
Abstract
In this paper, we evaluate the capability of the high spatial
resolution airborne Digital Airborne Imaging System (DAIS)
imagery for detailed vegetation classification at the alliance
level with the aid of ancillary topographic data. Image objects
as minimum classification units were generated through
the Fractal Net Evolution Approach (FNEA) segmentation
using eCognition software. For each object, 52 features were
calculated including spectral features, textures, topographic
features, and geometric features. After statistically ranking
the importance of these features with the classification and
regression tree algorithm (CART), the most effective features for
classification were used to classify the vegetation. Due to the
uneven sample size for each class, we chose a non-parametric
(nearest neighbor) classifier. We built a hierarchical classifica-
tion scheme and selected features for each of the broadest
categories to carry out the detailed classification, which
significantly improved the accuracy. Pixel-based maximum
likelihood classification (MLC) with comparable features was
used as a benchmark in evaluating our approach. The object-
based classification approach overcame the problem of salt-
and-pepper effects found in classification results from tradi-
tional pixel-based approaches. The method takes advantage
of the rich amount of local spatial information present in
the irregularly shaped objects in an image. This classification
approach was successfully tested at Point Reyes National
Seashore in Northern California to create a comprehensive
vegetation inventory. Computer-assisted classification of high
spatial resolution remotely sensed imagery has good potential
to substitute or augment the present ground-based inventory
of National Park lands.

Introduction
Remote sensing provides a useful source of data from which
updated land-cover information can be extracted for assess-
ing and monitoring vegetation changes. In the past several
decades, airphoto interpretation has played an important role
in detailed vegetation mapping (Sandmann and Lertzman,
2003), while applications of coarser spatial resolution satellite
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imagery such as Landsat Thematic Mapper (TM) and SPOT
High Resolution Visible (HRV) alone have often proven insuffi-
cient or inadequate for differentiating species-level vegetation in
detailed vegetation studies (Kalliola and Syrjanen, 1991; Harvey
and Hill, 2001). Classification accuracy is reported to be only
40 percent or less for thematic information extraction at the
species-level with these image types (Czaplewski and Patterson,
2003). However, high spatial resolution remote sensing is
becoming increasingly available; airborne and spaceborne
multispectral imagery can be obtained at spatial resolutions at
or better than 1 m. The utility of high spatial resolution for
automated vegetation composition classification needs to be
evaluated (Ehlers et al., 2003). High spatial resolution imagery
initially thrives on the application of urban-related feature extrac-
tion has been used (Jensen and Cowen, 1999; Benediktsson
et al., 2003; Herold et al., 2003a), but there has not been as
much work in detailed vegetation mapping using high spatial
resolution imagery. This preference for urban areas is partly due
to the proximity of the spectral signatures for different species
and the difficulties in capturing texture features for vegetation
(Carleer and Wolff, 2004).

While high spatial resolution remote sensing provides
more information than coarse resolution imagery for detailed
observation on vegetation, increasingly smaller spatial resolu-
tion does not necessarily benefit classification performance
and accuracy (Marceau et al., 1990; Gong and Howarth, 1992b;
Hay et al., 1996; Hsieh et al., 2001). With the increase in
spatial resolution, single pixels no longer capture the charac-
teristics of classification targets. The increase in intra-class
spectral variability causes a reduction of statistical separability
between classes with traditional pixel-based classification
approaches. Consequently, classification accuracy is reduced,
and the classification results show a salt-and-pepper effect,
with individual pixels classified differently from their neigh-
bors. To overcome this so-called H-resolution problem, some
pixel-based methods have already been implemented, mainly
consisting of three categories: (a) image pre-processing, such as
low-pass filter and texture analysis (Gong et al., 1992; Hill and
Foody, 1994), (b) contextual classification (Gong and Howarth,
1992a), and (c) post-classification processing, such as mode
filtering, morphological filtering, rule-based processing, and
probabilistic relaxation (Gong and Howarth, 1989; Shackelford
and Davis, 2003; Sun et al., 2003). A common aspect of
these methods is that they incorporate spatial information
to characterize each class using neighborhood relationships.
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These techniques can improve classification accuracy consid-
erably, but their disadvantages are apparent when they are
applied to high spatial resolution images (1 to 10 m). First,
the pre-defined neighborhood window size may not favor all
the land-cover types evenly since different classes reach their
maximum accuracies at different pixel window sizes. Second,
these techniques require intensive computation especially for
high-resolution imagery in which the window size should be
set relatively large (Hodgson, 1998). Finally, these processes
have blur effects and cannot produce accurate results at the
boundaries of different land-cover units, although this so-
called boundary effect can be reduced with a kernel-based
technique (Gong, 1994).

Object-based classification may be a good alternative
to the traditional pixel based methods. To overcome the
H-resolution problem and salt-and-pepper effect, it is useful
to analyze groups of contiguous pixels as objects instead
of using the conventional pixel-based classification unit.
In theory, this will reduce the local spectral variation caused
by crown textures, gaps, and shadows. In addition, with
spectrally homogeneous segments of images, both spectral
values and spatial properties, such as size and shape, can
be explicitly utilized as features for further classification.
The basic idea of this process is to group the spatially
adjacent pixels into spectrally homogenous objects first,
and then conduct classification on objects as the minimum
processing units. Kettig and Landgrebe (1976) proposed this
idea and developed the spectral-spatial classifier called
extraction and classification of homogeneous objects (ECHO).
More recently, some research has adopted this method on
land-use or land-cover classification combined with image
interpretation knowledge and classification results were
significantly improved (Gong and Howarth, 1990; Ton et al.,
1991; Johnsson, 1994; Hill, 1999; Herold et al., 2003b).
As Kettig and Landgrebe pointed out, the premise of this
technique is that the objects of interest are large compared
to the size of a pixel. Therefore, this approach was not
extensively studied or implemented for land-cover mapping
at the time when TM and HRV data prevailed as readily
available multispectral data. An increasing body of research
realizes that the object-based approach will be promising
for handling high-resolution imagery. Hay et al. (1996) used
a Delaunay triangulation composed of conifer treetops (local
maximum) as image texture primitives and classified each
treetop (the nodes of the objects) for airborne CASI NIR band
at 1.2 m resolution. They demonstrated that this method
outperformed the conventional textures. However, it is
not feasible to apply this method to broadleaf forest since
treetops cannot be easily identified. Besides this, few studies
have been reported to compare the efficiency of an object-
based approach with a conventional pixel-based approach
for high-resolution remote sensing imagery.

There have been successes in the employment of hyper-
spectal data and multi-temporal data for species classifica-
tion (Gong et al., 1997; 2001; Dennison and Roberts, 2003;
Krishnaswamy et al., 2004). However, the resolution and
the data availability of hyperspectal and multi-temporal data
are unsatisfactory. Study on detailed vegetation mapping
with widely-used high-resolution multispectral imagery is
worthwhile even though there are some difficulties. On one
hand, spectral features of multispectral imagery are indistinct
among different vegetation types (Carleer and Wolff, 2004).
On the other hand, the spectral features vary a lot within
each type. This is because in high-resolution images, each
pixel is not closely related to vegetation physiognomy as a
whole and vegetation always shows heterogeneity as a result
of irregular shadow or shade (Ehlers et al., 2003). In addition
to the difficulties in classification, the training sample size
for each class may vary due to the uneven distribution of

vegetation, budget, or practical constraints of training data
collection and physical access (Foody, 2002). Facing all those
problems, we propose to use an object-based approach to
perform the detailed vegetation classification. The primary
objective of our research is to test and evaluate the efficiency
of computer-assisted detailed vegetation classification with
high-resolution remote sensing imagery. We employ an
object-based approach in order to make use of the maximum
information of high-resolution data. We assess the potential
of the proposed object-based method with high spatial reso-
lution airborne remote sensing data in vegetation identifica-
tion and mapping. This work will provide information on
plant community composition and their spatial distribution.
A nonparametric classifier was adopted for characterization
of object primitives and vegetation mapping. The results
were compared with those produced by the conventional
pixel-based maximum likelihood classifier (MLC).

Considering the large mapping area and the complex
vegetation types (classes) in this study, we expect the object-
based approach to improve the vegetation classification
accuracy through three mechanisms. First, the inclusion of
information from ancillary data and intensity-hue-saturation
(IHS) transform indices in the classification leads to a
more effective vegetation classification. Second, objects
are used as the minimum classification unit, which can
overcome the H-resolution problem and fully exploit the
local variance-reduced information of high-resolution
images for traditional classifiers (Hay et al., 1996; Baatz and
Schape, 2000). Finally, the CART algorithm is employed to
search for the optimal subset of features in nearest neighbor
classification. Feature selection may reduce the number of
features given as input to a classifier, while preserving the
classification accuracy. Instead of using statistical separabil-
ity of classes as a selection criterion, we used CART to match
the non-parametric nearest neighbor classifier.

Object Segmentation
In high spatial resolution imagery, a group of pixels can
represent the characteristics of land-cover targets better than
single pixels, so we organize groups of adjacent pixels into
objects and treat each of the objects as a minimum classifica-
tion unit. Hay et al. (2001) defined the objects as basic
entities located within an image, where each pixel group
is composed of similar digital values, and possesses an
intrinsic size, shape, and geographic relationship with the
real-world scene component it models. Therefore, the objects
are spectrally more homogeneous within individual regions
than between them and their neighbors. Ideally, they have
distinct boundaries, and they are compact and representative.
According to these criteria, there are many means to identify
objects, which are usually created by image segmentation.
Segmentation here is a low-level processing, however, a very
important foundation for subsequent classification because
all object features are dependent on the objects derived
through this process. Segmentation techniques in image
processing can be categorized into global behavior-based
and local behavior-based methods (Kartikeyan et al., 1998).
Global behavior-based methods group the pixels based on the
analysis of the data in the feature space. Typical examples
are clustering and histogram thresholding. Local behavior-
based methods analyze the variation of spectral features in
a small neighborhood. There are two important categories,
edge detection and region extraction (Fu and Mui, 1981).
Edge-based methods locate the boundaries of an object
according to the neighborhood spectral variation with edge
detection algorithms, usually high-pass convolution algo-
rithms such as differentiation. Region extraction can be
further broken down into region growing, region dividing,
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Figure 1. Segmentation comparison:
(a) global based ISODATA method (8
clusters), and (b) local region growing
FNEA segmentation from eCognition.

and hybrid methods; the first two of which are bottom-up and
top-down algorithms, respectively. Region dividing/splitting
iteratively breaks the image into a set of disjoint regions,
which are internally coherent. Region merging/growing
algorithms take some pixels as seeds and grow the regions
around them based on certain homogeneity criteria.

However, not all of the segmentation techniques are
feasible for the handling of high spatial resolution imagery.
Global behavior-based methods assume that an object forms
a cluster in the feature space, i.e., similarity in spectral
value (Kartikeyan et al., 1998), which is often not the case
for high-resolution images. The high local variation often
results in over-segmenting the regions within a small spatial
extent. The regions obtained by this procedure are contigu-
ous only in the feature space, but not in the spatial domain.
Edge-based segmentation has not been very successful
because of its poor performance in the detection of textured
objects. On the other hand, small gaps between discontinu-
ous edges allow merging of dissimilar regions (Kermad
and Chehdi, 2002). In addition, edge detection from a
multi-spectral image is complicated by the inconsistent
location of edges in the multiple bands. A large number of
image segmentation algorithms are based on region growing
methods. This approach always provides closed boundary
of objects and makes use of relatively large neighborhoods
for decision making. Region growing requires consideration
of seed selection, growing criteria, and processing order
(Beaulieu and Goldberg, 1989; Gambotto, 1993; Adams and
Bischof, 1994; Lemoigne and Tilton, 1995; Mehnert and
Jackway, 1997). Some studies develop hybrid methods,
in which edge or gradient information has been used in
combination with region growing for image segmentation
(Gambotto, 1993; Lemoigne and Tilton, 1995).

Although segmentation techniques are not new in the
area of computer vision, they have been applied to classify
remote sensing data only quite recently. The requirement of
high-resolution imagery analysis and availability of commer-
cial or non-commercial soft packages catalysed a boost of
their application (Blaschke et al., 2004). The ECHO algorithm
is implemented in a free software program called MultiSpec.
It is a two-stage conjunctive object-seeking segmentation
algorithm using statistical testing followed by a maximum
likelihood object classification (Kettig and Landgrebe, 1976;
Landgrebe, 1980). The wider known commercial software for
object-based image analysis is eCognition. The segmentation
is conducted by the Fractal Net Evolution Approach (FNEA).
FNEA is a region growing technique based on local criteria
and starts with 1-pixel image objects. Image objects are
pairwise merged one by one to form bigger objects. The
merging criterion is that average heterogeneity of image
objects weighted by their size in pixels should be minimized
(Baatz and Schape, 2000; Benz et al., 2004). Quantitatively,
the definition of heterogeneity takes into account of both
spectral variance and geometry of the objects. Figure 1
illustrates the segmentation results of the ISODATA algorithm
(Iterative Self-Organizing Data Analysis Technique) and
FNEA implemented in eCognition. ISODATA clustering is a
typical global behavior based algorithm. It compares the
spectral value of each pixel with predefined number of
cluster centers and shifts the cluster mean values in a way
that the majority of the pixels belongs to a cluster (Richards
and Jia, 1999). The clustering process is optimized by
merging, deleting and splitting clusters. The objects seg-
mented with the ISODATA algorithm are very small and dense
at areas with a large gradient of spectral value, even though
the number of cluster centers is set to be very small, for
example, less than 10. This is a problem inherent to global
behavior based algorithms since it only considers the differ-
ence in spectral space instead of spatial adjacency. FNEA

minimizes average spectral heterogeneity/variance of pixels
within an object and also considers spatial heterogeneity
(Baatz and Schape, 2000; Baatz et al., 2001). This method
can better delineate the boundaries of homogeneous patches
and serve the pre-processing purpose of classification. We
used eCognition segmentation in this project. We adopt this
method because of its ability to take account of both spatial
and spectral information in high-resolution remote sensing
imagery, its relative ease in realizing the processing of a large
remote sensing dataset, its ability to include ancillary infor-
mation in the segmentation process, and its fast execution.
It is robust and has no parameters to tune, and it is relatively
easy to apply the output results in subsequent analysis.

Study Area and Data
The study site is located in a peninsular area, Point Reyes
National Seashore (PRNS) in Northern California (Figure 2).
It is about 72,845 ha (180,000 acres) in size and covered by
26 frames of Digital Airborne Imagery System (DAIS) images.
DAIS images at 1-meter spatial resolution were collected by
Space Imaging, Inc., at approximately 1200 to 1500 on
12–18 October 2001. The images are composed of four
bands: Blue (0.45–0.53 �m), Green (0.52–0.61 �m), Red

(b)

(a)
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Figure 2. Study site, rectangles show the boundary of
image frames.

(0.64–0.72 �m), and Near-Infrared (0.77–0.88 �m). DAIS is a
12-bit multispectral imaging sensor system for the genera-
tion of orthomosaics at ground sample distance ranging
from 0.3 to 2-meters (Lutes, 2002). DAIS-1 began commercial
operation in 1999 with the aim of complementing image
products offered by Space Imaging’s Ikonos satellite. The
core of the system is a custom-built, four-camera assembly
utilizing narrow field-of-view sensors, with exterior orienta-
tion parameters provided by an onboard GPS/IMU navigation
platform. GPS and inertial measurement unit (IMU) measure-
ments are used to determine camera position and attitude
for each image frame, instead of computing these parame-
ters from ground control and tie points, so it is a direct
georeferencing (DG) system. Tonal balance was conducted
through all the images by the image provider, which
removes the effect of uneven illumination of the image
frames and guarantees the spectral consistency of each class
among the multiple image frames. We also examined the
consistency by F-test of some selected classes on selected
image frames. The result indicates no significant difference
in the spectral value for a certain class between any two
selected images.

The classification scheme was designed at the alliance
level according to the vegetation classification system of
the California Native Plant Society (CNPS) (The Vegetation
Classification and Mapping Program, September 2003 edi-
tion), which is the sixth-level in the seven-level hierarchy
of the International Classification of Ecological Communi-
ties. At the alliance level, the vegetation is classified based
on dominant/diagnostic species, usually of the uppermost
or dominant stratum. This level is more detailed than Level
3 in the USGS Land-use and Land-cover Classification
System (Anderson et al., 1976). According to the PRNS
survey database, this area is comprised of about 60
mapping alliances of forest, shrub, and herb-dominated
ecosystems. We combined several alliances with very
similar dominant species into the same classes and added
several non-vegetation classes. Finally, we obtained 48
representative classes, in which 43 classes are vegetation
alliances.

Our field samples were acquired from three sources:
(a) the field survey plots (0.5 ha) from ground validation
of a previous aerial photograph interpretation; (b) GPS
acquisition of polygon features enclosing a field alliance or
GPS acquisition of point features adjacent to a field alliance
combined with image interpretation for inaccessible areas;
and (c) visual image interpretation aided by field reconnais-
sance. The survey database provides the UTM coordinates of
the geometric centers of the field plots. However, the field
survey plots were subjectively oriented and approximately
sized, instead of fixed dimension or orientation. We created
a 40-meter “plot” circle around each point and took those
circular polygons as training regions, with area of approxi-
mately 0.5 hectare. This step constituted an approximation
to the actual plot measurement. The field survey described
the sample plots to alliance level according to a vegetation
key created specifically for the study site (Keeler-Wolf,
1999). It is worth noting that, according to the rules estab-
lished in the classification protocol, the alliance designated
for a particular plot need not contain a majority (by area)
of the dominant species. It is possible that co-dominants are
in equal representation to the species for which the alliance
is named (for example, in the California Bay alliance, Coast
live oak may have “up to 60 percent relative cover”). The
GPS and field reconnaissance were intended to augment
samples for the alliances with less than ten plots to supple-
ment our existing field survey plots database.

Methods
Ancillary Layers
In addition to the four-band DAIS images, we also included
ancillary data as classification evidence. In many cases,
image band derivatives and ancillary data sources can
provide useful information to help distinguish between
spectrally inseparable vegetation classes and lead to more
effective vegetation classification. Environmental factors,
such as elevation, slope, and soil moisture, are widely used
ancillary data (Gould, 2000; Dymond and Johnson, 2002;
McIver and Friedl, 2002). According to the habitat character-
istics of vegetation, some environmental conditions are
limiting factors to the spatial distribution of some species.
For example, some species of willow (Salix) are predomi-
nantly located in riparian systems defined by close proxim-
ity to a watercourse or topographic depressions. For this
reason, we incorporated topographic parameters including
elevation, slope, aspect, and distance to watercourses as
additional features. We used a 10-meter resolution DEM
provided by the USGS. Slope and aspect were two derivatives
of the DEM. Distance to watercourses was calculated from
a GIS vector file of watercourses provided by National Park
Service. All the ancillary data were re-sampled to 1-meter
to match the image pixel size.

For multispectral and hyperspectral image data, band
ratio and spectral derivatives can also be used to improve
classification accuracy of vegetation (Qi, 1996; Gould,
2000). Shadow in association with terrain effects is one
of the significant barriers to vegetation classification with
airborne high-resolution multi-spectral images. The modula-
tion of insolation due to crown shadow and terrain topog-
raphy will lead to significant differences of intra-class
spectral value, and this modulation cannot be linearly
modeled. Based on hue theory, hue is dependent on the
spectral range and independent of illumination (Qi, 1996).
We conducted an IHS transform and included intensity, hue,
and saturation as additional data layers in the classification
to separate the effect of illumination to the quantity of
intensity.
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Feature Generation and Selection with CART
Features of each object, used in this analysis, were statisti-
cally derived from the 11 spectral and ancillary channels
including four spectral bands, three IHS transform indices
and four topographic parameters. We generated 52 features
for each object in four categories: (a) 11 means and standard
deviations respectively calculated from the band i values
of all n pixels forming an image object (i � 1,2, . . . 11),
(b) five ratios calculated by band i mean value of an image
object divided by the sum of all (bands 1 through 4 and
intensity) mean values (i � 1,2, . . . 5) of the five bands,
(c) 16 shape features, and (d) nine GLCM (Grey Level Co-
occurrence Matrix) and GLDV (Grey-Level Difference Vector)
textures of the near infrared band. GLCM is a tabulation of
how often different combinations of gray levels of two pixels
at a fixed relative position occur in an image. A different
co-occurrence matrix exists for each spatial relationship.
GLDV is the sum of the diagonals of the GLCM. It counts the
occurrence of references to the neighbor pixels’ absolute
differences. Unlike pixel-based texture, GLCM and GLDV
texture are calculated for all pixels of an image object,
instead of for a regular window size. To reduce border
effects, pixels bordering the image object directly (surround-
ing pixels with a distance of one) are additionally included
in the calculation. In total, 52 features were calculated
(Table 1). All the features were linearly rescaled to the
same range.

Based on the training object set, we employed the tree-
structured classifier CART to select a subset of features for
classification in a stepwise manner. CART is a recursive and
iterative procedure that partitions the feature space into
smaller and smaller parts within which the class distribu-
tion becomes progressively more homogeneous (Breiman
et al., 1984; Heikkonen and Varfis, 1998). The key of this
iterative binary splitting process is to select one feature and
its splitting value at a time to minimize node (equivalent
to dataset) impurity. Node impurity reaches its minimum
when the node contains training samples from only one
class. This selection algorithm has a coincident mechanism
in dividing the feature space with the following nearest
neighbor classifier. A widely used impurity index, GINI
is used in this study, which is named after its developer,
the Italian statistician Corrado Gini (Breiman et al., 1984).
Given a node t with estimated class probabilities p(c|t),
the measure of node impurity will be

Each feature in the CART tree has an importance score based
on how often and with what significance it serves as pri-
mary or surrogate splitter throughout the tree. The scores
are quantified by the sum of the impurity decrease (�I)
across all nodes that the feature has when it acts as a pri-
mary or surrogate splitter :

We selected the first 16 features according to the rank of
the importance score for the classification.

Object-based Nearest Neighbor Classification
The parametric classification schemes such as the widely
used MLC are not readily applicable to multi-source data and
small object samples in this study because of their possible
disparate nature (Srinivasan and Richards, 1990; Gong,
1996). K-nearest neighbor is a non-parametric classifier
without any statistical assumption of the data distribution,

M(xm) � a
t�T

�I(s�m,t).

(s�m)

i(t) � 1 � a
c

p2(c ƒ t).

which labels an unclassified object according to its nearest
neighboring training object(s) in feature space. It is not
widely used for pixel-based classification, partially due to
its notoriously slow speed of execution (Hardin and Thomson,
1992). Unlike MLC, where training data are statistically
condensed into covariance matrices and mean vectors, the
K-NN classifier requires that the actual training vectors
participate in each classification. However, for the object-
based approach used in this study, the segments are mini-
mum classification units, i.e., classification primitives,
instead of individual pixels. The amount of classification
primitives is greatly reduced through the segmentation
process. Therefore, the execution speed is not problematic.
In this study, we test the K-NN for object-based classifica-
tion while the conventional MLC was used in a pixel-based
fashion as a benchmark.

To classify an object, K-NN finds the k-neighbors near-
est to the new sample from the training space based on a
suitable similarity or distance metric. The plurality class
among the nearest neighbors is the class label of the new
sample. We measured similarity by the Euclidian distance
in feature space. In this study, the leave-one-out method
was used to assess K-NN classification accuracy. Specifi-
cally, we took one sample object out of the training sample
set and used it as a (singleton) test set and all others as
training. This was repeated until all the observations had
been used as singleton test sets. When all observations
have been left out once, i.e., classified once, the results
are pooled and the classification accuracy is calculated
(Steele et al., 1998).

Although our final classification objective is at the
alliance level, we first classified all the objects into four
wider categories: forest, shrub, herbaceous, and others, and
then further classified each category to a more detailed
alliance level. We designed this two-level hierarchical
classification because we assumed that each category had
different favorable feature subsets to be used for classifica-
tion. Parallel classification of many classes is more likely
to give poor classification accuracy (San Miguel-Ayanz
and Biging, 1997). Therefore, once we separated the four
categories, we conducted feature selection for each of them.
Generally speaking, the four top categories are very different
in spectral space and easy to classify.

“K” is a parameter representing how many samples are
considered to classify one object. A smaller k needs less
processing time, but may not achieve the best classification
accuracy. To test the sensitivity of classification accuracy
to k, we varied k from 1 to 18 and classified all the training
objects with each K-NN, and then compared the overall
and average accuracies. Different classes achieved the high-
est classification accuracy at different k values, which is
illustrated in Figure 3. One dot represents one class. The
x-axis is the number of sample objects for this class in
logarithmic scale. The y-axis is the k that gives the highest
accuracy to this class, referred as best k. It is obvious that
larger k values tend to favor larger sample sizes. However,
if we use the median of the best k for each top category,
the average and overall accuracies were 47.5 percent and
56.8 percent respectively, which are not significantly dif-
ferent compared with 50.9 percent and 56.3 percent using
first nearest neighbor (k � 1). The median of the best k in
the four categories forest, shrub, herb, and non-vegetation
were 4, 3, 2, and 3, respectively. Since the classification
accuracies of many classes with small sample size are
reduced, the average accuracy is actually lowered in classifi-
cation with median k. The above study shows that using
median k as the tradeoff in this classification will not bene-
fit the entire classification. Therefore, we simply used 1-NN
in the following object-based classification.
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For comparison, we used the same training set to perform
the pixel-based MLC which has generally been proven to be
one of the most robust classifiers for remote sensing data
(San Miguel-Ayanz and Biging, 1996). The pixel-based MLC is a
good benchmark to evaluate the performance of the object-

based K-NN. The same feature sets were used except that we
removed the features specific to objects, such as geometric
features and standard deviations (Table 2). For pixel-based
MLC, we calculated all the features and conducted the classi-
fication in PCI v. 9.1 (PCI Geomatics Enterprises, Inc.). The

TABLE 1. OBJECT-BASED FEATURES

Categories Description

Mean, Standard deviation and Ratio of DAIS bands 1–4, Intensity, Hue and Saturation
Spectral
features pixels Brightness Mean value of the means of band 1–4 and intensity among pixels

Topographic features Mean and Standard deviation of elevation, slope, aspect and distance to watercourses

Textures GLCM_Homogeneity

GLCM_Contrast

GLCM_Dissimilarity

GLCM_Entropy

GLCM_ Standard Deviation where

GLCM_Correlation

GLDV_Angular Second Moment

GLDV_Entropy

GLDV_Contrast

Geometric features Area True area covered by one pixel times the number
of pixelsforming the image object

Length Length of bounding box, approximately
Width Width of bounding box, approximately
Compactness 1 The product of the length and the width of the

corresponding object and divided by the number
of its inner pixels.

Rectangular fit Ratio of the area inside the fitting equiareal rectangle
divided by the area of the object outside the rectangle.

Border length The sum of edges of the image object that are shared
with other image objects.

Shape index The border length of the image object divided by four
times the square root of its area. ie, smoothness.

Density The area covered by the image object divided by its
radius.

Main direction The direction of the major axis of the fitting ellipse.
Asymmetry The ratio of the lengths of minor and major axes of the fitting

ellipse.
Compactness 2 The ratio of the area of a polygon to the area of a circle

with the same perimeter.
Number of edges The number of edges which form the polygon.
Stddev of length of edges The lengths of edges deviate from their mean value.
Average length of edges The average length of all of edges in a polygon.
Length of longest edge The length of the longest edge in a polygon.

*i is the row number and j is the column number, Vi,j is the value in the cell i,j of the matrix, Pi,j is the normalized value in the
cell i,j, N is the number of rows or columns.
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TABLE 2. RANK OF FEATURES SELECTED FOR 1-NN AND MLC FROM CART

Object-based 1-NN Pixel-based MLC

Features for each Object Forest Shrub Herb Others Forest Shrub Herb Others

DAIS band 1 Mean 7 2 7 2
Standard Deviation 10 —

DAIS band 2 Mean 7 12 7 8
Standard Deviation 11 16 —
Ratio 6 6 6 6

DAIS band 3 Mean 16 14
Standard Deviation 11 —
Ratio 5 5

DAIS band 4 Mean 14 11 16 13 7 12
Standard Deviation 15 3 —
Ratio 8 8 13 8 8 9
GLCM Homogeneity 10 7
GLCM Contrast 12 8 6 11 4 5
GLCM Dissimilarity 15 11 12 11 10 8
GLCM Entropy 9 6
GLCM Standard Deviation 13 15 12 11
GLCM Correlation 9 9
GLDV Angular Second Moment 14 10
GLDV Entropy 15 11
GLDV Contrast 14 5 10 4

IHS- Intensity Mean 13 9
Ratio 16 12

IHS- Hue Mean 13 10
IHS- Saturation Mean 4 5 4 5
Elevation Mean 1 1 1 2 1 1 1 2

Standard Deviation 12 6 7 —
Slope Mean 3 4 3 3 4 2

Standard Deviation 14 10 4 8 —
Aspect Mean 9 5 4 9 3 3

Standard Deviation 7 —
Dist. to watercorses Mean 2 3 2 1 2 3 2 1
Brightness 9 5
Stddev of length of edges 10

Figure 3. Best K for each class with respect to sample
size in number of pixels.

texture features were derived with a window size of 25 � 25.
Since the whole study site is composed of 26 images, the
dataset is too large to handle if all the images are merged.
Alternatively, we only conducted classification on training
samples to serve this comparison purpose. After computing all
the classification features for each pixel in all images, we
merged all the training pixels from the 26 frames to one frame
without keeping the spatial relationship. Each feature was
stored in one channel. Then, we classified this merged image.

We did not separate the training and test samples because we
wanted to keep the equivalent sample size to the leave-one-out
method in 1-NN. Otherwise, this comparison will favor 1-NN.

Results and Discussion
Segmentation
Based on four-band DAIS imagery and the intensity layer, we
segmented the images into homogeneous objects with
eCognition 4.0. We adjusted the segmentation scale parame-
ters to best delineate small homogenous vegetation patches,
approximately in the size of several canopies. The final
criteria of segmentation consisted of spectral homogeneity
and geometric indices with the weights of 0.7 and 0.3,
respectively. The two geometric indices, compactness and
smoothness, were assigned equal weight. The size of the
objects depended on the variation of the spectral values
over spatial neighbors. The objects were larger in areas
with mostly herbaceous cover, and smaller in forested areas
because of the different spatial variation in spectral values
between these classes. This adaptive segmentation may
significantly reduce the quantity of the data for further
processing and classification, while still conserving spectral
variation information. Any image object overlapping with
the training regions by more than 10 percent of its own area
was treated as a training object. This percentage was deter-
mined based on our visual interpretation of the ratio of
intersected area to the area of major image objects. Larger
percentages will generate less training objects and small
percentages cannot guarantee that the training objects are
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Figure 4. Training sample selection: (a) a small
part of training regions, four polygons, and (b)
intersected polygons as training objects in white
overlaid on original image, 360 � 360 pixels.

dominated by the same species as the one represented by
the training region. Figure 4 illustrates the result of eCogni-
tion segmentation and training object generation in a small
part of our study site.

From the above procedure, 6,923 training objects were
identified. After categorizing those training objects into 48

classes, we found the sample sizes were extremely uneven
by class (Table 3). The coyote brush had the largest sample
size of 1,158 training objects while the coast buckwheat
had only five training objects. This situation is normal for
vegetation classification since the size of training samples
is proportional to the abundance of vegetation on the land-
scape. For a rarely distributed species, it is difficult to collect
more samples. In consideration of this, we chose nonpara-
metric methods both for feature selection and classification.

Feature Selection
The purpose of feature selection is to reduce the computa-
tional requirements while preserving the overall accuracy of
classification. The 52 features for each object were ranked

TABLE 3. SAMPLE SIZE AND CLASSIFICATION ACCURACY

Sample size Accuracy (%)

Class Object Pixel NN MLC

California Bay 640 2514769 49.40 19.71
Eucalyptus 93 283175 61.79 70.65
Tanoak 27 146585 72.87 76.99
Giant Chinquapin 30 165041 25.80 63.01
Douglas fir 675 2938898 61.61 26.66
Coast redwood 190 788839 60.90 65.92
Bishop pine 398 2068280 68.68 55.36
Monterey cypress/pine 85 309727 39.91 55.67
Willow Mapping Unit 158 556823 41.10 44.74
Red Alder 339 1198298 37.03 12.20
Coast Live Oak 176 700902 42.17 18.76
California Buckeye 22 61766 16.49 83.15
Yellow bush lupine 61 216909 42.71 73.36
California Wax Myrtle 97 441703 30.05 54.84
Blue blossom 133 789096 55.27 63.72
Chamise 66 280686 59.57 74.94
Eastwood Manzanita 42 172663 32.71 71.16
Coffeeberry 40 162152 21.88 61.43
Mixed Manzanita 39 228206 41.75 64.01
Sensitive manzanita 29 168417 61.46 60.45
Mixed Broom 100 433219 70.63 75.43
Coyote Brush 1158 7585795 78.06 27.37
California Sagebrush 45 174285 34.30 83.22
Gorse 20 101433 4.14 75.11
Hazel 17 97783 61.21 93.97
Poison Oak 49 279488 16.13 51.94
Salmonberry 63 252435 22.77 60.29
Arroyo Willow 159 724783 38.12 32.92
Pacific Reedgrass 176 1033935 56.77 62.94
European Dunegrass 63 208655 100.00 65.33
Perennial Grasslands 248 1505509 48.88 32.24
Saltgrass 101 386005 61.64 28.32
Rush 508 2649631 32.89 24.89
Tufted Hairgrass 28 131875 58.61 86.11
Bulrush-cattail 59 306018 50.03 67.8

spikerush
Cordgrass 14 108248 28.00 70.58
Iceplant 100 328552 51.08 51.98
Coast Buckwheat 5 52909 51.81 97.17
Dune sagebrush- 67 276225 26.69 33.66

goldenbush
Pickleweed 177 920125 21.33 68.76
California annual 109 627317 69.96 39.75

grassland weedy
California annual 93 469983 69.09 76.11

grassland
Purple Needlegrass 7 22934 99.29 74.68
Urban 94 150991 85.51 92.76
Non-vegatated 13 16705 94.91 91.28
Dune 21 53578 40.18 98.03
Beaches 41 183635 63.29 94.76
Water 48 833694 90.82 92.90
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Figure 5. Rank of feature importance assessed by CART
and classification accuracy vs. number of features used.

by a CART process. Using CART, we generated 11 feature sets
with different numbers of features: the first 2, 7, 12, 17 and
so on, until all 52 features were reached with an interval of
5, according to the feature importance ranking. Using each
of the resultant feature sets, we conducted classifications by
programming in Matlab and compared their classification
accuracies. In the 1-NN classification, both average and
overall accuracies increase with the inclusion of more
features at the beginning, then drop when we include more
than 12 to 17 and 22 to 27 features, respectively (Figure 5).
To achieve higher average accuracy, we selected the first 16
features out of the 52 features for further classification.

In the process of choosing the number of features for
classification, we found only 38.9 percent average accuracy
and 44.2 percent overall accuracy could be obtained when
classifying 48 classes at the same time. Among the 43 veg-
etation alliances, 26 alliances were frequently confused with
the relatively abundant rush and coyote brush. Those two
alliances have large sample sizes and extend sparsely in
feature space because of large spectral variation in such
large geographical extent of the whole study site. Classifica-
tion accuracies of the alliances with small sample sizes were
highly affected by these alliances. Feasibly in each frame,
we could separate the top four categories of forest, shrub,
herb, and non-vegetation with 1-NN rule based on the six
features of bands 1 through 4, NDVI, and Hue with higher
than 95 percent accuracy. The features of the alliances with
a larger sample size were not so dispersed or dominant in
feature space for each frame. For each category, we selected
the best feature sets for classification. Table 4 lists the
numbers of features selected among spectral features, topo-
graphic features, textures, and geometric features for each

category. Among the top 16 features, there are 5 to 7 high-
ranking topographic features and three textures. Elevation,
distance to watercourses, slope, and aspect are the features
most capable to separate the vegetation alliances. Vegetation
species distribution appeared to be associated with topo-
graphic features. This can be explained by the fact that
naturally growing species are adaptive to environmental
factors, such as humidity and sunlight, which are related
to topography. For forest, shrub, and herb, topographic
features become more and more important, while spectral
features are less essential. This is reasonable since forest is
more resistant and less dependent on environmental condi-
tions compared with shrub and herb in terms of plant biology
(Barbour et al., 1999). The images were acquired during
the dry season in California. Except for riparian vegetation,
most herbaceous plants are dehydrated and/or dead. For
this reason, spectral differences can hardly separate the
herb alliances.

Two or three out of the nine texture features, such as
contrast, correlation, and dissimilarity are important features
in the classification, which can represent the appearance of
vegetation. This is not a very large percentage because the
features were selected within each category. The textures of
the four upper level vegetation categories are more distinct
from each other than the textures of alliances within the
categories. For example, the crown structures of different
forest alliances are irregular and not easy to capture by
texture, while the textural differences between forests and
shrubs are fairly easy to detect.

Unlike in the classification of human-made features,
geometric features did not significantly contribute to the
classification of vegetation at this level of image resolu-
tion, although they are features unique to the object-based
approach. Tree crown spectral values are highly variable due
to textures, shadows, and gaps present in high-resolution
airborne images. Therefore, the shape of the objects has no
obvious pattern that could be used as evidence for classifica-
tion. Only the standard deviation of length of edges ranked
high (10th) in herb classification. Compared with forest, herb
objects are more compact and the edges are more smooth
and regular. Therefore, the geometric properties of herb-
dominated image objects are relatively unique.

Object-based Classification
The classification was implemented in Matlab for its coding
advantage. The segmented objects from eCognition were
exported in the vector format with features in an attribute
table. The object based classification was conducted with
these attribute features. Each top category had a specific set
of 16 features selected from all features for classification,
although there were many overlaps. Table 3 shows the
classification accuracy for each class. The accuracies for
vegetation classes varied greatly. The average and overall
accuracy were 50.9 percent and 56.3 percent, respectively.
Among 43 vegetation classes, 14 classes had an accuracy
higher than 60 percent. Besides the objective similarity of
spectral characteristics, explanations for the lower accuracy
among some classes are threefold: (a) they have small
sample sizes, such as Gorse and Cordgrass; (b) they are
understory vegetation, such as Mixed Manzanita and Poison
Oak; and (c) the alliance itself is composed of a dominate
species associated with another species ecologically, such
as California Bay and Coast live oak.

These results suggest that there is a criteria discrepancy
between image classification and the botanical mapping. In
the study site, some sample plots are covered by vegetation
associations instead of homogeneous species. For example,
Douglas-fir, California Bay and Coast live oak are common
ecological associates. A training object that is claimed as

TABLE 4. TYPES OF FEATURES SELECTED FOR CLASSIFICATION

Spectral Feature (20)* Topography (8)

Mean Std.dev Ratio Texture Mean Std.dev Geometry
(8) (7) (5) (9) (4) (4) (15)

Forest 3 2 4 2 3 2 0
Shrub 5 1 2 3 4 1 0
Herb 4 1 0 3 4 3 1
Non-veg 1 2 1 7 3 2 0

*the number of features in this category selected from 52 features.
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Figure 6. Comparison of classification accuracies
generated by 1-NN and MLC.

“Douglas-fir” may contain as little as 15 percent Douglas-fir
by canopy area, according to the field and photo classifica-
tion protocol. This fact is reflected in the vegetation classifi-
cation protocols developed for the study area (Keeler-Wolf,
1999). This problem was also addressed by Kalliola and
Syrjanen (1991). Therefore, the spectral feature of the mixed
object is intermediate according to the proportion of associ-
ate species. While significant percentages of the training
objects were classified as discrepant alliances, it is very
likely that these percentages represent the composition of
vegetation in the training objects. This is due to the fact that
the training objects were classified according to a set of
rules that does not include homogeneity as a requirement
for classification to a particular alliance. Thus, it is not
unreasonable to assume that a fairly high accuracy has been
obtained when the percentages of alliances “confused” with
a reference alliance is within the tolerances specified by the
original classification guidelines for the training data, and
those “confused” alliances are common ecological associates
with the reference alliance. For these reasons, traditional
metrics of classification accuracy are misleading. Table 5
illustrates this phenomenon. The classification accuracy of
Douglas-fir, California Bay, and Coast live oak are only 61
percent, 62 percent and 51 percent, respectively, but 70
percent to 90 percent of the objects are classified into their
ecological associates. That means most confusion occurs in
the ecological associates of these three species. This implies
that if we group these classes in one higher-level class in a
hierarchical classification system, we would expect a better
classification accuracy.

In order to compare with pixel-based MLC, the classifica-
tions result from the object-based approach was represented
in raster format. The accuracy was then calculated based on
the number of correctly classified pixels for each class. The
average accuracy and overall accuracy of the object-based
1-NN were 51.03 percent and 58.37 percent, respectively
(Figure 6); they were 61.81 percent and 41.38 percent for the
pixel-based MLC. The average accuracy of the MLC was nearly
10 percent higher than that of the 1-NN, while the overall
accuracy was 17 percent lower. This illustrates that the MLC
has some advantage in classifying those classes with small
sample sizes, such as Gorse and Cordgrass. Figure 7a and 7b
illustrate this relationship of classification accuracy with
respect to sample size in number of objects and number of
pixels, respectively. The accuracy of 1-NN for each class has
no obvious pattern, while that of MLC decreases apparently
when the sample size increases.

These results indicate that object-based 1-NN is more
robust with respect to sample size. Vegetation classification
is different from generic land-cover classification. The
alliance is more likely to be a botanical concept. The
appearance of the same alliance on images always deviates
from the typical representation caused by shadow, density,
size, intermediate type, and transition zones, which are
difficult to be considered by computer-based remote sensing

image classification. In addition, the training samples were
not collected randomly to the practical constraints associ-
ated with validation efforts. Therefore, a larger sample size

TABLE 5. CLASSIFICATION CONFUSION MATRIX OF CALIFORNIA BAY,
DOUGLAS-FIR AND COAST LIVE OAK

Class California Bay Douglas-Fir Coast Live Oak

California Bay 329 111 20
Douglas fir 93 412 37
Coast live oak 23 22 118
Others 195 130 15

Sample size 640 675 190
Accuracy 51% 61% 62%
Classified into 70% 81% 92%

associates

Figure 7. Classification accuracy for 48 classes with
respect to (a) sample size in number of objects, and (b)
sample size in number of pixels.
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does not necessarily mean that the features are closer to a
normal distribution. Whereas alliances with large samples
always imply their extensive geographical distribution,
variable physiognomy at the landscape level results in a
lack of normality in feature space. Therefore, a pixel-based
MLC cannot achieve an optimal solution with this non-
unimodel data. Object-based 1-NN is a non-parametric
method and it relaxes the restrictions of MLC. It is more
flexible and adaptable to all data models as long as the
training samples are representative of the whole dataset.

Summary and Conclusions
In this study, high-resolution airborne remote sensing
images from the DAIS sensor were employed to classify
43 vegetation alliances plus five non-vegetation classes over
72,845 ha (180,000 acres) in Point Reyes National Seashore,
California, covered by 26 frames of images. To overcome the
high local variation, we used an object-based approach and
examined a set of suitable methods of feature extraction
and classification. We performed image segmentation in
eCognition (Baatz et al., 2001). In consideration of the
uneven training sample sizes, we selected non-parametric
methods for both feature selection and classification. We
first separated the 48 alliances into forest, shrub, herb, and
non-vegetation and then conducted feature selection and
classification within each category individually. The tree-
based CART algorithm was used to select the most important
features for classification. After testing the sensitivity of
the classification accuracy to parameter k of the k-nearest
neighbor classifier, we chose the first nearest neighbor
to perform classification. Pixel-based MLC was used as a
benchmark in evaluating our approach.

In this study, we found that using objects as minimum
classification units helped overcome the problem of salt-
and-pepper effects resulting from traditional pixel-based
classification methods. Among spectral, topographic, texture
and geometric features of an object, topographic information
as ancillary information was very important feature for
natural vegetation classification at this spatial scale of study
in our study area, especially for environment-dependent
alliances. New geometric features did not significantly
contribute to vegetation classification. The use of a hierar-
chical classification scheme helped improve the accuracy
considerably, mainly because optimal features in classifica-
tion were selected for each broad category. The object-based
1-NN method outperformed pixel-based MLC algorithm by
17 percent in overall accuracy. Meanwhile, pixel-based MLC
achieved higher average accuracy because it performed
better in the classification of alliances with small sample
sizes. The results indicate that object-based 1-NN method
is more robust than pixel-based MLC due to the specific
characteristics of vegetation classification in our study area.

Although the average accuracy and overall accuracy are
only approximately 51 percent and 58 percent, respectively,
13 alliances among the 43 vegetation alliances achieved the
results with accuracy of 60 percent and higher. We report
the accuracies with assumption that the upper level groups
(forest, shrub, herb, and non-vegetation) are fully correctly
classified. Additionally, we found that traditional assess-
ments of classification accuracy may not be suitable in
heterogeneous systems. This is especially true when rules
for on-the-ground vegetation classification are based on
ecological relationships and classification rules for remotely
sensed imagery are statistically based. A revised set of
procedures for reconciling ecological dominance with image
classification is required for this purpose.

We found that the accuracy of detailed vegetation
classification with very high-resolution imagery is highly

dependent on the sample size, sampling quality, classifica-
tion framework, and ground vegetation distribution. These
data could be further refined in future vegetation classifica-
tion efforts involving such a high level of thematic detail.
A potential improvement to the method described by this
paper may be to examine in more detail the automatic
intersection of survey plots and objects. Some sample
objects are not covered or dominated by a single alliance
due to inherent landscape heterogeneity.

This work shows promise of the use of high spatial
resolution remote sensing in detailed vegetation mapping.
With the object-based classification, vegetation classifica-
tion accuracy is significantly improved and substantially
surpasses 40 percent, which has been considered as a barrier
in remote sensing based mapping of complex vegetation.
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