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Abstract—Single-image dehazing has been an important topic
given the commonly occurred image degradation caused by
adverse atmosphere aerosols. The key to haze removal relies
on an accurate estimation of global air-light and the transmis-
sion map. Most existing methods estimate these two parameters
using separate pipelines which reduces the efficiency and accumu-
lates errors, thus leading to a suboptimal approximation, hurting
the model interpretability, and degrading the performance. To
address these issues, this article introduces a novel genera-
tive adversarial network (GAN) for single-image dehazing. The
network consists of a novel compositional generator and a novel
deeply supervised discriminator. The compositional generator
is a densely connected network, which combines fine-scale and
coarse-scale information. Benefiting from the new generator, our
method can directly learn the physical parameters from data and
recover clean images from hazy ones in an end-to-end manner.
The proposed discriminator is deeply supervised, which enforces
that the output of the generator to look similar to the clean
images from low-level details to high-level structures. To the best
of our knowledge, this is the first end-to-end generative adversar-
ial model for image dehazing, which simultaneously outputs clean
images, transmission maps, and air-lights. Extensive experiments
show that our method remarkably outperforms the state-of-the-
art methods. Furthermore, to facilitate future research, we create
the HazeCOCO dataset which is currently the largest dataset for
single-image dehazing.

Manuscript received May 19, 2019; revised September 19, 2019 and
October 30, 2019; accepted November 6, 2019. This work was supported
in part by the Fundamental Research Funds for the Central Universities under
Grant YJ201949 and Grant 2018SCUH0070, and in part by the National
Natural Science Foundation of China under Grant 61702182, Grant 61806135,
Grant 61625204, and Grant 61836006. This article was recommended by
Associate Editor X. Li. (Corresponding author: Zhiwen Fang.)

H. Zhu is with the Institute for Infocomm Research, A*Star, Singapore,
and also with A*AI, A*STAR CHEEM Program, Singapore (e-mail:
zhuh@i2r.a-star.edu.sg).

Y. Cheng, L. Li, and J.-H. Lim are with the Institute for Infocomm Research,
A*Star, Singapore (e-mail: cheng_yi@i2r.a-star.edu.sg; lyli@i2r.a-star.edu.sg;
joohwee@i2r.a-star.edu.sg).

X. Peng is with the College of Computer Science, Sichuan University,
Chengdu 610065, China (e-mail: pangsaai@gmail.com).

J. T. Zhou is with the Institute of High Performance Computing, A*Star,
Singapore (e-mail: joey.tianyi.zhou@gmail.com).

Z. Kang is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731,
China (e-mail: zkang@uestc.edu.cn).

S. Lu is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore (e-mail: shijian.lu@ntu.edu.sg).

Z. Fang is with the Guangdong Provincial Key Laboratory of Medical
Image Processing, School of Biomedical Engineering, Southern Medical
University, Guangzhou 510515, China, and also with the School of Energy and
Mechanical-Electronic Engineering, Hunan University of Humanities, Science
and Technology, Loudi 417000, China (e-mail: fzw310@gmail.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2019.2955092

Index Terms—Image enhancement, image processing.

I. INTRODUCTION

HAZE is a natural phenomenon which is caused by the
flowing particles in the atmosphere which significantly

influence the performance of the existing computer vision
system. There, image-based haze removal is a highly practical
problem with both academic and industrial values [1]–[5].

Different from most existing image restoration and enhance-
ment tasks [6], [7], image dehazing aims to detect and remove
haze, whose magnitude depends on the unknown scene radi-
ance which changes with positions and materials of the scene
objects, as well as the atmospheric light. Based on the above
observation, the key to haze removal is estimating the atmo-
spheric light magnitude and the so-called transmission map
induced by the depth of the scene.

Existing methods formulate haze removal as an image
composition problem and can be roughly grouped into two
categories: 1) prior-based and 2) data-driven. Specifically, the
prior-based methods estimate the factors (depth and atmo-
spheric light) based on various priors or assumptions. Typical
methods include, but are not limited to, dark channel prior
(DCP) [8], [9]; glow prior [10]; and other priors [11]–[14],
just to name a few. Much progress has been made in the past
few years. However, existing methods assume the haze follows
certain priors or assumptions, which are easily violated when
the scene is complex.

To address the disadvantages of the prior-based meth-
ods, recent efforts have been devoted to develop the data-
driven methods, especially, motivated by the success of
deep learning [15], [16], some methods [17]–[19] have been
proposed. The basic idea behind these methods is utilizing the
deep neural networks rather than a shallow model [20], [21],
such as convolutional neural networks (CNNs) [22], to learn
discriminative features from raw data and regress the physi-
cal parameters. However, these methods show the suboptimal
result given image recovery and parameter estimation are
treated as two separate steps, which could accumulate errors.

Recently, the generative adversarial network (GAN) [23]
has become popular in learning end-to-end mapping with
applications to tasks, such as image generation [24], object
detection [25], and semantic segmentation [26]. Therefore,
it is interesting to explore bringing GAN to single-image
dehazing. However, simply using GAN to generate dehazed
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(a) (b) (c)

Fig. 1. Single-image dehazing aims to remove the visible haze from the
input image and our method can recover the input image with faithful color
and structure. (a) Input. (b) Ground truth. (c) Our result.

outputs without fully considering the nonuniform and signal-
dependent nature of haze will lead to unsatisfactory results.

In this article, we propose a novel end-to-end single-image
dehazing method called DehazeGAN, which is specifically
designed based on the atmospheric scattering model. Our
proposed method embraces adversarial learning for physical
parameters learning to directly output the recovered image
with an illustration of Fig. 1. Unlike conventional methods
with separate physical parameter learning as [17] did, the
DehazeGAN introduces a composition generator to simul-
taneously learn these parameters for better efficiency and
recovering quality.

The major contributions of this article are summarized as
follows.

1) The proposed method is a novel GAN which is specif-
ically designed by incorporating the atmospheric scat-
tering model, which is one of the first works to marry
GAN and single-image dehazing.

2) We propose a compositional generator for explicitly
learning the transmission map and global atmospheric
light coefficient using the multiscale networks which
combine coarse-scale and fine-scale information to pro-
duce recovered images with faithful color and structures.

3) We propose a novel deeply supervised discriminator to
regularize the generated image as realistic as possible
from low-level details to high-level structures.

4) We create and will release a synthesized dataset called
HazeCOCO, the largest dataset for single-image dehaz-
ing to date, to facilitate future research in single-image
dehazing.

II. RELATED WORKS

A. Single-Image Dehazing

Recently, the data-driven methods have become a major
trend of single-image dehazing given that they can learn dis-
criminative features for physical parameters (e.g., atmospheric
light and transmission map). These methods could be cat-
egorized into two approaches: 1) sequential approach and
2) approximation approach.

The sequential approach (e.g., [17]) estimates atmospheric
light and transmission map in separate optimization and learn-
ing steps; hence, the whole pipeline is heuristically optimized
which can produce unsatisfactory results.

The approximation approach [18] performs image dehazing
by using the surrogate parameter to replace the two afore-
mentioned physical parameters to relax the learning difficulty;

however, the approximation quality could be hard to estimate
which results in suboptimal performance.

Different from the aforementioned approach, our method
can simultaneously learn these parameters to optimize the
recovering qualities.

B. Generative Adversarial Network

Recently, GAN can produce high-quality synthe-
sis/transformed images by embracing a two-network
architecture with a generator and a discriminator. The gener-
ator tries to produce results to fool the discriminator, while
the discriminator learns to penalize the structural difference
between the samples from generator and the samples from
the reference group. Since the first work of GAN [23],
various applications have been proposed, such as image
generation [24], [27]; object detection [25]; etc.

This article is also related to GAN. Actually, it is one of the
first works [28]–[30] that introduces adversarial learning into
single-image dehazing. Specifically, Li et al. [28] proposed
using a conditional GAN with a skip-connected generator for
single-image dehazing, and Yang et al. [30] proposed using
a variant of CycleGAN for dehazing without paired annota-
tion. Pan et al. [29] proposed a dual network which can learn
structure and details for image enhancement.

Different from these works and our conference version [31],
we propose a novel densely connected composition genera-
tor which automatically learns transmission map and global
air-light from data to composite with input image to produce
clean recovered images. In addition, we also introduce a novel
deeply supervised discriminator to regularize the output of the
composition generator to look as realistic as the ground-truth
clean images.

III. END-TO-END ADVERSARIAL DEHAZING

The proposed DehazeGAN is based on the following atmo-
spheric scattering model [32]:

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where the input hazy image I(x) is a linear combination of
global airlight A and clean image J(x). The two coefficients
are weighted by the transmission map t(x), which is induced
by the scene depth d(x) via

t(x) = e−βd(x) (2)

and β is a scatter coefficient. To recover J(x) from I(x), the
atmospheric light A and the transmission map t(x) should
be estimated. Therefore, an accurate estimation/prediction of
these two parameters is the key for successful recovery of
clean images.

Estimating A and t(x) from a single image is an ill-posed
problem, most existing methods estimate them sequentially
with different handcraft priors, which accumulate errors with
unsatisfactory performance. Recently, Li et al. [18] proposed
the AOD-Net to avoid directly modeling A and t by using an
intermediate variable K

J(x) = K(x)I(x) − K(x) + b. (3)
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Fig. 2. Pipeline of our method. Our DehazeGAN consists of a multiscale composition generator and a deeply supervised discriminator. The composition
generator is specifically designed to learn discriminative features for transmission matrix T and global atmospheric light coefficient A prediction, and then
these two factors are further composited to generate the dehazed image. The deeply supervised discriminator helps regularize the generated recovered image
as close as possible to the ground-truth image.

However, it is unclear whether K(x) could approximate
[((1/t(x))(I(x) − A) + (A − b))/I(x) − 1] so that (1) could be
recovered.

In this article, we propose DehazeGAN, which consists of
a multiscale composition generator and a deeply supervised
discriminator, with an illustration in Fig. 2. The composition
generator is specifically designed to learn discriminative fea-
tures, which explicitly estimates the transmission coefficient
T = [t(x)] and atmospheric light coefficient A simultaneously.
With these two factors, the dehazed image is recovered by

J(x) = I(x) − A

t(x)
+ A. (4)

The deeply supervised generator consists of side-outputs at
multiple scales, which helps to regularize the generated clean
image such that it appears similar to the ground truth from
low-level details to high-level structures.

A. Densely Connected Multiscale Composition Generator

GAN has become popular in recent image-to-image trans-
lation tasks. However, designing an effective generator which
can end-to-end map a hazy image to a clean image is chal-
lenging due to two reasons. On the one hand, the traditional
generator (e.g., the U-Net [33] commonly used in recent state-
of-the-art GAN works [27], [34]) consists of several layers
of feature extractions, and the color information may not be
well preserved for producing faithful recovered images. On
the other hand, haze is a kind of signal-dependent noise,
which introduces further difficulties in learning the mapping if
without modeling of the scene-dependent physical parameters.

In practice, a desirable generator should possess the fol-
lowing properties: 1) it should be able to learn discriminative
features for dehazing; 2) it should involve the scene-dependent
physical parameters; and 3) it should produce clean images
with faithful color and structures. Based on these desiderata

Fig. 3. Close-up of the coarse-scale branch (light blue) and fine-scale branch
(light orange) of the feature extractor Gf .

and the physical model of (1), we propose a new gen-
erator which consists of four modules, namely, a Gf for
feature extraction Gf , a prediction branch Gt for transmis-
sion map prediction, another prediction branch Ga for global
air-light estimation, and a compositional module use physical
formulation (1) to recover the clean image.

To learn the discriminative features for dehazing, our feature
extractor Gf embraces recently popular dense connection [35].
Specifically, Gf consists of two branches, namely, fine-scale
branch and coarse-scale branch (see Fig. 3). The fine-scale
branch applies densely connected modular with small kernels
to capture fine-scale structures for recovering pleasant detail
structures. The coarse-scale branch, on the other hand, uses
larger kernels to capture longer range context to complement
the fine-scale branch, thus leading to better estimation of trans-
mission and air-light coefficients. The feature maps from these
two branches are finally concatenated to provide the discrim-
inative features for the transmission coefficient estimator Gt

and global air-light estimator Ga.
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(a) (b) (c) (d)

Fig. 4. Visual comparison on the effectiveness of different generators. (a) Input. (b) U-Net generator (commonly used in recent GAN structures). (c) Our
generator without composition components. (d) Our compositional generator (i.e., DehazeGAN).

Fig. 5. 1-D close-up illustration of the global air-light estimator Ga. The
round squares at the bottom represent the features from Gf , these features are
weighted by attention modules (conv + softmax + element − wise product)
and are further aggregated by global average pooling for air-light coefficient
estimation.

The transmission map prediction branch Gt consists of a
convolutional layer with the sigmoid function and outputs
pixel wise transmission map t. The global atmosphere light
estimator Ga is used to estimate the air-light coefficient A
based on the global image features. Since not all regions are
necessary for parameters estimation, we hence utilize a recent
popular attention mechanism used in the nature language pro-
cessing [36] so that the coefficient can be estimated according
to the features in relevant regions. An illustration of Ga is
shown in Fig. 5. After obtaining T and A, the dehazed image
is produced by using the composition module in (1).

To show the effectiveness of our generator, Fig. 4 gives
an illustration example. The only one difference among
Fig. 4(b)–(d) demonstrates the used generator. Specifically,
Fig. 4(b) adopts the commonly used U-Net generator in some
popular GAN structures [27], [34], Fig. 4(c) is the result of
using our generator without composition components (i.e., Gt

and Ga are not considered), and Fig. 4(d) is the result of
using our composition generator (i.e., DehazeGAN). One can
observe that Fig. 4(b) and (c) gives the brownish and blurry

outputs since they are not specifically designed for dehazing.
In contrast, our composition generator explicitly estimates A
and T with clean image composited at the last layer which
could generate outputs with faithful color and structures.

B. Deeply Supervised Discriminator

GAN plays a min–max game so that the generator tries
to generate examples as close as possible to the real exam-
ples for the purpose of fooling the discriminator. Recently,
Isola et al. [27] proposed a patch-based discriminator,
which achieves good performance in image translation tasks.
Isola et al.’s discriminator is a shallowly supervised discrim-
inator with supervision at the last layer. In other words, it
prefers to penalize the differences in high-level structures.

Different from image generation, the image enhancement
tasks require recovering both details and structures. Hence, we
propose a novel deeply supervised discriminator to fulfill this
motivation. Our discriminator consists of four convolutional
layers each with a stride of two, followed by batch normaliza-
tion and leakly relu, which judges whether each patch in an
image comes from the ground truth or the generator. Moreover,
each convolutional feature map will also be passed into a sig-
moid function to generate the classification prediction, hence,
we will have four predictions which provide multiple level
supervision to optimize our model. Fig. 6 shows the effective-
ness of our deeply supervised discriminator, that is, it could
yield a sharper image than the original discriminator with the
supervision at only the last convolutional layer (i.e., shallowly
supervised discriminator).

C. Objective Function

Our objective function consists of three terms: 1) the dehaz-
ing loss Lr; 2) the perceptual loss Lp; and 3) the adversarial
learning loss Lg. These three terms are designed for the pur-
pose of minimizing the reconstruction error, improving the
perceptual quality and enhancing the details, respectively. In
mathematics

L = Lr + λLp + γLg (5)

where λ and γ are two tradeoff factors.
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(a) (b) (c)

Fig. 6. (a) Illustration of our deeply supervised discriminator. Each convolutional layer is with a stride of two. Moreover, it has a probability side-output
to indicate the similarities with the ground-truth. (b) Result by a shallowly supervised discriminator (only the last layer with supervision). (c) Result by our
deeply supervised discriminator.

Dehazing Loss: We apply a mean-square-error loss to make
output image Ih as close to ground-truth Il

Lr = 1

C × W × H

W∑

i=1

H∑

j=1

C∑

c=1

∥∥∥Ii,j,c
h − Ii,j,c

l

∥∥∥
2
. (6)

The W, H, and C are the width, height, and channel number
of the input image Ih as in [31].

Perceptual Loss: To achieve better perceptual quality, we
employ that the perceptual loss is modeled with a 19-layer
VGG network [37], [38] pretrained on ImageNet. With the
neural network �, the perceptual loss actually measures the
difference between the recovery and the ground truth in the
feature space. In mathematics

Lp = 1

Cf × Wf × Hf

Wf∑

i=1

Hf∑

j=1

Cf∑

c=1

∥∥∥�
(

Ii,j,c
h

)
− �

(
Ii,j,c
l

)∥∥∥
2

(7)

where � denotes a nonlinear transformation, and Wf , Hf , and
Cf are the width, height, and channel number of the feature
maps.

Multiscale Adversarial Loss: In addition to the content
losses described above, we also consider the loss of adver-
sarial learning at multiple layers to encourage the generator G
to recover high-quality clean image G(x) to fool the discrim-
inator D. To improve the stability of the training phase, we
employ the least-square loss [39] as the side-outputs of our
discriminator’s layers, that is

Lg(G, D) =
K∑

i=1

Ex,y

[
(Di(x, y))2

]
+ Ex

[
(1 − Di(x, G(x)))2

]

(8)

where K is the layer number of discriminator, D(x, y) is the
conditional probability of the ground-truth image y and hazy
image x, and D(x, G(x)) is the probability that the recovered
image G(x) is conditioned on x.

D. Implementation Details

Our model is implemented using Pytorch and trained on a
Nvidia Titan X with the Adam optimizer [40] using a learning
rate of 0.0002 and a batch size of 8. In experiments, we set
λ = 10−2 and γ = 10−4 through the cross-validation.

The coarse-scale branch of feature extractor Gf is with the
network structure of C(7, 3)–C(9, 3)–C(11, 3)–C(1, 3), where
C(k, l) denotes the convolution with a filter of size k × k, an
output channel number of l and a stride of 1 with ReLu output.
The fine-scale branch of feature extractor Gf is with the struc-
ture of C(1, 3)–C(3, 3)–C(5, 3)–C(7, 3). The global air-light
estimator Ga and the transmission map estimator Gt are with a
convolution layer with 3-kernels to output air-light coefficient
and transmission map, respectively. The deeply supervised
discriminator consists of four convolutional layers, which is
with the structure of C(3, 64)–C(3, 128)–C(3, 256)–C(3, 512),
where each convolutional layer has a stride of two. Moreover,
each side-output follows by an additional convolution layer of
C(1, 1) with sigmoid to output the probability of each patch
assigning the ground truth.

IV. EXPERIMENTS

We quantitatively and qualitatively evaluate our method and
compared with the other state-of-the-arts on our HazeCOCO
dataset and natural hazy images.

A. HazeCOCO Dataset

It is very difficult to collect same visual scene with and with-
out haze due to the changing environmental factors, such as
lighting, wind, and temperature. Therefore, recent data-driven
methods [17], [18] choose to synthesize haze images from
clean ones using the indoor dataset with depth images, which
is limited in terms of visual patterns in the real-world.

To learn more discriminative features for dehazing, we
introduce the HazeCOCO dataset (see Fig. 7) which consists
of 200 000 indoor images synthesized from the SUN-RGBD
dataset [41] and 1 400 000 images synthesized from the COCO



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 7. Image samples from the HazeCOCO dataset.

TABLE I
QUANTITATIVE STUDIES ON DIFFERENT GENERATOR

TABLE II
QUANTITATIVE STUDIES ON GENERATOR WITH/WITHOUT

COARSE-SCALE BRANCH

dataset [42]. To the best of our knowledge, HazeCOCO is
currently the largest dataset in the community.

As COCO is an RGB dataset, we use the method in [43]
to predict the depth for the RGB images. After that, the haze
images are synthesized using (1) as [17] did. Specifically, the
atmospheric light A = [k, k, k] is randomly sampled with a
k ∈ [0.6, 1.0] with a step-size of 0.1 and the β is sampled
from [0.4, 1.6] with a step-size of 0.2. With the haze image
generated, we randomly use 5% images for testing, 10% for
validation, and the remaining 85% for training.

B. Ablation Study

In this section, we investigate the performance of the
alternative generator, discriminator, and loss function.

1) Generator Comparison: The qualitative comparison of
different generator architecture has been demonstrated in
Fig. 4. We report the quantitative performance of U-Net
generator [27], [33], our generators with and without compo-
sition components on the HazeCOCO dataset. As illustrated in
Table I, one can observe that our generator yields significant
better PSNR and SSIM than the other two baselines.

The superior performance of our composition generator
could be attributed to two reasons: 1) our method explic-
itly models the physical parameters to handle nonuniform,
signal-dependent noise, which are largely neglected in exist-
ing generators and 2) our generator use composition module
to recover faithful color and details.

In addition, we compare the network with and without com-
bining the coarse-scale branch in Table II, one can observe that
the PSNR and SSIM are improved thanks to the large context
information captured by the coarse-scale branch.

2) Discriminator Comparison: We compare the
performance of shallowly supervised discriminator and
deeply supervised discriminator which utilize the supervision
at the last layer and all layers, respectively. Table III shows

TABLE III
QUANTITATIVE COMPARISON BETWEEN SHALLOWLY SUPERVISED

DISCRIMINATOR AND DEEPLY SUPERVISED DISCRIMINATOR

TABLE IV
QUANTITATIVE STUDIES ON DIFFERENT LOSSES

that our deeply supervised discriminator remarkably improves
the quality of dehazed images.

3) Loss Comparison: We also perform ablation study to
study the effectiveness of dehazing loss Lr, the perceptual
loss Lp, and the adversarial loss Lg. Moreover, we also list
the parameters of generator, discriminator and perceptual loss
regularizer, one can see that discriminator has more parameters
and perceptual loss has more parameters as higher complexity
network can capture more regularity in the training data. The
ablation study of loss on the HazeCOCO is shown in Table IV
with Fig. 8 shows an visual examples from HazeCOCO. We
also list the number of parameters used in Generator (G),
Discriminator (D), and VGG-16 network used for percep-
tual loss in Table IV. One can see the VGG network and
the discriminator makes up most of the parameters as they
need higher capacity to help learn discriminative features for
improving visual qualities.

From Fig. 8, one could see that after considering the per-
ceptual loss Lp, the haze located at dark areas is removed.
With the additional adversarial loss Lg, more high-frequency
details are preserved. When all terms are used, our method
yields the best performance as shown in Table IV.

4) Influence of Using Depth Prediction or Real Depth:
Although synthesizing haze images from clean images by esti-
mating the depth or using available depth dataset is popular in
recent works, there could be some differences between using
real depth maps and estimated depth maps to synthesize hazy
images. To study the influence of depth estimation, we con-
duct experiments using images from the Make3D dataset [44]
with the ground truth of outdoor depth like [43]. In partic-
ular, we synthesize two hazy images datasets, where one is
using the predicted depth from [43] and the other is using
the corresponding Make3Ds real depth. Using these two new
datasets, we retrain the network and obtain corresponding
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(a) (b) (c) (d) (e)

Fig. 8. Qualitative studies on different lossy functions. (a) Hazy. (b) Lr . (c) Lr + Lp. (d) Lr + Lp + Lg. (e) GroundTruth.

Fig. 9. Qualitative results on some randomly sampled HazeCOCO indoor testing images.

TABLE V
QUANTITATIVE STUDIES ON GENERATOR ON USING MAKE3D’S REAL

DEPTH MAP AND PREDICTED DEPTH OF [43]

results. Since the Make3D is much smaller than HazeCOCO,
the performance of model degrades. The PSNR and SSIM of
using the predicted depth from [43] and the outdoor depth of
Make3D are as shown in Table V.

Table V demonstrates that there are some differences in the
performance using predicted depth and ground-truth depth, but
the results are comparable. Actually, our method is indepen-
dent of the existing single image depth estimation and, thus,
with the development of depth estimators, the performance of
our method performance could be further improved.

C. Comparisons With State-of-the-Art

We compare our method with seven state-of-the-art methods
on HazeCOCO, which can be divided into two groups: the first
group consists of prior-based methods, for example, DCP [8],

BCCR [13], ATM [45], and CAP [14]. The second group con-
sists of data-driven approaches, for example, DehazeNet [19],
MSCNN [17], and AOD-Net [18].

1) On Synthetic HazeCOCO Dataset: We first report
all methods’ average PSNR, SSIM, and running time on
HazeCOCO in Table VI. Our method achieves superior
performance in all metrics thanks to the physical modeling
and adversarial learning.

Our method outperforms the second best methods by at
least 1.66% and 2.0% in terms of PSNR and SSIM, respec-
tively. On the outdoor dataset, our method again outperforms
the AOD-Net by 2.06% and 1.74% in terms of PSNR and
SSIM, respectively. Our method takes about 0.73 s to han-
dle one image, which is the second fastest method. As the
entire pipeline of our method and AOD-Net can be parallelized
by GPU, hence these end-to-end methods are remarkably
faster than the methods (DCP, BCCR, ATM, MSCNN, and
DehazeNet) with separate estimation.

Some qualitative examples are provided in Figs. 9 and 10
with the following observations.

1) Prior-based ATM, BCCR, CAP, and DCP show color
aberration which could attribute to the overestimation
or underestimation of the transmission map.
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Fig. 10. Qualitative results on some randomly sampled HazeCOCO outdoor testing images.

TABLE VI
AVERAGE PSNR, SSIM, AND RUNNING TIME ON HAZECOCO DATASET. THE RED INDICATES

THE BEST RESULT AND THE BLUE INDICATES THE SECOND BEST RESULT

TABLE VII
MSE-ERROR ON TRANSMISSION MAP AND GLOBAL-AIR-LIGHT. THE BOLD FACE INDICATES THE BEST RESULT

Fig. 11. Qualitative results with the generated transmission maps where
the yellow number on the left-hand corner is the predicted global air-light
coefficient.

2) DehazeNet, MSCNN, and AOD-Net show better results
than the prior-based methods in some examples, some
shadow areas still have haze as haze level of under-
estimation of haze level.

3) DehazeGAN yields the most nature recovery result,
which suggests that our method can learn accu-
rate physical parameters for superior recovery
performance.

2) Quality of Predicted Transmission and Air-Light
Coefficient: We also compare the estimated transmission and
global air-light coefficient from different methods using aver-
age MSE error on the HazeCOCO dataset with the best
performance highlighted in bold.

From Table VII, one can observe that our method achieves
the best transmission map and a good air-light estima-
tion, though these factors are intermediate result which are
learned through data without using the ground truth. Note
that DehazeNet and MSCNN have access to the pixel-level
transmission map as ground truth.

In addition, we also attach the transmission maps estimated
by different methods in Fig. 11. One could observe that our
physical parameters learned from data are quite accurate to
help produce results close to the ground truth.

3) Qualitative Comparison on Real-World Examples: We
also perform comparison on some real-world hazy images
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Fig. 12. Qualitative results on real images.

commonly used in [17] and [18] to show the existing methods
generalization capability to real cases. From Fig. 12, the results
of the prior-based methods (e.g., ATM, DCP, and BCCR)
show color distortions. DehazeNet and AOD-Net underesti-
mate the haze level of sky region which results in residual
haze in sky area. On the other hand, the proposed method
yields the best color and details thanks to the novel generator
and discriminator.

V. CONCLUSION

In his article, we proposed DehazeGAN for single image
haze removal. The proposed method uses a novel adversarial
composition network to learn discriminative physical param-
eters for clean image recovery. To facilitate evaluation and
comparison, we create HazeCOCO which is currently the
largest dataset for single image dehazing currently. Extensive
experiments have demonstrated the promising qualitative and
quantitative performance of our method in the HazeCOCO
dataset.

REFERENCES

[1] W. Dong et al., “Hyperspectral image super-resolution via non-
negative structured sparse representation,” IEEE Trans. Image Process.,
vol. 25, no. 5, pp. 2337–2352, May 2016. [Online]. Available:
https://doi.org/10.1109/TIP.2016.2542360

[2] X. Wang et al., “Greedy batch-based minimum-cost flows
for tracking multiple objects,” IEEE Trans. Image Process.,
vol. 26, no. 10, pp. 4765–4776, Oct. 2017. [Online]. Available:
https://doi.org/10.1109/TIP.2017.2723239

[3] W. Zuo et al., “Distance metric learning via iterated sup-
port vector machines,” IEEE Trans. Image Process., vol. 26,
no. 10, pp. 4937–4950, Oct. 2017. [Online]. Available:
https://doi.org/10.1109/TIP.2017.2725578

[4] Z. Wang, Y. Yang, Z. Wang, S. Chang, J. Yang, and T. S. Huang,
“Learning super-resolution jointly from external and internal examples,”
IEEE Trans. Image Process., vol. 24, no. 11, pp. 4359–4371, Nov. 2015.
[Online]. Available: https://doi.org/10.1109/TIP.2015.2462113

[5] Q. Wang, M. Chen, F. Nie, and X. Li, “Detecting coherent groups in
crowd scenes by multiview clustering,” IEEE Trans. Pattern Anal. Mach.
Intell., to be published.

[6] R. Liao and Z. Qin, “Image super-resolution using local learnable kernel
regression,” in Proc. ACCV, 2012, pp. 349–360.

[7] W. Zuo, D. Ren, D. Zhang, S. Gu, and L. Zhang, “Learning
iteration-wise generalized shrinkage-thresholding operators
for blind deconvolution,” IEEE Trans. Image Process.,
vol. 25, no. 4, pp. 1751–1764, Apr. 2016. [Online]. Available:
https://doi.org/10.1109/TIP.2016.2531905

[8] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341–2353, Dec. 2011.

[9] Y. Li, S. You, M. S. Brown, and R. T. Tan, “Haze visibility enhance-
ment: A survey and quantitative benchmarking,” Comput. Vis. Image
Understand., vol. 165, pp. 1–16, Dec. 2017.

[10] Y. Li, R. T. Tan, and M. S. Brown, “Nighttime haze removal with glow
and multiple light colors,” in Proc. ICCV, 2015, pp. 226–234.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

[11] X. Fan, Y. Wang, R. Gao, and Z. Luo, “Haze editing with natural trans-
mission,” Vis. Comput., vol. 32, no. 1, pp. 137–147, 2016. [Online].
Available: https://doi.org/10.1007/s00371-015-1083-1

[12] R. Fattal, “Single image dehazing,” ACM Trans. Graph., vol. 27, no. 3,
p. 72, 2008.

[13] G. Meng, Y. Wang, J. Duan, S. Xiang, and C. Pan, “Efficient image
dehazing with boundary constraint and contextual regularization,” in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 617–624.

[14] Q. Zhu, J. Mai, and L. Shao, “A fast single image haze removal algorithm
using color attenuation prior,” IEEE Trans. Image Process., vol. 24,
no. 11, pp. 3522–3533, Nov. 2015.

[15] X. Peng, J. Feng, S. Xiao, W.-Y. Yau, J. T. Zhou, and S. Yang,
“Structured autoencoders for subspace clustering,” IEEE Trans. Image
Process., vol. 27, no. 10, pp. 5076–5086, Oct. 2018.

[16] Q. Wang, J. Gao, W. Lin, and Y. Yuan, “Learning from synthetic data
for crowd counting in the wild,” in Proc. CVPR, 2019, pp. 8198–8207.

[17] W. Ren, S. Liu, H. Zhang, J.-S. Pan, X. Cao, and M.-H. Yang, “Single
image dehazing via multi-scale convolutional neural networks,” in Proc.
Eur. Conf. Comput. Vis., 2016, pp. 154–169.

[18] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “AOD-Net: All-in-
one dehazing network,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Venice, Italy, Oct. 2017, pp. 4780–4788.

[19] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “DehazeNet: An end-to-end
system for single image haze removal,” IEEE Trans. Image Process.,
vol. 25, no. 11, pp. 5187–5198, Nov. 2016.

[20] Z. Huang, H. Zhu, J. T. Zhou, and X. Peng, “Multiple marginal fisher
analysis,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9798–9807,
Dec. 2019.

[21] X. Peng, C. Lu, Y. Zhang, and H. Tang, “Connections between nuclear
norm and Frobenius norm based representation,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 1, pp. 218–224, Jan. 2018.

[22] T. Zhang, X. Wang, X. Xu, and C. L. P. Chen, “GCB-Net: Graph con-
volutional broad network and its application in emotion recognition,”
IEEE Trans. Affect. Comput., to be published.

[23] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., Montreal, QC, Canada, Dec. 2014, pp. 2672–2680.

[24] J. Yang, A. Kannan, D. Batra, and D. Parikh, “LR-GAN: Layered recur-
sive generative adversarial networks for image generation,” in Proc.
5th Int. Conf. Learn. Represent. (ICLR), Toulon, France, Apr. 2017.
[Online]. Available: https://openreview.net/forum?id=HJ1kmv9xx

[25] M. Zhang, K. T. Ma, J. H. Lim, Q. Zhao, and J. Feng, “Deep future gaze:
Gaze anticipation on egocentric videos using adversarial networks,” in
Proc. CVPR, 2017, pp. 3539–3548.

[26] Q. Wang, J. Gao, and X. Li, “Weakly supervised adversarial domain
adaptation for semantic segmentation in urban scenes,” IEEE Trans.
Image Process., vol. 28, no. 9, pp. 4376–4386, Sep. 2019.

[27] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proc. CVPR,
2017, pp. 5967–5976. [Online]. Available: https://doi.org/10.1109/
CVPR.2017.632

[28] R. Li, J. Pan, Z. Li, and J. Tang, “Single image dehazing via conditional
generative adversarial network,” in Proc. CVPR, 2018, pp. 8202–8211.

[29] J. Pan et al., “Learning dual convolutional neural networks for low-level
vision,” in Proc. CVPR, 2018, pp. 3070–3079.

[30] X. Yang, Z. Xu, and J. Luo, “Towards perceptual image dehazing by
physics-based disentanglement and adversarial training,” in Proc. AAAI,
2018, pp. 7485–7492.

[31] H. Zhu, X. Peng, V. Chandrasekhar, L. Li, and J.-H. Lim, “DehazeGAN:
When image dehazing meets differential programming,” in Proc. IJCAI,
2018, pp. 1234–1240.

[32] S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J.
Comput. Vis., vol. 48, no. 3, pp. 233–254, Jul. 2002. [Online]. Available:
https://doi.org/10.1023/A:1016328200723

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. MICCAI, 2015,
pp. 234–241.

[34] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. ICCV,
2017, pp. 2242–2251.

[35] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA,
Jul. 2017, pp. 2261–2269. [Online]. Available: https://doi.org/10.1109/
CVPR.2017.243

[36] A. Vaswani et al., “Attention is all you need,” in Proc. NIPS, 2017,
pp. 5998–6008.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. 3rd Int. Conf. Learn.
Represent. (ICLR), San Diego, CA, USA, May 2015. [Online].
Available: http://arxiv.org/abs/1409.1556

[38] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. ECCV, 2016, pp. 694–711.

[39] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in Proc. ICCV, 2017,
pp. 2813–2821.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[41] S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D scene
understanding benchmark suite,” in Proc. CVPR, 2015, pp. 567–576.

[42] T. Lin et al., “Microsoft COCO: Common objects in context,” in Proc.
ECCV, 2014, pp. 740–755.

[43] F. Liu, C. Shen, G. Lin, and I. D. Reid, “Learning depth from single
monocular images using deep convolutional neural fields,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 38, no. 10, pp. 2024–2039, Feb. 2016.
[Online]. Available: https://doi.org/10.1109/TPAMI.2015.2505283

[44] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single
monocular images,” in Proc. NIPS, 2005, pp. 1161–1168.

[45] R. Fattal, “Dehazing using color-lines,” ACM Trans. Graph., vol. 34,
no. 1, p. 13, 2014.


