
SeFER: Secure, Flexible and Efficient Routing
Protocol for Distributed Sensor Networks

Cagil Can Oniz, Sinan Emre Tasci, Erkay Savas, Ozgur Ercetin and Albert Levi
Sabanci University, Faculty of Engineering and Natural Sciences,

Orhanli, Tuzla, 34956 Istanbul, Turkey
{cagilo,sinanemre}@su.sabanciuniv.edu

 {erkays,oercetin,levi}@sabanciuniv.edu

Abstract – In this paper, we present a secure, flexible, and
efficient routing protocol for sensor networks based on random
key pre-distribution. Random key pre-distribution provides an
easy way to manage the keys in a large-scale network without
using public key cryptography, which is considered to be
expensive. Our protocol aims to establish secure paths in a sensor
network between a controller and a set of nodes where each node
has been assigned a set of randomly chosen keys out of a key
pool. A common model for sensor networks assumes a tree of
sensor nodes delivering information to the controller according
to an inquiry sent into the network. However, if we require the
communication to be secure among the sensor nodes, such a tree
cannot always be built efficiently. For example, when the nodes
are assigned randomly chosen keys, many of them may not
communicate directly since they do not often share a common
key. However, these two nodes may communicate indirectly but
securely over a multiple hop path where each pair of nodes on
this path shares a common key. Our protocol bridges the gap
between these two cases by providing the methods for nodes to
securely share their keys and communicate directly so that the
efficiency of communications is increased without jeopardizing
the security. In this way, our protocol generates secure and
efficient routes. We also provide simulation results for our
protocol demonstrating that, for a small number of keys stored at
each node, the average path length is smaller. However, the
gains due to our protocol diminish as the number of available
keys at each node increases since two nodes within
communication range of each other are more likely to have a key
in common.

Index Terms – sensor networks, secure routing, random key
distribution, nonce chains

I. INTRODUCTION AND BACKGROUND
Sensor nodes are tiny wireless communication devices that

have limited energy, computational power and memory
resources. A collection of many sensor nodes which gather
information from the environment and send it to a controller
node is called Distributed Sensor Network (DSN). A
controller node in general is mobile and more powerful than a
sensor node. The controller node accumulates and interprets
the data received from sensor nodes. Sensor nodes usually
have limited transmission and observation range and can
cover a large physical area only by networking a large number

of sensor nodes. Thus, scalability is a major issue in the
protocol design for sensor networks.

Security and secure routing is an important issue in DSNs,
especially in applications where data authenticity,
confidentiality and/or integrity are required. Achieving
security in DSNs is a hard task because of the limited
resources of sensor nodes. Thus, applicability of
cryptographic protection techniques is also limited. For
example, public-key cryptography based key exchange
protocols, such as Diffie-Hellman, are not viable in sensor
nodes.

Security problems in ad-hoc networks are similar to
security problems in sensor networks. Some of the security
issues in ad hoc networks have been given in [3]. Although
the security problems are similar, the solutions to these
problems are quite different due to the differences (i.e.,
resource limitations of DSNs) between sensor and ad-hoc
networks. For instance, some ad hoc security protocols use
public-key cryptography [3], [4], [5], [6], [7], [8]. As stated
previously, public-key cryptography is not suitable for sensor
networks due to resource limitations. There are some security
protocols for ad hoc networks which use symmetric
cryptography [9], [10], [11]. Perrig et al. [12] presented two
security protocols µTESLA and SNEP. The protocol µTESLA
is for authenticated broadcast and the protocol SNEP is for the
authentication of freshness and confidentiality. Tatebayashi et
al. [13] worked on key distribution for resource limited mobile
devices. Boyd and Mathuria [14] presented a survey on
previous authentication and key distribution methods in
mobile environments. In [16], Di Pietro, Mancini and Jajodia
proposed a key establishment protocol in which forward and
backward security of session keys are provided. In other
words, the compromise of a session key does not lead to the
compromise of previous or future session keys. Du, Deng,
Han and Varshney [17] proposed a key pre-distribution
scheme which improves resilience of network. In this
protocol, if the number of compromised nodes is less than a
certain threshold value, then the probability that the
uncompromised nodes will get affected is low. This property
increases the cost of a successful attack. In [18], a general
framework for key pre-distribution which provides tolerance
to node capture in an efficient way is presented by Liu and
Ning. Zhu, Setia and Jajodia [19] proposed a key management

protocol that provides support for numerous symmetric keying
mechanisms such as individual keys, pairwise shared keys,
cluster keys and group keys.

Key distribution is the starting point of any security
protocol. The easiest way to distribute keys in a large DSN is
key pre-distribution, in which the necessary keys are stored in
sensor nodes before deployment. In this paper, our study is
founded on the key pre-distribution method described by
Eschenauer and Gligor in [1]. It is based on probabilistic key
sharing among the nodes of a random graph. Each node runs a
shared key discovery protocol to find the neighbors with
whom they share a key. Before deployment, we distribute a
key ring of k keys that are randomly selected from a large key
pool P. Despite the fact that a pair of nodes may not share any
keys, if a path of nodes exists between these nodes, then key
exchange may be performed through that path. Therefore,
each node does not have to be (cryptographically) connected
to all other n-1 nodes, which is the case in the pair wise key
sharing method.

In this paper, we propose a secure and flexible routing
protocol based on the key pre-distribution mechanism
mentioned above. Our primary aim is to find routes from each
sensor node to the controller with all links secured. The
proposed protocol is quite flexible such that the sensor nodes
may still establish secure routes even if they lack energy and
memory by sacrificing the path length. Another useful feature
is that selective revocation of a compromised node is possible.

After each node discovers shared keys with its neighbors as
described in [1], our routing protocol starts. There are six
phases. In the Level-One Initialization Phase, the controller
and nodes in the wireless range of the controller mutually
authenticate themselves and the controller distributes the
session key to be used in further phases. In the Route Learning
Phase, each node forwards messages containing route
information to their downstream nodes and an initial set of
routes is established. In the Authentic Neighbor and Shorter
Path Discovery Phase, nodes broadcast messages in order to
discover shorter paths to the controller. If shorter paths are
found, these paths must be secured by assigning a key to that
path. This key is exchanged in the Key Exchange Phase.
Should the controller detect that a security breach has
occurred during the execution of the routing protocol, it may
invalidate the session key by starting the Session Key
Expiration Phase. If a legitimate sensor node is compromised,
the Revocation Phase may be started by the controller in order
to invalidate the key ring of the compromised node.

The rest of the paper is structured as follows. We state our
system assumptions and give some definitions and notations in
Section 2. In Section 3, we explain some preliminary
information about Eschenauer and Gligor’s work [1]. In
Section 4, we describe our routing protocol. Some attacks and
countermeasures are discussed in Section 5. Simulation results
are given in Section 6 and we conclude the paper in Section 7.

II. ASSUMPTIONS AND NOTATIONS
In a distributed sensor network, all messages are broadcast.

However, for the sake of clarity, we will sometimes refer to
sending of a message created specifically for a certain node as

unicasting. We assume that for each point-to-point message
between the nodes, the integrity of data is protected by
appending a MAC (Message Authentication Code) value to
the message; again, for the sake of simplicity, we do not show
these MAC values in the protocol.

A secure routing protocol must be resilient to replay
attacks. In our protocol, we consider using nonces with time
stamps. We do not explicitly show these nonce and time
stamps in the protocol for the sake of clarity and readability.
Our method requires loose synchronization. Each message
will contain a nonce value and a time stamp, indicating a
message expiration date. When a node receives such a
message, it must save the nonce value in its memory until the
expiration date of the time stamp. If a message with the same
nonce value arrives before the expiration date, this message
must be discarded, since it is considered a replay. After the
expiration date, the same nonce value can be used with
another message but with a different time stamp bearing a
larger time value.

The proposed protocol uses one-way nonce chains, which
is a concept introduced in [12], in order to verify that the
Route Learning, Session Key Expiration, and Revocation
phases in the protocol are originally initiated by the controller.
A one-way nonce chain is a sequence of related secret nonces.
In order to generate a one-way nonce chain of length n, the
last nonce of the chain Nn-1 is first chosen at random. Then, a
one-way hash function H is successively applied n-1 times as
Ni = H(Ni+1). Since, H is a one-way function, computing Ni
given Ni+1 is easy, but computing Ni given Ni-1 is
computationally infeasible. In the presented protocol, we use
nonce chains that can only be created by the controller and can
be verified by all the nodes in the network. In the paper ith
nonce of the nonce chain is denoted Nchain i.

We assume that the first nonce, N0, of the nonce chain has
been distributed before the network deployment and that there
is a protocol for learning the current nonce of the nonce chain.
The mechanism to distribute the first nonce of the nonce chain
may be similar to the Session Key Expiration Phase (Section
4.5) or Revocation Phase (Section 4.6)1. The problem of the
distribution of such initial parameters in a secure way has
been investigated in the literature as well. In [12], a
mechanism is proposed in which the controller unicasts the
first nonce of each node. However, this is not an efficient
method and therefore has scalability problems. In [15], the
problem of distributing initial parameters is addressed by
broadcasting in an efficient way. Furthermore, a multi-level
key chain scheme in which higher-level key chains are used to
authenticate the commitments of lower-level ones is
introduced in order to lengthen the lifetime and to provide
efficiency.

The notation commonly used to express our protocol is
given in Table 1.

1 These two phases use the same method to securely spread two

different types of messages to the network. These messages are
the session key expiration message and node revocation message.

Table 1. Notations

Symbol Meaning
k Key ring size
P Pool of keys
KAB Symmetric key shared between the

nodes A and B
KS Session key used during routing
A B: X Node A sends X to Node B

ABKE (data) Symmetric encryption of data with a key
shared between Node A and Node B

depth Number of levels of nodes through
which routing messages will be
forwarded.

Nchain i
ith nonce of the one way nonce chain

t Timestamp
Nx Nonce value generated by Node X

III. PRELIMINARIES
The proposed routing algorithm is based on a random key

pre-distribution and a shared key discovery phase presented in
[1]. A brief description of these phases is given below.

The Key Pre-distribution phase consists of five offline
steps. First, a large pool of keys P and their identifiers are
generated. Second, for each node, a key ring with k distinct
keys is randomly selected from the pool P. The number k is
called the key ring size. Some key rings may have keys in
common because of the random selection. Third, each selected
key ring is loaded into the memory of a sensor. Fourth,
identifiers of keys in the key ring of the sensor node and
sensor identifier are stored on a trusted controller node.
Lastly, each sensor node shares a separate key with the
controller node. This key is computed by each node and the
controller automatically uses all of the keys in the
corresponding key ring.

 In the Shared Key Discovery phase, each node broadcasts
key identifiers of its key ring. Doing so, each node finds its
neighbors with whom it shares a key.

IV. ROUTING PROTOCOL DESCRIPTION
In this section, we describe the proposed routing protocol.
First, keys are pre-distributed to the sensor nodes and shared
keys are discovered by the methods discussed in [1] and
briefly overviewed in Section 3.

The controller can communicate with the rest of the nodes
indirectly via the level-one nodes, which are defined as the
nodes in the wireless range of the controller. Forming a route
consists of four phases: (1) Level-One Initialization Phase, (2)
Route Learning Phase, (3) Authentic Neighbor and Shorter
Path Discovery Phase, and (4) Key Distribution Phase. After
forming the route, the controller may decide to invalidate a
session key or to revoke some nodes. For these purposes, the
Session Key Expiration Phase or Revocation Phase may be

run respectively. Figure 1 depicts the flowchart of the
protocol.

Key Exchange
Phase

Route
Learning
Phase

Level-One
Initialization

Phase

Key Pre-
distribution

Phase

Shorter Path
Found?

Yes

No

Shared Key
Discovery

Phase
Authentic Neighbor
and Shorter Path
Discovery Phase

Num_Hops>
threshold value

Yes

No

A
ft

er
ro

ut
e

se
tu

p
co

nt
ro

lle
r m

ay
ex

pi
re

 a
se

ss
io

n
ke

y
or

re
vo

ka
te

a
no

de

Session Key
Expiration

Phase

Revocation
Phase

Route
Established

Session Key
Expired?

Node
Compromised?

Yes Yes

Fig. 1. SeFER Flowchart

A. Level-One Initialization Phase
In this phase, the controller discovers the identities of the

level-one nodes. The controller and level-one nodes mutually
authenticate themselves. Furthermore, the controller sends a
message containing a session key for broadcast authentication,
the depth (hop count) of the network, and next nonce of the
nonce chain. Figure 2 shows the steps involved in the level-
one initialization phase for two level-one nodes A and B.

Node A Node B

3) E
K

C
B (N

B +1,depth,K
S ,t,level-one nodes,N

chain i)

2) E
K

CB (N
C +1,N

B)

3)
 E

K CA
(N

A
+1

,d
ep

th
,K S

,t,
lev

el -
on

e
no

de
s,

Nch
ai

n i)

1) N
C1)

 N
C

2)
 E

K C
A
(N

C
+1

,N A
)

Controller

 Fig. 2. Level-One Initialization Phase

In the first message, the controller broadcasts a clear-text

message NC, a nonce value produced by the controller. In the
second message, the level-one nodes reply by sending NC+1
encrypted with the key shared with the controller; which is
KCA for Node A and KCB for Node B. Note that each node
shares a different key with the controller. The second
message authenticates Node A and Node B to the controller.
The second field in the second message is a nonce value (NA
for Node A, NB for Node B) produced by each level-one

node. This value is used to authenticate the controller in the
same way that level-one nodes are authenticated to the
controller. In the third message, the controller authenticates
itself to the level-one nodes by sending NA+1 to Node A and
NB+1 to Node B encrypted with KCA and KCB respectively.
The second field in the third message is depth, which is the
number of levels of nodes through which routing messages
are forwarded. Each node forwarding a routing packet
decrements the value of this field by one. The third field in
this encrypted message is a session key, KS, produced by the
controller. This session key is used to perform an authentic
broadcast and to execute some other operations explained
later in Authentic Neighbor and Shorter Path Discovery
phase. The session key is not used for any critical operations;
neither key exchange, nor data encryption is performed with
the session key. The fourth field is a timestamp, which is the
expiration time of the session key. The compromise of a
session key only gives a malicious node the opportunity of
time-limited attacks, such as performing a Denial of Service
(DoS) attack until the expiration of the session key (see [2]
for detailed information about DoS attacks). Expiration time
must be chosen as short as possible but long enough to
complete the route setup. A session key may be invalidated
before the expiration time by the controller by running the
Session Key Expiration phase, which is explained later. The
fifth field is the list of level-one nodes. In order to prevent
level-one nodes sending routing messages to each other, the
controller informs all level-one nodes of the identity of each
other. Sending these lists prevents the flooding and receiving
of multiple routing messages among level-one nodes.
Finally, the last field of the message is the next nonce in the
nonce chain, Nchain i. This value can only be created by the
controller and used to find evidence when the routing
messages are not initiated by a legitimate controller node, as
detailed in Section 5.3.

B. Route Learning Phase
The aim of level-one nodes in the Route Learning Phase is

to spread a route message that includes the session key KS,
timestamp t and the next nonce of the nonce chain Nchain i to a
number of nodes in the network. The operation starts with the
level-one nodes and continues down in the network. At each
hop, nodes add their identity to the route message. In this way,
an initial set of routes is established. Figure 3 shows the steps
involved in the Route Learning Phase.

First, a sensor node receives a routing message from one
of its secure paths. This message is encrypted with the key
shared between the sender of the message, Previous_Node
and the receiver, Current_Node. Current_Node decrypts this
message and checks the validity of the nonce Nchain i, where

Nchain i is the current unpublished nonce in the nonce chain.
Second, if the depth field is not zero, Current_Node adds its
identity to the Route field, decrements the depth field and
forwards this message to its secure paths. These messages are
encrypted with the key shared between Current_Node and

the receivers of this message Nodej, where j=1…Number_of
_Secure_Paths.

Previous_Node(P) Current_Node(C):
 EKPC(depth, KS, t, route, Nchain i)

if(H(Nchain i)==Nchain 1i −)AND(Nchain i not used before)
 if (depth > 0)
 route := route || Current_Node_Identifier
 depth := depth-1
 send_to_Secure_Paths(

 depth,KS, t,route, Nchain i

 end

)

end

Fig. 3. Route Learning Phase

Figure 4 shows an example of the Route Learning Phase.

The dotted edges in the graph are secure links. Nodes A and B
are level-one nodes. Each node forwards the routing message
by decrementing the depth field and adding its identity to the
route field. Furthermore, each message is encrypted with the
key shared between the sender and the receiver of the
message.

Controller

Node A Node B

Node D

Node E

Node F

1) E
K

BF (1, K
S , t , B, N

chain i)

1) E
K

AE (1, K
S , t , A, N

chain i)

2) EKED(0, KS, t, AE, Nchain i)
2) EKEF(0

, KS, t,
 AE, Nchain i)

2) EKFE(0
, KS, t

, BF, Nchain i)

Fig. 4. An Example of the Route Learning Phase

C. Authentic Neighbor and Shorter Path Discovery Phase
After the Route Learning Phase, each node receiving the

routing message has a route to the controller. However, there
may be a shorter but non-secure route to the controller. Such a
route implies communication connectivity, but some links are
not cryptographically connected since the end-points of these
links do not share a key. In the Route Learning phase, only
secure routes are established. The Authentic Neighbor and
Shorter Path Discovery Phase finds the above-mentioned non-
secure, but shorter paths in an authentic way. After finding
such a shorter path, we run the next phase, i.e., the Key

Exchange Phase, to remove the cryptographic
disconnectedness and secure all of the links in that path.

Figure 5 shows an example of the steps involved in the
Authentic Neighbor and Shorter Path Discovery Phase for
Node X. The dotted lines are secure links. This phase is
performed if the length of the path found is greater than a
certain threshold value. This operation limits the number
authentic neighbor and shorter path phase messages. In
Figure 5, Node X queries its neighbors to find out if any of
them has a shorter path to the controller. First, Node X
broadcasts a route request message encrypted with the session
key KS thus authenticating the message. The first field in this
message is the identity of the node requesting route
information (Node X in this case). The second field is a nonce
value, NX, created by Node X. The third field is the time
stamp, t, of the nonce value. This field is used to prevent
replay attacks. Second, each neighbor of Node X responds by
a message encrypted with session key KS. The first field in this
response message is the identifier of the responding neighbor.
The second field is the NX+1. If this field is valid, this message
is a valid response to Node X’s broadcast. The last field is the
route of the neighbor to the controller. Node X receives
multiple responses from its neighbors. Node X can adopt the
shortest path to the controller among these responses from its
neighbors if it is shorter than its current path.

Node A Node B

Node D

Node X

Node F

1) EK
S (X, N

X , t) 1) EK S
(X, N X

, t)

1) EK S
(X, N X

, t) 1) E
K
S (X, N

X , t)

2)
EK S

(D, N X
+1, R

ou
te D

)

2) EK S
(B, N X

+1, R
oute B)2) EK

S (A, N
X +1, Route A)

Fig. 5. An Example of Authentic Neighbor and Shorter Path

Discovery Phase

D. Key Exchange Phase
In the previous phase, Authentic Neighbor and Shorter Path

Discovery Phase, nodes have asked their neighbors for a
shorter path. If a shorter path exists, this path must be secured.
Thus, a one-time key exchange must be completed between
these nodes, say, X and Y. Key exchange is performed through
the controller. First, one of the nodes, say X, picks a key KXY
and encrypts it using the key shared between X and the
controller. Then X sends out the encrypted key to the
controller over the existing route between them. The controller
decrypts KXY and then re-encrypts it using the key shared
between the controller and Y. After that, the controller sends

out the encrypted key to Y. Node Y decrypts KXY and sends X
an acknowledgment message, which is encrypted by KXY.
This acknowledges the receipt of the session key by Y.

Consider the example in Figure 6. In this figure, lines
indicate secure links and Node A is the only level-one node.
The initial route between Node F and the controller is
F G D A Controller. Assume that Node F runs the
Authentic Neighbor and Shorter Path Discovery Phase and
gets multiple responses from its neighbors. Among these
responses, suppose that neighbor Node B has the shortest path,
which is B A Controller. Thus, it is profitable for F to
change the route to F B A Controller. However, the link
between F and B is not secure. In order to secure this link,
Node F sends a new key, KBF, to Node B through the path
F G D A Controller A B. First, Node F encrypts
KBF with its key shared with the controller. The controller
decrypts KBF and encrypts it with the key it shares with B. This
method eliminates link-by-link encryptions and decryptions.
Moreover, intermediate nodes do not learn KBF. Having
obtained KBF, Node B responds with an authentic
acknowledgment, EK BF (acknowledgment).

N o d e A

N o d e B

N o d e D

N o d e G

N o d e F

C o n t r o l l e r

Fig. 6. Key Exchange Phase

Furthermore, it may be argued that if, for example, D is not
happy about B trying to change the route, it can drop the key
exchange packets. However, Node F will eventually realize
this situation since it would not receive the authentic
acknowledgment. In such a case, Node F can try other secure
paths to perform this key exchange. Having only one secure
path means very low cryptographic connectivity, which is
very unlikely as stated in [1]. That is why there actually are
several secure but longer paths between a node and controller
although only one secure path is shown in Figure 6 for the
sake of simplicity.

E. Session Key Expiration Phase
The controller may decide to invalidate a session key,

before the normal lifetime indicated in the timestamp. Thus,
the controller sends a session key expiration message to level-

one nodes. The session key expiration message contains the
invalidated session key and the next nonce of the nonce chain.
Each node forwards the expiration message to its neighbors
until all nodes in the network have the expiration message.
The session key expiration messages are encrypted and
decrypted with the key shared between the originator and the
receiver of this message. Each node receiving the session key
expiration message checks the validity of the next nonce of
the nonce chain in order to authenticate that the message is
originated from the controller. Figure 7 shows an example of
the Session Key Expiration Phase. In this example, Nodes A
and B are level-one nodes. Each node receiving this message
decrypts it with the appropriate key, expires the session key,
encrypts the message and forwards it over all of its secure
paths. The protocol for distributing a new session key is
similar to the Route Learning Phase except that the route field
is not included in the message. Thus, the session key is simply
distributed over the existing secure links.

Node A Node B

Node D

Node E

Node F

1) E
K

C
B (re voca tio n_li st, N

chain i)

1)
EK C

A
(re

vo
ca

tio
n_

lis
t, N

ch
ain i)

2) E
K

BF (re vo cation_ list, N
chain i)

2) E
K

AE (revocation_list, N
chain i)

3) EKEF(r
evocation_list, Nchain i)

3) EKFE(r
evocation_list, Nchain i)

3) EKED(revocation_list, Nchain i)

Controller

Fig. 8. Example of Revocation Phase.

Node A Node B

Node D

Node E

Node F

1) E
K

C
B (K

S , N
chain i)1)

 E
K C

A
(K

S
, N

ch
ain

 i)

2) E
K

BF (K
S , N

chain i)

2) E
K

A
E (K

S , N
cha in i)

3) EKEF(KS, N
chain i)

3) EKFE(KS, N
chain i)

3) EKED(KS, Nchain i)

Controller

Fig. 7. Example of Session Key Expiration Phase

V. ATTACKS AND COUNTERMEASURES
In this section, we briefly discuss possible attacks on the

proposed protocol that a malicious node utilizes to harm the
network and countermeasures that can be employed to thwart
them. There exist two kinds of attackers: internal attackers and
external attackers. An internal attacker tampers with a
legitimate sensor node and learns all the keys saved in the
device. An external attacker is an external node that gets to
know only the session key. Attacker’s aims are to eavesdrop
on the data packets, to exhaust the battery of the nodes, and to
inject false routing, session key expiration and revocation
messages.

A. Route Poisoning Attacks
Assuming that an external attacker obtained the session

key, the attacker could try sending false routes, as a reply to a
shortest path discovery message in order to accumulate traffic
over itself.

F. Revocation Phase
If a sensor node is compromised, the key ring of that node

must be revoked or deleted from the network. First, the
controller sends the revocation list, i.e. the key identifiers of
the revoked node, as well as the next nonce of the nonce chain
to all of the level-one nodes, encrypted with the keys shared
between the controller and the level-one nodes. Each sensor
node receiving this message checks the validity of the nonce
of the nonce chain. Second, all nodes forward this message to
their neighbors until all nodes receive the message. Figure 8
shows an example of the Revocation Phase.

Countermeasure: This attack is not possible since the route

in the reply packet is considered as the key exchange path, but
since the route is false (non-existent route), the key exchange
cannot take place. Eventually, a node will notice this false
route during the key exchange protocol. This node could
report this situation to the controller and thus invalidate the
session key. Therefore, the nodes are obliged to reply with
correct routes.

 B. External DoS Attacks
The session key KS is used for the Authentic Neighbor and

Shortest Path Neighbor Discovery Phase. Each session key

has a limited lifetime limited by the value indicated in the time
stamp. When a legitimate node becomes compromised, the
attacker may send a routing message (a Route Learning Phase
message) with a very large session key expiration time in
order to have sufficient time to build a denial of service (DoS)
attack, where the objective is to exhaust the battery of its
neighbors by repeatedly sending routing messages.

Countermeasure: In order to prevent this attack, each node

must check the time stamp value. If it indicates a late
expiration time, the node receiving this message must ignore
the value and wait for a fixed amount of time for session key
expiration. Therefore, the attacker has limited time to send
multiple bogus shortest path discovery messages to exhaust
the battery of sensor nodes.

C. Internal DoS Attacks
The use of the nonce chain limits the efficiency of certain

types of attacks. For example, an unpublished nonce from the
nonce chain is used by the controller to initiate a legitimate
Route Learning, Session Key Expiration, or Revocation phase.
Since the next nonce is known only by the controller, no other
node can initiate a new phase. However, any internal attacker
can modify the content of the message and send it through its
secure links. For example, the internal attacker can turn a
revocation message into a route-learning message to apply a
DoS attack. The receiving nodes consider the message as
legitimate.

Countermeasure: The nodes receiving the fabricated

routing messages may also receive the legitimate revocation
messages from other nodes; therefore, some nodes could
receive two different types of messages with the same chain
nonce. This situation can be reported to the controller as a
security breach. The attacker can only deceive its downstream
nodes if and only if it can prevent them from receiving the
legitimate revocation message. This is only possible when the
malicious node is the sole point of relay for its downstream
nodes. However, this is unlikely. For instance, an example in
[1] shows that if a DSN with 10000 nodes has a graph
connectivity probability of 0.99999, on average, each node
has 20 links.

D. Blackhole Attacks
The worst possible type of attack is called a blackhole

attack, where an internal attacker who captured all the keys of
a legitimate node is able to read and remove the messages of a
subgroup of the network. Moreover, the attacker is able to
change a legitimate route-learning message by modifying the
route information. The aim of the internal attacker is to
deceive the receiving nodes that its path to the controller is
shorter; e.g. the attacker may claim that it is a level-one node.
In this way, the attacker can accumulate traffic over itself, but
it does not forward any data towards the controller. The
evidence gathering method used in the previous situation is
useless, since each routing message can naturally be different
as the route and depth fields change at each hop, and there is
nothing to compare for evidence. However, the attack is still
local and the rest of the network is not compromised.

Countermeasure: In order to overcome the confidentiality

problem, each node can send data encrypted with the key that
it shares with the controller. Therefore, the attacker will not be
able to read data packets but will be able to drop them. This
problem can be solved by employing an authenticated
acknowledgment mechanism after the route is established. In
this mechanism, having received a data packet from Node,
say, X, the controller creates an acknowledgment packet and
encrypts it using KCX, and sends it the Node X. Since, except
Node X, only the controller can decrypt/encrypt using KCX, if
Node X receives the acknowledgment, this means not only the
data packet has arrived, but also that Node X has a legitimate
route to the controller and no node has dropped the packet en
route. Authentic acknowledgments do not need to be
requested all the time for blackhole detection; some random
checks would help too. Failure in receiving one authentic
acknowledgment would be considered as a weak indicator for
a blackhole attack, since there might be other reasons behind
the fact that the acknowledgment has not been received.
However, it is quite clear that continuous failures strengthen
the possibility of the blackhole attack. The correlation
between the failure pattern and the existence of the blackhole
attack is left as a future study.

VI. SIMULATIONS
We developed simulation software in Java to evaluate the

performance of the proposed protocol. Important performance
metrics considered are the overhead of the protocol in terms of
routing and key exchange messages, and the average length of
the paths connecting the sensor nodes and the controller. Our
simulations aim at analyzing the changes in these metrics with
respect to key ring size. In the simulations, we considered a
network of 1000 nodes that are uniformly distributed and that
show an average neighborhood connectivity of 40 nodes. The
key pool has a size of 10000 keys.

Figure 9 depicts the change in the average path length from
the sensor nodes to the controller before and after the
authentic neighbor discovery phase respectively for key ring
sizes. For small key ring sizes, the average path length is
smaller when the authentic neighbor discovery phase is
employed. This is quite natural considering that in this phase
the nodes search for shorter paths to the controller. However,
as the key ring size increases, the gains due to the authentic
neighbor discovery phase diminishes, because the shortest
path to the controller is also determined by the communication
range of sensor nodes. Note that sensor nodes are limited in
resources such as memory and transmission power. Thus, in
order to increase the efficiency of data collection, the
authentic neighbor discovery phase should be employed.

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00
9,00

0 50 100 150 200 250

k(key ring size)

Av
ra

ge
 H

op
 C

ou
nt

Average Hop Count Av. Hop count after exchange

Fig 9. Average Hop Count with and without authentic
neighbor discovery

Figure 10 depicts the number of route messages with
different key ring sizes. In the simulations, we considered
flooding as the method to exchange routing messages among
the nodes. As the key ring size increases, more nodes can
communicate securely and thus more nodes exchange routing
messages to find a shorter path to the controller. Meanwhile,
as the key ring size increases, the number of key exchange
messages drops for the same reason outlined above.

0,00

10000,00

20000,00

30000,00

40000,00

50000,00

60000,00

70000,00

80000,00

0 50 100 150 200 250

k(key ring size)

nu
m

be
r o

f m
es

sa
ge

s

Route Messages Total Key Exchange

Fig 10. Key ring size versus number of messages

As an extreme case, where every node can communicate
with all of its neighbors securely, the average path length
reduces to 3.94 hops, but the total number of routing
messages increases to approximately 70000. A similar
average path length can be achieved by limiting the key ring
size to approximately 100 thus reducing the average number
of routing messages to approximately 40000.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a secure routing protocol for

sensor networks. This protocol establishes secure routes in
which links are secured using different keys. Thus, the

compromise of a single key does not compromise the entire
network.

The key idea behind the proposed scheme is random key
pre-distribution which is also employed in [1]. Random key
pre-distribution requires different nodes to be manufactured
with a set of random keys selected from a pool of keys. When
these nodes are deployed in the sensor field, the ones that are
physically in the transmission range of each other will be able
to communicate securely if they, by chance, share a common
key. Otherwise, secure routes may still be formed but they
may be longer. The proposed protocol allows the nearby
nodes, which do not have common keys, to exchange keys,
but only when this key exchange would yield a shorter and
secure path.

The proposed protocol is flexible such that it allows a
tradeoff between route length and the route setup cost in terms
of processing power and storage. For instance, when there are
stringent limitations on the memory space, the key ring size is
small. Then, the secure routes are established over a longer
physical path since the possibility of two nodes having a
common key is low.

The simulations demonstrate that increasing the key ring
size beyond a certain value does not have any effect on the
average path length. Given the number of nodes in the
network, an optimal key ring size can be found. The
Authentic Neighbor and Shorter Path Discovery Phase will
improve the average path length for small key ring sizes. As
future work, some threshold schemes may be implemented in
order to decide whether shorter path discovery is required.

ACKNOWLEDGEMENT
This work was in part supported by Scientific and Technical
Research Council of Turkey (TUBITAK) under the project
number 104E007.

REFERENCES
1. L. Eschenauer, V. D. Gligor, “A key-management scheme

for distributed sensor networks”. Proceedings of the 9th
ACM conference on Computer and Communications
Security, 2002, Washington, DC, USA

2. A. D. Wood, J. A. Stankovic, “Denial of Service in Sensor
Networks”, IEEE Computer, 35(10): 54-62, 2002.

3. J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing
robust and ubiquitous security support for mobile ad-hoc
networks,” in ICNP, 2001, pp. 251–260.

4. J. P. Hubaux, L. Buttyan, and S. Capkun, “The quest for
security in mobile ad hoc networks,” in Proceedings of the
ACM Symposium on Mobile Ad Hoc Networking and
Computing (MobiHOC 2001), 2001.

5. L. Zhou and Z. Hass, “Securing ad hoc networks”, IEEE
Network Magazine, volume 13, no 6,1999.

6. H. Luo, P. Zefros, J. Kong, S. Lu, and L. Zhang, “Self-
securing ad hoc wireless networks,” in Seventh IEEE
Symposium on Computers and Communications (ISCC
’02), 2002.

7. J. Binkley and W. Trost, “Authenticated ad hoc routing at
the link layer for mobile systems,” Wireless Networks, vol.
7, no. 2, pp. 139–145, 2001.

8. J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu,
“Adaptive security for multi-layer ad-hoc networks,”
Special Issue of Wireless Communications and Mobile
Computing, Wiley Interscience Press, 2002.

9. Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD: Secure
efficient distance vector routing for mobile wireless ad hoc
networks,” in Proceedings of the 4th IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA
2002), June 2002, pp. 3–13.

10. S. Basagni, K. Herrin, E. Rosti, and D. Bruschi, “Secure
pebblenets,” in ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc 2001),
October 2001, pp. 156–163.

11. P. Papadimitratos and Z. Haas, “Secure routing for mobile
ad hoc networks,” in SCS Communication Networks and
Distributed Systems Modeling and Simulation Conference
(CNDS 2002), January 2002.

12. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar,
“SPINS: Security protocols for sensor networks,” in
Proceedings of Mobile Networking and Computing 2001,
2001.

13. M. Tatebayashi, N. Matsuzaki and D.B.J. Newman, Key
distribution protocol for digital mobile communication
systems, in: Advances in Cryptology – Crypto’89, Lecture
Notes in Computer Science, Vol. 435 (1989) pp. 324-334.

14. C. Boyd and A. Mathuria, Key establishment protocols for
secure mobile communications: A selective survey, in:
Australasian Conference on Information Security and
Privacy (1998) pp. 344-355.

15. D. Liu and P. Ning. “Efficient distribution of key chain
commitments for broadcast authentication in sensor
networks”, In Proceedings of Network and Distributed
System Security Symposium Conference, San Diego, 2003.

16. R. Di Pietro, L. V. Mancini, and S. Jajodia, “Providing
secrecy in key management protocols for large wireless
sensors networks”, Journal of Ad Hoc Networks, 1(4): 455-
468, November 2003.

17. W. Du, J. Deng, Y.S. Han, P. K. Varshney, “A Pairwise
Key Pre-distribution Scheme for Wireless Sensor
Networks”, 10th ACM Conference on Computer and
Communications Security, 2003, Washington, DC, USA

18. D. Liu and P. Ning, "Establishing pairwise keys in
distributed sensor networks", Proceedings of the 10th ACM
Conference on Computer and Communications Security
(CCS), Washington, DC, USA, October 27-31 2003, pp.
52-61.

19. S. Zhu, S. Setia and S. Jajodia. LEAP: Efficient Security
Mechanisms for Large-Scale Distributed Sensor Networks.
Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS), Washington, DC,
USA, October 27-31 2003.

