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Abstract—Resource management in distributed sensor net-
works is a challenging problem. This can be attributed to the
fundamental tradeoff between the value of information contained
in a distributed set of measurements versus the energy costs
of acquiring measurements, fusing them into the conditional
probability density function (pdf) and transmitting the updated
conditional pdf. Communications is commonly the highest con-
tributor among these costs, typically by orders of magnitude.
Failure to consider this tradeoff can significantly reduce the oper-
ational lifetime of a sensor network. While a variety of methods
have been proposed that treat a subset of these issues, the ap-
proaches are indirect and usually consider at most a single time
step. In the context of object tracking with a distributed sensor
network, we propose an approximate dynamic programming
approach that integrates the value of information and the cost
of transmitting data over a rolling time horizon. We formulate
this tradeoff as a dynamic program and use an approximation
based on a linearization of the sensor model about a nominal
trajectory to simultaneously find a tractable solution to the leader
node selection problem and the sensor subset selection problem.
Simulation results demonstrate that the resulting algorithm can
provide similar estimation performance to that of the common
most informative sensor selection method for a fraction of the
communication cost.

Index Terms—Adaptive estimation, dynamic programming, re-
source management, tracking.

I. INTRODUCTION

NETWORKS of intelligent sensors have the potential
to provide unique capabilities for monitoring wide ge-

ographic areas through the intelligent exploitation of local
computation (so-called in-network computing) and the ju-
dicious use of intersensor communication. In many sensor
networks, energy is a dear resource to be conserved so as
to prolong the network’s operational lifetime. In addition, it
is typically the case that the energy cost of communications
is orders of magnitude greater than the energy cost of local
computation [1], [2].
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Tracking moving objects is a common application in which
the quantities of interest (i.e., kinematic state) are inferred
largely from sensor measurements that are in proximity to the
object (e.g., [3]). Consequently, local fusion of sensor data
is sufficient for computing an accurate model of the object
state and associated uncertainty, as captured by the conditional
probability density function (pdf). This property, combined
with the need to conserve energy, has led to a variety of ap-
proaches [4], [5] that effectively designate the responsibility
of computing the conditional pdf to one sensor node (referred
to as the leader node) in the network. Over time, the leader
node changes dynamically as function of the kinematic state
of the object. This leads to an inevitable tradeoff between the
accuracy of the model, the cost of acquiring measurements, and
the cost of propagating the model through the network. In this
paper, we examine this tradeoff in the context of object tracking
in distributed sensor networks. In doing so, we consider the
aggregate cost over a rolling time horizon using an approximate
dynamic programming approach. Our results show that, as
compared with pure information-driven approaches, compa-
rable tracking performance can be obtained at a fraction of the
communications cost.

We consider a sensor network consisting of sensors, in
which the sensing model is assumed to be such that the measure-
ment provided by the sensor is highly informative in the region
close to the node and uninformative in regions far from the node.
For the purpose of addressing the primary issue, trading off en-
ergy consumption for accuracy, we restrict ourselves to sensor
resource planning issues associated with tracking a single ob-
ject. While additional complexities certainly arise in the multi-
object case (e.g., data association), they do not change the basic
problem formulation or conclusions.

If the energy consumed by sensing and communication were
unconstrained, then the optimal solution would be to collect and
fuse the measurements provided by all sensors in the network.
We consider a scheme in which, at each time step, a subset
of sensors is selected to take a measurement and transmit to a
sensor referred to as the leader node [4], which fuses the mea-
surements with the prior conditional pdf and tasks sensors at the
next time step. The questions that must be answered by the con-
troller are how to select the subset of sensors at each point in
time and how to select the leader node at each point in time.

The approach developed in Section III allows for optimiza-
tion of estimation performance subject to a constraint on ex-
pected communication cost or minimization of communication
cost subject to a constraint on expected estimation performance.
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The controller uses a dual problem formulation to adaptively uti-
lize multiple sensors at each time step, incorporating a subgra-
dient update step to adapt the dual variable (Section III-H), and
introducing a heuristic cost-to-go in the terminal cost to avoid
anomalous behavior (Section III-I). Our dual problem formu-
lation is closely related to [6] and provides an approximation
that extends the Lagrangian relaxation approach to problems in-
volving sequential replanning. Other related work includes [7],
which suggests incorporation of sensing costs and estimation
performance into a unified objective without adopting the con-
strained optimization framework that we utilize, and [8], which
adopts a constrained optimization framework without incorpo-
rating estimation performance and sensing cost into a unified
objective, a structure that results in a major computational sav-
ings for our approach.

Preliminary versions of the work in Section III were presented
in [9] and [10], while the discussion in Section IV is a general-
ization of [11].

II. PROBLEM FORMULATION

The tracking problem naturally fits into the Bayesian state es-
timation formulation such that the role of the sensor network is
to maintain a representation of the conditional pdf of the object
state (i.e., position, velocity, etc.) conditioned on the measure-
ments.

A. Object Dynamics and Sensor Models

In order to be concrete, we now discuss specific object dy-
namics and sensor measurement models. However, we empha-
size that the underlying principles have general applicability.
Denoting as the state of the object (or “object state”) at
time , we assume that object dynamics evolve according to a
linear Gaussian model, as follows:

(1)

where 1 is a white Gaussian noise process,
and and are known matrices. For the simulations in this
paper, we track position and velocity in two dimensions

, where velocity is modeled as a random walk
with constant diffusion strength (independently in each dimen-
sion), and position is the integral of velocity. Denoting the sam-
pling interval as , the corresponding discrete-time model is

(2)
Denoting the measurement taken by sensor

(where is the number of sensors) at time as , a
nonlinear measurement model is assumed, as follows:

(3)

1We use the notation www � Nfwww ;0;Qg as short-hand for
p(www ) = Nfwww ;0;Qg, where Nfxxx;���;Pg= j2�Pj expf�0:5(xxx �
���) P (xxx � ���)g.

where is a white Gaussian noise process,
independent of and of . is a known matrix
for each , and is a known, vector-valued function for
each . For the simulations in this paper, we set the measurement
model to a quasi-range measurement

(4)

where is the matrix that extracts the position of the object
from the object state (such that is the location of the object),
and is the location of the th sensor (which is assumed to be
known, e.g., through the calibration procedure as described in
[12]). The constants and can be tuned to model the signal-to-
noise ratio (SNR) of the sensor, and the rate at which the SNR
decreases as distance increases. The measurement has additive
Gaussian noise as per (3), with variance . The information
provided by the measurement reduces as the range increases due
to the nonlinearity.

The measurement function has sufficient smoothness
that, in a small vicinity around a nominal point , it can be ap-
proximated as a first-order Taylor series truncation, as follows:

(5)

(6)

The linearization of the model in (4), which will be used in
Section III to reduce the complexity of the planning process,
is

(7)

We denote by the history of all measurements received up
to an including time , i.e., .

This model will be utilized in the simulations in Section V.
Although the following exposition is independent of the specific
model, it has been specified now to aid the clarity and concrete-
ness.

B. Estimation

The planning algorithm we present in Section III may be ap-
plied alongside a wide variety of estimation methods. Here, we
discuss the estimator that we use, which is well suited to the
challenging sensor models that arise in sensor networks. The
motivation for sensor networks is to utilize many small sensors
with limited local sensing capability to provide surveillance of
a larger region. Because sensors focus on their local region, the
nonlinearity in a measurement model such as the quasi-range
measurement of (4) is significant, and substantial multimodality
can result. Accordingly, we utilize a particle filter approxima-
tion for the dynamic state estimation, whereby the conditional
pdf of object state conditioned on measurements received up
to and including time , , ,2 is approxi-
mated through a set of weighted samples

(8)

2We denote by P(X ) the set of probability density functions on the set X .
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To calculate the same distribution at the next time step (for
inference), , we apply the commonly used
approximate Sequential Importance Sampling (SIS) algorithm
[13] with resampling at each step. Under this algorithm, for
each previous sample , we draw a new sample at the next
time step from the distribution , which
results from the linearization of the measurement model for

(3) about the point , as described in (5). This dis-
tribution can be obtained using the extended Kalman filter
equations: the Dirac delta function at time will
diffuse to give

(9)

at time . This distribution can be updated using the ex-
tended Kalman filter update equation [14] to obtain

(10)

where

(11)

(12)

(13)

A new particle is drawn from the distribution in (10),
and weighted by , calculated by

(14)

where is the normalization constant necessary to ensure that
, and

The resulting approximation for the distribution of condi-
tioned on the measurements is

(15)

At any point in time, a Gaussian representation can be
moment-matched to the particle distribution by calculating the
mean and covariance

(16)

C. Communications

We assume that any sensor node can communicate with any
other sensor node in the network and that the cost of these com-
munications is known at every sensor node (although in prac-
tice, this will only be required within a small region around each

node). In our simulations, the cost (per bit) of direct communi-
cation between two nodes is modeled as being proportional to
the square distance between the two sensors, as folows:

(17)

Communications between distant nodes can be performed more
efficiently using a multihop scheme, in which several sensors
relay the message from source to destination. Hence, we model
the cost of communicating between nodes and , , as the
length of the shortest path between and , using the distances
from (17) as arc lengths

(18)

where is the shortest path from node to
node . The shortest path distances can be calculated
using any shortest path algorithm, such as deterministic dy-
namic programming or label correcting methods [15]. We as-
sume that the complexity of the probabilistic model (i.e., the
number of bits required for transmission) is fixed at bits,
such that the energy required to communicate the model from
node to node is . The content of these transmissions
will depend on the estimation scheme used; for particle filters,
one may employ an efficient compression scheme such as the
one described in [16]. The number of bits in a measurement is
denoted as such that the energy required to transmit a mea-
surement from node to node is . These costs may be
amended to incorporate the cost of activating the sensor, taking
the measurement, the expected number of retransmissions re-
quired, etc., without changing the structure of the solution.

D. Estimation Performance Objective Functions

As discussed in Section I, the role of the sensor manager in a
sensor network tracking problem is to trade off estimation per-
formance against the energy consumed in obtaining that perfor-
mance. The first task in optimizing the estimation performance
of a system is to decide upon an objective function which mea-
sures that performance. Recent research [17], [18] has demon-
strated the effectiveness of conditional entropy as an objective
function for sensor management in object tracking applications.
In the following sections, we briefly outline some of the desir-
able properties which entropy possesses, and its relationship to
other estimation performance objectives.

Conditional entropy is defined as [19]

(19)

Although not explicit in our notation in (19), we condition on
the value of the past measurements, (which have already
been realized), and on the random variable corresponding to the
new measurement (which has not yet been realized). When
conditioning on a random variable, we must take an expectation
over the possible values that the measurement may ultimately



WILLIAMS et al.: APPROXIMATE DP FOR COMMUNICATION-CONSTRAINED SENSOR NETWORK MANAGEMENT 4303

assume. Throughout the following, we assume that the previ-
ously received measurements have been realized; hence,
we condition on their value, whereas the candidate measure-
ments have not; hence, we condition on the random
variables.

1) Single Time Step, Single Sensor: If we choose to utilize
the sensor whose measurement minimizes the expected
posterior entropy, the resulting algorithm (e.g., [4]) would be

(20)

The mutual information between the object state and mea-
surement conditioned on the previous measurement history
is defined as the expected reduction in entropy of object state
due to conditioning on the new measurement or, equivalently,
the expected reduction in entropy of due to conditioning on
the object state, as follows [19]:

(21)

(22)

The conditioning on previous measurements in the second term
of (22) is discarded as we assume that the current measurement
is independent of previous measurements conditioned on the
current object state. Because the first term in (21) is indepen-
dent of the sensor , it is clear that selecting the sensor whose
measurement minimizes the conditional entropy of the object
state is equivalent to selecting the sensor whose measurement
has the highest mutual information with the object state, i.e.,
(20) is equivalent to [20]

(23)

The entropy of an -dimensional multivariate Gaussian
distribution with covariance is equal to

. Thus, under linear-Gaussian
assumptions, minimizing conditional entropy is equivalent to
minimizing the determinant of the posterior covariance, or the
volume of the uncertainty hyper-ellipsoid.

2) Single Time Step, Multiple Sensors: Conceptually, the
single-sensor selection methods discussed above can be ex-
tended to choosing a subset of sensors at one time,
e.g.,

(24)

where denotes the collection of measurements corre-
sponding to the sensors in the set . As in the single-sensor
case above, this is equivalent to minimizing the posterior
entropy of the object state conditioned on the new subset of
measurements. Because of the additivity of mutual information,
we can decompose the objective in (24) into the sum of the
gains due to each measurement in the subset . Denoting by

the th element of (choosing an arbitrary ordering), and

by the set containing the first elements of ,
the mutual information can be decomposed as

(25)

The complexity of the optimization in (24) increases combina-
torially with , since one must consider all -element subsets.
Although the decomposition in (25) does not directly reduce this
complexity (indeed the expression is equivalent), the additive
form yields a convenient approximation, in which we select the
th sensor to maximize the th term in the sum of (25). This

form will be exploited extensively in Section III-F.
3) Multiple Time Steps, Multiple Sensors: Sensor manage-

ment strategies that select the action that minimizes the condi-
tional entropy or that maximizes the mutual information over the
next time step are sometimes referred to as greedy or myopic.
Situations can arise (e.g., [21]) in which alternative strategies
have poorer performance in the next time step but better perfor-
mance over several time steps. In practice, greedy schemes have
been seen to provide good performance when estimation quality
is the only objective. When energy is limited, it must also be in-
corporated into the objective, necessitating additional planning.

Dynamic sensor selection problems that span multiple time
steps fit naturally into the framework of dynamic programming
(DP) [15]. The DP methodology provides a conceptual mech-
anism for deriving a control policy that optimizes the system
performance over a particular planning horizon, as quantified
through an objective function. In order to be able to use efficient
approximation methods, it is often desirable that the objective
function value be expressed as the sum of costs or rewards
resulting from each decision stage. By selecting as our objective
(to be minimized) the joint conditional entropy over an -step
planning horizon, ,
one may apply the arguments above to find that this can indeed
be decomposed into an additive form, since

(26)

and the final term in (26), which quantifies the uncertainty con-
ditioned on measurements up to time (prior to cur-
rent planning interval), is independent of the subsets of sensors
selected (and can thus be excluded, as discussed above (23)).
Hence, by selecting the expression in (25) as our per-stage re-
ward, the resulting controller will minimize the joint conditional
entropy over an -step planning horizon.

III. CONSTRAINED DYNAMIC PROGRAMMING FORMULATION

The sensor network object tracking problem involves an
inherent tradeoff between performance and energy expenditure.
One way of incorporating both estimation performance and
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communication cost into an optimization procedure is to opti-
mize one of the quantities subject to a constraint on the other.
In the development which follows, we provide a framework
which can be used to either maximize the information obtained
from the selected measurements subject to a constraint on the
expected communication cost, or to minimize the communica-
tion cost subject to a constraint on the estimation quality. This
can be formulated as a constrained Markov decision process
(MDP) [6], [22]. Similarly to imperfect state information prob-
lems3 [15], the dynamic programming state is the pdf of object
state conditioned on previous controls and measurements.
Throughout the following, we denote the conditional belief
state as 4; the decision state at
time will consist of , augmented with the leader node at
the previous time step . The control at each time is
denoted as , where is the leader node at
time and is the subset of sensors activated at time .

A. Constrained Dynamic Programming

We seek to minimize the per-stage cost over an -step rolling
horizon, i.e., at time , we minimize the cost incurred in the
planning horizon involving steps . Denoting
by the control policy for time , and by

the set of policies for the next time steps,
we seek the policy corresponding to the optimal solution to the
constrained minimization problem, as follows:

(27)

where is the per-stage cost and
is the per-stage contribution to the additive constraint function.
Both of these will be defined in Section III-B for the commu-
nication-constrained formulation, and in Section III-C for the
entropy-constrained formulation. We address the constraint
through a Lagrangian relaxation, a common approximation
method for discrete optimization problems, by defining the
Lagrangian function

(28)

3Strictly speaking, the problem is not a partially observed Markov decision
process (POMDP) in the traditional sense, as the per-stage cost will be defined
directly as a function of the pdf (p(xxx jz )), rather than indirectly as an
expectation of a function of the underlying state (xxx ). Because the per-stage
cost is a nonlinear function of the pdf, it cannot be written as an expectation of
a function of the underlying state. Furthermore, since the resulting cost-to-go
is neither concave nor convex (as a function of the pdf), traditional POMDP
solution methods that rely on piecewise linear concavity are inapplicable, and it
is necessary to develop new approximations, such as the one in this paper, that
are tailored to the problem structure.

4Conditioning on previous control decisions is assumed throughout. In
contrast to the convention of [15], the measurements at time k, zzz are
received after the control at time k, u has been applied, and the distribution
p(zzz jxxx ; u ) depends upon the value of the control applied at time k.

The unconstrained optimization of the Lagrangian function over
the policy (which is the primal variable) yields the dual
function5:

(29)

We then solve the dual optimization problem involving this
function:

(30)

Note that the optimization problem in the dual function
takes the form of an unconstrained dynamic

program with a modified per-stage cost, as follows:

(31)

The optimization of the dual problem provides a lower bound
to the minimum value of the original constrained problem; the
presence of a duality gap is possible since the optimization
space is discrete. The size of the duality gap is given by the
expression , where

is the policy attaining the minimum
in (29) for the value of attaining the maximum in (30). If it
happens that the optimal solution produced by the dual problem
has no duality gap, then the resulting solution is also the optimal
solution of the original constrained problem. This can occur
in one of two ways: either the Lagrange multiplier is zero,
such that the solution of the unconstrained problem satisfies
the constraint, or the solution yields a result for which the
constraint is tight. If a duality gap exists, a better solution may
exist satisfying the constraint; however, the solution returned
would have been optimal if the constraint level had been lower,
such that the constraint was tight.

Conceptually, the dual problem in (30) can be solved using a
subgradient method [23]. The following expression can be seen
to be a supergradient6 of the dual objective:

(32)

In other words, , where
denotes the superdifferential, i.e., the set of all supergradients.

The subgradient method operates according to the same prin-
ciple as a gradient search, iteratively stepping in the direction of
a subgradient with a decreasing step size. The practical imple-
mentation of the method is discussed in Section III-H.

The use of the Lagrangian relaxation to solve the constrained
dynamic program is similar to [6]. The practical implementation
differs substantially since we utilize a rolling horizon rather than
a fixed finite horizon, and since the dynamic program in the dual
function cannot be solved exactly.

5Note that and l define the initial state at time k: they are not variables
subject to optimization.

6Since we are maximizing a nondifferentiable concave function rather than
minimizing a nondifferentiable convex function, subgradients are replaced by
supergradients.
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B. Constrained Communication Formulation

Following the discussion in Section II-D, we utilize mutual
information as our objective and define the per-stage cost, as
follows:

(33)

(34)

where is the th element of and is the set con-
taining the first elements of . We choose the per-stage
constraint contribution to be such that the ex-
pected communication cost over the next time steps is con-
strained:

(35)

Substituting the per-stage cost and constraint function into
(29), the unconstrained optimization in the dual function (for a
particular value of the Lagrange multiplier ) can be solved con-
ceptually using the recursive dynamic programming equation:

(36)

for time indexes , terminated by
. The belief state at the

next time is calculated using the recursive Bayes update
described in Section II-B. The augmented per-stage cost com-
bines the information gain and communication cost in a single
quantity, using a Lagrange multiplier, as follows:

(37)

This incorporation of the constraint terms into the per-stage cost
is a key step, which allows the greedy approximation described
in Sections III-F and III-G to capture the tradeoff between esti-
mation quality and communication cost.

C. Constrained Entropy Formulation

The formulation above provides a means of optimizing the
information obtained subject to a constraint on the communica-
tion energy expended; there is also a closely related formulation
that optimizes the communication energy subject to a constraint
on the entropy of probabilistic model of object state. The cost
per stage is set to the communication cost expended by the con-
trol decision, as follows:

(38)

We commence by formulating a constraint function on the
joint entropy of the state of the object over each time in the
planning horizon, as follows:

(39)

Manipulating this expression using (26), we obtain

(40)

from which we set ,7 and

(41)

Following the same procedure as described previously, the ele-
ments of the information constraint in (40) can be integrated into
the per-stage cost, resulting in a formulation that is identical to
(37), except that the Lagrange multiplier is on the mutual infor-
mation term, rather than the communication cost terms.

D. Evaluation Through Monte Carlo Simulation

The constrained dynamic program described above has an in-
finite state space (the space of probability distributions over ob-
ject state); hence, it cannot be evaluated exactly. The following
sections describe a series of approximations that are applied to
obtain a practical implementation.

Conceptually, the dynamic program of (36) could be ap-
proximated by simulating sequences of measurements for
each possible sequence of controls. There are possible
controls at each time step, corresponding all possible selec-
tions of leader node and subsets of sensors to activate. The
complexity of the simulation process is formidable: to evaluate

for a given DP state and control, we draw a
set of samples of the set of measurements from the
distribution derived from , and evaluate the
cost-to-go one step later corresponding to
the DP state resulting from each set of measurements. The
evaluation of each cost-to-go one step later will yield the
same branching. A tree structure develops, where for each
previous leaf of the tree, new leaves (samples)
are drawn, such that the computational complexity increases
as as the tree depth (i.e., the planning
horizon) increases, as illustrated in Fig. 1. Such an approach
quickly becomes intractable even for a small number of sensors

and simulated measurement samples ; hence, we
seek to exploit additional structure in the problem to find a
computable approximate solution.

7In our implementation, we construct a new control policy at each time step
by applying the approximate dynamic programming method described in the
following section commencing from the current probabilistic model . At time
step k, H(xxx jzzz ) is a known constant; hence, the dependence on

is immaterial.
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Fig. 1. Tree structure for evaluation of the dynamic program through simula-
tion. At each stage, a tail subproblem is required to be evaluated for each new
control and each simulated value of the resulting measurements.

E. Linearized Gaussian Approximation

If the dynamics and measurement models were linear and
Gaussian, then the problem would be simplified substantially.
The mutual information objective of a Gaussian pdf relates di-
rectly to its variance: if a linear measurement model holds

(42)

and the a priori distribution of is , then
from (22)

Noting that , we have

(43)

Similarly, with the linear measurement model

[24], thus

(44)

Collecting results, we obtain

(45)

Combining this with the result that the a posteriori covariance
in a Kalman filter is independent of the measurement value, we
see that future rewards depend only on the value of the con-
trol chosen (impacting and , and hence the a poste-
riori covariance), and that they are invariant to the values of
the measurements which result from applying the controls. Ac-
cordingly, the growth of the tree discussed in Section III-D is
reduced to with the horizon length , rather than

.
While this is a useful result, its applicability to this problem

is not immediately clear, as the measurement model of interest
is nonlinear, as discussed in Section II-A. However, let us sup-
pose that the measurement model can be approximated by lin-
earizing about a nominal state trajectory. If the strength of the

dynamics noise is relatively low and the planning horizon length
is relatively short (such that deviation from the nominal trajec-
tory is small), then such a linearization approximation may pro-
vide adequate fidelity for planning of future actions (this ap-
proximation is not utilized for inference: the SIS algorithm of
Section II-B is used with the nonlinear measurement function
to maintain the probabilistic model). To obtain the linearization,
we suppose that the a priori distribution of object state at time

is ; in practice, we moment-match a Gaussian
distribution to the current particle distribution through (16). We
then calculate the nominal trajectory as the mean at each of the
following steps:

(46)

(47)

Subsequently, the measurement model of (3) is approximated
using (5), where the linearization point at time is . This
well-known approximation is referred to as the linearized
Kalman filter [14]; it was previously applied to a sensor sched-
uling problem in [25]. The controller which results from this
approximation has a structure similar to the open-loop feedback
controller (OLFC) [15]: at each stage, a plan for the next
time steps is generated, the first step of the plan executed,
and then a new plan for the following steps is generated,
having relinearized after incorporating the newly received
measurements.

A significant horizon length is required in order to provide
an effective tradeoff between communication cost and inference
quality, since many time steps are required for the long-term
communication cost saved and information gained from a leader
node change to outweigh the immediate communication cost in-
curred. While the linear Gaussian approximation eliminates the

factor in the growth of computational complexity with
planning horizon length, the complexity is still exponential in
both time and the number of sensors, growing as .
The following two sections describe two tree pruning approxi-
mations we introduce to obtain a tractable implementation.

F. Greedy Sensor Subset Selection

To avoid the combinatorial complexity associated with opti-
mization over subsets of sensors, we break each decision stage
into a number of substages, indexed by . Conditioned on a
choice of leader node for the current stage, the control choices
at each substage are to select another (previously unselected)
sensor or to terminate with the current set of selections (similar
to the generalized stopping problem [15]). For the communica-
tion constrained formulation, the DP recursion becomes

(48)

for , terminated by setting
. The function

, defined below, forms part of the same
recursion, and represents the cost to go from substage of
stage to the end of the problem, whereas
represents the cost to go from the beginning of stage to the
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Fig. 2. Tree structure for n-scan pruning algorithm with n = 1. At each stage new leaves are generated extending each remaining sequence with using each new
leader node. Subsequently, all but the best sequence ending with each leader node is discarded (marked with “�”), and the remaining sequences are extended using
greedy sensor subset selection (marked with “G”).

end of the problem. is the set of sensors chosen in stage
prior to substage .

(49)

where the substage cost is

(50)

While this formulation is algebraically equivalent to the
one described in Section III-A, it is in a form that is more
suited to approximation. Namely, the substage optimization
may be performed using a greedy method, in which, at each
stage, if there is no sensor for which the substage cost

(i.e., for which the cost of trans-
mitting the measurement is not outweighed by the expected
information it will provide), then we progress to the next stage;
otherwise the sensor with the lowest substage cost is
added. The fact that the constraint terms of the Lagrangian
were distributed into the per-stage and per-substage cost allows
the greedy approximation to be used in a way which trades off
estimation quality and communication cost.

While worst-case complexity of this algorithm is ,
careful analysis of the sensor model can yield substantial
practical reductions. One quite general simplification can be
made: assuming that sensor measurements are independent
conditioned on the state, one can show that, for the substage
cost in (50)

(51)

This result exploits submodularity of mutual information, which
is explored in detail in [26]. Using this result, if at any substage
of stage we find that the substage cost of adding a particular
sensor is greater then zero, then that sensor will not be selected
in any later substages of stage ; hence, it can be excluded from

consideration. In practice, this will limit the sensors requiring
consideration to those in a small neighborhood around the cur-
rent leader node and object, reducing computational complexity
when dealing with large networks.

G. -Scan Pruning

The algorithm described above is embedded within a slightly
less coarse approximation for leader node selection, which in-
corporates costs over multiple time stages. This approximation
operates similarly to the -scan pruning algorithm, commonly
used to control computational complexity in the multiple hy-
pothesis tracker [27]. Setting , the algorithm is illus-
trated in Fig. 2. We commence by considering each possible
choice of leader node8 for the next time step and calculating
the greedy sensor subset selection from Section III-F for each
leader node choice. Then, for each leaf node, we consider the
candidate leader nodes at the following time step. All sequences
ending with the same candidate leader node are compared, the
one with the lowest cost value is kept, and the other sequences
are discarded. Thus, at each stage, we keep some approxima-
tion of the best control trajectory which ends with each sensor
as leader node.

Using such an algorithm, the tree width is constrained to the
number of sensors, and the overall worst case computational
complexity is (in practice, at each stage we only
consider candidate sensors in some neighborhood of the esti-
mated object location, and the complexity will be substantially
lower). This compares to the simulation-based evaluation of
the full dynamic programming recursion which, as discussed
in Section III-D, has a computation complexity of the order

. The difference in complexity is striking:
even for a problem with sensors, a planning horizon
of and simulating values of measurements
at each stage, the complexity is reduced from to (at
worst case) .

Because the communication cost structure is Markovian with
respect to the leader node (i.e., the communication cost of a par-
ticular future control trajectory is unaffected by the control his-
tory given the current leader node), it is captured perfectly by
this model. The information reward structure, which is not Mar-
kovian with respect to the leader node, is approximated using the
greedy method.

8The set of candidate leader nodes would, in practice, be limited to sensors
close to the object, similar to the sensor subset selection.
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H. Sequential Subgradient Update

The previous two sections provide an efficient algorithm
for generating a plan for the next steps given a particular
value of the dual variable . Substituting the resulting plan into
(32) yields a subgradient that can be used to update the dual
variables (under the linear Gaussian approximation, feedback
policies correspond to open loop plans, hence the argument
of the expectation of
is deterministic). A full subgradient implementation would
require evaluation for many different values of the dual variable
at each time step, which is undesirable since each evaluation
incurs a substantial computational cost. Since the planning is
over many time steps, in practice the level of the constraint (i.e.,
the value of ) will vary
little between time steps, hence the slow adaptation of the dual
variable provided by a single subgradient step in each iteration
may provide an adequate approximation.

In the experiments that follow, at each time step, we plan
using a single value of the dual variable and then update it for
the next time step utilizing either an additive update

(52)

or a multiplicative update

(53)

where and are the increment and decrement sizes,
and are the increment and decrement factors, and and

are the maximum and minimum values of the dual vari-
able. It is necessary to limit the values of the dual variable since
the constrained problem may not be feasible. If the variable is
not constrained, undesirable behavior can result, such as uti-
lizing every sensor in a sensor network in order to meet an infor-
mation constraint which cannot be met in any case, or because
the dual variable in the communication constraint was adapted
such that it became too low, effectively implying that commu-
nications are cost free.

I. Roll-Out

If the horizon length is set to be too small in the communica-
tions constrained formulation, then the resulting solution will be
to hold the leader node fixed and take progressively fewer mea-
surements. To prevent this degenerate behavior, we use a roll-out
approach (a commonly used suboptimal control methodology),
in which we add to the terminal cost in the DP recursion (36) the
cost of transmitting the probabilistic model to the sensor with
the smallest expected distance to the object at the final stage.
Denoting by the policy that selects as leader

node the sensor with the smallest expected distance to the ob-
ject, the terminal cost is

(54)

where the Lagrange multiplier is included only in the commu-
nication-constrained case. This effectively acts as the cost of the
base policy in a roll-out [15]. The resulting algorithm constructs
a plan which assumes that, at the final stage, the leader node
will have to be transferred to the closest sensor; hence, there
is no benefit in holding it at its existing location indefinitely.
In the communication-constrained case, this modification will
often make the problem infeasible for short planning horizons,
but the limiting of the dual variables discussed in Section III-H
can avoid anomalous behavior.

J. Surrogate Constraints

A form of information constraint that is often more desirable
is one that captures the notion that it is acceptable for the un-
certainty in object state to increase for short periods of time if
informative measurements are likely to become available later.
The minimum entropy constraint is such an example, as follows:

(55)

The constraint in (55) does not have an additive decomposition
[cf. (40)], as required by the simplifications in Sections III-F
and III-G. However, we can use the constraint in (40) to gen-
erate plans for a given value of the dual variable using the
simplifications and then perform the dual variable update of
Section III-H using the desired constraint (55). This simple ap-
proximation effectively uses the additive constraint in (40) as a
surrogate for the desired constraint in (55), allowing us to use the
computationally convenient method described previously with
a more meaningful criterion.

IV. DECOUPLED LEADER NODE SELECTION

Most of the sensor management strategies proposed for
object localization in existing literature seek to optimize the
estimation performance of the system, incorporating com-
munication cost indirectly, such as by limiting the maximum
number of sensors utilized. These methods typically do not
consider the leader node selection problem directly, although
the communication cost consumed in implementing them will
vary depending on the leader node since communications costs
are dependent on the transmission distance. In order to compare
the performance of the algorithm developed in Section III with
these methods, we develop an approach which, conditioned
on a particular sensor management strategy (that is insensitive
to the choice of leader node), seeks to dynamically select the
leader node to minimize the communications energy consumed
due to activation, deactivation and querying of sensors by the
leader node, and transmission of measurements from sensors to
the leader node. This involves a tradeoff between two different
forms of communication: the large, infrequent step increments
produced when the probability distribution is transferred from
sensor to sensor during leader node hand-off, and the small,
frequent increments produced by activating, deactivating, and
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querying sensors. The approach is fundamentally different
from that in Section III as we are optimizing the leader node
selection conditioned on a fixed sensor management strategy,
rather than jointly optimizing sensor management and leader
node selection.

A. Formulation

The objective that we seek to minimize is the expected com-
munications cost over an -step rolling horizon. We require
the sensor management algorithm to provide predictions of the
communications performed by each sensor at each time in the
future. As in Section III, the problem corresponds to a DP in
which the DP state at time is the combination of the condi-
tional pdf of object state and the previous
leader node . The control that we may choose is the leader
node at each time . Denoting the expected cost
of communications expended by the sensor management algo-
rithm (due to sensor activation and deactivation, querying, and
transmission of measurements) at time if the leader node is
as , the DP for selecting the leader node at time can
be written as the following recursive equation:

(56)

for . In the same way as discussed in
Section III-I, we set the terminal cost to the cost of transmitting
the probabilistic model from the current leader node to the node
with the smallest expected distance to the object :

(57)

In Section V, we apply this method using a single look-ahead
step with a greedy sensor management strategy
selecting, first the most informative measurement and then,
second, the two most informative measurements.

V. SIMULATION RESULTS

The model presented in Section II-A was simulated for 100
Monte Carlo trials using 20 sensors positioned randomly ac-
cording to a uniform distribution inside a 100 100-unit re-
gion; each trial used a different sensor layout and object tra-
jectory. The initial position of the object is in one corner of
the region, and the initial velocity is two units per second in
each dimension, moving into the region. The simulation ends
when the object leaves the 100 100 region or after 200 time
steps, which ever occurs sooner (the average length is around
180 steps). The sample time was 0.25 s, diffusion strength
was , and the measurement model parameters were

, , and . The communication costs
were and , so that the cost of transmitting
the probabilistic model is 64 the cost of transmitting a mea-
surement. For the communication-constrained problem, a mul-
tiplicative update was used for the subgradient method, with

, , , and
, where is the planning horizon length. For

Fig. 3. Position entropy and communication cost for dynamic programming
method with communication constraint (DP CC) and information constraint (DP
IC) with different planning horizon lengths (N), compared to the methods se-
lecting as leader node and activating the sensor with the largest mutual informa-
tion (greedy MI), and the sensor with the smallest expected square distance to
the object (min expect dist). Ellipse centers show the mean in each axis over 100
Monte Carlo runs; ellipses illustrate covariance, providing an indication of the
variability across simulations. Upper figure compares average position entropy
to communication cost, while lower figure compares average of the minimum
entropy over blocks of the same length as the planning horizon (i.e., the quantity
to which the constraint is applied) to communication cost.

the information-constrained problem, an additive update was
used for the subgradient method, with , ,

, , and (these parameters
were determined experimentally).

The simulation results are summarized in Fig. 3. The top dia-
gram demonstrates that the communication-constrained formu-
lation provides a way of controlling sensor selection and leader
node which reduces the communication cost and improves esti-
mation performance substantially over the myopic single-sensor
methods, which, at each time, activate and select as leader node
the sensor with the measurement producing the largest expected
reduction in entropy. The information-constrained formulation
allows for an additional saving in communication cost while
meeting an estimation criterion wherever possible.

The top diagram in Fig. 3 also illustrates the improvement
which results from utilizing a longer planning horizon. The con-
straint level in the communication-constrained case is 10 cost
units per time step; since the average simulation length is 180
steps, the average communication cost if the constraint were al-
ways met with equality would be 1800. However, because this
cost tends to occur in bursts (due to the irregular hand-off of
leader node from sensor to sensor as the object moves), the prac-
tical behavior of the system is to reduce the dual variable when
there is no hand-off in the planning horizon (allowing more
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Fig. 4. Adaptation of communication constraint dual variable � for different
horizon lengths for a single Monte Carlo run, and corresponding cumulative
communication costs.

sensor measurements to be utilized) and increase it when there
is a hand-off in the planning horizon (to come closer to meeting
the constraint). A longer planning horizon reduces this undesir-
able behavior by anticipating upcoming leader node hand-off
events earlier and tempering spending of communication re-
sources sooner. This is demonstrated in Fig. 4, which shows the
adaptation of the dual variable for a single Monte Carlo run.

In the information-constrained case, increasing the planning
horizon relaxes the constraint, since it requires the minimum en-
tropy within the planning horizon to be less than a given value.
Accordingly, using a longer planning horizon, the average min-
imum entropy is reduced, and additional communication en-
ergy is saved. The lower diagram in Fig. 3 shows the average
minimum entropy in blocks of the same length as the planning
horizon, demonstrating that the information constraint is met
more often with a longer planning horizon (as well as resulting
in a larger communication saving).

Fig. 5 compares the adaptive Lagrangian relaxation method
discussed in Section III with the decoupled scheme discussed
in Section IV, which adaptively selects the leader node to
minimize the expected communication cost expended in imple-
menting the decision of the fixed sensor management method.
The fixed sensor management scheme activates the sensor
or two sensors with the measurement or measurements pro-
ducing the largest expected reduction in entropy. The results
demonstrate that for this case the decoupled method using a
single sensor at each time step results in similar estimation
performance and communication cost to the Lagrangian relax-
ation method using an information constraint with the given
level. Similarly, the decoupled method using two sensors at
each time step results in similar estimation performance and
communication cost to the Lagrangian relaxation method using
a communication constraint with the given level. The additional
flexibility of the Lagrangian relaxation method allows one to
select the constraint level to achieve various points on the esti-
mation performance/communication cost tradeoff, rather than

Fig. 5. Position entropy and communication cost for dynamic programming
method with communication constraint (DP CC) and information constraint
(DP IC), compared to the method which dynamically selects the leader node to
minimize the expected communication cost consumed in implementing a fixed
sensor management scheme. The fixed sensor management scheme activates the
sensor (“greedy”) or two sensors (“greedy 2”) with the measurement or mea-
surements producing the largest expected reduction in entropy. Ellipse centers
show the mean in each axis over 100 Monte Carlo runs; ellipses illustrate co-
variance, providing an indication of the variability across simulations.

being restricted to particular points corresponding to different
numbers of sensors.

VI. CONCLUSION AND FUTURE WORK

This paper has demonstrated how an adaptive Lagrangian re-
laxation can be utilized for sensor management in an energy-
constrained sensor network. The introduction of secondary ob-
jectives as constraints provides a natural methodology to ad-
dress the tradeoff between estimation performance and commu-
nication cost.

The planning algorithm may be applied alongside a wide
range of estimation methods, ranging from the Kalman filter
to the particle filter. The algorithm is also applicable to a wide
range of sensor models. The linearized Gaussian approximation
in Section III-E results in a structure identical to the OLFC. The
remainder of our algorithm (removing the linearized Gaussian
approximation) may be applied to find an efficient approxima-
tion of the OLFC as long as an efficient estimate of the reward
function (mutual information in our case) is available.

The simulation results in Section V demonstrate that approx-
imations based on dynamic programming are able to provide
similar estimation performance (as measured by entropy), for
a fraction of the communication cost in comparison to simple
heuristics which consider estimation performance alone and uti-
lize a single sensor. The discussion in Section III-F provides a
guide for efficient implementation strategies that can enable im-
plementation on the latest generation wireless sensor networks.
Future work includes incorporation of the impact on planning
caused by the interaction between objects when multiple objects
are observed by a single sensor, and developing approximations
that are less coarse than the linearized Gaussian model.
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