects on the state of the application and the
interface;

4) constraints for executing operations that are specified
through dialog sequencing;

5) triggers that can be defined through specifying opera-
tional side-effects.

The life cycle in HUMANOID corresponds to iterations of de-
sign—evaluation—redesign activities based on interpretations
of the executable model of the interface. As such, it corresponds
to the TADEUS approach. However, HUMANOID lacks com-
prehensive user modeling as well as a structured procedure how
to derive problem domain data and interaction modalities from
declarative task specifications. Both are required to ensure con-
sistency of design knowledge and to enable to check for the
completeness of specifications against the tasks and the organi-
zation of work at hand.

Similar to HUMANOID several approaches have been de-
signed: For instance, deBaar [9] suggested to start with the cre-
ation of an application data model (using the editor D2M2edit),
then to instantiate interaction objects corresponding to the data,
and to define control selection as well as layout rules for in-
teraction (using the tool Devguide). Based on these specifica-
tions an application’s interface can be generated. Again, there
is no way for dealing conceptually with tasks, user properties,
and dynamic aspects (e.g., workflows) produced during run time
of the interface. In UIDE and GENIUS some improvements
have been introduced with respect to handling the dynamics
of user interfaces. GENIUS [20] uses entity-relationship dia-
grams, and as such also data modeling, as the starting point for
the specification of user interfaces. Furthermore, GENIUS pro-
vides a Petri-net approach for modeling behavior, in addition to
a knowledge base for layout specification. However, there is no
evidence for task-based and user-oriented support for the gen-
eration of user interfaces. The UIDE approach [44] requires the
design of application objects and dialog elements, before appli-
cation model classes can be mapped to functional user interface
components. The latter are executable to generate user interface
elements.

We can conclude that, with respect to schemes for represen-
tation and procedures for development, most of the existing ap-
proaches are based on concepts to

1) capture the semantics of applications through problem
domain (data) objects and associated constraint mech-
anisms, at least at the structural level;

2) construct some kind of an application model that can
be processed to generate user interface prototypes.

Fig. 2. Runtime architecture of UIDE.

However, in most of the cases, the (semantic) relationships
between tasks, problem domain data, and interaction modalities
remain implicit, in particular at the level of behavior specifi-
cation. In addition, the issue of user modeling or role specifi-
cation has been addressed rarely. There seems to be consensus
with respect to notation and language of representation: Most
of the existing techniques use object-oriented languages and/or
notations, at least when it comes to implementation (see also
tool discussion below). For the representation of tasks notations
different from object-oriented specifications, such as goal trees,
are used. In these cases, neither the transformations to class/ob-
ject models nor behavior specifications of GUI-elements have
been made explicit. Moreover, it is assumed that specifications
are consistent and complete, without checking for these charac-
teristics. Hence, from the methodological perspective, neither
structured procedures, consistency checking of application se-
mantics and task completeness, nor the traceability of the de-
velopment process have been supported sufficiently and/or in a
comprehensive way.

B. Tools for Prototyping and Software Generation

Tools for supporting task-based prototyoing and inter-
active-software generation have to provide a high level of
expressivity (according to Myers [27]). Consequently, common
interface builders providing instantiations of prefabricated
dialog elements do not suffice. In addition, development
knowledge and specifications have to be communicated
properly through these tools. Hence, task-based development
support tools do not only require complex constructs to cap-
ture workflow-driven structures and behavior specifications
(including the refinement to modality-specific operations at the
user interface), but also editors to manipulate (diagrammatic)
specifications.

Devguide [9] creates a user interface directly from the data
model. An inference engine applies control selection and layout
rules to the application data objects. It also adds an relevant
configuration data of platform-specific controls to dialog ele-
ments. In UIDE [44] the runtime architecture executes a dialog
sequence that is based on the specification of application se-
mantics. When the specification is changed, the sequence is also
changed (see Fig. 2). Usually, specifications are not commu-
nicated to task performers. Furthermore, the completeness and
consistency are not checked for with respect to the task level.

The application model keeps track of design information at
a high level of abstraction, and finally controls the interaction
at run time. The model consists of three layers, capturing the
functionality of the user interface at three levels of abstraction.
At the top layer, the model should capture the semantics of op-
erations at the user interface. At the medium layer, operations

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 513

Fig. 3. TADEUS frame of reference.

should be specified according to an existing interface paradigm,
such as GUIs, but independent of any specific application. At the
bottom layer, concrete operations, such as mouse clicks, are de-
fined. Although the definition of layers indicates steps of struc-
tured interface development through refinement activities, it is
not clear, how the layers have to be related mutually, in order to
ensure the intended application behavior.

The ADEPT interface generator [21], [47] is driven by
built-in heuristics, by the input of the user modeling com-
ponent, and explicit designer inputs through declarative
specifications. It generates the layout of the user interface,
and allows task-conform handling of interaction elements.
Recent developments, such as MOBILE [31], also support
layout generation, and execute refinements of task models in a
direct manipulative, thus, easy to handle way. However, in the
course of development the usability cycle task modeling—de-
sign—prototyping has to be iterated completely, since there
does not exist an implementation-independent behavior speci-
fication that is semantically linked to the task representations.

Concluding, several deficiencies of existing tools for proto-
typing and code generation have become evident:

1) Integration and Contextual Processing. In case appli-
cation semantics is specified in traditional data models,
it cannot be guaranteed that the resulting user inter-
face is task-based and/or user-oriented. In particular,
tasks and user properties should be represented and
linked to interaction modalities explicitly, in order to
allow tracing the refinement of tasks to functional (in-
teraction) properties. The latter requirement addresses
tool support for the design process itself (rather than
the product and its specification). Hence, facilitating
the time-consuming task of interface generation does
not necessarily support the nonlinearity of the design
process itself.

2) Consistency and Completeness. As an implication of
1), the completeness and consistency of development
knowledge with respect to task accomplishment and
user profiles cannot be guaranteed. Once explicit repre-
sentations of task and user properties exist, algorithms
can check for the consistency and the completeness of
the subsequent refinements.

3) Traceability and Understandability. The traceability of
the development process as well as incremental devel-

opment activities require unifying and diagrammatic
notations that capture the structure and the behavior of
an application as well as the underlying models (e.g.,
the data model). As a consequence, either particular
models or views on the application model have to be
kept throughout development, although an integrated
application model is required for prototyping or code
generation. Each of the models have to provide spec-
ifications that can be communicated among users and
developers.

In summary, neither current tools nor concepts meet the
identified set of needs for seamless and comprehensive de-
velopment. Major deficiencies concern the incompleteness of
knowledge sources, the inadequacy of representation schemes,
and the lack of explicit steps of integration, at the conceptual,
the methodological and the tool layer. As a consequence,
development overhead might occur due to inconsistent specifi-
cations, incomplete solutions or problems in communication. In
TADEUS existing concepts, such as the provision of different
layers or the use of a diagrammatic notation, have been inte-
grated and enhanced to enable task-complete and user-oriented
development of user interfaces seamlessly.

III. TADEUS

TADEUS [41] targets a comprehensive development method-
ology, unifying and diagrammatic (re)presentation of develop-
ment knowledge, and the execution of this knowledge to gen-
erate user interfaces or portals. In the following we introduce the
conceptual framework of TADEUS, the methodology including
the scheme of representation, and the tool corresponding to the
framework and the methodology.

As shown in Fig. 3, the TADEUS framework enables to
transform and refine business intelligence into user interfaces
or task-specific portals. The business intelligence might be
modeled through business process specifications or acquired
through work or business analysis. It is elaborated to task
and user specifications that are related to problem domain
data and interaction modalities. Structural and behavioral
specification of these knowledge items enable the construction
of an application model after certain steps of refinement. The
resulting model serves as input to a modality-specific and
workflow-driven engine generating user interfaces.

kushiro
ハイライト表示

kushiro
ノート
タスクモデル、ユーザモデルの関係をどのようにつけるのか？

これから分解される問題領域のデータモデルと対話ドメインモデルをどのように結びつけるのか？

514 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

According to its claim for supporting analysis, design, and
implementation TADEUS has to provide a technique for work
analysis. It is called TADEUS task analysis representation tech-
nique and enables the elicitation and acquisition of business in-
telligence. The results serve as input to subsequent design ac-
tivities, starting with task modeling and leading to prototyping
based on an application model.

A. Analysis

The DEUS ask nalysis and epresentation technique
(TATAR) [42] considers analysis not only to be an analysis of
work organizations and business processes, but also an analysis
of social settings, contents, proposals for reorganizing work,
skill requirements and individual profiles. TATAR targets to-
ward identifying and describing units of work and resources re-
quired for successful work performance (in the context of the
application domain and social settings at hand). Resources in
this context concern both, individual ones, such as skills, knowl-
edge, physical and cognitive capabilities, experience, and the
work environment (e.g., control structures, activities, and tools).

The analysis may either be performed by system analysts, or-
ganization developers or usability engineers that are well trained
and experienced in performing analysis of work and tasks. The
analysis should not focus particularly on technology but on the
situation at work as employees and management perceive it.
Technology comes into play, as soon as there exists some kind
of technological support for the accomplishment of tasks.

The analysis tries to capture both the organization’s (i.e.,
management) and the users’ point of view. Both perspectives
have to be acquired, and might have to be migrated. At least
they are integrated in the representation of results, even if they
conflict. They latter case is very common, namely, as soon as
different ways for solving a particular problem are elicited and
have to be represented as part of the organizational intelligence.

The entities to describe a business from themanagement per-
spectiveare in TATAR:

• business processes, including organizational units, func-
tional roles required for task accomplishment, tasks and
subtasks, and events and conditions relevant for task ac-
complishment;

• all material comprising immaterial data and physical ob-
jects of manipulation;

• tools (including computer support through hardware and
software).

When capturingindividual work spacesdetailed knowledge
should be elicited about 1) the type of tasks; 2) individual
problem solving procedures and organization of task accom-
plishment; 3) individual proposals to reorganize both the global
and individual work space; and 4) the job satisfaction.

Hence, the major steps to be followed in TATAR (method-
ology) are the following.

1) Capture business processes as management envisions
them currently.

2) Elicit how they are lived, approaching for each work
space or process at least five task performers (responsi-
bles and operational staff).

3) Integrate, at least combine the acquired knowledge in a
specification document.

4) Iterate 1)-3), as long as it is possible to gain deeper insight
into the context and the requirements of the software to be
developed.

Depending on the type of business and the “structuredness”
of the organization at best two complimentary of the following
methodsareused for theelicitationandacquisitionofknowledge:
document analysis, observation, introspection and retrospective
protocols, (structured) interviews, think-aloud protocols, and
ethnographic studies. These methods deliver insights in the most
effective way, since in TATAR not only the results of the analysis,
but also the process of analysis should be made transparent
through a proper documentation (see also [11]). The process and
results might be documented through a media mix (recordings,
notes, etc.), depending on the tasks/organization under investiga-
tionand the possibilities for acquisition and elicitation.

B. Representation

Since the transformation from analysis to design should be as
seamless as possible (minimal reduction of semantics, minimal
loss of context for further developments), structural and behav-
ioral specifications have to be integrated into a single model of
TADEUS, namely, the business intelligence model. In order to
achieve that integration, a semantically rich language and a di-
agrammatic notation have been developed—the language defi-
nition and a user guide including examples can be downloaded
from http://www.ce.uni-linz.ac.at/research/TADEUS. Since the
features have been tuned to the TADEUS models used for design
and prototyping, the business intelligence model can directly be
imported into these models. The features capture the most im-
portant elements for business process modeling.

• The organizationand/ororganizational unitsthat repre-
sent the set of departments the organization is composed
of, or vertical and/or horizontal structures, such as hierar-
chical layers within an organization.

• Roles, together with the activities and the materials (see
ActivitiesandMaterials), that are processed in the course
of task accomplishment. They represent the part of the or-
ganizational intelligence that is required to run business
processes. They address skills and required qualifications
of people from the technical, organizational, cognitive,
and social perspective.

• Activitiesthat are actions or operations that might be per-
formed by task performers (as instances of roles) or ma-
chines, respectively, in order to accomplish tasks. Task ac-
complishment might be based on temporal and causalcon-
straintsbetween activities.

• Materials that may either be data or raw materials being
processed to accomplish tasks. They are assigned to ac-
tivities and, finally represent the results of work/business
processes.

• Toolsthat comprise those parts of work organizations, too,
that might not be considered to be part of the user interface
(like the mouse or software functions are), but are required
to accomplish tasks or to facilitate task accomplishment,
such as production machines.

• Eventsthat are those points of reference that trigger activ-
ities, and might be specific for the business processes to
be supported. Events might have to be described at sev-

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 515

Fig. 4. Sample part of a business intelligence model (ORD).

eral levels of detail, in order to understand activities when
particular situations occur.

• Relationships:Besides the common object-oriented rela-
tionships has-subclass, has and has-part, a variety of links
is provided to network organizational units, roles, tools,
materials and activities: “Employs” relates organizational
units to roles. “Handles” denotes the responsibility of a
role for a particular activity: The individual behind the role
may either delegate this activity to another agent and/or
monitor its accomplishment, or perform it by him/herself.
“Creates” denotes the creation of material through an ac-
tivity. “Concerns” involves roles via “handles” or “con-
trols,” activities, materials, tools, or other relevant factors
for task accomplishment (e.g., quality measures). Typical
assignments for this relationship are mediate factors, such
as qualifications to operate a tool or to create materials.

In case no activity can be assigned to a role, “informs”
is used to mutually relate functional roles. It denotes the
passing of information (about material or an activity) from
one role to another. “Controls” denotes the control of ac-
tivities or material (that might concern an activity) through
a role. “Requires” denotes material that has to be pro-
cessed, in order to perform an activity. “Before” is set be-
tween two activities, denoting a sequence of activities ac-
cording to the direction of the link. “Is-Based-On-Mat”
is a relationship between two materials. It denotes the in-
terdependence of materials from the material perspective.
This way, a causal (rather than an aggregation) relation-
ship is established, since a particular material cannot exist
without the other (on the long run).

“Corresponds-To” involves activities and the “before”
and “is-based-on-mat” relationship. It denotes a corre-
spondence between two activities, with these activities
evoking each other mutually. However, the conditions
of occurrence have to be detailed in the design speci-

fications, i.e., TADEUS object behavior diagrams (see
below). Other complex relationships, such as “event han-
dling” and “assigning responsibility” are also supported.
Events can either be named and linked via the “concerns”
relationship to activities, or explained in more detail
through existing roles, activities, and relationships. In
the latter case, activities might also occur along a link
between nodes. “Assigning responsibility” uses “role”
and “activity” entities, and “controls,” “handles” or other
relationships to express the responsibility of roles for
activities or processes.

Seamless development in TADEUS is guaranteed, since the
entities and relationships of the declarative business intelligence
model can directly be mapped to object-oriented modeling
constructs, namely, the task, user, and problem domain data
model, and, eventually the interaction model (in case of existing
interactive computer support). As can be seen in Fig. 4, most
of the conceptual entities (organizational unit, task activity,
material, tool) represent nodes (class names), whereas struc-
tural, temporal and causal relationships correspond to semantic
links between classes of objects in diagrams. Each relationship
is implemented through an algorithm ensuring its consistent
use throughout the development. Each specification diagram is
checked against constraints associated with each relationship.
It is this part of TADEUS that differs from most specification
and prototyping techniques, since each relationship is checked
through a dedicated procedure containing its semantics. This
way, the semantics of the entire development knowledge can
be preserved throughout the different phases of development.

The diagrams have been adopted from object-oriented sys-
tems analysis [14] and are used for presentation of development
knowledge in TADEUS:

• ORDs (object-relationship diagrams) describing the struc-
tural relationships between classes or objects;

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

516 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

Fig. 5. Interplay between notation and model-based development in TADEUS.

• OBDs (object-behavior diagrams) describing the behavior
(dynamics) of objects through states and transitions;

• OIDs (object-interaction diagrams) describing the inter-
action between life cycles of objects (specified through
OBDs). These diagrams correspond to use-case constructs
(e.g., [18]).

The task, data, user, and interaction model are composed
of ORDs, OBDs, and OIDs, whereas the business intelligence
model is represented through an ORD, and the application
model adds mostly a set of OID links to achieve a synchronized
behavior specification. Since all the models refining the busi-
ness intelligence are the basic ingredients for implementation,
task, user, data, as well as interaction modeling requires to split
up the structural and dynamic knowledge about the business at
hand. Hence, the derived task, user, data, and interaction model
are composed of ORDs and OBDs, capturing the structure
and behavior of each cluster of knowledge. Based on these
detailed refinements the application model represents a mu-
tually tuned, but integrated version of the previously isolated
structure and behavior components (see Fig. 5). Hence, static
relationships and OIDs are used to specify the addressed cou-
pling of previously isolated design representations (within and
between models) to enable an implementation-independent, but
task-complete and synchronized specification of application
structure and behavior.

C. Design

The ontology used for specification empowers the analyst and
the designer with a semantically rich representation of the uni-
verse of discourse, and finally, of the application. Based on the
business intelligence model (i.e., an ORD which is the result of

the analysis) the initial designer’s task is to set up a task model
(see also Fig. 3). This model contains all those relevant activ-
ities from the business intelligence model that are considered
to be relevant by the task performers and the designer for in-
teractive computer support. Then, refinements and complemen-
tary specifications according to the users’ roles and preferences,
to problem domain data processing requirements, and to inter-
face architectures have to be performed, until the structure and
behavior of the application model enables prototyping. The ap-
plication model requires at least the specification of a task, its
underlying data, and the assignment of interaction features to
the task and the data for presentation and manipulation. Once
this information has been provided, the application model can
be directly processed by the TADEUS prototyping engine (see
the following).

Structural Task Modeling:Based on the business intelli-
gence model, those activities that are expected to be supported
through the interactive software are selected. They might be
decomposed into further activities, and related to each other
according to the required sequence of accomplishment (ap-
plying the “before”-relationship). This information is captured
in an object relationship diagram ORD. The activities are
represented as classes (containing identifiers, but no methods
and attributes), and the structural and dynamic relationship are
represented as links between the classes. For instance, consider
the global task human resource management that might be
decomposed into the sequence of the sub tasks recruitment,
update staff member, and remove staff member, as shown in
Fig. 6 (the boxes denote classes, the links between the classes
are either named relationships [“before”] or standard object-ori-
ented ones, as the black triangle denotes an aggregation). In
the sample case, the task model has been completely imported
from the business intelligence model, since the addressed parts
from the business intelligence model are the relevant ones for
development.

Dynamic Task Modeling:For each activity at the end of an
aggregation line of a global task, the procedure to be followed
for task accomplishment, including the input/output-behavior
of the application has to be defined. As a consequence, the
ORD of the structural task model is related to a set of object
behavior diagrams (OBDs), each corresponding to the accom-
plishment of a sub task (activity). For instance, in order to
update staff data the staff records have to be scanned, loaded,
and then manipulated according to the required changes. Input
data might be typed in, and the output might be the display of
the entire record on the screen. This way, the first refinement
of behavior is specified in a procedural way through state tran-
sitions of task objects. Before that integration, the process of
task accomplishment is captured through declarative descrip-
tions exclusively in the structural task model. Fig. 7 shows a
specification of the activity “Search for Candidates” either via
posting an e-mail to newsgroups or searching in the web. The
rounded boxes denote states, whereas the links between states
denote transitions.

Structural User Modeling:The structural user model does
not only comprise functional user group definitions as the or-
ganization of tasks and roles requires, but also the individual
characteristics of staff members. There are two ways to define

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 517

Fig. 6. Structural task model (ORD).

Fig. 7. Dynamic task model (OBD).

functional user groups. One way is based on the structure of the
organization and their units of operation. For instance, each staff
member of a certain department has a particular set of privileges,
such as human-resource-management staff has the right to ac-
cess payroll data. The other way to identify user profiles is based
on the professional skills, such as recruiting, staff members have
regardless of their organizational assignment and position. The
first case facilitates the identification of access permits to data
according to the structure of the organization, whereas the latter
facilitates the definition of professional profiles as well as the as-
signment of staff members to more than one organizational unit,
according to their skills and qualification. Actually, both views
have to be integrated to gain sufficient insight into the organi-

zation and the user population that are going to be supported.
A thorough work analysis should provide data from both per-
spectives. In TADEUS, they are captured through constructing
an ORD with class or attribute specifications corresponding to
both perspectives.

The specification of the structural user model has to be per-
formed in the context of the other TADEUS views or models.
Hence, one of the primary results of this step in development is an
ORD which classes are named according to the functional roles
required for task accomplishment. Fig. 8 shows part of the struc-
tural user model. The Personnel Manager handles the removal of
staff members, whereas the Assistant Manager handles the ac-
tive search for candidates. Since the Assistant Manager is also

kushiro
ハイライト表示

518 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

Fig. 8. Sample functional structural user model (related to a part of the structural task model).

member of the sales staff he/she also does the reporting for that
department.

In addition, as already indicated above, the structural user
model might comprise particularities required for interaction,
namely, individual profiles with respect to abilities and needs,
e.g., for left-handed users. Since the profile data are specified
from a user perspective, but concern interaction, they require
assignment to elements of the interaction model, e.g., mouse
settings for left-handers. This refinement is usually performed
at a later stage of development than user modeling. The same
holds for the permissions to manipulate data. These are captured
after refining the data required for task accomplishment in the
data model.

Dynamic User Modeling:The dynamic part of the user
model describes the work process from the perspective of
a particular functional role. Fig. 9 shows the OBD for the
Assistant Manager. In addition to the task to be performed for
the human-resource-management division (as already shown in
Fig. 7), the reporting activities have been specified.

Structural Problem Domain Data Modeling:The designer
has to define the classes of data required for task accom-
plishment. For instance, recruiting requires to create the class
“Person” (see Fig. 10). For context-sensitive specification
and seamless development, the “is-based-on” relationship is
applied between activities and data. An identifier, attributes,
and operations have to be specified for each class (see Fig. 11
for attribute definition). Setting up a data model is also re-
quired, in order to provide information for the integration of

the data-related functionality with the interaction facilities
later on in the development process (such as assigning text
fields to personnel data that are expected to be entered when
a certain manipulation task has to be performed—as specified
in Fig. 12).

Dynamic Data Modeling:For each data class derived from
an activity, a life cycle has to be provided through specifying
an OBD. For instance, the life cycle of “Person” has to be
defined, according to the attributes and methods specified in
the class “Person.” In case of multiple involvement of a class
in several tasks, such as “Person” in recruiting, updating and
removing staff data, the dynamic specification integrates dif-
ferent behavior specifications in a single OBD. The upper part
in Fig. 12 shows part of the life cycle of “Name” being part
of “Person.” The figure also demonstrate the synchronization
with classes from other models—in this case, the interaction
model. The “Text Field” of the interaction model serves as
input medium for the “Name” of a “Person.” The same mecha-
nism is applied for synchronizing OBDs from the dynamic task
or user model with OBDs from the dynamic data model. This
way the access permits according to the tasks and the roles are
specified. In addition, it can be checked whether each class of
the problem domain (data model) is actually required for task
accomplishment, and vice versa, whether data are missing for
task accomplishment (checking for task-completeness).

Structural Interaction Modeling:The initial step in interac-
tion modeling concerns the set up of generic interaction fea-
tures. In case of platform-specific solutions, such as for GUIs,

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

kushiro
ハイライト表示

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 519

Fig. 9. Sample functional dynamic user model.

Fig. 10. Deriving structural problem domain data from the task model.

Fig. 11. Setting up a structural problem domain data model.

the structure of the elements and styles has to be loaded from re-
source scripts. In assigning tasks and user actions to presentation
elements a platform-dependent design might, in particular for
object-oriented GUI development, save time and effort for spec-

ification. The upper parts in Figs. 13 and 14 contain such generic
elements: “Groupbox,” “Radiobutton,” and “Button.” In case of
using generic structures, further structural refinement and ad-
justment are required. In particular, platform-specific structures

520 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

Fig. 12. Setting up a dynamic problem domain data model (upper part) and relating interaction behavior (JF—Jump Forward, JB—Jump Backward) through an
OID (relating “name” and “text field”).

Fig. 13. Refining generic interaction elements in the structural interaction model.

have to be adjusted to particular styles, since they provide a va-
riety of arrangements (e.g., through recursive structures, such
as container objects). Before the tasks and the problem domain
data are assigned to the selection and grouping of the interaction
elements and styles, in this step the fundamental look and feel
of the interactive application at hand can be specified.

The next step in interaction modeling can be considered to
be the first move toward application-specific design. The se-
lected (and eventually pre-arranged) interaction classes are fur-
ther refined and tuned with other model elements, in order to
achieve fully customized interaction features. Fig. 13 demon-
strates this move for relating “Sex” and “Marital Status” (as-
signed to “Person”) of the structural data model to “Groupbox”

and “Radiobutton” of the initial structural interaction model. It
has to be noted that the type of relationship to be set between the
generic interaction elements and the data depends on the used
platform—in this case aggregation and subclass relationships
for attribute values due to the nature of the Microsoft Founda-
tions Classes library. Fig. 14 shows part of the seamless integra-
tion of the structural task model with the structural interaction
model, namely, for the activity “remove staff member” using the
“is attached to” relationship.

Dynamic Interaction Modeling:As for the previous models,
for some of the classes of the generic structural interaction
model an OBD has to be specified. The OBDs have to be related
to OBDs of the task, user, and task model to specify task- and

kushiro
ハイライト表示

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 521

Fig. 14. Relating the structural task model to the structural interaction model.

Fig. 15 Part of a sample dynamic interaction model.

user conforming interaction, as already shown in Fig. 12 for the
“Name Field.” Fig. 15 shows the OBD of a generic window for
browsing. For our case, it has been integrated with the “Search
for Candidates” task (a layout of the generated screen shot is
shown in Fig. 17).

Application Modeling: Application design requires the syn-
chronization of the specifications achieved so far. Again, OIDs
enable the visualization of the global behavior of the application
according to the business processes to be supported. Checking
for the completeness is based on 1) tracing the key events for
task accomplishment; 2) checking for the completeness of links

between interaction-relevant tasks, operations on data, data and
interaction elements; and 3) checking for possible side effects,
such as deadlocks.

Functional Specification:Once the overall behavior has
been specified, each of the methods of the class/object specifi-
cations have to be detailed in the course of functional specifi-
cation. The operations have to be specified through selection of
prefabricated methods of platforms or using formal languages.

Prototyping: Prototyping is enabled in TADEUS based on
the application model. It does not require a functional specifi-
cation at the level of data manipulation. In the course of proto-

kushiro
ハイライト表示

kushiro
ハイライト表示

522 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

Fig. 16. Sample form prototype.

Fig. 17. Sample browser window prototype.

typing instances of interaction model classes are generated and
their life cycles are instantiated as specified in the OBDs and
OIDs. Figs. 16 and Fig. 17 show two snapshots as a result of
TADEUS-based prototyping. In Fig. 16 the display for handling
the activities “Handle Applications,” “Insert Staff Member,”
and “Remove Staff Member” is shown, whereas Fig. 17 shows
the browser window for “Search for Candidates.” Fig. 18 shows
the tree view as generated by the prototyping engine to facilitate
tracing the flow of control in the course of executing specifica-
tions. A color scheme encodes the state of execution and the
possible paths to follow.

Tool Support: The current version of the TADEUS-environ-
ment supports the interpretation of application model methods
according to the constraints and activities of the workflow as
specified in the task model. The synchronized behavior dia-
grams (representing the dynamic part of the application model)
are executed according to the specified state transitions and con-
straints. The developers may directly execute the workflow ei-
ther step-by-step or continuously.

Interactive Workspace:The TADEUS workspace is a main
application window that provides several task- and navigation-
relevant features located in the Main Menu, Tool-Bar, View-Bar,
Draw-Bar, and Status-Bar (see Fig. 19).

The View-Bar contains the submenu and encapsulates
the most important commands to configure the workspace,
such as grid en/disabling, zooming, and diagram switching. “T”
shows the TADEUS view window for navigation and control.

It allows to switch between the different TADEUS models by
pressing the button corresponding to the selected model. The
models are encoded through different colored classes, since the
entire specification is always visible, but can only be edited
according to the selected view (model) as indicated in the view
window.

Prototyping Engine:The prototyping engine executes an ap-
plication model through a specifically developed run-time man-
ager. This component handles the administration of instances
and the program flow during execution. The principal flow of
control with respect to the application model is oriented toward
the execution of those instances that are required to be processed
in a certain sequence for interactive task accomplishment [41]:

Initialize runtime system
For each class do:

For each instance do:
Get current state of instance
For each transition from this state do:

Check whether condition is true
From all possible transitions choose the one with the

highest relevance for routine task accomplishment Execute
all actions of this transition

Change into destination state
Next Instance

Next Class

The execution is completed, as soon as no further transitions
can be processed. However, processing can be continued
through adding new instances or other steps, under control
of the designer who is considered to be a major user of the
TADEUS environment. This way, the behavior of the entire
application can be captured accurately. Instances start to exist
as soon as they are relevant for interactive task accomplishment.

When the prototyping engine is started, all variables are set to
their initial values, and all existing instances of classes to their
initial states, according to the specification. Based on this set-
ting, the prototyping engine tries to find a transition whose con-
dition is met. It executes this transition after identifying the in-
stance with the latest executed transition. Hence, two transitions
of one and the same instance are only executed in direct suc-
cession, in case no other instance of any class contains such an
executable transition. Initially, the current state of the instance
is determined, then all transitions that refer to other states are
considered for execution.

kushiro
ハイライト表示

kushiro
ハイライト表示

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 523

Fig. 18. Tracing the execution of specifications in TADEUS.

Fig. 19. TADEUS workspace.

The interpreter is able to detect stop conditions (i.e., no tran-
sition can be processed) immediately. In such a situation it pro-
vides the designer with the opportunity to influence the program
flow during run time, i.e., to change the specification dynami-
cally.

When prototyping is completed or interrupted by the de-
signer, all instances of classes or relations that have been
created during the execution are removed, except the initial
instances. They are kept in memory. Hence, every time the in-
terpreter is started the designer can rely on the initial instances
and preconditions for prototyping.

Consistency Checker:The introduction of additional mod-
eling constructs to object-oriented ones, such as the “handles”
relationship between elements of the user model and the task
model, requires special treatment of semantic relationships.
Forcing the designer to achieve task-completeness through
these constructs requires consistency and integrity checks:
Every time a relationship between class specifications is used,
the correctness of its use is checked. This requirement is
met through checking for the correct use of semantics of the
relationship through a procedural specification of the semantics

[46]. If relationships were to be used with various meanings,
the resulting specification would be ambiguous. For instance,
the relationship “handles” can only be used between functional
user roles (specified in the user model) and task specifications
of the task model.

For a complete check, activities are performed both at the
structural and dynamic level. Accordingly, the design of each
algorithm has been divided into two parts:

1) Checking the ORD (structural level): At this level it is
checked whether the relationship

• is used correctly, i.e., TADEUS controls whether the
entities selected for applying the relationship corre-
spond to the defined semantics;

• is used completely, i.e., all the necessary infor-
mation is provided to set the relationship, such as
checking the existence of OBDs corresponding to
ORD-task specifications;

2) Checking OBDs (dynamic level): At this level it is
checked whether the objects and/or classes connected by
the relationship are behaving according to the semantics
of this relationship, e.g., the behavior of data objects
corresponds to the sequence implied by “before.”

The algorithms are designed in such a way that they scan
the entire design representation. Basically, the meaning of con-
structs is mapped to constraints that concern ORDs and OBDs
of particular models, as well as when OBDs have to be synchro-
nized. The checker indicates an exception, when the specifica-
tions do not completely comply with the defined semantics. For
instances, the correct use of the “before” relationship in the task
model requires meeting the following constraints 1) at the struc-
tural layer: “before” can only be put between task class specifi-
cations; 2) at the dynamic layer: The OBDs corresponding to the
dynamic specification are traced to check whether all activities
of task 1 (assuming task 1 “before” task 2) have been completed
before the first activity of task 2 is started.

The algorithms are stored in a library being part of the
TADEUS repository. This library provides the designer with a
general basis upon which algorithms might be added, as soon

524 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

Fig. 20. Architecture of the TADEUS environment.

as the designer feels a specific need to do so in the course of
application development. This way, TADEUS provides a basic
library as well as open workspace, which cannot only be reused
but also expanded for novel design problems. New algorithms
can be added to the library either before the design or during
the design process. Fig. 20 shows the overall architecture of the
TADEUS environment, comprising the relevant components
for specification and prototyping support.

IV. CONCLUSIONS

When considering the interaction between humans and
computers from a work and users’ perspective rather than
focusing primarily on technical issues, development procedures
have to be revisited in terms of context-sensitivity, task-com-
pleteness, understandability, and traceability. An analysis of
existing task-based and user-centered development approaches
revealed a lack of thorough integration of structured develop-
ment techniques and user interface development procedures.
User interface design should not merely be a craftsman’s
apprenticeship meeting user needs “seemingly by magic” [48,
p. 16], but a collective and structured approach to interactive
task support. In this contribution we addressed the following
issues considered to be crucial for bridging the gap between
structured software development and traditional user interface
development:

• accurate elicitation, acquisition and stringent representa-
tion of knowledge about users and tasks;

• tool support capturing all phases of development;
• user involvement for design participation and feedback

provision.
We have provided aseamless developmentsolution, allowing

developers to successively transform user and task inputs into
a technical artifact in a way, that 1) all relevant tasks and user
properties can be captured (taking into account organizational
and cognitive constraints) and 2) it can be traced by actual users
(task performers) and (system) developers how the artifact has
been created through stepwise refinement and transformation
of task knowledge. The TADEUS solution understands devel-
opment as a collective process rather than a sequence of iso-
lated tasks or phases. It ranges from analysis to the generation
of different end user systems (even based on identical business

processes), and addresses domain experts, users, analysts, de-
signers, usability engineers, and programmers. It enhances rep-
resentation as containment of ideas toward rationale provision
of development decisions. The process and the results of de-
velopment activities are easily accessible and traceable for the
listed user groups, since TADEUS is based on diagrammatic
(re)presentation of development knowledge.

The approach (re)defines usability engineering through an in-
tegrated model-driven, task-based, user-oriented and object-ori-
ented life cycle. As such, it corresponds closer to the actual de-
sign process, namely, switching between views, without loss of
consistency and completeness of workflow knowledge. The ob-
ject-oriented representation does not only facilitate the commu-
nication among developers and task performers, but also allows
for workflow-driven user interface prototyping.

Although TADEUS has high potentials to reduce develop-
ment efforts and improve the quality of user interface design
and prototypes with respect to task completeness, its range
of application can be extended with respect to openness for
platforms, tools and knowledge representation techniques. Cur-
rent research activities focus on import functions for business
process re-engineering tools, two–dimensional (2-D) platforms
and 3-D interaction modalities, such as VRML worlds. In
addition, the user model is currently under investigation with
respect to embedding sub-symbolic knowledge processing for
dynamic adaptation of user interfaces, as indicated in [43].

ACKNOWLEDGMENT

The author thanks the many students that have contributed
to the concept and tool developments in TADEUS: C. Mayer,
M. Mittendorfer, S. Mohacsi, M. Nagelholz, W. Ortner, and N.
Vidakis.

REFERENCES

[1] M. Benyon, S. Rasmequan, and St. Russ, “The use of interactive situa-
tion models for the development of business solutions,” inProc. Work-
shop on Perspectives in Business Informatics Research BIR-2000, Mar.
2000, pp. 117–129.

[2] L. Bernstein, Importance of Software Prototyping, in Software Tech-
nology News, vol. 2, no. 1, 1999.

[3] F. Bodart, A. M. Hennebert, J. M. Leheureux, I. Provot, B. Sacré, and J.
Vanderdonckt, “Toward a systematic building of software architectures:
The TRIDENT methodoligical guide,” inProc. Eurographics Workshop
on Design, Specification, Verification of Interactive Systems DSV-IS’95.
Vienna, June 1995, pp. 262–278.

[4] S. Bodker, “Understanding representation in design,”Human-Computer
Interaction, vol. 13, no. 2, pp. 107–125, 1998.

[5] B. Boehm, “A spiral model of software development and enhancement,”
IEEE Computer, vol. 21, pp. 61–72, May 1988.

[6] K. A. Butler, C. Esposito, and R. Hebron, “Connecting the design of soft-
ware to the design of work,”Commun. ACM, vol. 41, no. 1, pp. 39–46,
1999.

[7] Commun. ACM, Special Section on “Symbolic Modeling in Practice”,
vol. 42, no. 1, pp. 28–97, Jan. 1999.

[8] T. Dayton, A. McFarland, and J. Kramer, “Bridging User Needs to Ob-
ject-Oriented GUI Prototype Via Task Object Design,” inUser Interface
Design. Bridging the Gap from User Requirements to Design. Boca
Raton, FL: CRC, 1998, pp. 15–36.

[9] D. J. M. de Baar, J. Foley, and K. E. Mullet, “Coupling application de-
sign and user interface design,” inProc. CHI’92, 1992, pp. 259–266.

[10] D. J. H. Baar, M. H. Grey, J. D. Foley, and K. E. Mullet, “Coupling ap-
plication design and user interface design,” inProc. CHI’92, June 1992,
pp. 657–660.

[11] D. Diaper,Task Analysis for Human-Computer Interaction, D. Diaper,
Ed. Chicester, U.K.: Ellis Horwood, 1990.

STARY: TADEUS: DEVELOPMENT OF TASK-BASED AND USER-ORIENTED INTERFACES 525

[12] R. K. Ege and C. Stary, “Designing maintainable, resusable interfaces,”
IEEE Softw., vol. 9, no. 6, pp. 24–32, Nov. 1992.

[13] P. Ehn,Work-Oriented Design of Computer-Artifacts: Falköping Arbet-
slivscentrum/Almquist and Wihsell International, 1988.

[14] D. W. Embley, B. D. Kurtz, and S. N. Woodfield,Object-Oriented
Systems Analysis. A Model-Driven Approach. Englewood Cliffs, NJ:
Yourdon, 1992.

[15] B. C. Glasson, I. T. Hawryszkiewycz, B. A. Underwood, and R. A.
Weber,Business Process Re-Engineering: Information Systems Oppor-
tunities and Challenges, B. C. Glasson, I. T. Hawryszkiewycz, B. A.
Underwood, and R. A. Weber, Eds. Amsterdam, The Netherlands: El-
sevier Sciences, 1994.

[16] M. Herczeg, H. Hohl, and M. Ressel, “A new approach to visual pro-
gramming in user interface design,” inProc. HCI Int. ’93, vol. 2, 1993,
pp. 74–79.

[17] Int. J. Human-Comput. Stud., Special Issue on Object-Oriented Ap-
proaches in Artificial Intelligence and Human-Computer Interaction,
vol. 41, no. 1/2, July/Aug. 1994.

[18] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,Object-Ori-
ented Software Engineering: A Use Case Driven Approach. Reading,
MA: Addison-Wesley, 1992.

[19] I. Jacobson, M. Ericsson, and A. Jacobson,The Object Advantage: Busi-
ness-Process Reengineering with Object Technology. Reading, MA:
Addison-Wesley, 1995.

[20] C. Janssen, A. Weisbecker, and J. Ziegler, “Generating user inter-
faces from data models and dialogue net specifications,” inProc.
INTERCHI’93, 1993, pp. 418–423.

[21] P. Johnson, St. Wilson, P. Markopoulos, and J. Pycock, “ADEPT—Ad-
vanced design environments for prototyping with task models,” inProc.
INTERCHI’93, 1993, p. 56.

[22] H. Kaindl, “Difficulties in the transition from OO analysis to design,”
IEEE Softw., vol. 17, no. 9, pp. 94–102, 1999.

[23] G. Kotonya, “Practical experience with viewpoint-related requirements
specification,”Requirements Eng., vol. 4, pp. 115–133, 1999.

[24] P. Luo, P. Szekely, and R. Neches, “Management of user interface design
in humanoid,” inProc. INTERCHI’93, 1993, pp. 107–114.

[25] D. J. Mayhew, The usability engineering lifecycle, in Tutorial Notes no.
25, CHI’99, ACM, 1999.

[26] J. A. McDermid, “Requirements analysis: Orthodoxy, fundamentalism,
and heresy,” inRequirements Engineering: Social and Technical Issues,
M. Jirotka and J. Goguen, Eds. New York: Academic, 1994, pp. 17–40.

[27] B. A. Myers, “User interface software tools,”ACM TOCHI, vol. 2, no.
1, pp. 64–103, Mar. 1995.

[28] W. M. Newman and M. G. Lamming,Interactive System De-
sign. Reading, MA: Addison-Wesley, 1995.

[29] D. A. Norman and St. W. Draper,User Centered System Design: New
Perspectives on Human-Computer Interaction, D. A. Norman and St. W.
Draper, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1986.

[30] J. Preece,A Guide to Usability: Human Factors in Computing, J. Preece,
Ed. Reading, MA: Addison-Wesley, 1993.

[31] A. Puerta, E. Cheng, O. Tunhow, and J. Min, “MOBILE: User-centered
interface building,” inProc. CHI’99, 1999, pp. 426–433.

[32] P. N. Robillard, “The role of knowledge in software development,”
Commun. ACM, vol. 42, no. 1, pp. 87–92, Jan. 1999.

[33] M. B. Rosson and Sh. R. Alpert, “The cognitive consequences of ob-
ject-oriented design,”Human-Computer Interaction, vol. 5, no. 4, pp.
345–380, 1990.

[34] M. B. Rosson and J. M. Carroll, “Integrating task and software devel-
opment for object-oriented applications,” inProc. CHI’95, 1995, pp.
377–384.

[35] M. Sage and C. Johnson, “Interactors and Haggis: Executable specifica-
tions for interactive systems,” inProc. 4th Eurographics Workshop on
Design, Specification on Verification of Interactive Systems, 1997, pp.
101–107.

[36] B. Schewe and K.-D. Schewe, “A user-centred method for the de-
velopment of data-intensive dialogue systems—An object-oriented
approach,” in Information System Concepts, E. D. Falkenberg, W.
Hesse, and A. Olivé, Eds. London, U.K.: Chapman & Hall, 1995, pp.
88–103.

[37] K. Schneider, “Prototypes as assets, not toys. Why and how to extract
knowledge from prototypes,” inProc. ICSE, 1996, pp. 522–531.

[38] M. Sherwood-Smith, “People-Centred Process Re-Engineering: An
Evaluation Perspective to Office System Re-Design,” inBusiness
Process Re-Engineering: Information Systems Opportunities and
Challenges, B. C. Glasson, I. T. Hawryszkiewycz, B. A. Underwood,
and R. A. Weber, Eds. Amsterdam, The Netherlands: Elsevier, 1994,
pp. 535–544.

[39] A. J. H. Simons and I. Graham, “Things that go wrong in object
modeling with UML 1.3,” inBehavioral Specifications of Business and
Systems, H. Kilov, H. Rumpe, and I. Simmonds, Eds. Norwell, MA:
Kluwer, 1999, pp. 221–242.

[40] I. Sommerville,Software Engineering. Wokingham, U.K.: Addison-
Wesley, 1989.

[41] C. Stary, N. Vidakis, St. Mohacsi, and M. Nagelholz, “Workflow-ori-
ented prototyping for the development of interactive software,” in
Proc. IEEE 21st Int. Computer Software and Applications Conf.
COMPSAC’97, 1997, pp. 530–535.

[42] C. Stary, “Task- and model-based user interface development,” inProc.
IFIP World Congress’98, ITKNOW, 1998.

[43] C. Stary and M. Peschl, “Representation still matters. Cognitive engi-
neering and user interface design representations,”Behav. Inf. Technol.,
vol. 17, no. 6, pp. 338–360, 1998.

[44] P. N. Sukaviriya, J. D. Foley, and T. Griffith, “A second generation
user interface design environment,” inProc. INTERCHI’93, 1993, pp.
375–382.

[45] A. G. Sutcliffe, A. Economou, and P. Markis, “Tracing requirements er-
rors to problems in the requirements engineering process,”Requirements
Eng., vol. 4, pp. 134–151, 1999.

[46] N. Vidakis and C. Stary, “Algorithmic support in TADEUS,” inProc.
ICCI’96, 1996.

[47] St. Wilson and P. Johnson, “Bridging the generation gap: From work
tasks to user interface design,” inProc. CADUI’96, 1996, pp. 77–94.

[48] L. Wood,User Interface Design. Bridging the Gap from User Require-
ments to Design. Boca Raton, FL: CRC Press, 1998.

[49] V. Zimmermann, Object-Oriented Business Engineering(in
German). Wiesbaden: Gabler/DUV, 1999.

Chris Stary (M’00) received the Ph.D. degree in conceptual modeling of
human-computer interaction from the Vienna University of Technology,
Vienna, Austria, in 1988.

He then joined the Vienna University of Technology, where he was was pro-
moted to Associate Professor in 1993. In 1995, he joined the University of Linz,
where he is currently Full Professor in Business Information Systems in the De-
partment of Business Information Systems, Communications Engineering Divi-
sion. He has held several visiting professorships in Europe and the U.S. His main
interest is the methodological integration of HCI-design with structured devel-
opment techniques from software and knowledge engineering. He has authored
several articles and books on interactive systems and usability engineering. He
has been principle investigator in national and international projects, such as
AVANTI (EU-ACTS program) or SOWING (EU-TSER program).

