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Surface energy balance algorithms require accurate 
meteorological data and vegetation indices to generate 
accurate water and energy fluxes including evapotranspi-

ration (ET) (Kotlarski et al., 2005; Allen et al., 2011b; Wang 
et al., 2015). High-resolution accurate ET maps could be vital 
to managing water, especially in agricultural landscapes that 
experience water scarcity (Gowda et al., 2008; Anderson et al., 
2012; Khanal et al., 2017; Kiptala et al., 2018; Petropoulos et 
al., 2018). Various models, types of weather data, and vegeta-
tion indices from different data sources are frequently used to 
compute large-scale high resolution evapotranspiration (ET) 
(Courault et al., 2005). Landscape-scale ecological modeling is 
hindered by the lack of suitable data as well as scale mismatch 
(Root and Schneider, 2002; Abatzoglou, 2013), posing chal-
lenges to model parameterization and specification of model 
inputs (Renard et al., 2010).

In this study, biophysical ET algorithm; BAITSSS (Backward-
Averaged Iterative Two-Source Surface temperature and energy 
balance Solution) (Dhungel et al., 2016b) was utilized to simu-
late ET in a point and a gridded scale at an advective environ-
ment of Bushland, Texas. BAITSSS was developed to fulfill the 
future demand of more accurate and detailed modeling approach 
for surface energy fluxes (Dhungel et al., 2016b, 2018) as pointed 
out by Woolway et al. (2015). Evaluations of model performance 
with alternative sources of meteorological data in various envi-
ronments and for different vegetation types can contribute to 
the understanding of model behavior and uncertainty. BAITSSS 
utilizes gridded data primarily from the North American Land 
Data Assimilation System; NLDAS; (Mitchell et al., 2004) and 
remotely sensed vegetation indices (Leaf area index; LAI) and 
Normalized difference vegetation index (NDVI) primarily from 
Landsat: 30 m spatial resolution). Comprehensive weather data 
provided by NLDAS included 1/8° latitude/longitude resolution 
over a domain that covers the continental United States, part of 
Canada, and part of Mexico (125o W –67o W, 25o N –53o N) in 
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Abstract
Complex interactions among meteorological data and vegetation 
indices are incompletely understood in relation to evapotranspira-
tion (ET) calculations for larger spatial domains with higher spatial 
and temporal resolution. Objectives of this study were to evaluate 
contributions of inputs to uncertainty in ET calculations and to 
enhance understanding of interactions among weather data, vege-
tative indices, and resistances utilized in biophysical ET model. We 
evaluated individual and combined effects of weather variables and 
vegetation indices using BAITSSS (Backward-Averaged Iterative 
Two-Source Surface temperature and energy balance Solution). 
Local weather station (LWS) data at a lysimeter site were obtained 
for irrigated corn (Zea mays L.) during the growing season (May 
to September, 2016) at Bushland, Texas. Gridded meteorological 
data were obtained from North American Land Data Assimila-
tion System (NLDAS) (~ 12.5 km) and remotely-sensed vegeta-
tion indices (Landsat 30 m). Standard weather station (SWS) data 
were obtained from a grass reference near lysimeter site. The r2 and 
RMSE of ET simulated using LWS data and measured vegetation 
indices were 0.90 and 0.85 mm for daily ET, and 0.90 and 0.10 mm, 
for hourly ET, compared to lysimeter ET (less than 4% cumulative 
error). However, r2 and RMSE were 0.74 and 1.64 mm for daily 
ET, and 0.81 and 0.14 mm for hourly ET using gridded data, with 
positive bias (~ 25% from NLDAS data). Simulated ET from SWS 
data exhibited similar behavior to gridded data with increased ET 
up to 21%. Results quantify difficulties in ET modeling using com-
monly available and widely adopted data sources.
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Core Ideas
•	 Increased bias in ET due to various data sources where generally 

utilized standard weather data poses similar biases.
•	 Increased understanding of the complex relationship among the 

various weather input and vegetation indices.
•	 Results showed local weather station data closely represented site 

condition indicating the difficulties and challenges in ET modeling 
using other commonly available and widely adopted data sources.
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hourly resolution, beginning in 1979. NLDAS weather data have 
been used in hydrological and atmospheric research, including 
ET modeling (Mitchell et al., 2004). The point hourly data was 
acquired from local weather station (LWS) and standard weather 
station (SWS) in close proximity of study area.

Extent of the uncertainty in these various data sources includ-
ing remote sensing products (Von Schuckmann et al., 2016) is 
generally unknown and difficult to be quantified at different 
scales because of complex interactions among variables in ET 
modeling (Brutsaert, 1982). It is useful to distinguish between 
model limitations and various biases (Schimel et al., 1997) 
caused by input data that may not represent the actual weather 
and vegetation indices in a given field. For instance, the sensitiv-
ity of reference ET based on the Penman–Monteith equation 
weather variables [daily air temperature (Ta), wind speed (uz), rel-
ative humidity (RH), and daily sunshine duration (Rs↓)] showed 
wide variation by season and region (Gong et al., 2006; Guo 
et al., 2017). Likewise, a two-fold increase in potential ET was 
observed in Australian locations using the Penman–Monteith 
equation, where uz and RH were the most sensitive variables 
(Guo et al., 2017). The major objectives of this study were to 
evaluate the contributions of inputs to uncertainty in ET calcu-
lation and evaluate the sensitivity in an energy balance model to 
influences of gridded and local data. This study would provide 
a unique opportunity to improve the understanding of interac-
tions among weather variables, vegetation indices, and resis-
tances. Our overall goal is to develop python (“Python,” 2018), 
together with GDAL and Numpy libraries based automated 
operational ET model (BAITSSS) utilizing NLDAS weather 
data and Landsat based vegetation indices at 30 m spatial resolu-
tion, hourly scale with known and quantifiable uncertainties.

Materials and Methods
BAITSSS Model Overview

Details of the BAITSSS model and equations were shown in 
Dhungel et al. (2016b) and updated equations in Appendix A. 
BAITSSS utilizes a physically-based representation of radiative 

and convective processes affecting heat and water vapor 
exchange for land and vegetative surfaces. BAITSSS adopts the 
Jarvis equation (Eq. [A-13]) to compute canopy resistance (rsc) 
(Kumar et al., 2011) where constant minimum canopy resis-
tance [Rc_min; Day of year (DOY) 143 to 250] for irrigated corn 
was 40 s m–1 (Kumar et al., 2011) and increased Rc_min, i.e., 
150 s m–1 thereafter (last 20 d) during the assumed senescence 
period as per the analysis reported in Dhungel et al. (2018) (in 
review; identical study based on 15-min LWS data). The scheme 
of modeling latent heat flux and sensible heat flux based on aero-
dynamic equations were shown in Fig. 1 with soil (subscript s) 
and canopy (subscript c) (Appendix- Eq. [A-1– A-10], Table A-1 
shown for all variable symbols).

Data

The simulation period was between 22 May (DOY 143) and 
26 September (DOY 270) 2016, corresponding to 12 d after 
planting to maturity of drought-tolerant corn (Zea mays L. cv. 
PIO 1151). This simulation interval included a range of envi-
ronmental conditions with multiple drying and wetting events. 
BAITSSS was implemented for a single location (point scale; 
one dimentional) as well as gridded spatial domain (NLDAS 
weather data and Landsat-based vegetation indices) (Table 1). 
Effects of alternative input data sources on BAITSSS model 
performance were analyzed by substituting a ‘gridded’ input 
for a measured input, individually and in combinations. These 
combinations represent the following scenarios; a) all measured 
(including irrigation (Irr); 15 min to hour), b) fraction of cover 
( fc), c) LAI, d) precipitation (P), e) specific humidity (qa), f) Rs↓, 
g) Irr, h) fc and LAI, i) uz and Ta, j) combined qa, Rs↓, and P, k) 
combined qa, Rs↓, P, Ta, and uz (all NLDAS), l) all gridded data 
(Table 2). Dhungel et al. (2018) discussed the possible effect of 
advection in ET calculation based on LWS data, our implicit 
assumptions and limitation of this study were all these data 
sources (LWS, SWS, and gridded data) may be subject to similar 
effects of regional and local advection.

Fig. 1. Modeling scheme for a) latent heat flux (LE) and b) sensible heat flux (H) of BAITSSS surface energy balance components (Dhungel 
et al., 2016b).
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Study Area

The study area was located at the USDA-ARS Conservation 
and Production Research Laboratory at Bushland, Texas (35° 
11́  N, 102° 6́  W, and 1170 m above MSL) with an advective 
environment. Measurement of ET was by a monolithic weigh-
ing lysimeter (NE Lysimeter, Fig. 2) located in the center of 
a 450 m × 439 m field. The lysimeter surface was 3 m by 3 m 
(containing four crop rows) and 2.4 m deep. Detailed informa-
tion about the lysimeter (Evett et al., 2016), corresponding 
weather data, and vegetation indices are shown in Table 1 and 
described in Fig. 2, 3, 4, 5, and 6. A small area of interest (AOI) 
for Landsat imagery was carefully selected, avoiding Landsat 7 
stripe effects for the NE lysimeter site (Fig. 2). The NLDAS data 
being 1/8° latitude/longitude resolution (~ 12.5 km), the AOI is 
represented by a single pixel of NLDAS.

Initial Soil Moisture and irrigation

A relatively dry profile (θsur = 0.05 m3 m–3; soil volumetric 
water content) was adopted for the surface, evaporative layer 
(100 mm) at the start of the simulation. However, Dhungel et 
al. (2018) utilized θsur = 0.15 m3 m–3 based on relative soil sen-
sor information, where ET was overestimated for the first 2 d 
i.e., DOY 143 and 144, which probably may be because of the 
adopted simplified evaporation model in BAITSSS (Eq. [A-21]). 
Further evaluation is needed in this regard if this behavior persists 
systematically. We adopted depth averaged soil water content at 
root zone (θroot) which was 0.32 m3 m–3 based on repeated neu-
tron probe observations at the start of the simulation. Irrigation 
(Irr) was applied through controlled subsurface drip (SSD) lines 
and measured throughout the study; no Irr was applied at the 
upper soil surface (top 100 mm) in the field, preventing evapora-
tion at the soil surface from irrigation. The Irr application target 
amounts were 25 mm in the lysimeter field (Fig. 5b).

In Irr sub-model in BAITSSS, Irr (i) was simulated and 
applied when θroot was below a given threshold moisture content 
(θt; i is time step, Eq. [1]) (Dhungel et al., 2016b). To mimic 
the behavior of actual measured Irr in the field (~ 25 mm target 
application and SSD), rooting depth (droot) and management 

allowable depletion (MAD) was adjusted and Irr was applied 
only in the root zone. We utilized MAD of 0.5 throughout the 
simulation process. The rest of the variables [i.e., soil moisture 
at field capacity (θfc) and wilting point (θwp)] were defined from 
observed field measurements.
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Point Scale Data

Micrometeorological and surface temperature measurements 
were obtained by instruments deployed on a ~3 m mast located 
at the north edge of the NE lysimeter (referred as local weather 
station– LWS, Fig. 2a). 15-min weather data were averaged 
hourly for simulation and comparison. The Ta and RH were 
measured by a sensor assembly contained inside a radiation shield 
(model Hygroclip, Rotronic Instrument Corp., Hauppauge, 
New York). The uz was measured by a sonic anemometer (model 
WindSonic 2D, Gill Instruments Ltd., Lymington, Hampshire, 
UK). Directional brightness temperature was measured by a 
wireless infrared thermometer with a nadir view centered over 
the crop row (model SPIP-IRT, Dynamax, Inc., Houston, Texas). 
Incoming shortwave irradiance was measured by a pyranometer 
(model PSP, Eppley Laboratories, Newport, Rhode Island) at 2.0 
m above the surface.

Standard 15-min weather data Ta, Rs↓, P, uz, and RH were 
obtained from the USDA-ARS Soil and Water Management 
Research Unit (SWMRU), Bushland, TX (referred as standard 
weather station- SWS, Fig. 2a). This weather station was located 
at a grass reference site ~250 m east of the lysimeter, where ~1 
ha of fescue was well-watered by subsurface drip irrigation and 
maintained at ~0.12 m height. Table 1 summarizes measure-
ment conditions from LWS and SWS. The measurement height 
(z; Fig. 1; Eq. [A-10]) of Ta was 2 m (for heat) and 10 m for uz 
(for momentum) for NLDAS gridded data, while z was 2.8 m 
for both Ta and uz (heat and momentum, respectively) for LWS, 
and 2 m for both Ta and uz for SWS (Table 1). In the single 

Table 1. Meteorological data, vegetation indices, and other variables.

Variable
Gridded

(NLDAS hourly)
Point (NE lysimeter hourly 

averaged; LWS)
Point (SWMRU hourly 

averaged; SWS)
Meteorological data Measurement height
Air temperature (Ta) 2 m 2.8 m 2 m
Wind speed (uz) 10 m 2.8 m 2 m
Specific humidity (qa) 2 m – –
Relative humidity (RH) – 2.8 m 2 m
Incoming solar irradiance (Rs↓) Surface Surface Surface
Precipitation (P) Surface Surface Surface
Surface runoff (Srun) Surface – –
Vegetation indices Data sources
Leaf area index (LAI) Estimated based on Landsat Measured Measured
Normalized difference vegetation index (NDVI) Landsat – –
Fraction of canopy cover (fc) 
 

Estimated from  
NDVI using Landsat 

Estimated from  
measured ratio of canopy  

width to row spacing

Estimated from  
measured ratio of canopy 

width to row spacing
Other

Irrigation (Irr) Simulated Measured Measured
Field capacity (θfc) and wilting point (θwp) Gridded data Point data Point data
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location form, field-measured data included weather conditions, 
LAI, and the ratio of canopy width to row spacing used to com-
pute the fraction of canopy cover ( fc); linear interpolation of 
vegetation indices provided a continuous representation of these 
field-measured values throughout the season.

Gridded Data

Estimated LAI in gridded form was based on soil adjusted 
vegetation index (SAVI) using Landsat (Allen et al., 2012). The 
LAI and NDVI (Landsat 7 (LC07) and 8 (LC08); https://earth-
explorer.usgs.gov) were estimated using Landsat images (path 
31 and row 36) from following dates: a) 23 May 2016 (LC07), 
b) 8 June 2016 (LC07), c) 16 June 2016 (LC08), d) 2 July 2016 
(LC08), e) 10 July 2016 (LC07), f) 26 July 2016 (LC07), g) 27 
Aug. 2016 (LC07), h) 4 Sept. 2016 (LC08), i) 20 Sept. 2016 
(LC08), and j) 28 Sept. 2016 (LC07) (LAI; Fig. 2a to 2j, respec-
tively). In this study, we utilized a maximum number of avail-
able images to evaluate the accuracy of these gridded vegetation 
indices and to test the validity of linearity between image dates. 
NDVI from Landsat was used to compute gridded fc. NLDAS 
data (https://hydro1.gesdisc.eosdis.nasa.gov/data/NLDAS/
NLDAS_FORA0125_H.002/) as meteorological forcings were 
(solar irradiance (Rs↓), wind speed (uz), air temperature (Ta), spe-
cific humidity (qa), and precipitation (P) (Table 1). Gridded uz 
from NLDAS at 10 m height was converted to 2.8 m for simula-
tion and comparison purpose (Fig. 3d) using identical roughness 
length of momentum (zom) (Eq. A-11).

Error and Sensitivity Analysis

The predictive accuracy of calculations was evaluated against 
field measurements (ET, surface temperature and Rn) using a 
linear regression. Performance measures included the coefficient 
of determination (r2), root-mean-square error (RMSE), slope 
and intercept from the regression of simulated against observed, 
as well as cumulative ET. Responses of the BAITSSS model to 
gridded input parameters were evaluated using two different 
comparison baselines. In Section 3.2 and 3.3, comparisons of 
calculated parameters (i.e., ETsim (scenario ‘ith’) are against field 
measurements (ETlysimeter, IRT, net radiometer) (Eq. [2a]). 
However, for sections 3.2 (part of the discussions), 3.4, and 
3.5 comparisons are against BAITSSS using measured inputs 
(ETsim (scenario ‘a’); Eq. 2b).
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Model sensitivity to input source was evaluated using a 
dimensionless sensitivity analysis coefficient (Svi) for input 
variables (Saxton, 1975; Gong et al., 2006; Ambas and Baltas, 
2012). (Ampas, 2010), in Eq. [3], ¶ET is the change in ET 
corresponding to ¶Vi, the change in the ith variable (selected 
variables shown in Fig. 11) that is, the partial derivative (¶) of 
the ET dependency transformed into a nondimensional form 
(Beven, 1979). The symbol ‘σVi‘ is the standard deviation of the Ta

bl
e 

2.
 P

os
si

bl
e 

co
m

bi
na

tio
ns

 g
ri

dd
ed

 (N
LD

A
S 

an
d 

La
nd

sa
t)

 a
nd

 m
ea

su
re

d 
da

ta
 b

as
ed

 o
n 

lo
ca

l w
ea

th
er

 s
ta

tio
n 

(L
W

S)
.

S.
L.

†
Sc

en
ar

io
C

um
ul

at
iv

e 
ET

 
(m

m
)

D
ai

ly
H

ou
rl

y
%

 c
ha

ng
e 

in
 c

um
ul

at
iv

e 
ET

 
w

ith
 r

es
pe

ct
 t

o 
ly

si
m

et
er

Sl
op

e
In

te
rc

ep
t

r2
R

M
SE

 (
m

m
)

Sl
op

e
In

te
rc

ep
t

r2
R

M
SE

 (
m

m
)

a
A

ll 
m

ea
su

re
d 

in
cl

ud
in

g 
ir

ri
ga

tio
n 

(1
5 

m
in

 t
o 

ho
ur

)
72

3
0.

93
0.

61
0.

90
0.

85
1.

04
0.

00
0.

90
0.

10
3.

73
b

Fr
ac

tio
n 

of
 c

an
op

y 
co

ve
r

72
6

0.
93

0.
61

0.
90

0.
89

1.
04

0.
00

0.
90

0.
10

4.
16

c
Le

af
 a

re
a 

in
de

x
65

9
0.

83
0.

61
0.

87
1.

03
0.

94
0.

00
0.

87
0.

10
–5

.4
5

d
Pr

ec
ip

ita
tio

n
72

5
0.

97
0.

39
0.

90
0.

88
1.

06
0.

00
0.

91
0.

10
4.

02
e

Sp
ec

ifi
c 

hu
m

id
ity

76
0

0.
97

0.
68

0.
89

1.
03

1.
07

0.
01

0.
89

0.
11

9.
04

f
So

la
r 

ir
ra

di
an

ce
77

3
0.

97
0.

78
0.

89
1.

10
1.

04
0.

02
0.

89
0.

11
10

.9
0

g
Ir

ri
ga

tio
n

72
3

0.
93

0.
61

0.
90

0.
85

1.
04

0.
00

0.
90

0.
10

3.
73

h
Fr

ac
tio

n 
of

 c
an

op
y 

co
ve

r 
an

d 
le

af
 a

re
a 

in
de

x
66

7
0.

83
0.

70
0.

87
1.

0
0.

95
0.

00
0.

88
0.

10
–4

.3
0

i
W

in
d 

sp
ee

d 
an

d 
ai

r 
te

m
pe

ra
tu

re
75

3
0.

95
0.

72
0.

89
1.

02
1.

08
0.

00
0.

89
0.

11
8.

03
j

Sp
ec

ifi
c 

hu
m

id
ity

, s
ol

ar
 ir

ra
di

an
ce

, p
re

ci
pi

ta
tio

n
81

8
1.

05
0.

67
0.

87
1.

46
1.

08
0.

02
0.

88
0.

12
17

.3
6

k 
Sp

ec
ifi

c 
hu

m
id

ity
, s

ol
ar

 ir
ra

di
an

ce
, p

re
ci

pi
ta

tio
n,

 a
ir

 
te

m
p, 

w
in

d 
sp

ee
d 

(a
ll 

N
LD

A
S)

87
5 

1.
05

 
1.

11
 

0.
78

 
2.

06
 

1.
1 

0.
03

 
0.

83
 

0.
16

 
25

.5
4 

l
A

ll 
gr

id
de

d
78

9
0.

91
1.

21
0.

74
1.

64
0.

97
0.

04
0.

81
0.

14
13

.2
0

† 
T

he
 le

tt
er

s 
co

rr
es

po
nd

 w
ith

 le
tt

er
s 

us
ed

 in
 F

ig
ur

es
.



Agronomy Journa l   •   Volume 111, Issue 3  •   2019	 1411

ith meteorological variable. The change (∆) in ET represents the 
difference of a BAITSSS simulation using the gridded form of 
the ith variable [ETsim (scenario ‘ ith’)] and the simulation using 
all measured input [ETsim (scenario ‘a’)]. Daily and seasonal mean 
sensitivity analysis coefficients were reported.
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Results and Discussion

The analysis of uncertainty in calculated ET begins with 
comparison of NLDAS and sources of meteorological data 
with that observed at the lysimeter site (LWS) and followed by 
comparison of LWS and SWS. Differences in sources of P, Irr, 
and vegetation indices are then presented. The effects of these 
differences in inputs and sources on calculated ET, as well as 
surface temperature and net radiation (Rn), are presented as a 
set of scenarios. Sensitivities of the BAITSSS model, based on 
differential weather and canopy input values, are presented. 
Finally, simulation based on grass-reference weather (SWS) data 
is related to previous results.

Weather Data and Vegetation Indices

Comparison between Gridded NLDAS and 
Local Weather Station (LWS) Data

Figure 3 shows an hourly comparison between gridded 
NLDAS and site measured meteorological data (LWS). As 
shown in Table 1, the measurement height of measured data 
was not identical to gridded data, though they are comparable. 
Because of mismatch on measurement height and coarse resolu-
tion of gridded NLDAS data, and possibly other factors (such 
as roughness lengths and possibly advection), some form of 
biases are probably expected in these scatterplots. Regression of 
NLDAS gridded data against LWS data resulted in an RMSE 
of 113 W m–2, 3.73°C, 0.33 kPa, and 1.37 m s–1, respectively, 
for Rs↓, Ta, ea, and uz. Compared to other variables, Rs↓ showed 
a large bias (Fig. 3a) where Luo et al. (2003) also found a similar 
bias (RMSD 130 W m–2) between the ground based weather 
stations and NLDAS at the southern Great Plains. This over-
estimation of Rs↓ in NLDAS data was possibly due to the lack 
of capturing cloud cover (Luo et al., 2003). Gridded Ta tended 
to have a slightly positive bias (Fig. 3b). The qa in terms of ea 
tended to have a negative bias when compared to measured 
data (Fig. 3c). Out of all NLDAS data, modeled Ta matched 
measurements the most (r2 = 0.89 and low RMSE) (Lewis et al., 

Fig. 2. Study area with lysimeter and LAI image based on Landsat path 31 and row 36 (upper left, red border), lysimeter site at various 
dates with LAI images (a to j), incoming solar irradiance from NLDAS (05/09/2016), and State of Texas (upper right).
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2014). The uz was more scattered than other parameters with 
some positive bias (Fig. 3d), where similar observations were 
found by (Luo et al., 2003; Lewis et al., 2014). The r2 was 0.90, 
0.83, 0.66, and 0.39 for Rs↓, Ta, ea, and uz, respectively (Fig. 3). 
The computational difference between measured and gridded 
data may also have contributed some bias in ea (Appendix A).

Comparison between Standard Weather Station 
(SWS) and Local Weather Station (LWS) Data

Figure 4 shows a comparison between weather data from 
the SWS and LWS. Regression of SWS data against LWS data 
resulted in an RMSE of 41.4 W m–2, 0.76°C, 0.17 kPa, and 1.02 m 
s–1 and r2 was 0.99, 0.99, 0.97, and 0.76, respectively for Rs↓, Ta, ea, 
and uz. The uz showed a larger variability (both underestimation 
and overestimation during the simulation period) especially overes-
timation after DOY 180 (Fig. 4d). The Rs↓ (Fig. 4a) and ea (Fig. 4c) 
at a standard weather station showed a minor systematic under-
estimation, while P (data not shown) showed a close match. The 
measurement heights, surface roughness, instrumentation biases, 
and microclimatic variations between these two sites may have 
contributed these variabilities. The uz at SWS was measured at 2 m 
over irrigated fescue maintained at ~0.12 m height. However, uz at 
the LWS was measured at corn field at 2.8 m above the soil surface. 
Therefore, as the corn crop grew, uz measured height relative to the 
corn surface decreased from 2.8 m at planting to almost zero by 
tasseling. These differences in weather data may vary and possibly 
increase when the standard weather data is further away from the 
study site. SWS data is common and probably most adopted data 
source for both point and large-scale ET simulation, for instance 
using single SWS for the entire Landsat scene (190 km by 180 km).

Precipitation (P) and Irrigation (Irr)

Figure 5a shows daily P between LWS and NLDAS gridded 
data and Fig. 5b shows actual and simulated Irr. We presented 
daily accumulated P and Irr rather than hourly as there were 
larger variations and uncertainty in hourly values. Measured 
cumulative seasonal P was 225 mm while gridded was 286 mm. 
The P can have wide variations locally, especially in semiarid and 
arid climates. Uncertainty in gridded P data had been widely 
documented and is challenging meteorological variable (Adam 
and Lettenmaier, 2003; Xia et al., 2012; Abatzoglou, 2013). 
Applied Irr was 491 mm while simulated was 616 mm. No Irr 
was applied in the field after DOY 232 while model simulated Irr 
through DOY 270, resulting in an overestimation of simulated 
Irr (Fig. 5b). Simulated Irr pattern and frequency showed slightly 
different behavior than applied Irr (Fig. 5b). As this study was 
conducted for fully irrigated corn, Irr pattern should have a mini-
mal effect in ET as plant never gets stressed as per irrigation rules.

Vegetation Indices
Figure 6 shows that the calculated gridded LAI using Landsat 

(evaluated for a specific type of corn i.e., Zea mays L.) was sys-
tematically underestimated during full cover canopy (DOY 180 
to 240). Measured LAI reached up to 5.5 m2 m–2 around DOY 
195 and remained 5.0 m2 m–2 through DOY 240. However, 
the estimated gridded LAI was about 4.0 m2 m–2 to 3.5 m2 
m–2 during the same period. Further evaluation of gridded LAI 
for various corn types, crops, and the adopted algorithm will 
help to understand if this specific behavior persists systemati-
cally. Underestimation of gridded LAI can create an asymmetry 
between fc and LAI as they are closely related (Fig. 6a). The 

Fig. 3. Hourly scatterplots from local weather station (LWS) and gridded NLDAS a) incoming solar irradiance, b) air temperature, c) 
ambient vapor pressure, and d) wind speed between 22 May (DOY 143) and 26 September (DOY 270) 2016 at Bushland, Texas. Diel 
intervals (0:00–9:00, 10:00–16:00, 17:00–23:00) are indicated by symbol color; one-to-one correspondence (black line) as indicated.
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fc based on gridded NDVI closely followed fc estimated from 
measured canopy width in the field. Gridded LAI and fc both 
attended maximum values during full cover. The fc value was ~ 
0.9 during the full cover from both measured and estimated. 
Results indicated that linear interpolation of vegetation indices 
from Landsat based images was a reasonable option, though LAI 
showed a negative bias. Availability of Landsat based images dur-
ing the start of growing season, full cover and senescence would 
help to reduce uncertainty in vegetation indices and increase the 
overall accuracy of seasonal ET calculation.

Influence of Gridded Data in ET
The influence and sensitivity of gridded meteorological data 

and Landsat based vegetation indices in ET (output at 30 m 
spatial resolution and hourly temporal resolution) was evalu-
ated using BAITSSS in the coming sections (see Eq. [2a] and 
Table 2). Cumulative ET from lysimeter was 697 mm, from 
BAITSSS: 694 mm utilizing 15-min measured input weather 
data (Dhungel et al., 2018), 723 mm utilizing hourly averaged 
measured weather data (Table 2, scenario ‘a’), 875 mm from all 
NLDAS gridded (scenario ‘k’), and 789 mm from all gridded 
data (scenario ‘l’) for 127 d. Results indicated that the larg-
est individual positive bias (deviations from measurements) 
occurred from Rs↓ (+ 11%; Table 2, scenario ‘f ’), followed by 
qa (+ 9%; Table 2, scenario ‘e’), combined uz and Ta (+ 8%; 
Table 2, scenario ‘i’), and P (+ 4%, Table 2, scenario ‘d’) in 
cumulative ET when compared to the lysimeter.

We analyzed some of the reasons behind these biases based 
on model simulations (Eq. [2b]; scenario ‘a’ to other scenarios). 
Generally, increase in Rs↓ (Table 2, scenario ‘f ’) elevates the sur-
face energy flux components and ultimately ET. For instance, 
on DOY 216 (12:00, rsc = 40 s m–1), Rs↓ from measured was 
404 W m–2 (scenario ‘a’) and from gridded 889 W m–2 (rsc = 

40 s m–1; scenario ‘f ’), ET increased from 0.43 mm h–1 to 0.78 
mm h–1 which accounts 79%. Similarly, on DOY 244 (13:00, 
rsc = 40 s m–1), Rs↓ from measured was 217 W m–2 and from 
gridded 550 W m–2 (rsc = 40 s m–1), ET increased from 0.08 
mm h–1 to 0.31 mm h–1 which accounts 287%. This difference 
in Rs↓ explains 11% cumulative increase of ET.

The decrease in ea (computed from qa; Table 2, scenario ‘e’) 
increase VPDs and VPDc in Eq. [A-2a– A-2b] at the numerator 
that tended to increase both evaporation and transpiration. The 
decrease in ea usually results in increased VPD for constant Ta. 
Furthermore, Eq. [A-17] shows a linear increase in rsc with an 
increase in VPDc due to smaller F3 value. However, Eq. [A-2a– 
A-2b] show a proportional increase of LEs and LEc with an 
increase in VPD. This shows the complex relationship of VPD in 
BAITSSS based on the available literature. For instance, on DOY 
194 (10:00 and Rs↓ = 818 W m–2, LAI = 5.6, rsc = 40 s m–1), ea 
from measured was 2.26 kPa (scenario ‘a’) and from gridded 1.27 
kPa (rsc = 40 s m–1; scenario ‘f ’), ET increased from 0.72 mm h–1 
to 0.86 mm h–1 which accounts 19%. Similarly, DOY 218 (12:00 
and Rs↓ = 964 W m–2, LAI = 5.4, rsc = 40 s m–1), ea from mea-
sured was 2.3 kPa and from gridded 1.5 kPa (rsc = 40 s m–1), ET 
increased from 0.89 mm h–1 to 0.96 mm h–1 which accounts 8%.

Increase in uz generally accelerates the turbulence process by 
decreasing rah in surface energy balance and ultimately increase 
ET (Hanson, 1991; Dhungel et al., 2016a). For instance, on 
DOY 236 (14:00 and Rs↓ = 362 W m–2, rsc = 40 s m–1), uz 
from measured was 2.5 m s–1 (scenario ‘a’) and from gridded 
7.02 m s–1 (rsc = 40 s m–1; scenario ‘f ’), ET increased from 
0.5 mm h–1 to 0.73 mm h–1 which accounts 47%. Similarly, 
on DOY 203 (13:00 and Rs↓ = 980 W m–2, rsc = 40 s m–1), 
uz from measured was 2.5 m s–1 and from gridded 5.2 m s–1 
(rsc = 40 s m–1), ET increased from 1.05 mm h–1 to 1.2 mm h–1 
which accounts 14%.

Fig. 4. Hourly scatterplots from local weather station (LWS) and standard weather station (SWS) a) incoming solar irradiance, b) air 
temperature, c) ambient vapor pressure, and d) wind speed between 22 May (DOY 143) and 26 September (DOY 270) 2016 at Bushland, 
Texas. DOYs (143–180, 181–240, 241–270) is indicated by symbol color; one-to-one correspondence (black line) as indicated.
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Implication of small LAI (scenario ‘c’) in full cover canopy at 
denominator is large rsc (Eq. [A-13]) and decreased ET and vice 
versa. With identical Rc_min for irrigated croplands as suggested 
by Kumar et al., (2011) and identical meteorological data, signifi-
cant player of ET variations in the 30 m grid is vegetation indices. 
Underestimation of LAI from gridded data may misrepresent 
vegetation types, though we assume that this underestimation 
may be systematic for all crop types. For instance, on DOY 207 
(13:00 and Rs↓ = 969 W m–2), measured LAI was 5.6 m2 m–2 
(scenario ‘a’) and gridded LAI was 3.8 m2 m–2 (scenario ‘c’), ET 
decreased from 1.05 mm h–1 to 0.75 mm h–1 which account 
28%. Simulated rsc was 40 s m–1 from measured input (Table 2, 
scenario ‘a’) while 156 s m–1 from the gridded input (scenario 
‘c’). In other instances, when simulated rsc were identical from 
both measured and gridded inputs (40 s m–1), the results revealed 
a decrease in ET because of decreased LAI as it had also been 
used for calculating other variables like zom and hc. Finally, the 
variation in timing and frequency of P from NLDAS may have 
increased soil evaporation, which possibly contributed 5% positive 
bias in total ET (Table 2, scenario‘d’). However, Table 2 scenario 
‘g’, results indicated that there was no significant effect in ET 
because of mismatch in irrigation pattern for fully irrigated corn.

The individual biases from NLDAS weather data were substan-
tial, therefore a combination of these accounted up to 25% bias 
with a resulting RMSE of 2 mm d–1 (scenario ‘k’). In contrast, 
gridded LAI decreased cumulative ET by 5% (Table 2, scenario ‘c’). 
LAI-induced uncertainty was 7% of total ET over the continental 
United States (Ferguson et al., 2010). Overall, the combination of 
gridded data (both weather data and vegetation indices) resulted 
in a 13% positive bias in cumulative ET (scenario ‘l’). Results 
showed that uncertainty in input data had clearly propagated bias 
to final ET. Earlier studies that utilized NLDAS data reported 
similar positive bias in ET (Bhattarai et al., 2018). A positive bias in 

reference evapotranspiration (ETo) computed from NLDAS data 
was reported (Abatzoglou, 2013). Similarly, Moorhead et al. (2015) 
found NOAA reference ET (ETr) maps generally overestimated 
the TXHPET observations (1.4 and 2.2 mm d–1 ETos and ETrs, 
respectively) for Texas High Plains where they suspected uncer-
tainty in the modeled NLDAS Ta and uz.

Daily and Hourly ET
Figure 7 shows daily ET plots illustrating an agreement 

between lysimeter and model calculations for various gridded 
input and vegetation indices as shown in Table 2. The letters 
in figures are associated with letters (under column 'S.L.' with 
Scenarios ) in Table 2. Figure 7a, 8a, and 9a (scenario ‘a’) show 
ET from hourly averaged input from 15-min measured obser-
vations without any gridded data. We evaluated this scenario 
(scenario ‘a’) to quantify the effect of temporal resolution on 
calculated ET, i.e., hourly from 15-min. The r2 and RMSE were 
0.90 and 0.85 mm for daily and 0.90 and 0.10 mm for hourly, 
respectively. Statistics showed a slight improvement in daily ET 
(r2 and RMSE were 0.85 and 1.09 mm, respectively), reported 
for the daily time step in Dhungel et al. (2018) which used a 
15-min time interval. This improved agreement was because of 
decreased initial soil water content at the surface i.e., 100 mm 
(reduced θsur from 0.15 to 0.05 m3 m–3) compared to the earlier 
study of the 15-min interval. However, there was a small increase 
(< 4%, earlier 694 mm) in cumulative ET with the hourly inter-
val (Table 2, scenario ’a’). Revised Rc_min i.e., 150 s m–1 based on 
(Dhungel et al., 2018) during DOY 250 to 270 improved agree-
ment between calculated and measured ET during the assumed 
senescence period.

Figure 8 and 9 show daily and hourly scatterplots of ET, 
respectively, between lysimeter and BAITSSS as in Table 
2. Underestimation and overestimation of ET from various 

Fig. 5. Daily plots a) measured local weather station (LWS) and NLDAS gridded precipitation, b) measured and simulated irrigation 
between 22 May (DOY 143) and 26 September (DOY 270) 2016 at Bushland, Texas.
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Fig. 6. a) Measured and gridded plots a) Leaf area index (LAI), b) fraction of canopy cover (fc) of corn between 22 May (DOY 143) and 26 
September (DOY 270) 2016 at Bushland, Texas. Measured dates and satellite acquisition dates are presented.

Fig. 7. Daily plots of ET from BAITSSS using various combinations of gridded and LWS measured data compared to lysimeter of corn 
between 22 May (DOY 143) and 26 September (DOY 270) 2016 at Bushland, Texas.
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gridded data combinations were distinct in these scatterplots, 
especially during full cover canopy (DOY 180 – 240). Daily 
RMSE increased from 0.85 (Fig. 8a, all measured) to 1.64 mm 
(Fig. 8l, all gridded) with a maximum of 2.06 mm (Fig. 8k, 
all NLDAS). Similarly, hourly RMSE ranged from 0.10 mm 
(Fig. 9a, all measured) to 0.14 mm (Fig. 9l, all gridded) with a 
maximum of 0.16 mm (Fig. 9k, all NLDAS).

Surface Temperature and Net Radiation

In this section, we evaluate the competence of BAITSSS to 
compute the composite surface temperature (Tcom; combined 
soil and canopy temperature) and composite net radiation 
(Rn; combined soil and canopy net radiation) based on the all 
measured data (scenario ‘a’, Fig. 10a and 10b). We documented 
differences based on the gridded data (scenario ‘l’, Fig. 10c and 

Fig. 8. Daily scatterplots of ET from BAITSSS using various combinations of gridded and LWS measured data compared to lysimeter 
of corn between 22 May (DOY 143) and 26 September (DOY 270) 2016 at Bushland, Texas. DOYs (143–180, 181–240, 241–270) are 
indicated by symbol color; linear regression (red lines) and one-to-one correspondence (black line) are indicated.

Fig. 9. Hourly scatterplots of ET from BAITSSS using various combinations of gridded and LWS measured data compared to lysimeter 
of corn between 22 May (DOY 143) and 26 September (DOY 270) 2016 at Bushland, Texas. Diel intervals (0:00–9:00, 10:00–16:00, 
17:00–23:00) are indicated by symbol color; linear regression (red lines) and one-to-one correspondence (black line) are indicated.
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10d). Comparison was performed with measured IRT and net 
radiometer. The r2 and RMSE were 0.86 and 3.27°C for Tcom 
and 0.99 and 49 W m–2 for Rn, respectively from measured 
inputs. However, the r2 decreased and RMSE increased (0.76 
and 4.79°C for Tcom and 0.89 and 92 W m–2 for Rn) from 
gridded inputs indicating decreased accuracy. The propaga-
tion of bias in gridded inputs to Tcom and Rn corresponds to 

the reduced accuracy of simulated ET (Table 2). Dhungel et al. 
(2018) discussed issues related to Rc_min in the Jarvis function, 
the possible role of local and regional advection, albedo, effec-
tive emissivity for incoming longwave irradiance calculation, 
and other unknown structural issues in BAITSSS, which may 
have contributed a positive bias in Rn and Tcom. This positive 
bias tended to have minimal effect in ET (Fig. 7a, 8a, and 9a), 

Fig. 10. Hourly scatterplots from BAITSSSS a) composite surface temperature (Tcom), b) composite net radiation (Rn) from LWS measured 
data, c) Tcom, and d) Rn from gridded data compared to IRT (TIRT) and net radiometer of corn between 22 May (DOY 143) and 26 
September (DOY 270) 2016 at Bushland, Texas. Diel intervals (0:00–9:00, 10:00–16:00, 17:00–23:00) are indicated by symbol color; linear 
regression (red lines) and one-to-one correspondence (black line) as also indicated.

Fig. 11. Mean daily plots of sensitivity coefficients (Sv) and mean daily input data a) ambient vapor pressure, b) air temperature, c) wind 
speed, d) incoming solar irradiance, e) LAI, and f) precipitation between 22 May (DOY 143) and 26 September (DOY 270) 2016 at 
Bushland, Texas.
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however, attempts to reduce Tcom to match IRT subsequently 
increased ET (Dhungel et al., 2018).

Sensitivity Coefficients
Figure 11 shows daily mean sensitivity coefficients (Sv) in the 

primary vertical axis (Eq. [3]) and daily mean input data in the 
secondary vertical axis (LWS vs. gridded). The standard devia-
tion (σ) of the variables in Eq. [3] were 0.42 kPa, 5.82°C, 1.61 m 
s–1, 352.16 W m–2, 1.98 m2 m–2, and 1.12 mm for ea, Ta, uz, 
Rs↓, LAI and P, respectively. These Sv accounted for various 
random increase and decrease in input weather data based on 
the gridded data. Some large spike from outliers in sensitivity 
coefficients was restricted (shown in vertical axes limiting- 1.5 
to + 1.5) before computing seasonal values. The daily sensitivity 
coefficients of input weather data and vegetation indices showed 
various forms, including changing signs (+ to– and vice versa) 
throughout the simulation. For instance, sensitivity coefficients 
of LAI were positive throughout the simulation because LAI 
difference was negative throughout the simulation (gridded 
smaller than measured) creating negative bias in ET (gridded 
ET smaller than actual, scenario ‘c’). The mean seasonal (DOY 
143 to 270) sensitivity coefficients were –0.16, 0.14, 0.04, 0.34, 
0.18, 0.005 for ea, Ta, uz, Rs↓, LAI, and P with largest seasonal 
Sv from Rs↓. We confirmed that these sensitivity coefficients, 
especially seasonal values, can alter with adopted sensitivity 
equations (Ambas and Baltas, 2012), input data, and applied 
limits. These daily sensitivity coefficients were between –1.5 and 
+1.5 with seasonal sensitivities between –1 and +1.

Influence of Standard Weather 
Station (SWS) Data in ET

Earlier sections discussed the uncertainty and sensitivity of 
ET based on gridded data (NLDAS and remote sensing based 
vegetation indices) with LWS data. The extensive analysis based 
on gridded data will encompass the smaller degree of differ-
ences expected for SWS data, so we did not repeat the entire 
analysis using SWS data. In this section, we present ET from 
BAITSSS (Fig. 12) utilizing the widely available and adopted 
state of art type standard weather station (SWS) data (as of 
Fig. 4 and Table 1) and measured LAI and fc from the ratio of 

width of canopy to row spacing. BAITSSS simulated cumulative 
ET from grass-referenced SWS data was 21% (cumulative ET of 
843 mm) greater relative to lysimeter measured ET (increased 
RMSE = 1.76 mm and reduced r2 = 0.87 for daily ET, Fig. 12a 
and 12b). These results were consistent with scenario ‘k’ of the 
simulation based on gridded NLDAS data input (overestimation 
of ET by 25% due to factors including larger uz, warmer tem-
perature, smaller ea, and greater irradiance). Model simulation 
from BAITSSS indicated that even within close proximity (~ 
250 m, Fig. 2), surprisingly the influence of weather data from 
SWS was pretty significant in ET. We further evaluated the bias 
in ET contributed especially by uz which showed the largest 
variations among the SWS data (Fig. 4). The error in cumula-
tive ET reduced to 10% when compared to lysimeter (771 mm) 
utilizing LWS uz, keeping other variables as is from the SWS, 
indicating the major share in error. According to FAO-56 (Allen 
et al., 1998), uz is measured at 10m for meteorological applica-
tions and 2 or 3 m for agrometeorological applications. The 
general circulation model (GCM) land surface scheme and some 
operational large scale ET models (Su, 2002; Anderson et al., 
2005; Bastiaanssen et al., 2005; Allen et al., 2011a) extrapolate 
uz to certain blending height (30 m – 200 m) to reduce the 
influence of surface roughness length, atmospheric stability, 
and heterogeneity length (Essery et al., 2003). Dhungel et al. 
(2016b) adopted a blending height of 30m for BAITSSS, where 
NCEP-NARR had weather data (Ta, uz, and qa) available in this 
height. However, the current study utilizes identical measure-
ment height from the available data sources for both uz and Ta 
(Table 1), i.e., LWS, SWS, and NLDAS without extrapolating uz 
to the blending height. The source-specific measurement heights 
(momentum and heat) are incorporated in stability correction 
and aerodynamic resistance (rah) in these kinds of energy bal-
ance models (Appendix A for BAITSSS), differences in these 
measurement heights and its influence to ET probably warrants 
further evaluation and discussion. It also possibly indicates that 
some forms of bias may persist in ET modeling because of input 
weather variables if utilized without any adjustments (especially 
for uz). However, further investigation of various sites and year 
probably guide us with a better understanding of this process 
and develop strategies to mitigate these kinds of biases.

Fig. 12. Daily ET plots from BAITSSS using standard weather station (SWS) data and lysimeter a) time sequence b) scatterplot between 
22 May (DOY 143) and 26 September (DOY 270) 2016 at Bushland, Texas. Linear regression (red lines) and one-to-one correspondence 
(black line) are indicated.
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Conclusion
We successfully automated BAITSSS model with NLDAS 

weather data and remote sensing based vegetation indices through-
out the U.S. The BAITSSS model calculated hourly and daily ET 
(continuous 127 d) with r2 > 0.90 (both hourly and daily) and 
RMSE of 0.1 mm (hourly) and 0.85 mm (daily), relative to lysim-
eter, when the site measured meteorological input (LWS) were 
used (less than 4% positive bias in cumulative ET). However, the 
calculated cumulative ET using NLDAS meteorological data was 
25% larger compared to lysimeter measured ET. These discrepan-
cies were related to NLDAS data having larger incoming Rs↓, 
uz, Ta, P, and smaller ea compared with locally measured (LWS). 
Another caveat of these data sources was the difference in mea-
surement height of wind (10 m for gridded, 2.8 m for LWS, and 
2.0 m for SWS). The adopted LAI algorithm in the gridded data 
showed a negative bias during full cover canopy for this specific 
corn type. This bias partially compensated for the positive bias in 
ET due to NLDAS meteorological data. In general, the accuracy 
of fc and LAI largely depends on the availability of images during 
phase changes such as growing, full cover and senescence, which 
influence the precision of seasonal ET. Propagation of bias based 
on sensitivity analysis in weather driving factors and vegetation 
indices from gridded data was –0.16, 0.14, 0.04, 0.34, 0.18, 0.005 
for ea, Ta, uz, Rs↓, LAI, and P, respectively.

BAITSSS simulation (i.e., based on its capability, adopted 
approach as well as structural limitations if any) indicated that 
weather data from SWS contributed 21% larger ET than lysim-
eter measured with RMSE of 1.76 mm d–1. The significant error 

in ET from widely adopted SWS warrants further discussion to 
overcome these biases in operational ET models. Overall, weather 
data from the LWS (site specific) demonstrated superior to the 
rest of the data sets. However, it is not possible to have site specific 
data (like eddy covariance settings), so we have to rely on one of 
these available weather data sources. In addition, exploring a near 
weather station manually for each model run (either from LWS or 
SWS) will complicate the automation of ET models making grid-
ded data as a viable option. The study indicated that both standard 
weather data and gridded may have relative advantages and disad-
vantages. It is critical to understand the uncertainty behind these 
input weather data and adopted adjustment procedure if any. With 
a more accurate and detailed modeling approach like BAITSSS, 
we can extend these kinds of analysis for multiple years and various 
sites to systematic quantification of these biases on a broader scale.
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Appendix A: BAITSSS Major Equations (Dhungel et al., 2016b, 2018)
Surface energy balance equations of soil are represented by subscript s and canopy by subscript c. Latent heat flux (LE) and sensible 

heat flux (H) of soil and canopy surfaces are shown in Eq. [A-1– A-2], soil and canopy net radiation (Rn_s and Rn_c) in Eq. [A-5a– 
A-5b], respectively. Composite surface energy balance equations are shown in Eq. [A-7– A-10] (refer to Table A-1 for symbols).
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Roughness length of momentum (zom) is computed based on 
LAI (Waters et al., 2002) (Eq. [A-11]).

 0.018 omz LAI=
� [A-11]

Integration constant Z1 (i.e., roughness length of heat (zoh) 
for full cover vegetation; fc > 0.8) is computed from Eq. [A-12]. 
For partial canopy ( fc < 0.6), it is computed based on height of 
canopy (hc) and zero plane displacement (d). For intermediate 
canopy cover (0.6 > fc < 0.8), Z1 is weighted with fraction of 
canopy cover for smooth transition between partial and full.

 0.1 oh omz z= � [A-12]

Constant albedo for soil (αs) and canopy (αc) is used as 0.2 
and 0.15 (in Eq. [A-5a– A-5b]), respectively. Constant emissivity 
for both soil (εo_s) and canopy (εo_c) was 0.98 (Eq. [A-4a– A-4b, 
A-5a– A-5b]) throughout simulation.

Standard Jarvis type canopy resistance (rsc; Eq. [A-13]), 
(Alfieri et al., 2008; Kumar et al., 2011) with weighting func-
tions representing plant response to solar irradiance (F1), air 
temperature (F2), vapor pressure deficit (F3), and soil water 
content (F4) as per discussion (Dhungel et al., 2018).

_    

1  2   3   4       
 

c min
sc

c

R
r LAI F F F F

f

=

�

[A-13]

Effects of Rs↓ were calculated (F1, Eq. [A-14]) where Rc_max 
(5000 s m–1) and Rc_min (40 s m–1 (Kumar et al., 2011) before 
assumed senescence, 150 s m–1 after assumed senescence) are 
maximum and minimum values of rsc (s m–1), respectively.

_

_
1 1

c min

c max

R
f

R
F

f

+
=

+ � [A-14]

Parameter f of Eq. [A-14] is computed using Eq. [A-15] where 
RS↓_min (100 W m–2) is assumed to be minimum Rs↓ necessary 
for photosynthesis (Kumar et al., 2011).

_

2
0.55 

 
S

S min

R
f

R LAI
¯

¯

æ ö÷ç= ÷ç ÷çè ø
�

[A-15]

Temperature effects (F2, Eq. [A-16]) were taken from Kumar 
et al. (2011).

2
2 1 0.0016 (  ) ref aF T T= - -

�
[A-16]

where reference temperature (Tref) is taken as 298 K and Ta is 
air temperature (K). Effects of VPD (F3, Eq. [A-17]) were taken 
from Alfieri et al. (2008) as a linear relationship of vapor pres-
sure deficit (VPDc) where VPD is in kPa.

3 1  0.1914 cF VPD= -
�

[A-17]

Canopy VPD (VPDc = e oc– ea) is computed based on saturated 
vapor pressure at canopy (e oc = f (Tc)) and ambient vapor pressure 
(ea = (RH/100) es). Ambient VPD (VPDamb = es– ea) is computed 
based on saturated vapor pressure at ambient temperature [es = 
f (Ta)] and ambient vapor pressure (ea). A logistic equation was 

used to calculate effects of available water fraction (AWF) (Eq. 
[A-18]) on F4 [Eq. (A-19– A-20) (Anderson et al., 2007)].
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where Wo = 1, Wf = 800, and µ = 12.
A simplified formulation (Eq. [A-21]) (Sun, 1982) based on 

saturation soil water content (θsat) and soil water content at soil 
surface (θsur) are utilized to track soil surface resistance (rss).

2.3

3.5   33.5sat
ss

sur

r
æ öq ÷ç= +÷ç ÷÷ç qè ø

�

[A-21]

Water balance at soil surface (θsur) (100 mm) and root (θroot) 
(100 mm- 2000 mm) is computed using Eq. [A-22– A–23], 
respectively as described by (Dhungel et al., 2016b).

( )
( 1)    rr run ss e

sur sur i e e
sur

P I S E T
DP CR

d-

+ - - -
q =q + - +

�
[A–22]

where i is current time step, θsur(i-1) is volumetric water content 
(VWC) of surface layer for previous time steps, Ess is soil surface 
evaporation, dsur is soil surface depth, DPe is deep percolated 
water from upper soil layer to root zone, CRe is capillary rise 
from root zone into first soil surface (m3 m-3), and Te is transpi-
ration from soil surface layer (mm). CRe and Te are neglected to 
simplify soil water balance in this sub–model. Currently, model 
permits soil to be dry to an air-dry condition.

( )
( 1)

 
 rr run ss

root root i
root

P I S T E
DP CR

d-

+ - - -
q =q + - +

�
[A-23]

where θroot(i–1) is VWC of root zone from previous time steps, 
T is transpiration from vegetation, droot is rooting depth, DP is 
deep percolation below root zone, and CR is capillary rise from 
third layer to root zone. Capillary rise (CR) from third layer 
into bulk layer (second) is also neglected.

Height of vegetation (hc) is computed according to LAI sug-
gested by Allen et al. (2012) (Eq. [A-24]).

0.15 ch LAI= � [A-24]

Zero plane displacement (d) is computed from Eq. [A-25] 
(Choudhury and Monteith, 1988).

1
41.1  ln(1 )cd h X= + � [A-25]

where X is a parameter for calculating d. X parameter of zero-
plane displacement is calculated using Eq. [A-26].

 dX c LAI=
� [A-26]

where cd is mean drag coefficient for individual leaves which is 
used as a 0.2 (Choudhury and Monteith, 1988). Attenuation 
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Table A-1 BAITSSS variables and imposed limits.
Variable Symbol Minimum Maximum Unit
Incoming solar irradiance RS↓ – – W m–2

Incoming longwave irradiance RL↓ – – W m–2

Net radiation Rn – – W m–2

Net radiation of soil portion Rn_s – – W m–2

Net radiation of canopy portion Rn_c – – W m–2

Measurement height of wind speed and air temperature z – – m
Emissivity for soil portion εo_s – – –
Emissivity for canopy portion εo_c – – –
Atmospheric density ρa – – kg m–3

Stability correction parameter ψ – – –
Specific heat capacity of moist air cp J (kg K)–1

Soil surface temperature Ts 265 350 K
Canopy temperature Tc 265 350 K
Air temperature Ta – – K
Wind speed uz 2.0 – m s–1

Relative humidity RH – – %
Soil surface evaporation Ess 0.0001 – mm h–1

Canopy transpiration T 0.0001 – mm h–1

Composite (bulk) sensible heat flux H –200 500 W m–2

Sensible heat flux for soil portion Hs –200 500 W m–2

Sensible heat flux for canopy portion Hc –200 500 W m–2

Ground heat flux G –200 200 W m–2

Latent heat flux for soil LEs – – W m–2

Latent heat flux for canopy LEc – – W m–2

Latent heat of vaporization for soil portion λs – – J kg–1

Latent heat of vaporization for vegetation portion λc – – J kg–1

Saturation vapor pressure at the soil surface eo
s – – kPa

Saturation vapor pressure at the canopy surface eo
c – – kPa

Integration constant Z1 – – m
Actual vapor pressure of the air ea – – kPa
Friction velocity u* 0.01 500 m s–1

Aerodynamic resistance from canopy height to blending height rah 1 500 s m–1

Albedo soil αs 0.20 0.20 –
Albedo canopy αc 0.15 0.15 –
Leaf area index LAI – – m2 m–2

Fraction of canopy cover fc 0.05 1 –
Mean boundary layer resistance per unit area of vegetation rb 0 – s m–1

Roughness length of momentum zom – – m
Roughness length of heat zoh – – m
Minimum roughness length zos 0.01 – m
Bulk boundary layer resistance of the vegetative elements in the canopy rac 0 5000 s m–1

Canopy resistance rsc Rc_min 5000 s m–1

Soil surface resistance rss 35 5000 s m–1

Aerodynamic resistance between the substrate and canopy height (d + zom) ras – – s m–1

Height of canopy hc – – m
Soil water content at surface θsur – – m3 m–3

Soil water content at root zone θroot – – m3 m–3

Soil water content at wilting point θwp – – m3 m–3

Soil water content at field capacity θfc – – m3 m–3

Available water fraction AWF 0 1 –
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coefficient (n) is computed using Eq. [A-27] (Choudhury and 
Monteith, 1988)

2.5  1
4.25  10

  2.31 0.194  

c

c

c

if h m
n if h m

h Otherwise

ìï <ïïï= >íïï +ïïî �

[A-27]

When surface is fully covered with vegetation, understory 
aerodynamic resistance (ras ( fc = 1)) between zos and d + zom is 
computed as according to Choudhury and Monteith (1988) 
using Eq. [A-28].

( )1 

 ( )    
exp exp  

 ( )
c om om

as fc
c c

h exp n n z d zr n
n K h h h=

é ùé ùæ ö é ù- +÷ê ç úê ú= - - ê ú÷ç ÷ê úê ú÷ç ê úè øê úë ûë ûë û
�

[A-28]

The eddy diffusion coefficient of momentum correction 
(K(h)) from zom to hc has been computed using Eq. [A-29] 
(Choudhury and Monteith, 1988).

2   ( )
( ) z c

m
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k u h dK h
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[A-29]

where ψm is stability correction of momentum, z is height of 
measurements of wind speed. When surface is completely bare, 
aerodynamic resistance (ras ( fc = 0)) from zos to d + zom can be 
written using Eq. [A-30].
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Aerodynamic resistance for a partial surface ras (int) is com-
puted weighting by fc in a parallel combination of resistances 
(Eq. [A-31]).
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Bulk boundary layer resistance of vegetative elements (rac) is 
computed using Eq. [A-32].
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�

[A-32]

where rb is mean boundary layer resistance per unit area of 
vegetation. Aerodynamic resistance (rah) for fully vegetated and 
partially vegetated conditions is shown in Eq. [A-33].
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[A-33]

Parameter X of stability correction for measurement height is 
computed from Eq. [A-34].
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Correction of momentum (ψm) for measurement height is 
computed from Eq. [A-35].
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 [A-35]

Correction of heat (ψh) for measurement height is computed 
from Eq. [A-36].
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Parameter X for d + zom is computed from Eq. [A-37].
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Correction of heat for d + zom (Ψhd+zom) is computed from 
Eq. [A-38].
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Parameter X for hc– d is computed from Eq. A-39.
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Correction of heat for hc– d (ψh (hc-d)) is computed from Eq. A-40.
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