
Abstract
While the spatial resolution of remotely sensed data has
improved, multispectral imagery is still not sufficient for
urban classification. Problems include the difficulty in
discriminating between trees and grass, the misclassification
of buildings due to diverse roof compositions and shadow
effects, and the misclassification of cars on roads. Recently,
lidar (light detection and ranging) data have been integrated
with remotely sensed data to obtain better classification
results. In this study, we first conducted maximum likeli-
hood classification (MLC) experiments, a traditional pixel-
based classification method, to identify features suitable for
urban classification using lidar data and aerial imagery. The
addition of lidar height data improved the overall accuracy
by up to 28 and 18 percent, respectively, compared to cases
with only red–green–blue (RGB) and multispectral imagery.
To further improve classification, we propose a knowledge-
based classification system (KBCS) that includes a three-level
height, “asphalt road, vegetation, and non-vegetation”
(A–V–N) classification rule-based scheme and knowledge-
based correction (KBC). The proposed KBCS improved overall
accuracy by 12 and 7 percent compared to maximum
likelihood and object-based classification, respectively.

Introduction
Remotely sensed data from airborne and spaceborne plat-
forms offer global coverage at varying spatial, spectral, and
temporal resolutions, and are the major source of geospatial
information (Baltsavias and Gruen, 2003). Among data
sources, aerial/satellite imagery with multispectral bands
is widely used to investigate natural resources and classify
land-use and land-cover. The red edge between the red
and near infrared (NIR) bands can effectively discriminate
vegetation and other land-cover. However, while the image
information content increases with spatial resolution, the
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accuracy of land-cover classification may actually decrease,
a problem that cannot be overcome by a traditional pixel-
based approach. Recently, classification technology has
progressed from traditional pixel-based statistical methods to
knowledge- and object-based classification (OBC) approaches
(Hodgson et al., 2003; Taubenböck et al., 2006).

However, a common criticism of OBC is that the analyst
must have sufficient knowledge about the land-cover objects
in individual images. The analyst then applies this knowl-
edge to construct a hierarchical image object network by
using iterative procedures to find the optimal segmentation
parameters for classification. The segmentation parameters
applied by the analyst will influence the classification
results (Baatz et al., 2004; Repake et al., 2004). The adop-
tion of expert systems or knowledge-based classification
methods may improve not only OBC performance but also
classification accuracy from multisource remote sensing
data (Richards and Jia, 1999). Early research demonstrated
the application of knowledge-based techniques to remotely
sensed data (Nagao and Matsuyama, 1980). These tech-
niques have since been applied to urban land-cover dis-
crimination using Landsat TM imagery (Ton et al., 1991).
They have also been integrated with multiple classification
methods to improve classification accuracy (Liu et al., 2002;
Stefanov et al., 2001) and combined with expert rules in a
sub-pixel MLC classifier as part of a vegetation-impervious
surface-soil (V–I–S) conceptual model to successfully model
an urban ecosystem (Hung and Ridd, 2002).

The goal of classification is to effectively discriminate
ground features. While the horizontal information for cate-
gories, shapes, and boundaries of ground features can be
determined, urban features are so complex that multispectral
imagery and traditional classification techniques are not
sufficient for classifying them. For example, while it is
generally easy to distinguish vegetation and man-made objects
using NIR images, it is still very difficult to discriminate
between trees and grass. Moreover, buildings may be classi-
fied into other categories because of spectral variations caused
by apparent differences in roof composition and shadow
effects. However, such misclassification may be resolved by
adding height information. Therefore, even withot NIR, using
color images (containing only RGB bands) together with lidar
(light detection and ranging) data may improve classification
accuracy.
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Lidar integrates a global positioning system (GPS) device,
inertial motion unit (IMU), and laser scanner to create high-
resolution and accurate digital surface models (DSMs). Lidar-
derived normalized DSMs (NDSMs) provide useful information
for urban building extraction (Haala and Brenner, 1999;
Rottensteiner et al., 2005), and urban land-use classification
(Hill et al., 2002; Hodgson et al., 2003). The studies noted
above have suggested that the integration of aerial images
and lidar-derived NDSMs may hold great potential for urban
classification (Rottensteiner et al., 2005). However, those
studies either only compared the contribution of NDSMs to
classification visually (Haala and Brenner, 1999) or investi-
gated the relative contribution of NDSMs to imperviousness
modeling (Hodgson et al., 2003). Therefore, quantitative as
well as qualitative evaluation of the contribution to urban
classification of adding lidar NDSMs and intensity to color or
multispectral aerial imagery data is needed.

New types of digital aerial cameras, such as the digital
mapping camera (DMC) or ADS40 camera, provide RGB as well
as NIR images (Baltsavias and Gruen, 2003). Many manufactur-
ers are also now producing highly efficient lidar systems, and
the data provided are expected to greatly improve classifica-
tion performance. However, determining the optimal features
for urban classification is a critical task. This study had two
objectives with the aim of achieving this goal. First, we
investigated the feasibility and contribution of lidar data
integrated with high-resolution color aerial imagery and NIR
band imagery in regard to urban classification. Second, to
further improve classification performance, a knowledge-based

classification system (KBCS) was developed. The developed
knowledge base includes road-, vegetation-, and building-
discrimination rules based on the characteristics of remotely
sensed data and expert knowledge. A three-height-level, rule-
based classification framework according to a lidar NDSM was
established. In each level, the “asphalt road, vegetation, and
non-vegetation” (A–V–N) classification principle was used to
simplify the categories. Next, knowledge-based correction
(KBC) was applied to adjust for some misclassification. This
paper describes the algorithms, the knowledge-base construc-
tion procedures, and the organization of the proposed method-
ology. Experimental results are presented to demonstrate the
benefits of the integration of aerial imagery with lidar data as
well as the greater classification accuracy of the proposed KBCS
compared with the OBC approach.

Construction of the Knowledge Base
Although various ways of expressing expert knowledge
exist, rules are the most common and simplest way to create
a knowledge-based system (Giarratano and Riley, 1989). The
rules are given in the form of “if � condition � then �
conclusion �.” Each rule represents one item of knowledge
captured from remotely sensed data associated with a
threshold that is either assigned by experts or calculated
automatically according to the characteristics of the ground
feature. In addition to the thresholds used by data-driven
rules, a logical threshold is used to help decide whether a
specific rule is applied. Table 1 lists all the thresholds used

TABLE 1. THRESHOLD VALUES AND SWITCHES LOGICAL THRESHOLD

Thresholds Value Used

NO Threshold Name Explanation Study Area 1 Study Area 2

1 ThresholdHL Low height level height 0.5 m 0.5 m
2 ThresholdHH High height level height 2.5 m 2.0 m
3 ThresholdIL Low lidar intensity 5 5
4 ThresholdIH High lidar intensity 18 15
5 ThresholdSmoothness Smoothness threshold 3.0 m 3.0 m
6 ThresholdPenetrability Penetrability threshold 0.05 m 0.05 m
7 ThresholdLBA Smallest Building Block Area 1800 p 1800 p
8 ThresholdShapeIndex Shape Index 0.5 0.5
9 ThresholdArea Smallest Area 225 p 225 p

10 ThresholdTVI lidar-TVI Automatic Automatic
11 ThresholdNDVI NDVI Automatic Automatic
12 Threshold43 Remove grass from roads 1250 1250
13 Threshold34 Remove roads from grass 750 750
14 Threshold21 Remove trees from buildings 750 750
15 Threshold12 Remove buildings from trees 750 750
16 Threshold31 Remove roads from buildings 1500 1500
17 Threshold41 Remove grass from buildings 1500 1500
18 Threshold32 Remove roads from trees 0 750

Notes:
Threshold 1�9: Input by user. The values in parenthesis are default values (p: pixels).
Threshold 10, 11: Automatic means calculated by automatic optimum threshold 

selection method.
Threshold 12–18: When the threshold is greater than 0, this function is activated.

Logical Thresholds Value Used

NO Threshold Name Study Area 1 Study Area 2

1 Use_NDVI_for_Trees Y Y
2 Use_NDVI_for_Grass Y Y
3 Use_LIDAR-TVI_for_Grass Y Y
4 Use_LIDAR-TVI_for_Trees N Y
5 Use_ND_for_Trees N Y

Use_AIS_for_Trees N Y
6 Use_Penetrability_for_Grass N N
7 Use_Mask Y N
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in this work. Several recent studies have explored urban-
feature extraction from aerial imagery and lidar data by
focusing on three major categories: roads, vegetation, and
buildings. Good results have been obtained from individual
studies (Arefi et al., 2003; Elberink and Mass, 2000; Haala
and Brenner, 1999; Hu and Tao, 2005; Ma, 2005). However,
to establish discriminative models and a knowledge-acquisi-
tion procedure, these accumulated research results must be
adjusted according the characteristics of the study area and
the data. The following sections discuss the decision process
behind each of the three feature-discrimination models, the
types of data needed, and the method of obtaining optimal
thresholds to segment the feature images for classification.

Prior Knowledge Rules
Three Level Height Rules (Rules P1 to P3)
Three height levels were established for the lidar NDSM by
selecting two height thresholds (ThresholdHL and Thresh-
oldHH). The first threshold was defined by a very low height
value (e.g., 0.5 m), and the other was defined according to
the lowest building height (e.g., 2.5 m) in each different
study area. The rules that define the three levels (Rules P1
to P3) can be written as:

If nDSM � ThresholdHL then low_height � true
If nDSM �� ThresholdHL and nDSM � ThresholdHH
then mid_height � true

(1)

If nDSM �� ThresholdHH then high_height � true.

Area Analysis Rule (Rule P4)
Generally, in image segmentation, a great deal of noise may
remain after applying a specific type of knowledge to extract
objects that meet a criterion. If the total pixels of a connected
component are smaller than a threshold, that component 
will be treated as noise. For an image with a 0.1 m spatial
resolution, the threshold of 225 pixels represents an area of
about 1.5 m � 1.5 m. The Area Analysis Rule can be applied
to all of the following discriminative models and written as:

where X is the derived segment image from a specific rule.

Road Discriminative Model (RDM)
Lidar Intensity Road Rule (Rule R1)
Examination of the pixel values from the lidar intensity image
shows that high values appear over grass, vehicles, and lane
markings on roads. In contrast, asphalt roads usually have
low lidar intensity compared to other objects. The Lidar
Intensity Road Rule (Rule R1) can be derived by setting up
two lidar intensity thresholds (ThresholdIL and ThresholdIH)
to extract asphalt roads. This rule can be written as:

However, the detected asphalt road image contains excess
noise coming from objects with high lidar intensity values. As
a result, the road discriminative models require more rules
based on lidar height to identify other road characteristics.

Smoothness Road Rule (Rule R2)
The second road discriminative rule is based on the character-
istic of road surfaces in urban areas to be relatively smooth.
Under this condition, the smoothness can be defined by
calculating the height difference between a lidar point and
a locally planar surface. Height differences of less than a
threshold are classified as points on smooth surfaces, such as

then Road � true.

   LidarIntensity � ThresholdIH 

  If LidarIntensity � ThresholdIL and

 If Area(X) � ThresholdArea then X � false, 

roads or building roofs (Ma, 2005). Ma (2005) suggested 0.3 m
as the threshold for smooth surface determination. According
to our experiment results, this threshold can correctly classify
most planar points. The Smoothness Road Rule (Rule R2) can
be written as:

Penetrability Road Rule (Rule R3)
The third road discriminative rule is described by penetra-
bility, which is defined by how well the laser beam from the
lidar system can penetrate through objects, such as trees, to
the ground. Roads have low penetrability. To describe low-
penetrability roads, the lidar height difference between first
return (HFirst Return) and last return (HLast Return) is close to zero
(e.g., 0.05 m). This rule can be written as:

Integrated Vegetation Discriminative Model (IVDM)
This study proposes an Integrated Vegetation Discriminative
Model (IVDM) based on previous research results with some
modifications to enhance the capability to separate ground
objects and define them as vegetation or non-vegetation
(Arefi et al., 2003; Elberink and Mass, 2000; Huang et al.,
2006; Ma, 2005;).

NDVI Vegetation Rules (Rules V1 and V2)
The normalized difference vegetation index (NDVI) is gener-
ally used to discriminate vegetation from other land-cover.
We used Otsu’s (1979) method to compute the threshold
(ThresholdNDVI) for the NDVI vegetation rule. Because the NIR
band of aerial imagery is not always available, the rules used
for tree and grass discrimination must be accompanied by a
logical threshold. The NDVI Tree Rule (Rule V1) can be
written as:

If Use_NDVI_for_Trees = true and NDVI � ThresholdNDVI

then Tree � true.

Because most grass in urban areas is lawn, the NDVI Grass
Rule must be used together with the low penetrability rule.
Otherwise, the NDVI Grass Rule is identical to the NDVI Tree
Rule. The NDVI Grass Rule (Rule V2) can be written as:

If Use_NDVI_for_Grass � true and

NDVI � ThresholdNDVI and abs 

(HFirst–HLast) � ThresholdPenetrability 

then Grass � true.

Lidar-TVI Vegetation Rule (Rules V3 and V4)
The transformed vegetation index (TVI) modifies the NDVI by
adding a constant of 0.50 to all NDVI values and taking the
square root of the results (Deering et al., 1975). In this study,
we apply a Lidar–TVI, which replaces the NIR band with lidar
intensity in the TVI formula (Huang et al., 2006), as follows:

(2)

The derived Lidar-TVI Vegetation Rule also uses Otsu’s
(1979) method to calculate the threshold. The Lidar-TVI
Grass Rule (Rule V3) can be written as:

If Use_Lidar_TVI_for_Grass � true and

Lidar–TVI � ThreshodTVI 

then Grass � true.

Lidar  – TVI � x
(Lidar Intensity � RED)
(Lidar Intensity � RED)

 � 0.5.

 If abs (HFirst � HLast) � ThresholdPenetrability then Road � true. 

 If Smoothness � ThresholdSmoothness then Road � true. 
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Huang et al. (2006) concluded that Lidar–TVI performs
well for grass discrimination but misses some trees due to
low-intensity values. However, when the NDVI is insufficient
to extract trees, Lidar–TVI is an option for tree discrimina-
tion. The Lidar–TVI Tree Rule can be written as:

If Use_Lidar_TVI_for_Tree � true and

Lidar–TVI � ThreshodTVI

then Tree � true.

ND Tree Rule (Rule V5)
Normalized difference (ND) is a lidar-based vegetation index
calculated by the difference between the lidar height of the
first return (HFirst) and the last return (HLast). The equation
for ND is defined as (Arefi et al., 2003):

(3)

Because large lidar height differences due to multiple
returns may also occur at the boundaries of buildings in a
ND image, the following procedure should be performed to
remove these high values. First, pixels with a height gradi-
ent greater than a threshold value should be eliminated.
According to our experiments, a threshold value between
1 and 1.25 can remove most of the building boundaries in a
ND image. Next, Otsu’s (1979) automatic threshold selection
method is used to find the optimum threshold for extracting
trees from ND images. Finally, morphological erosion and
connected component area filtering are applied to clean up
the noise. The morphological dilation process should be
performed on the resultant image one pixel outward after
morphological erosion. The postprocessed segmentation
image of the ND is then used as the basis of the ND Tree
Rule (Rule V5), written as:

However, the ND Tree Rule is not capable of finding
dense trees because the lidar laser beam cannot penetrate
through dense trees to the ground, especially at the center of
large trees. Therefore, we need the AIS Tree Rule to enhance
the tree-extraction capability of the KBCS.

AIS Tree Rule (Rule V6)
The Anisotropic Smoothness (AIS) Tree Rule, the second
lidar-based vegetation index, integrates the smoothness filter
proposed by Ma (2005) and the anisotropic operator proposed
by Elberink and Mass (2000). Two major ground features with
non-flat characteristics in the AIS resultant image are trees and
building boundaries. The same post-processing procedure
used for removing building boundaries for ND calculation is
also applied to remove building boundaries in the AIS binary
image. The AIS Tree Rule can be written as:

Building Correction Rules (Rule B1 and Rule B2)
In urban areas, rooftops may contain several complex
human-made structures. It is difficult to find a universal
pattern for a building discriminative model. We propose
two building correction rules to exclude such non-building
objects. First, each connected component in the high-height
level (the connected buildings surrounded by streets) with
an area less than a threshold (ThresholdArea) is eliminated.
Second, the shape index, defined by the ratio of the perime-
ter to the area of the building block, is used to remove
narrow and long connected components that have shape

 If AIS � true then Tree � true. 

 If ND � true then Tree � true. 

ND �
(HFirst � HLast )
(HFirst � HLast )

. 

index values below a threshold (ThresholdShapeIndex). Our
experiments indicate that a threshold of 0.5 can remove
most narrow and long buildings. The building correction
rules (Rules B1 and B2) can be written as:

If Area(X) � ThresholdArea then building � false

If ShapeIndex � ThresholdShapeIndex then

building � false.

Table 2 lists all the rules used in this study: the four
prior knowledge rules (Rules P1 to P4), three road rules
(Rules R1 to R3), six vegetation rules (Rules V1 to V6), and
two building correction rules (Rules B1 and B2). These rules
can be combined with the thresholds in Table 1 and formal-
ized as an intensive knowledge base.

Three Level Rule-based Classification
Three Level Selection and Definition
This study proposes a new three-height-level, rule-based
classification scheme of low-, mid-, and high-height levels.
The low-height level, defined by a very low height value (e.g.,
0.5 m), extracts objects near the ground, while the high-height
level is defined according to the lowest building height (e.g.,
2.5 m) in the study area. Correspondingly, objects in between
the two height thresholds can be discriminated at the mid-
height level. The mid-height level is included for correct
classification at this level and to increase classification
accuracy. Objects at this level, such as cars, traffic control
boxes, and telephone booths may not be large or permanent
fixtures and do not have a consistent pattern for classifica-
tion. These ground objects are separated before classification,
consequently reducing the number of categories at each level.

This scheme clarifies the importance and functionality of
lidar height in a classification system from a new viewpoint.
Lidar height is not only used for texture in the classification
system, but also divides the vertical dimension into three
stratification levels and then extracts ground-feature segments
from each level. This unique scheme is not found in tradi-
tional pixel-based classification, and the OBC approach uses
lidar height data only to represent objects horizontally without
considering the vertical direction. Each level uses a segment-
based classification scheme. These classified segments derived
from applying the rules are combined as the classification
results of each level. The classified result from one level lower
than the current level is then aggregated to the current level.
This specially designed scheme, as shown in Figure 1, is a
knowledge-based, segment-based, vertical stratification; a rule-
based classification; and an aggregation scheme.

A–V–N Classification Principle
Theoretically, no accessing order exists for applying rules
in a KBCS. Nevertheless, to overcome the complexity of
urban-feature classification, we set up an A–V–N classifica-
tion principle to prioritize the application of rules in the
knowledge base. This principle can simplify the wide
variety in the heterogeneous urban environment into a
combination of four major categories (buildings, trees,
roads, and grass) for construction of the cyber city. This
simplification is related to the V–I–S conceptual model
proposed by Hung and Ridd (2002) and Ridd (1995).

The objects at the low-height level are mainly roads
and grass, and most grass in urban areas is lawn. Moreover,
lawn grass and roads generally have very low penetrability,
which makes the separation of grass from roads difficult
based on lidar height, and because the lidar intensity over
grass, cars, or lane markings on roads is high, it becomes
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TABLE 2. RULES

Category Rule Name Rule ID Rule Definition

Low-Height Level Rule Rule P1 If nDSM � ThresholdHL
then low_height � true

Mid-Height Level Rule Rule P2 If nDSM �� ThresholdHL and
Prior nDSM � ThresholdHH

Knowledge then mid_height � true

Rules High-Height Level Rule P3 If nDSM �� ThresholdHH
Rule then high_height � true

Area Analysis Rule Rule P4 If Area(X) � ThresholdArea
then X � false

LIDAR Intensity Road Rule R1 If LidarIntensity � ThresholdIL and
Rule LidarIntensity � ThresholdIH

Road then Road � true

Rules Smoothness Road Rule Rule R2 If Smoothness � ThresholdSmoothness
then Road � true

Penetrability Road Rule Rule R3 If abs(HFirst�HLast) � ThresholdPenetrability
then Road � true

NDVI Tree Rule Rule V1 If Use_NDVI_for_Trees � true and
NDVI � ThresholdNDVI

then Tree � true

NDVI Grass Rule Rule V2 If Use_NDVI_for_Trees � true and
NDVI � ThresholdNDVI and 
abs(HFirst�HLast) � ThresholdPenetrability

then Grass � true

LIDAR-TVI Grass Rule V3 If Use_LIDAR-TVI_for_Grass � true and
Rule LIDAR-TVI � ThresholdTVI

Vegetation then Grass � true

Rules LIDAR-TVI Tree Rule V4 If Use_LIDAR-TVI_for_Trees � true and
Rule LIDAR-TVI � ThresholdTVI

then Tree � true

ND Tree Rule Rule V5 If ND � true
then Tree � true

AIS Tree Rule Rule V6 If AIS � true
then Tree � true

Building Area Rule B1 If Area(X) � ThresholdArea
Building Correction Rule then Building � false

Rules Building Shape Rule B2 If ShapeIndex � ThresholdShapeIndex
Correction Rule then Building � false

very easy to confuse grass and roads. However, the lidar
intensity over asphalt roads is relatively low. Therefore, the
following strategy can be used for applying classification
rules in this level: first separate the asphalt roads using the
Lidar Intensity Road Rule; next, discriminate the vegetation
by using the IVDM, and then extract the non-vegetation. This
procedure conforms to the proposed A–V–N classification
principle.

At the mid-height level, asphalt roads may overlap with
mobile objects, such as cars, or stationary objects such as
traffic control boxes and telephone booths. These ground
objects must be modeled in a way that compensates for the
spatial incoherence of roads. In this study, because our aim
is cyber city modeling, these small mobile objects were
intentionally merged into the road category. Other than roads
and grass, vegetation at this level may include shrubs, grassy
field areas, or raised planting beds in parks. The strategy of
applying the classification rules at this level still obeys the
A–V–N classification principle.

The two main categories of ground objects at the high-
height level are buildings and trees. Even though asphalt
roads do not occur at this level, the A–V–N classification
principle is still valid in resolving the complexity between
buildings and trees. The classification strategy at this level is

to first extract the trees using the rules of the IVDM and then
to separate the buildings using the building correction rules.

Knowledge-based Correction (KBC)
The KBC procedures are conducted in two stages. First,
residual reposition is performed after applying rule-based
classification at each level. To fulfill the characteristics of
spatial coherence, small segments removed by the Area
Analysis Rule (Rule P4), the residuals of that specific level,
can be reassigned to a neighboring ground feature type if
they are next to a specified ground feature appointed by the
rule in the knowledge base. After completing the three-level
rule-based classification, the second stage of KBC, temporal
adjustment, ground-feature generalization, and shape index
analysis are performed to adjust the classification results.

For a growing city, changes may be ongoing and
occurring rapidly. Therefore, in a multisource classifica-
tion application, data sources acquired at different times
may show temporal inconsistencies. The procedure to
adjust temporal inconsistency involves temporal mask
construction and class adjustment. First, a temporal mask
is defined by a manually digitized boundary vector file
and a feature layer. Pixels within the boundary are all
assigned true values. An image containing all true values
is created as a boundary mask to specify where the change
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occurs. Next, automatic recognition of the change area
within the boundary mask is used to check the pixel
brightness values according to specific criteria. Pixels that
match the criteria and occur within the boundary mask are
used to create the temporal mask. Afterwards, any class
within the defined temporal mask is adjusted to a new
class as specified in the temporal adjusting rules defined
by the user according to the real changes observed in the
updated imagery.

The purpose of ground-feature generalization is to
combine small segments into meaningful categories. These
small image segments can be observed from the initial
knowledge-based classification results. For example, cars on
roads, potted plants on building roofs, and traffic lights and
traffic control boxes on roads are all within the mid-height
level. These features are visible due to the spectral and
spatial heterogeneity of high-resolution imagery and lidar
data, and are neither noise nor errors due to classification.
However, these features should sometimes be intentionally
ignored, depending on the level of detail required for
urban-feature classification. The ground-feature generaliza-
tion checks each of the classified small segments having
area less than a threshold, and determines whether its
feature type is surrounded by another ground-feature type.
If so, this small segment will be merged into the surround-
ing segments with the same ground-feature type. Table 1
lists these adjustment thresholds.

Shadows caused by buildings should also be handled
at this point. Most building blocks cast long and narrow
shadows; therefore, shape index analysis can be applied to
remove these shadow features of the segments. Long and
narrow shape segments with a shape index between 0.5
and 0.8 are categorized as non-buildings based on our
experiments.

KBCS Implementation
A major advantage of the KBCS is that we can use the
experience and knowledge from previous studies to construct
a knowledge base for urban-features extraction. Figure 2
shows the workflow of the proposed KBCS. First, the knowl-
edge base is constructed by the knowledge-acquisition
procedure from aerial imagery and lidar data. Next, the three-
level, rule-based classification is performed according to the
rules of the knowledge base. Afterward, the classification
result is adjusted by the KBC module. Finally, the KBCS

classifies the aerial imagery into four major urban categories.
In this study, Matlab was used to implement the KBCS

according to the methodology described above. The KBCS

output was stored in ENVI native image format and assessed
for accuracy.

Experiments
Study Areas and Data Sets
The study site, Kaohsiung City, a harbor city with a long
history of development, is located in the southwestern part
of Taiwan (Figure 3). This area is a mix of apartment
buildings, small lanes, industry facilities, and a world-class
harbor. Two study areas including two different types of
urban features were selected. Study area 1 is an urban area
with many small and large buildings, larger-sized buildings,
a big parking lot, and a grassy field. Figure 4 shows the
aerial imagery and lidar height image of this area. Study
area 2 is on an island across the harbor from study area 1.
This area is not level and instead slopes down to the harbor.
A large park with dense trees is on the seaward side of the
island. This area also features a mixture of variously sized
buildings, as shown in Figure 5.

Figure 1. Knowledge- and segment-based vertical stratification, rule-based classification,
and aggregation schemes. A color version of this figure is available at the ASPRS
website: www.asprs.org.
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The lidar data were acquired in February 2005 using an
Optech ALTM 3070c with a scan interval for each point of
approximately 0.7 points/m. A NDSM was derived by sub-
tracting the DEM from the DSM. The NDSM was subsequently
resampled to the same grid size as the spatial resolution of
the aerial imagery. This study used two types of imagery: a
true color image collected simultaneously with lidar data by
an Optech ALTM4K02 digital camera with direct exterior
orientation parameters and rectified to 0.2 m � 0.2 m grid
resolution, and multispectral aerial imagery acquired by a
Vexecl UltraCamD digital camera with 0.09 m ground-
sampling distance (GSD) in December 2005, ortho-rectified,
and then resampled to a 0.1 m � 0.1 m grid.

Experiment Cases and Discussion
MLC Experiments
In this experiment, the traditional statistic MLC method was
used to investigate how lidar data integrated with aerial

imagery contributed to urban classification. For the MLC,
training samples from four ground categories (i.e., trees, grass,
buildings, and roads) were selected on the aerial images and
lidar data using ENVI software. Table 3 lists the amount of
training data sampled from two study areas. For accuracy
assessment, the sizes of randomly sampled test data were
determined by Equation 4 (Fitzpatrick-Lins, 1981) as follows:

(4)

where p is the expected percent accuracy, q � 100 � p, E is
the allowable error, and Z � 2 from the standard normal
deviate of 1.96 for the 95 percent two-sided confidence
level. However, simple random sampling tends to under-
sample some small but important areas when using the
above equation to determine the sampling size. To ensure
that the sampled data were statistically valid, we iteratively
applied a random sample method using the sampling size
based on Equation 4 until each category accumulated more
than 50 samples (Congalton, 1991). Table 3 lists the number
of training and test samples for the MLC experiments of the
two study areas. Because two different types of aerial
imagery were acquired at different times, the number of
training and test sites had to be adjusted according to the
aerial images used.

Six different combinations of aerial imagery and lidar
data were selected to perform MLC. First, two RGB aerial
images acquired at different times were used as the standard
cases for comparison (cases MLC1 and MLC5 in Table 4).
All the additional features described in the experiment
results and discussions will refer to these two standard
cases. Second, the lidar intensity was added (cases MLC2
and MLC6). Third, the lidar NDSM was added (cases MLC3
and MLC8). Fourth, the lidar intensity and NDSM were added
(cases MLC4 and MLC9). Afterward, the NIR band was added
to the second RGB image (case MLC7). Finally, the lidar
NDSM was added to the MLC7 data set (case MLC10).

Figures 6 and 7 show the MLC resultant images for study
areas 1 and 2, respectively. A great deal of noise and
numerous speckles are apparent in all the MLC classification
results. Figures 6a, 6e, 7a, and 7e illustrate the classification

N �
Z2 (p)(q)

E 2  , 

Figure 2. Workflow of the KBCS: (a) Knowledge Base Construction, (b) Rule-based
Classification, and (c) Classification Results.

Figure 3. Study areas.
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Figure 4. Aerial imagery, lidar intensity, and lidar height raster of study area 1:
(a) February 2005 Color Aerial Imagery, (b) February 2005 Lidar Intensity, 
(c) February 2005 Lidar NDSM, (d) December 2005 Color Aerial Imagery, and
(e) December 2005 CIR Aerial Imagery. A color version of this figure is available at
the ASPRS website: www.asprs.org

Figure 5. Aerial imagery, lidar intensity, and lidar height raster of study area 2:
(a) February 2005 Color Aerial Imagery, (b) February 2005 Lidar Intensity, 
(c) February 2005 Lidar NDSM, (d) December 2005 Color Aerial Imagery, and
(e) December 2005 CIR Aerial Imagery. A color version of this figure is available at
the ASPRS website: www.asprs.org.
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results for standard cases using RGB aerial imagery. The
discrimination confusion between buildings and roads, as
well as trees and grass, can be clearly observed from the
resultant classification images. This confusion is due to the
similar spectral characteristics of these ground objects. After
adding the lidar intensity or NIR band, the confusion is still
evident in Figures 6b, 7b, 6f, 7f, 6g, and 7g. However, the
lidar NDSM resolves the confusion in discrimination, as
shown in Figures 6c, 6h, 7c, and 7h. However, incorporation
with height information caused some shadows between
buildings in the narrow lanes to be misclassified as trees, as
is evident from Figures 6c, 6h, 7c, and 7h. Figures 6d, 6i,
7d, and 7i show that integrating lidar intensity and NDSM
with the RGB aerial imagery did not improve the classifica-
tion result significantly. Finally, when integrating the NIR
imagery and the lidar NDSM, the false discrimination of
shadows was removed because of the good vegetation-
discrimination capability of the NIR band. This is shown in
Figures 6j and 7j.

Table 4 lists the accuracy assessment results for all the
MLC experiments. Generally, the overall accuracy and Kappa
index values of the equivalent cases (e.g., MLC1 versus
MLC5, MLC2 versus MLC6, and MLC3 versus MLC8) using
the data set acquired in February 2005 were 5 to 10 percent
higher than those using the data set acquired in December
2005. This difference mainly reflected the temporal inconsis-
tencies between lidar data and aerial imagery. The overall
accuracy of the two standard RGB imagery experiments (cases
MLC1 and MLC5) only ranged from 60 to 70 percent, which
is not satisfactory for urban classification applications. The
overall accuracy improved by approximately 3 to 7 percent
when adding lidar intensity (cases MLC2 and MLC6) and 3 to
10 percent when adding the NIR band (case MLC7) to the 
RGB imagery. Adding lidar NDSM (cases MLC3 and MLC8)
improved the overall accuracy by about 12 to 18 percent,
which was more significant than adding lidar intensity and
the NIR band. Adding both the NIR and the lidar NDSM into
RGB imagery (case MLC10) improved the overall accuracy by
14 to 18 percent more than adding the NIR band (case MLC7)
and 5 to 12 percent more than adding the NDSM (case MLC8).
The integration of NIR and lidar NDSM with RGB imagery

resulted in 4 percent greater accuracy than the case without
NIR (case MLC3) in study area 2. However, this was not true
in study area 1 because trees were rare and temporal incon-
sistency existed between the two standard case images. The
contribution of lidar height to urban-feature classification was
thus confirmed in this study not only by visually checking
classification images but also by accuracy assessment.

The OBC and KBCS Experiments
OBC and KBCS were performed for the two study areas to
investigate KBCS performance. The feature vectors used for
this experiment were NDSM, penetrability, smoothness, ND,
AIS, lidar intensity, NDVI, and lidar-TVI calculated by apply-
ing the RDM and the IVDM to lidar data and aerial imagery.
The first five features are derived by lidar height, while the
other three are spectral-based. These features can be calcu-
lated by most commercial remote sensing image processing
tools or by common programming language.

The OBC experiment was performed using Definiens
Imaging’s eCognition® software in two stages: image network
segmentation followed by supervised nearest-neighbor
classification (Baatz et al., 2004). First, we assigned a higher
weight value for the lidar NDSM because of its higher homo-
geneity in the gray level; we assigned lower weight values or
zero for lidar intensity, NDVI, and lidar-TVI. The penetrability,
smoothness, ND, and AIS were set to zero because of their
large height gradients at building boundaries, which may
degrade the segmentation results. Next, we specified the size
and homogeneity criteria for ground objects. These two
criteria were determined by selecting the scale parameter,
color, shape, smoothness, and compactness. By visually
interpreting segmentation results from different images, we
chose a set of segmentation parameters to create a network of
image objects for study areas 1 and 2. Afterward, the training
samples could be collected from the segmented objects. In
the classification stage, spectral nearest-neighbor classifica-
tion was performed to classify the ground features into four
categories. The classification accuracy was evaluated using
test data sampled from December 2005 images, as for the test
data used in cases MLC5 to MLC10.

The KBCS classification was performed using programs
written in Matlab. Thresholds set from expert experience,
such as the lowest building height, the smallest building
block area, and two thresholds for lidar intensity, were
entered into rules of the knowledge base after examining the
lidar data and aerial imagery of the study areas. The rest of
the thresholds were set as default values (see Table 1) for
most of the time, especially during the first test. After
investigating the initial result of the KBCS classification, we
adjusted some of the threshold values. Finally, thresholds
of the KBC were set according to specific requirements. In
addition to the KBC thresholds, the boundaries of areas with
temporal inconsistency were digitized using GIS software
according to the aerial imagery of December. Then these
features were used to create the temporal mask. For example,
the newer imagery revealed that two trees had been cut
down. Lidar height was used to extract the shape of the trees
to build the temporal mask. The output of the KBCS was
stored in the ENVI native image format. The same accuracy
evaluation was then performed using the same test data sets
used for the OBC experiments.

Figure 8 shows the resultant classification images from
the OBC (Figures 8a and 8c) and the KBCS (Figures 8b and
8d) experiments in study areas 1 and 2, respectively. The
OBC and KBCS classified images have superior visual inter-
pretability compared to the MLC classified image (case
MLC10 in Figures 6j and 7j); however, some differences
exist between the OBC and KBCS classifications. In the OBC
experiment, the segmentation parameters were chosen from

TABLE 3. THE TRAINING DATA AND TESTS USED FOR STUDY AREAS 1 AND 2

Training Data Test Data

Data Set Category Pixels ROIs Pixels

Buildings 482 49 485
2005/02 Trees 479 80 73
(20cm) Roads 493 27 476

Study Grass 497 26 177

Area1 Buildings 853 57 482
2005/12 Trees 852 84 73
(10cm) Roads 834 30 492

Grass 827 30 164

Training Data Test Data

Data Set Category Pixels ROIs Pixels

Buildings 551 35 346
2005/02 Trees 554 37 189
(20cm) Roads 546 21 224

Study Grass 549 13 56

Area 2 Buildings 551 35 346
2005/12 Trees 542 36 189
(10cm) Roads 546 21 226

Grass 549 13 54
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TABLE 4. ACCURACY ASSESSMENTS OF FOUR MLC, OBC, AND KBCS EXPERIMENTS

Producer’s Accuracy (%) User’s Accuracy (%)

Experiment 1 OA KI Bd Tr Rd Gs Bd Tr Rd Gs

MLC1 69.36 0.5483 65.15 58.90 72.27 77.40 81.03 29.45 67.45 83.03
MLC2 76.38 0.6475 83.30 63.01 68.07 85.31 75.23 37.40 82.86 94.38
MLC3 87.12 0.8075 90.31 73.97 85.71 87.57 88.48 49.09 94.01 90.12
MLC4 84.97 0.7761 92.16 78.08 76.47 90.96 81.13 49.14 98.64 92.00

Study MLC5 64.16 0.4660 57.47 60.27 72.56 60.37 73.87 28.76 65.63 71.22
Area 1 MLC6 66.80 0.5090 62.66 67.12 71.14 65.85 71.06 26.78 72.61 90.00

MLC7 67.30 0.5055 62.86 67.12 73.78 60.98 73.90 37.98 66.36 80.00
MLC8 76.38 0.6537 82.37 79.45 75.00 61.59 82.02 29.74 92.02 77.10
MLC9 77.37 0.6661 82.16 78.08 77.64 62.20 79.36 29.53 94.09 91.07
MLC10 81.58 0.7214 94.40 75.34 76.63 61.59 81.54 42.64 93.09 84.87

MLC1 70.06 0.5723 67.92 77.25 73.21 46.43 81.88 79.78 59.85 36.62
MLC2 75.95 0.6482 80.35 86.24 59.38 80.36 75.96 76.89 73.89 78.95
MLC3 84.05 0.7673 84.39 87.30 86.16 62.50 88.48 89.19 75.39 79.55
MLC4 84.29 0.7676 93.06 89.95 68.30 75.00 81.11 83.74 93.29 82.35

Study MLC5 60.00 0.4423 57.23 67.72 60.62 48.15 86.09 53.78 52.90 29.55
Area 2 MLC6 64.42 0.4940 64.74 81.48 50.88 59.26 78.05 46.81 79.31 59.26

MLC7 70.55 0.5750 69.08 79.37 71.24 46.30 79.14 78.13 60.30 46.30
MLC8 76.56 0.6605 80.92 79.37 70.35 64.81 81.87 65.22 88.83 54.69
MLC9 76.20 0.6484 84.68 82.01 60.62 66.67 74.74 64.85 99.28 78.26
MLC10 88.34 0.8270 98.27 85.19 76.55 85.19 83.13 94.71 98.30 76.67

Producer’s Accuracy (%) User’s Accuracy (%)

Experiment 2 OA KI Bd Tr Rd Gs Bd Tr Rd Gs

OBC 88.05 0.8203 83.44 62.96 95.69 92.18 98.79 72.86 82.07 87.30
OBC2 90.35 0.8535 93.66 64.20 95.69 79.33 96.42 75.36 87.06 89.87

Study KBCS 93.90 0.9062 95.89 65.82 96.15 94.81 98.11 89.66 92.40 87.95
Area 1 KBCS1 80.71 0.7182 93.66 64.20 81.47 50.84 96.42 75.36 84.00 92.86

KBCS2 87.06 0.8004 93.66 64.20 96.77 54.19 96.42 75.36 80.18 89.81
KBCS3 92.91 0.8938 94.89 66.67 93.10 98.88 97.27 76.06 94.12 85.92

OBC 86.40 0.8026 86.99 87.83 87.61 72.73 93.19 79.81 84.26 80.00
OBC2 89.22 0.8420 91.33 78.84 94.69 89.09 88.76 95.51 87.35 83.05

Study KBCS 93.87 0.9111 92.49 92.06 97.79 92.73 97.26 98.31 88.40 85.00
Area 2 KBCS1 76.20 0.6722 91.04 76.19 52.44 80.00 88.24 97.30 96.72 81.48

KBCS2 88.47 0.8313 91.04 76.19 94.22 90.91 88.24 97.30 86.89 75.76
KBCS3 92.16 0.8868 90.17 93.65 93.81 92.73 97.50 91.71 89.08 78.46

Note:
MLC1–4 using 2005/02 aerial imagery OBC: Image Segmentation � Nearest Neighbor Classification
MLC1: RGB OBC2: Image Segmentation � KBCS rules
MLC2: RGB � Lidar Intensity KBCS: Knowledge-Based Classification System
MLC3: RGB � nDSM KBCS1: One-Level Scheme KBCS
MLC4: RGB � Lidar Intensity � nDSM KBCS2: Two-Level Scheme KBCS
MLC5–10 using 2005/12 aerial imagery KBCS3: KBCS without KBC
MLC5: RGB OA: Overall Accuracy (%)
MLC6: RGB � Lidar Intensity KI: Kappa Index
MLC7: RGB � NIR Bd: Buildings
MLC8: RGB � nDSM Tr: Trees
MLC9: RGB � Lidar Intensity � nDSM Rd: Roads
MLC10: RGB � NIR � nDSM Gs: Grass

some experiments based on visual interpretation of the
segmentation results. Larger segmentation parameters were
used for the OBC for study area 1, generating larger seg-
mented images. Therefore, it was difficult to discriminate
small objects, such as small trees around a large grassy field
and pavement inside the grassy field. Another problem
related to the OBC segmentation parameters was that the
edges of the buildings were not as straight as those for the
KBCS. In contrast, the smaller segmentation scale parameter
of the OBC for study area 2 could identify narrow lanes
and smaller building blocks. The smaller-scale parameter
produced straight edges for most of the buildings and
derived a much smaller misclassified segmentation than in
study area 1. Table 4 shows the accuracy assessment results

for the OBC and KBCS, indicating greater overall accuracy
and Kappa index values for the KBCS than for the OBC.

One additional OBC experiment was performed to
evaluate the improvement when knowledge-based rules
were applied to the OBC (case OBC2). Setting the OBC scale
parameter to 1 created very small segmented images. Then,
the KBCS rules were applied to each of the segmented
features. As shown in Table 4, the overall accuracy of
OBC2 did improve by about 2 percent for both study areas,
indicating that the knowledge-based approach can improve
the performance of the OBC.

Three additional KBCS experiments were conducted to
evaluate the KBCS performance. First, two additional KBCS
experiments (KBCS1 and KBCS2) were implemented by
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Figure 6. MLC experiment resultant images of study area 1: (a) MLC1, (b) MLC2, (c) MLC3, (d) MLC4,
(e) MLC5, (f) MLC6, (g) MLC7, (h) MLC8, (i) MLC9, and (j) MLC10. A color version of this figure is
available at the ASPRS website: www.asprs.org.

Figure 7. MLC experiment resultant images of study area 2: (a) MLC1, (b) MLC2, (c) MLC3, (d) MLC4,
(e) MLC5, (f) MLC6, (g) MLC7, (h) MLC8, (i) MLC9, and (j) MLC10. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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reducing the three-level scheme to one-level and two-level
schemes. The one-level scheme applied all the rules at one
level. The two-level scheme merged low-height and mid-
height levels together to simplify the three-level scheme.
Finally, the three-level scheme was used but without the
application of any KBC rules (KBCS3). Table 4 lists the
results of the accuracy assessment.

Generally, except for the KBCS, no vertical layer scheme
exists for either the pixel-based or the OBC approach. The
advantage of the new three-height-level classification
framework is that it offers a mechanism not only to reduce
the number of categories at each level, but also to overcome
the ambiguity between high- and low-height objects. Based
on this design, the categories at the low-height level are
roads and grass, while only buildings and trees need to be
classified at the high-height level. The most complex ground
objects in the mid-height level are separated before classifi-
cation to overcome the discrimination difficulty caused by
these objects. The results of additional KBCS experiments
(KBCS1 and KBCS2) indicate that two-level and three-level
schemes improve the overall accuracy up to 12 and 17
percent, respectively, over a one-level scheme. The major
improvement derives from enhanced accuracy of roads and
grass, demonstrating that the role of the mid-height level
is to resolve the ambiguity of small objects on the roads
and grass. The accuracy improvement may increase as the
number of levels increases; however, the complexity of
classification rules may also increase simultaneously.

Our findings show that residual information produced
by noise-removal procedures in rule-based classification or

unclassified classes is well modeled and adjusted by KBC.
Images adjusted by KBC were refined without the speckles
usually seen in the results of most pixel-based classification
methods. The rules used by the proposed KBC are stored in
the knowledge base, which means that they are a part of the
KBCS. In addition, the KBC rules are set up according to
expert knowledge. This knowledge was used to adjust the
four categories one by one, considering small and long-
shaped segments caused by noise and shadows. The KBCS
including KBC showed 1.0 and 1.7 percent improvements
for study areas 1 and 2, respectively, in overall accuracy
compared to the KBCS without KBC (KBCS3).

Several advantages exist to using the proposed knowl-
edge-based classification system to separate ground features
into categories. The resultant KBCS images are clean and
contain less noise and fewer speckles. The knowledge-based
method is also quite understandable and flexible. New rules
can be added to the knowledge base to increase the classifi-
cation ability. This paper defines the types of knowledge
needed for ground-feature discrimination and describes
how to extract that knowledge from lidar data and aerial
imagery, determine the thresholds for KBCS, and apply these
classification rules to build an expert system for performing
ground-object classification over complex urban areas.

Conclusions
While the spatial resolution of remotely sensed data has
improved, multispectral images are insufficient for urban
classification due to confusion in discriminating between
trees and grass, misclassification of buildings caused by
diverse roof compositions and shadow effects, and difficulty
in distinguishing cars on roads. The results of MLC experi-
ments indicate that classification accuracy is not satisfac-
tory in standard cases involving RGB aerial imagery or even
NIR imagery. However, the incorporation of lidar data,
especially NDSMs, significantly improves accuracy. Thus,
urban classification is highly dependent on lidar height
rather than on NIR imagery.

Our proposed knowledge-based classification rules
improved urban classification performance. Three factors
may explain the success of this method. First, the new three-
height-level classification framework not only reduces
the number of categories at each level but also overcomes
the ambiguity between high-height and low-height objects.
In addition, the A–V–N principle further simplifies urban
classification at each level, and the KBC successfully removes
shadows between buildings from the preliminary classified
image. The OBC and KBCS experiment results indicate that the
overall accuracy of the KBCS is 6 to 7 percent better than
that of the OBC approach. Moreover, the visual details in the
KBCS are superior to those of the OBC without involving a
selection procedure for optimal segmentation parameters.

The proposed KBCS provides the procedures and mecha-
nisms to formalize knowledge into classification rules. The
advantage of the KBCS is that its procedure can be repeated
by designing a stand-alone program or applying the rules to
commercial classification software with “expert system”
functionality, such as eCognition® or ERDAS Imagine®. In the
future, more subcategories can be extended to the KBCS
according to user requirements. More ground-feature discrim-
inative models and inference rules should be explored if
more subcategories are needed.
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