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Abstract – In this paper, we present a secure, flexible, and 
efficient routing protocol for sensor networks based on random 
key pre-distribution. Random key pre-distribution provides an 
easy way to manage the keys in a large-scale network without 
using public key cryptography, which is considered to be 
expensive. Our protocol aims to establish secure paths in a sensor 
network between a controller and a set of nodes where each node 
has been assigned a set of randomly chosen keys out of a key 
pool. A common model for sensor networks assumes a tree of 
sensor nodes delivering information to the controller according 
to an inquiry sent into the network. However, if we require the 
communication to be secure among the sensor nodes, such a tree 
cannot always be built efficiently. For example, when the nodes 
are assigned randomly chosen keys, many of them may not 
communicate directly since they do not often share a common 
key. However, these two nodes may communicate indirectly but 
securely over a multiple hop path where each pair of nodes on 
this path shares a common key. Our protocol bridges the gap 
between these two cases by providing the methods for nodes to 
securely share their keys and communicate directly so that the 
efficiency of communications is increased without jeopardizing 
the security.  In this way, our protocol generates secure and 
efficient routes. We also provide simulation results for our 
protocol demonstrating that, for a small number of keys stored at 
each node, the average path length is smaller.  However, the 
gains due to our protocol diminish as the number of available 
keys at each node increases since two nodes within 
communication range of each other are more likely to have a key 
in common.  

Index Terms – sensor networks, secure routing, random key 
distribution, nonce chains  

I.   INTRODUCTION AND BACKGROUND 
Sensor nodes are tiny wireless communication devices that 

have limited energy, computational power and memory 
resources. A collection of many sensor nodes which gather 
information from the environment and send it to a controller 
node is called Distributed Sensor Network (DSN). A 
controller node in general is mobile and more powerful than a 
sensor node. The controller node accumulates and interprets 
the data received from sensor nodes. Sensor nodes usually 
have limited transmission and observation range and can 
cover a large physical area only by networking a large number 

of sensor nodes. Thus, scalability is a major issue in the 
protocol design for sensor networks. 

Security and secure routing is an important issue in DSNs, 
especially in applications where data authenticity, 
confidentiality and/or integrity are required. Achieving 
security in DSNs is a hard task because of the limited 
resources of sensor nodes. Thus, applicability of 
cryptographic protection techniques is also limited. For 
example, public-key cryptography based key exchange 
protocols, such as Diffie-Hellman, are not viable in sensor 
nodes. 

Security problems in ad-hoc networks are similar to 
security problems in sensor networks. Some of the security 
issues in ad hoc networks have been given in [3]. Although 
the security problems are similar, the solutions to these 
problems are quite different due to the differences (i.e., 
resource limitations of DSNs) between sensor and ad-hoc 
networks. For instance, some ad hoc security protocols use 
public-key cryptography [3], [4], [5], [6], [7], [8]. As stated 
previously, public-key cryptography is not suitable for sensor 
networks due to resource limitations. There are some security 
protocols for ad hoc networks which use symmetric 
cryptography [9], [10], [11]. Perrig et al. [12] presented two 
security protocols µTESLA and SNEP. The protocol µTESLA 
is for authenticated broadcast and the protocol SNEP is for the 
authentication of freshness and confidentiality. Tatebayashi et 
al. [13] worked on key distribution for resource limited mobile 
devices. Boyd and Mathuria [14] presented a survey on 
previous authentication and key distribution methods in 
mobile environments. In [16], Di Pietro, Mancini and Jajodia 
proposed a key establishment protocol in which forward and 
backward security of session keys are provided. In other 
words, the compromise of a session key does not lead to the 
compromise of previous or future session keys. Du, Deng, 
Han and Varshney [17] proposed a key pre-distribution 
scheme which improves resilience of network. In this 
protocol, if the number of compromised nodes is less than a 
certain threshold value, then the probability that the 
uncompromised nodes will get affected is low. This property 
increases the cost of a successful attack. In [18], a general 
framework for key pre-distribution which provides tolerance 
to node capture in an efficient way is presented by Liu and 
Ning. Zhu, Setia and Jajodia [19] proposed a key management 



protocol that provides support for numerous symmetric keying 
mechanisms such as individual keys, pairwise shared keys, 
cluster keys and group keys. 

Key distribution is the starting point of any security 
protocol. The easiest way to distribute keys in a large DSN is 
key pre-distribution, in which the necessary keys are stored in 
sensor nodes before deployment. In this paper, our study is 
founded on the key pre-distribution method described by 
Eschenauer and Gligor in [1]. It is based on probabilistic key 
sharing among the nodes of a random graph. Each node runs a 
shared key discovery protocol to find the neighbors with 
whom they share a key. Before deployment, we distribute a 
key ring of k keys that are randomly selected from a large key 
pool P. Despite the fact that a pair of nodes may not share any 
keys, if a path of nodes exists between these nodes, then key 
exchange may be performed through that path. Therefore, 
each node does not have to be (cryptographically) connected 
to all other n-1 nodes, which is the case in the pair wise key 
sharing method.  

In this paper, we propose a secure and flexible routing 
protocol based on the key pre-distribution mechanism 
mentioned above. Our primary aim is to find routes from each 
sensor node to the controller with all links secured. The 
proposed protocol is quite flexible such that the sensor nodes 
may still establish secure routes even if they lack energy and 
memory by sacrificing the path length. Another useful feature 
is that selective revocation of a compromised node is possible.  

After each node discovers shared keys with its neighbors as 
described in [1], our routing protocol starts. There are six 
phases. In the Level-One Initialization Phase, the controller 
and nodes in the wireless range of the controller mutually 
authenticate themselves and the controller distributes the 
session key to be used in further phases. In the Route Learning 
Phase, each node forwards messages containing route 
information to their downstream nodes and an initial set of 
routes is established. In the Authentic Neighbor and Shorter 
Path Discovery Phase, nodes broadcast messages in order to 
discover shorter paths to the controller. If shorter paths are 
found, these paths must be secured by assigning a key to that 
path. This key is exchanged in the Key Exchange Phase. 
Should the controller detect that a security breach has 
occurred during the execution of the routing protocol, it may 
invalidate the session key by starting the Session Key 
Expiration Phase. If a legitimate sensor node is compromised, 
the Revocation Phase may be started by the controller in order 
to invalidate the key ring of the compromised node. 

The rest of the paper is structured as follows. We state our 
system assumptions and give some definitions and notations in 
Section 2. In Section 3, we explain some preliminary 
information about Eschenauer and Gligor’s work [1]. In 
Section 4, we describe our routing protocol. Some attacks and 
countermeasures are discussed in Section 5. Simulation results 
are given in Section 6 and we conclude the paper in Section 7.  

II.   ASSUMPTIONS AND NOTATIONS 
In a distributed sensor network, all messages are broadcast. 

However, for the sake of clarity, we will sometimes refer to 
sending of a message created specifically for a certain node as 

unicasting. We assume that for each point-to-point message 
between the nodes, the integrity of data is protected by 
appending a MAC (Message Authentication Code) value to 
the message; again, for the sake of simplicity, we do not show 
these MAC values in the protocol.  

A secure routing protocol must be resilient to replay 
attacks. In our protocol, we consider using nonces with time 
stamps. We do not explicitly show these nonce and time 
stamps in the protocol for the sake of clarity and readability. 
Our method requires loose synchronization. Each message 
will contain a nonce value and a time stamp, indicating a 
message expiration date. When a node receives such a 
message, it must save the nonce value in its memory until the 
expiration date of the time stamp. If a message with the same 
nonce value arrives before the expiration date, this message 
must be discarded, since it is considered a replay. After the 
expiration date, the same nonce value can be used with 
another message but with a different time stamp bearing a 
larger time value.  

The proposed protocol uses one-way nonce chains, which 
is a concept introduced in [12], in order to verify that the 
Route Learning, Session Key Expiration, and Revocation 
phases in the protocol are originally initiated by the controller. 
A one-way nonce chain is a sequence of related secret nonces. 
In order to generate a one-way nonce chain of length n, the 
last nonce of the chain Nn-1 is first chosen at random. Then, a 
one-way hash function H is successively applied n-1 times as 
Ni = H(Ni+1). Since, H is a one-way function, computing Ni 
given Ni+1 is easy, but computing Ni given Ni-1 is 
computationally infeasible. In the presented protocol, we use 
nonce chains that can only be created by the controller and can 
be verified by all the nodes in the network. In the paper ith 
nonce of the nonce chain is denoted Nchain i. 

We assume that the first nonce, N0, of the nonce chain has 
been distributed before the network deployment and that there 
is a protocol for learning the current nonce of the nonce chain. 
The mechanism to distribute the first nonce of the nonce chain 
may be similar to the Session Key Expiration Phase (Section 
4.5) or Revocation Phase (Section 4.6)1. The problem of the 
distribution of such initial parameters in a secure way has 
been investigated in the literature as well. In [12], a 
mechanism is proposed in which the controller unicasts the 
first nonce of each node. However, this is not an efficient 
method and therefore has scalability problems. In [15], the 
problem of distributing initial parameters is addressed by 
broadcasting in an efficient way. Furthermore, a multi-level 
key chain scheme in which higher-level key chains are used to 
authenticate the commitments of lower-level ones is 
introduced in order to lengthen the lifetime and to provide 
efficiency.  

The notation commonly used to express our protocol is 
given in Table 1. 

                                                      
1 These two phases use the same method to securely spread two 

different types of messages to the network. These messages are  
the session key expiration message and node revocation message. 



 

Table 1. Notations 

Symbol Meaning 
k Key ring size  
P Pool of keys 
KAB Symmetric key shared between the 

nodes A and B 
KS Session key used during routing 
A B: X Node A sends X to Node B 

ABKE (data) Symmetric encryption of data with a key 
shared between Node A and Node B  

depth Number of levels of nodes through 
which routing messages will be 
forwarded. 

Nchain i 
ith nonce of the one way nonce chain 

t Timestamp 
Nx Nonce value generated by Node X 

III.   PRELIMINARIES 
The proposed routing algorithm is based on a random key 

pre-distribution and a shared key discovery phase presented in 
[1]. A brief description of these phases is given below.  

The Key Pre-distribution phase consists of five offline 
steps. First, a large pool of keys P and their identifiers are 
generated. Second, for each node, a key ring with k distinct 
keys is randomly selected from the pool P. The number k is 
called the key ring size. Some key rings may have keys in 
common because of the random selection. Third, each selected 
key ring is loaded into the memory of a sensor. Fourth, 
identifiers of keys in the key ring of the sensor node and 
sensor identifier are stored on a trusted controller node. 
Lastly, each sensor node shares a separate key with the 
controller node. This key is computed by each node and the 
controller automatically uses all of the keys in the 
corresponding key ring. 

 In the Shared Key Discovery phase, each node broadcasts 
key identifiers of its key ring. Doing so, each node finds its 
neighbors with whom it shares a key.  

IV.   ROUTING PROTOCOL DESCRIPTION 
In this section, we describe the proposed routing protocol. 
First, keys are pre-distributed to the sensor nodes and shared 
keys are discovered by the methods discussed in [1] and 
briefly overviewed in Section 3.  

The controller can communicate with the rest of the nodes 
indirectly via the level-one nodes, which are defined as the 
nodes in the wireless range of the controller. Forming a route 
consists of four phases: (1) Level-One Initialization Phase, (2) 
Route Learning Phase, (3) Authentic Neighbor and Shorter 
Path Discovery Phase, and (4) Key Distribution Phase. After 
forming the route, the controller may decide to invalidate a 
session key or to revoke some nodes. For these purposes, the 
Session Key Expiration Phase or Revocation Phase may be 

run respectively. Figure 1 depicts the flowchart of the 
protocol.  
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Fig. 1. SeFER Flowchart 

A.   Level-One Initialization Phase 
In this phase, the controller discovers the identities of the 

level-one nodes. The controller and level-one nodes mutually 
authenticate themselves. Furthermore, the controller sends a 
message containing a session key for broadcast authentication, 
the depth (hop count) of the network, and next nonce of the 
nonce chain. Figure 2 shows the steps involved in the level-
one initialization phase for two level-one nodes A and B. 
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 Fig. 2. Level-One Initialization Phase 
 
In the first message, the controller broadcasts a clear-text 

message NC, a nonce value produced by the controller. In the 
second message, the level-one nodes reply by sending NC+1 
encrypted with the key shared with the controller; which is 
KCA for Node A and KCB for Node B. Note that each node 
shares a different key with the controller. The second 
message authenticates Node A and Node B to the controller. 
The second field in the second message is a nonce value (NA 
for Node A, NB for Node B) produced by each level-one 



node. This value is used to authenticate the controller in the 
same way that level-one nodes are authenticated to the 
controller. In the third message, the controller authenticates 
itself to the level-one nodes by sending NA+1 to Node A and 
NB+1 to Node B encrypted with KCA and KCB respectively. 
The second field in the third message is depth, which is the 
number of levels of nodes through which routing messages 
are forwarded. Each node forwarding a routing packet 
decrements the value of this field by one. The third field in 
this encrypted message is a session key, KS, produced by the 
controller. This session key is used to perform an authentic 
broadcast and to execute some other operations explained 
later in Authentic Neighbor and Shorter Path Discovery 
phase. The session key is not used for any critical operations; 
neither key exchange, nor data encryption is performed with 
the session key. The fourth field is a timestamp, which is the 
expiration time of the session key. The compromise of a 
session key only gives a malicious node the opportunity of 
time-limited attacks, such as performing a Denial of Service 
(DoS) attack until the expiration of the session key (see [2] 
for detailed information about DoS attacks). Expiration time 
must be chosen as short as possible but long enough to 
complete the route setup. A session key may be invalidated 
before the expiration time by the controller by running the 
Session Key Expiration phase, which is explained later. The 
fifth field is the list of level-one nodes. In order to prevent 
level-one nodes sending routing messages to each other, the 
controller informs all level-one nodes of the identity of each 
other. Sending these lists prevents the flooding and receiving 
of multiple routing messages among level-one nodes.  
Finally, the last field of the message is the next nonce in the 
nonce chain, Nchain i. This value can only be created by the 
controller and used to find evidence when the routing 
messages are not initiated by a legitimate controller node, as 
detailed in Section 5.3. 

 

B.   Route Learning Phase 
The aim of level-one nodes in the Route Learning Phase is 

to spread a route message that includes the session key KS, 
timestamp t and the next nonce of the nonce chain Nchain i  to a 
number of nodes in the network. The operation starts with the 
level-one nodes and continues down in the network. At each 
hop, nodes add their identity to the route message. In this way, 
an initial set of routes is established. Figure 3 shows the steps 
involved in the Route Learning Phase.  

First, a sensor node receives a routing message from one 
of its secure paths. This message is encrypted with the key 
shared between the sender of the message, Previous_Node 
and the receiver, Current_Node. Current_Node decrypts this 
message and checks the validity of the nonce Nchain i, where 

Nchain i is the current unpublished nonce in the nonce chain. 
Second, if the depth field is not zero, Current_Node adds its 
identity to the Route field, decrements the depth field and 
forwards this message to its secure paths. These messages are 
encrypted with the key shared between Current_Node and 

the receivers of this message Nodej, where j=1…Number_of 
_Secure_Paths. 

 

Previous_Node(P) Current_Node(C):  
                    EKPC(depth, KS, t, route, Nchain i) 

if(H(Nchain i)==Nchain 1i  − )AND(Nchain i not used before) 
  if (depth > 0) 
 route := route || Current_Node_Identifier  
 depth := depth-1 
 send_to_Secure_Paths( 

         depth,KS, t,route, Nchain i 

           
  end 

) 

end

Fig. 3.  Route Learning Phase 
 
Figure 4 shows an example of the Route Learning Phase. 

The dotted edges in the graph are secure links. Nodes A and B 
are level-one nodes.  Each node forwards the routing message 
by decrementing the depth field and adding its identity to the 
route field. Furthermore, each message is encrypted with the 
key shared between the sender and the receiver of the 
message. 
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Fig. 4. An Example of the Route Learning Phase 

 

C. Authentic Neighbor and Shorter Path Discovery Phase 
After the Route Learning Phase, each node receiving the 

routing message has a route to the controller. However, there 
may be a shorter but non-secure route to the controller. Such a 
route implies communication connectivity, but some links are 
not cryptographically connected since the end-points of these 
links do not share a key. In the Route Learning phase, only 
secure routes are established. The Authentic Neighbor and 
Shorter Path Discovery Phase finds the above-mentioned non-
secure, but shorter paths in an authentic way.  After finding 
such a shorter path, we run the next phase, i.e., the Key 



Exchange Phase, to remove the cryptographic 
disconnectedness and secure all of the links in that path.  

Figure 5 shows an example of the steps involved in the 
Authentic Neighbor and Shorter Path Discovery Phase for 
Node X. The dotted lines are secure links.  This phase is 
performed if the length of the path found is greater than a 
certain threshold value.  This operation limits the number 
authentic neighbor and shorter path phase messages.  In 
Figure 5, Node X queries its neighbors to find out if any of 
them has a shorter path to the controller. First, Node X 
broadcasts a route request message encrypted with the session 
key KS thus authenticating the message. The first field in this 
message is the identity of the node requesting route 
information (Node X in this case). The second field is a nonce 
value, NX, created by Node X. The third field is the time 
stamp, t, of the nonce value. This field is used to prevent 
replay attacks. Second, each neighbor of Node X responds by 
a message encrypted with session key KS. The first field in this 
response message is the identifier of the responding neighbor. 
The second field is the NX+1. If this field is valid, this message 
is a valid response to Node X’s broadcast. The last field is the 
route of the neighbor to the controller. Node X receives 
multiple responses from its neighbors. Node X can adopt the 
shortest path to the controller among these responses from its 
neighbors if it is shorter than its current path. 
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Fig. 5. An Example of Authentic Neighbor and Shorter Path 

Discovery Phase 
 

D.   Key Exchange Phase 
In the previous phase, Authentic Neighbor and Shorter Path 

Discovery Phase, nodes have asked their neighbors for a 
shorter path. If a shorter path exists, this path must be secured. 
Thus, a one-time key exchange must be completed between 
these nodes, say, X and Y. Key exchange is performed through 
the controller. First, one of the nodes, say X, picks a key KXY 
and encrypts it using the key shared between X and the 
controller. Then X sends out the encrypted key to the 
controller over the existing route between them. The controller 
decrypts KXY and then re-encrypts it using the key shared 
between the controller and Y. After that, the controller sends 

out the encrypted key to Y. Node Y decrypts KXY and sends X 
an acknowledgment message, which is encrypted by KXY.  
This acknowledges the receipt of the session key by Y. 

Consider the example in Figure 6. In this figure, lines 
indicate secure links and Node A is the only level-one node. 
The initial route between Node F and the controller is 
F G D A Controller. Assume that Node F runs the 
Authentic Neighbor and Shorter Path Discovery Phase and 
gets multiple responses from its neighbors. Among these 
responses, suppose that neighbor Node B has the shortest path, 
which is B A Controller. Thus, it is profitable for F to 
change the route to F B A Controller. However, the link 
between F and B is not secure. In order to secure this link, 
Node F sends a new key, KBF, to Node B through the path 
F G D A Controller A B. First, Node F encrypts 
KBF with its key shared with the controller.  The controller 
decrypts KBF and encrypts it with the key it shares with B. This 
method eliminates link-by-link encryptions and decryptions. 
Moreover, intermediate nodes do not learn KBF. Having 
obtained KBF, Node B responds with an authentic 
acknowledgment, EK BF (acknowledgment).  
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Fig. 6. Key Exchange Phase 

Furthermore, it may be argued that if, for example, D is not 
happy about B trying to change the route, it can drop the key 
exchange packets. However, Node F will eventually realize 
this situation since it would not receive the authentic 
acknowledgment. In such a case, Node F can try other secure 
paths to perform this key exchange. Having only one secure 
path means very low cryptographic connectivity, which is 
very unlikely as stated in [1]. That is why there actually are 
several secure but longer paths between a node and controller 
although only one secure path is shown in Figure 6 for the 
sake of simplicity.   

E.   Session Key Expiration Phase 
The controller may decide to invalidate a session key, 

before the normal lifetime indicated in the timestamp. Thus, 
the controller sends a session key expiration message to level-



one nodes. The session key expiration message contains the 
invalidated session key and the next nonce of the nonce chain. 
Each node forwards the expiration message to its neighbors 
until all nodes in the network have the expiration message. 
The session key expiration messages are encrypted and 
decrypted with the key shared between the originator and the 
receiver of this message. Each node receiving the session key 
expiration message checks the validity of the next nonce of 
the nonce chain in order to authenticate that the message is 
originated from the controller. Figure 7 shows an example of 
the Session Key Expiration Phase. In this example, Nodes A 
and B are level-one nodes. Each node receiving this message 
decrypts it with the appropriate key, expires the session key, 
encrypts the message and forwards it over all of its secure 
paths. The protocol for distributing a new session key is 
similar to the Route Learning Phase except that the route field 
is not included in the message. Thus, the session key is simply 
distributed over the existing secure links.  
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V.   ATTACKS AND COUNTERMEASURES 
In this section, we briefly discuss possible attacks on the 

proposed protocol that a malicious node utilizes to harm the 
network and countermeasures that can be employed to thwart 
them. There exist two kinds of attackers: internal attackers and 
external attackers. An internal attacker tampers with a 
legitimate sensor node and learns all the keys saved in the 
device. An external attacker is an external node that gets to 
know only the session key. Attacker’s aims are to eavesdrop 
on the data packets, to exhaust the battery of the nodes, and to 
inject false routing, session key expiration and revocation 
messages.  

A. Route Poisoning Attacks 
Assuming that an external attacker obtained the session 

key, the attacker could try sending false routes, as a reply to a 
shortest path discovery message in order to accumulate traffic 
over itself.  

 

F.   Revocation Phase 
If a sensor node is compromised, the key ring of that node 

must be revoked or deleted from the network. First, the 
controller sends the revocation list, i.e. the key identifiers of 
the revoked node, as well as the next nonce of the nonce chain 
to all of the level-one nodes, encrypted with the keys shared 
between the controller and the level-one nodes. Each sensor 
node receiving this message checks the validity of the nonce 
of the nonce chain. Second, all nodes forward this message to 
their neighbors until all nodes receive the message. Figure 8 
shows an example of the Revocation Phase.  

 
Countermeasure: This attack is not possible since the route 

in the reply packet is considered as the key exchange path, but 
since the route is false (non-existent route), the key exchange 
cannot take place. Eventually, a node will notice this false 
route during the key exchange protocol. This node could 
report this situation to the controller and thus invalidate the 
session key. Therefore, the nodes are obliged to reply with 
correct routes. 

 B. External DoS Attacks 
The session key KS is used for the Authentic Neighbor and 

Shortest Path Neighbor Discovery Phase. Each session key 



has a limited lifetime limited by the value indicated in the time 
stamp. When a legitimate node becomes compromised, the 
attacker may send a routing message (a Route Learning Phase 
message) with a very large session key expiration time in 
order to have sufficient time to build a denial of service (DoS) 
attack, where the objective is to exhaust the battery of its 
neighbors by repeatedly sending routing messages. 

 
Countermeasure: In order to prevent this attack, each node 

must check the time stamp value. If it indicates a late 
expiration time, the node receiving this message must ignore 
the value and wait for a fixed amount of time for session key 
expiration. Therefore, the attacker has limited time to send 
multiple bogus shortest path discovery messages to exhaust 
the battery of sensor nodes. 

C. Internal DoS Attacks  
The use of the nonce chain limits the efficiency of certain 

types of attacks. For example, an unpublished nonce from the 
nonce chain is used by the controller to initiate a legitimate 
Route Learning, Session Key Expiration, or Revocation phase. 
Since the next nonce is known only by the controller, no other 
node can initiate a new phase. However, any internal attacker 
can modify the content of the message and send it through its 
secure links. For example, the internal attacker can turn a 
revocation message into a route-learning message to apply a 
DoS attack. The receiving nodes consider the message as 
legitimate.  

 
Countermeasure: The nodes receiving the fabricated 

routing messages may also receive the legitimate revocation 
messages from other nodes; therefore, some nodes could 
receive two different types of messages with the same chain 
nonce. This situation can be reported to the controller as a 
security breach. The attacker can only deceive its downstream 
nodes if and only if it can prevent them from receiving the 
legitimate revocation message. This is only possible when the 
malicious node is the sole point of relay for its downstream 
nodes. However, this is unlikely. For instance, an example in 
[1] shows that if a DSN with 10000 nodes has a graph 
connectivity probability of 0.99999, on average, each node 
has 20 links.  

D. Blackhole Attacks  
The worst possible type of attack is called a blackhole 

attack, where an internal attacker who captured all the keys of 
a legitimate node is able to read and remove the messages of a 
subgroup of the network. Moreover, the attacker is able to 
change a legitimate route-learning message by modifying the 
route information. The aim of the internal attacker is to 
deceive the receiving nodes that its path to the controller is 
shorter; e.g. the attacker may claim that it is a level-one node. 
In this way, the attacker can accumulate traffic over itself, but 
it does not forward any data towards the controller. The 
evidence gathering method used in the previous situation is 
useless, since each routing message can naturally be different 
as the route and depth fields change at each hop, and there is 
nothing to compare for evidence. However, the attack is still 
local and the rest of the network is not compromised.  

 
Countermeasure: In order to overcome the confidentiality 

problem, each node can send data encrypted with the key that 
it shares with the controller. Therefore, the attacker will not be 
able to read data packets but will be able to drop them. This 
problem can be solved by employing an authenticated 
acknowledgment mechanism after the route is established. In 
this mechanism, having received a data packet from Node, 
say, X, the controller creates an acknowledgment packet and 
encrypts it using KCX, and sends it the Node X.  Since, except 
Node X, only the controller can decrypt/encrypt using KCX, if 
Node X receives the acknowledgment, this means not only the 
data packet has arrived, but also that Node X has a legitimate 
route to the controller and no node has dropped the packet en 
route. Authentic acknowledgments do not need to be 
requested all the time for blackhole detection; some random 
checks would help too. Failure in receiving one authentic 
acknowledgment would be considered as a weak indicator for 
a blackhole attack, since there might be other reasons behind 
the fact that the acknowledgment has not been received. 
However, it is quite clear that continuous failures strengthen 
the possibility of the blackhole attack. The correlation 
between the failure pattern and the existence of the blackhole 
attack is left as a future study. 

VI.   SIMULATIONS 
We developed simulation software in Java to evaluate the 

performance of the proposed protocol.  Important performance 
metrics considered are the overhead of the protocol in terms of 
routing and key exchange messages, and the average length of 
the paths connecting the sensor nodes and the controller.  Our 
simulations aim at analyzing the changes in these metrics with 
respect to key ring size.  In the simulations, we considered a 
network of 1000 nodes that are uniformly distributed and that 
show an average neighborhood connectivity of 40 nodes.  The 
key pool has a size of 10000 keys. 

Figure 9 depicts the change in the average path length from 
the sensor nodes to the controller before and after the 
authentic neighbor discovery phase respectively for key ring 
sizes. For small key ring sizes, the average path length is 
smaller when the authentic neighbor discovery phase is 
employed.  This is quite natural considering that in this phase 
the nodes search for shorter paths to the controller.  However, 
as the key ring size increases, the gains due to the authentic 
neighbor discovery phase diminishes, because the shortest 
path to the controller is also determined by the communication 
range of sensor nodes.  Note that sensor nodes are limited in 
resources such as memory and transmission power.  Thus, in 
order to increase the efficiency of data collection, the 
authentic neighbor discovery phase should be employed.  
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Fig 9. Average Hop Count with and without authentic 
neighbor discovery 

Figure 10 depicts the number of route messages with 
different key ring sizes. In the simulations, we considered 
flooding as the method to exchange routing messages among 
the nodes. As the key ring size increases, more nodes can 
communicate securely and thus more nodes exchange routing 
messages to find a shorter path to the controller. Meanwhile, 
as the key ring size increases, the number of key exchange 
messages drops for the same reason outlined above. 
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Fig 10. Key ring size versus number of messages 

As an extreme case, where every node can communicate 
with all of its neighbors securely, the average path length 
reduces to 3.94 hops, but the total number of routing 
messages increases to approximately 70000. A similar 
average path length can be achieved by limiting the key ring 
size to approximately 100 thus reducing the average number 
of routing messages to approximately 40000. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a secure routing protocol for 

sensor networks. This protocol establishes secure routes in 
which links are secured using different keys. Thus, the 

compromise of a single key does not compromise the entire 
network.  

The key idea behind the proposed scheme is random key 
pre-distribution which is also employed in [1]. Random key 
pre-distribution requires different nodes to be manufactured 
with a set of random keys selected from a pool of keys. When 
these nodes are deployed in the sensor field, the ones that are 
physically in the transmission range of each other will be able 
to communicate securely if they, by chance, share a common 
key. Otherwise, secure routes may still be formed but they 
may be longer. The proposed protocol allows the nearby 
nodes, which do not have common keys, to exchange keys, 
but only when this key exchange would yield a shorter and 
secure path. 

The proposed protocol is flexible such that it allows a 
tradeoff between route length and the route setup cost in terms 
of processing power and storage. For instance, when there are 
stringent limitations on the memory space, the key ring size is 
small. Then, the secure routes are established over a longer 
physical path since the possibility of two nodes having a 
common key is low.  

The simulations demonstrate that increasing the key ring 
size beyond a certain value does not have any effect on the 
average path length. Given the number of nodes in the 
network, an optimal key ring size can be found. The 
Authentic Neighbor and Shorter Path Discovery Phase will 
improve the average path length for small key ring sizes. As 
future work, some threshold schemes may be implemented in 
order to decide whether shorter path discovery is required. 
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